PLT MzScheme: Language Manual

Matthew Flatt (mflatt@plt-scheme.org)

360
Released November 2006

Copyright notice
Copyright©1995-2006 Matthew Flatt

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

libscheme: Copyrigh1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyrighi988, 1989 Hans-J. Boehm, Alan J. Demers. Copyrigth©91-1996
by Xerox Corporation. Copyrigh£1996-1999 by Silicon Graphics. Copyrig@1999-2001 by Hewlett Packard
Company. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyrigh®94 by Xerox Corporation. All rights reserved.
GNU MP Library: Copyright©1992, 1993, 1994, 1996 by Free Software Foundation, Inc.

GNU lightning: Copyright©1994, 1995, 1996, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a liseleme@plt-scheme.orBvidence of interest

helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Thanks

Thanks to Brent Benson fdibscheme , and to Hans Boehm for the conservative garbage collector and their help.

This manual was typeset usinfJiX, SIKTEX, andtex2page . Some typesetting macros were originally taken from
Julian Smart'Reference Manual for wxWindows 1.60: a portable C++ GUI toolkit

This manual was typeset on November 20, 2006.

Contents

1 Introduction 1
1.1 MrEd, DrScheme, antizc e 1
1.2 Unicode, Locales, Strings, and POrts 2

121 Unicode e 2
122 Locale 2
1.2.3 Encodingsand POrts e 3
1.3 NoOtation. e 4

2 Basic Syntax Extensions 5
2.1 Evaluation Order. e 5
2.2 Multiple ReturnValues. e e 5
23 Condand Case. o it 5
24 Whenand Unless e e 6
25 Andand Or. e 6
2.6 SEOUENCES v i it e e e e e 6
2.7 Quoteand QUasIqQUOLE e e e e e 6
2.8 Binding FOrms L e e e e 7

2.8.1 Definitions e 7
2.8.2 LocalBindings. e e 8
2.8.3 ASSIONMENIS. o e e e e e e 9
2.84 Fluid-Let o 9
2.8.5 Syntax Expansion and Internal Definitions. 0. 9
29 Case-Lambda 10
2.10 Procedure Application. e e e e 11
2.11 Variable Reference e 11

CONTENTS CONTENTS

3 Basic Data Extensions 12
3.1 VWoidandUndefined 12
3.2 B0oleans 12
3.3 NUMDErs . . . 13
34 CharaCters o e e e 15
3.5 SHINGS. . . . e e e e e e 17
3.6 Byte Strings. e 19
3.7 Symbols. . . . 23
3.8 Keywords. e e e e e e e 23
3.9 VEBCIOIS o 24
310 LiStS. . o v o e e e 24
311 BOXES . . o e e e e e e 24
312 Procedures. o o e 25

BA2.L AMY o o e e e e, 25
3.12.2 Primitives. o e e e 26
3.12.3 Procedure Names. o ot e e 26
3.12.4 Closure Equality. 26
313 PromiSES . . . v v ot e 26
3.14 HashTables 26

4 Structures 29
4.1 Defining Structure TYPES o . v i i e e e e e e e e 29
4.2 Creating Subtypes. e e 30
4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties. 30
4.4 Structure Type Properties. e e 32
45 Structure INSPeCtors. L e e 33
4.6 Structures as Procedures. e 35
4.7 Structures as Synchronizable Events e 36
4.8 Structure UtIlities. 36

CONTENTS CONTENTS

5 Modules 38
5.1 Module Expansion and EXeCUtion e 38
52 Module Bodies. e 39
5.3 Modulesand Macros e 41
54 Module Paths. e e 42

54.1 Module Name Resolver. e 42
5.4.2 Module Names and Compilation. 43
5.5 Dynamic Module ACCESS o i e e e e e e e 44
5.6 Re-declaring Modules. e e 44
57 Built-inModules L 44
5.8 Modulesand Load Handlers e 45
6 Exceptions and Control Flow 46
6.1 EXCEPLiONS e e e e e e e e e e e 4B
6.1.1 Primitive EXCEPLioONs L e e 47
6.2 EITOIS o A8
6.2.1 Application Errors. o e e e 49
6.2.2 Syntax Errors e e e e e e 49
6.2.3 Inferred Value Names. 50
6.3 ContinuatioNS. e e e e e e e 50
6.4 DynamicWINd e e e e e e 51
6.5 Prompts and Composable Continuatians. L 53
6.6 Continuation Marks L e 54
6.7 Breaks. 56
6.8 ErrorEscape Handler. e 58

7 Threads 59
7.1 Suspending, Resuming, and Killing Threads 59
7.2 Synchronizing Thread State e 60
7.3 Additional Thread Utilities. e 61

CONTENTS CONTENTS

7.4 Semaphores o e e e e 61
75 Channels. 62
7.6 Alarms. . . . e e 63
7.7 Synchronizing EVents e e e e e 63
7.8 Thread-Local Storage Cells. e 66
7.9 Parameters. 67
7.9.1 Built-in Parameters e 69

7.9.2 Parameter Utilities. 75

8 Namespaces 76
8.1 Identifier Resolutionin Namespaces. 77
8.2 Initial Namespace e e e e e e 77
8.3 Namespace Utilities e e 77
9 Security 80
9.1 SecurityGuUards L e e e 80
9.2 Custodians e 81
9.3 Thread GroupS. o i e e e e e e e 83
9.4 Inspectorsand Modules. 83
10 Regular Expressions 84
11 Input and Output 92
11.1 POItS. . . o e e 92
11.1.1 End-of-File Constant e e 92

11.1.2 CurrentPOrts o . e e e 92

11.1.3 Opening File Ports e 93

11.0.4 PIpeS. . o o o o e e e 94

11.1.5 String POIS o e 94

11.1.6 File-Stream Ports. e e 95

11.1.7 Custom Ports e e e 96

CONTENTS CONTENTS
11.2 Readingand Writing. o 0 e e e e e e e e 108
11.2.1 Reading Bytes, Characters,and Strings 108
11.2.2 Writing Bytes, Characters,and Strings. o 112
11.2.3 Writing Structured Data. 114
11.2.4 DefaultReader e 115
11.2.5 Default Printer. e e 119
11.2.6 Replacingthe Reader. e 121
11.2.7 Replacingthe Printer. e 121
11.2.8 Customizing the Reader through Readtables 122
11.2.9 Reader-Extension Procedures. i it e 126
11.2.10 Customizing the Printer through Custom-Write Procedures 128

11.3 Filesystem Utilities. e e e e e e 128
11.3.1 Paths. . . . o e e 129
11.3.2 LocatingPaths. e 132
11.3.3 Files . . o o o 134
11.3.4 DIreCIONES. v e e e e e e 135

11.4 Networking o o e e e e e 136
1141 TCP. . o o e e 136
11.4.2 UDP . . L e e 138

12 Syntax and Macros 141
12.1 syntax-rules EXtensions. e 141
12.2 Syntax ObJeCtS. o o 143
12.2.1 Syntax Patterns. e e e e 144
12.2.2 Syntax ObjectContent. e e 147
12.3 Syntax and Lexical SCOpe. e 149
12.3.1 Syntax Object COmpariSONS. v v i it e e e e e 150
12.3.2 Syntax Object Bindings. o 0 e e e 150
12.3.3 Transformer Environments. 151
12.3.4 Module Environments. e e e 152

CONTENTS

CONTENTS

12.3.5 Macro-Generated Top-Level and Module Definitians 154

12.4 Binding Multiple Syntax Identifiers. 156
12.5 Special Syntax Identifiers. 157
12.6 Macro EXpansion o o i e e e e e e e e e e e e e e 158
12.6.1 Expanding Expressionsto Primitive Syntax 163

12.6.2 Syntax Object Properties. 164

12.6.3 Certificates for Protected References. 166

12.6.4 Information on Structure TYPeS v i i e e e 169

12.6.5 Information on Expanded and Compiled Modules. 170

13 Memory Management 173
131 Weak BOXES o o o e e e e e 173
13.2 EPhemerons o o e e e 173
13.3 WILEXECULOIS . . . o o e e e e e e e e e 174
13.4 Garbage Collection e e 175
14 Support Facilities 176
141 Evaland Load o e 176
14.2 EXItING. . . . o o o e e e 177
14.3 Compilation. e e e e e 177
14.4 Dynamic EXtENSIONS. o e e e 178
15 System Utilities 179
15.1 TIME. . . o o e e e 179
15.1.1 RealTimeandDate. e e 179

15.1.2 Machine Time e 179

15.1.3 Timing Execution e e e e e 180

15.2 Operating System ProCesSes. o v i i e e e e e e e e 180
15.3 WINdOWS ACLIONS. o o o o e e e e e 181
15.4 Operating System EnvironmentVariables. 182
15.5 Runtime Information. 182

Vi

CONTENTS

CONTENTS

16 Library Collections and MzLib

17 Running MzScheme
17.1 Flag Conventions
17.2 Executable Name

17.3 Initialization

18 Writing and Running Scripts

19 Honu

19.1 Honu Input Parsing
19.1.1 Numbers
19.1.2 Identifiers.
19.1.3 Strings
19.1.4 Characters
19.1.5 Parentheses, Brackets, and Braces
19.1.6 Comments

19.2 Honu Output Printing

20 Windows Path Syntax

License

Index

197

201

Vii

CONTENTS CONTENTS

viii

1. Introduction

The core of the Scheme programming language is descritReniised Report on the Algorithmic Language Scheme
This manual assumes familiarity with Scheme and only contains information specific to MzScheme. (Many sections
near the front of this manual simply clarify MzScheme’s position with respect to the standard report.)

MzScheme (pronounced “miz scheme”, as in “Ms. Scheme”) is md®tRScompliant. Certain parameters in
MzScheme can change features affectRfRScompliance; for example, case-sensitivity is initially enabled (see
§7.9.1.9.

MzScheme provides several notable extensio®RSScheme:

e A module system for namespace and compilation management (see Ghapter

An exception system that is used for all primitive errors (see Chéjpter

Pre-emptive threads (see Chapigr

A class and object system (see Chapter BloT MzLib: Libraries Manug).

A unit system for defining and linking program components (see ChapterBllToMzLib: Libraries Manug).

Extensive Unicode and character-encoding support§see

MzScheme can be run as a stand-alone application, or it can be embedded within other applications. Most of this
manual describes the language that is common to all uses of MzScheme. For information about running the stand-
alone version of MzScheme, see Chagitér

1.1 MrEd, DrScheme, andmzc

MrEd is an extension of MzScheme for graphical programming. MrEd is described separdely MrEd: Graphi-
cal Toolbox Manual

DrScheme is a development environment for writing MzScheme- and MrEd-based programs. DrScheme provides
debugging and project-management facilities, whichnaxtgorovided by the stand-alone MzScheme application, and

a user-friendly interface with special support for using Scheme as a pedagogical tool. DrScheme is dedetibed in
DrScheme: Development Environment Manual

Themzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte code com-
piled files (zo files) or platform-specific native code librariesd, .dll, or .dylib files) to be loaded into MzScheme
(or MrEd). Themzc compiler is described iRLT mzc: MzScheme Compiler Manual

MzScheme3m is an experimental version of MzScheme that uses more precise memory-management techniques. For
long-running applications, especially, MzScheme3m can provide superior memory performance. See the compilation
information in the MzScheme source distribution for more details.

1.2. Unicode, Locales, Strings, and Ports 1. Introduction

1.2 Unicode, Locales, Strings, and Ports

As explained in the following subsections, MzScheme distinguishes characters from bytes and character strings from
byte strings. MzScheme'’s notion of “character” corresponds to a Unicode scalar value (i.e., a Unicode code point that
is not a surrogate), and many operations assume the UTF-8 encoding when converting between characters and bytes.
For a handful of conversions, the user’s chosen locale determines an encoding, instead. The chosen locale also affects
string case folding and comparison for operations whose name indhaxide

1.2.1 Unicode

Unicode defines a standard mapping between sequences of integers and human-readable “characters.” More precisely,
Unicode distinguishes betwegtyphs, which are printed for humans to read, ahdracters, which are abstract entities

that map to glyphs, sometimes in a way that's sensitive to surrounding characters. Furthermore, different sequences
of integers—orcode points in Unicode terminology—sometimes correspond to the same character. The relationships
among code points, characters, and glyphs are subtle and complex.

Despite this complexity, most things that a literate human would call a “character” can be represented by a single code
point in Unicode (though it may also be represented by other sequences). For example, Roman letters, Cyrillic letters,
Chinese characters, and Hebrew consonants all fall into this category. The “code point” approximation of “character”
thus works well for many purposes, and MzScheme definesithie datatype to correspond to a Unicode code point.
(More precisely, &har corresponds to a Unicode scalar value, which excludesgate code points that are used to
encode other code points in certain contexts.) For the remainder of this manual, we use “character” interchangeably
with “code point” or “MzScheme’'shar datatype.”

Besides printing and reading characters, humans also compare characters or character strings, and humans perform
operations such as changing characters to uppercase. To make programs geographically portable, humans must agree to
compare or upcase characters consistently, at least in certain contexts. The Unicode standard provides such a standard
mapping on code points, and this mapping is used to case-normalize symbols in MzScheme. In other contexts, global
agreement is unnecessary, and the user’s culture should determine the operation, such as when displaying a list of file
names. Cultural dependencies are captured by the Usexls, which is discussed in the next section.

Most computing devices are built around the concepbyt (an integer from O to 255) instead of character. To
communicate character sequences among devices, then, requires an encoding of characters ibidmb$tessone

such encoding; due to its nice properties, the UTF-8 encoding is in many ways hard-wired into MzScheme’s primitives,
such asread-char . Encodings are discussed further in the following sections. For byte-based communication,
MzScheme supports byte strings as a separate datatype from character strigg|see

For official information on the Unicode standard, see http://www.unicode.org/. For a thorough but more accessible
introduction, seé&Jnicode Demystifietly Richard Gillam.

1.2.2 Locale

A locale captures information about a user’s culture-specific interpretation of character sequences. In particular, a
locale determines how strings are “alphabetized,” how a lowercase character is converted to an uppercase character,
and how strings are compared without regard to case. String operations stich@gsi? arenotsensitive to the

current locale, but operations suchstisng-locale-ci? (see§3.5) produce results consistent with the current

locale.

Under Unix, a locale also designates a particular encoding of code-point sequences into byte sequences. MzScheme
generally ignores this aspect of the locale, with a few notable exceptions: command-line arguments passed to
MzScheme as byte strings are converted to character strings using the locale’s encoding; command-line strings passed
as byte strings to other processes (throsghprocess) are converted to byte strings using the locale’s encoding;
environment variables are converted to and from strings using the locale’s encoding; filesystem paths are converted

1. Introduction 1.2. Unicode, Locales, Strings, and Ports

to and from strings (for display purposes) using the locale’s encoding; finally, MzScheme provides functions such as
string->bytes/locale to specifically invoke a locale-specific encoding.

A Unix user selects a locale by setting environment variables, sucgh a&L . Under Windows and Mac OS X, the op-

erating system provides other mechanisms for setting the locale. Within MzScheme, the current locale can be changed
by setting thecurrent-locale parameter (se¢7.9and§7.9.1.1). The locale name within MzScheme is a string,

and the available locale names depend on the platform and its configuration, Butldwale means the current user’s
default locale; under Windows and Mac OS X, the encoding"foris always UTF-8, and locale-sensitive opera-

tions use the operating system’s native interfacetting the current locale tf makes locale-sensitive operations
locale-insensitive, which means using the Unicode mapping for case operations and using UTF-8 for encoding.

1.2.3 Encodings and Ports

The UTF-8 encoding of characters to bytes has a number of important properties:

e Each code point from 0 to 127 (i.e., each ASCII character) is encoded by the corresponding byte from 0 to 127.

e Other code points are represented by a sequence of two to six bytes, where each byte is in the range 128 to 253.
Furthermore, the first byte in the sequence is between 192 and 253, and each subsequent byte is between 128
and 191.

¢ Not every sequence starting with 192-t0-253 followed by 128-t0-191 encodes a code point. The bytes 254 and
255 are never used to encode any code point.

e Every code-point sequence has a unique encoding in bytes, and every valid encoding in bytes has a unique
decoding into code points.

For a more complete description of UTF-8, $d#p://www.cl.cam.ac.uk/ ~mgk25/unicode.html

Another useful encoding iBatin-1, where every code point from 0 to 255 is encoded by the corresponding byte, and
no other code points can be encodeivery byte sequence is therefore a valid encoding with a unique decoding, but
not every character string can be encoded.

MzScheme supports these two encodings through functions sbgtess>string/utf-8 andstring->bytes/latin-1
(see§3.6). These functions accept an extra argument so that an un-encodable character or un-decodeable se-
guence is replaced by a specific character or byte, instead of raising an exception. MzScheme also provides
bytes->string/locale andstring->bytes/locale ; typically, a locale-specific encoding cannot encode

all characters, and not all byte sequences are valid encodings in the encoding.

All ports in MzScheme produce and consume bytes. When a port is provided to character-based operations, such as
read , the port’s bytes are interpreted as a UTF-8 encoding of characters. Moreover, when tracking position, line, and
column information for an input port, position and column are computed in terms of decoded characters, rather than
bytes.

Bytes streams that correspond to other encodings must be transformed to or from a UTF-8 byte stream, possibly using
a converter produced Hyytes-convert (see§3.6). When an input port produces a sequence of bytes that is not a
valid UTF-8 encoding in a character-reading context, certain bytes in the sequence are converted to the character “?”
(see§11.D).

1In particular, setting th&C_ALL and LC_CTYPE environment variables do not affect the loc&lle under Mac OS X. Usgetenv and
current-locale to explicitly install the environment-specified locale, if desired.

2Technically, Latin-1 (as defined by ISO standard 8859) doesn't include control characters in 0 to 31 and 127 to 159. Like much other software,
MzScheme uses an extended definition of Latin-1 that includes those control characters. Beware of encodings that claim to be Latin-1/ISO-8859-1
but that are actually Windows-1252, because Windows-1252 is an extension of Latin-1 that is not a subset of Unicode.

1.3. Notation 1. Introduction

1.3 Notation

Throughout this manual, the syntax for new forms is described using a pattern notation with ellipses. Plain, centered
ellipses (- -) indicatezeroor more repetitions of the preceding pattern. Ellipses with a “1” superserig) {ndicate
oneor more repetitions of the preceding pattern.

For example:

(let-values (((variable <) expr) --)
body-expr
)

The first set of ellipses indicate that any numbevaffiable s, possibly none, can be provided with a singkgr .

The second set of ellipses indicate that any numbée(ofariable --+) expr) combinations, possibly none,
can appear in the parentheses following kevalues syntax name. The last set of ellipses indicate that a
let-values expression can contain any numbeibofly-expr expressions, as long as at least one expression is
provided. In describing parts of thet-values syntax, the nameariable is used to refer to a single binding
variable in det-values expression.

Some examples contain simple ellipses (), which is an identifier, albeit one that has special meaning in syntax
patterns and templates.

Square brackets (“[" and “]") are normally treated as parentheses by MzScheme, and this manual uses square brackets
as parentheses in example code. However, in describing a MzScheme procedure, this manual uses square brackets to
designate optional arguments. For example,

(regexp-match pattern string [start-k end-k i)

describes the calling convention for a procedtggexp-match where thepattern andstring arguments
are required, and thetart-k andend-k arguments are optional (bstart-k must be provided iend-k is
provided).

In grammar specifications for syntactic formayiable andidentifier are equivalent, butariable is often
used when the identifier corresponds to a location that holds a value at run time.

2. Basic Syntax Extensions

2.1 Evaluation Order

In an application expression, the procedure expression and the argument expressions are always evaluated left-to-right.
Similarly, expressions fdet andletrec bindings are evaluated in sequence from left to right.

2.2 Multiple Return Values

MzScheme supports tH®°PRSvalues andcall-with-values procedure, and also provides binding forms for
multiple-value expressions, discussedng.

Multiple return values are legal in MzScheme whenever the return value of an expression is ignored. For example,
all but the last expression inteegin form can legally return multiple values in any context. If a built-in procedure

takes a procedure argument, and the built-in procedure does not inspect the result of the supplied procedure, then the
supplied procedure can return multiple values. For example, the procedure supgbegéch can return any

number of values, but the procedure suppliethgp must return a single value.

When the number of values returned by an expression does not match the number of values expected by the expres-

sion’s context, thexn:fail:contract:arity exception is raised (at run time).
Examples:
(— (values 1)) ; = -1
(— (values 1 2)) ; = error: returned 2 values to single-value context
(— (values)) ; = error: returned O values to single-value context

(call-with-values

(lambda () (values 1 2))

(lambda (xy) vy); = 2
(call-with-values

(lambda () (values 1 2))

(lambda z z)); = (1 2)
(call-with-values

(lambda () (let/cc k (k 3 4))

(lambda (xy) vy); = 4
(call-with-values

(lambda () (values 'hello 1 2 3 4))

(lambda (s . |)

(format "s =7 sl1)); = "hello = (12 3 4)

2.3 Cond and Case

Theelse and=> identifiers in acond or case statement are handled specially only when they are not lexically
bound or module-bound:

2.4. When and Unless 2. Basic Syntax Extensions

(cond [L => addl]) ; = 2
(let | => 5]) (cond [L => addl])) ; = #<primitive:addl >

2.4 When and Unless

Thewhen andunless forms conditionally evaluate a single body of expressions:

e (when test-expr expr ...y evaluates thexpr body expressions only wheast-expr returns a
true value.

e (unless test-expr expr -.-1) evaluates thexpr body expressions only wheast-expr returns
#f .

The result of avhen or unless expression is the result of the last body expression if the body is evaluated, or void
(see§3.]) if the body is not evaluated.

2.5 AndandOr

In anand or or expression, the last test expression can return multiple value$Zs8e If the last expression is
evaluated and it returns multiple values, then the result of the esmideor or expression is the multiple values.
Other sub-expressions in and or or expression must return a single value.

2.6 Sequences

Thebegin0 form is like begin , but the value of the first expression in the form is returned instead of the value of
the last expression:

(let [x 4])
(begin0 x (set! x 9) (display X)) ; = displays 9 then returns 4

The first sub-expression inkeegin0 expression is in tail position if and only if it is the only sub-expression.

2.7 Quote and Quasiquote

Thequote form never allocates, so that the result of multiple evaluations of a singlee expression are always
eg?. Nevertheless, a quoted cons cell, vector, or list is mutable; mutations to the resujtiofea application are
visible to future evaluations of thguote expression.

Thequasiquote form allocates only as many fresh cons cells, vectors, and boxes as are needed without analyzing
unquote andunquote-splicing expressions. For example, in

‘1 2 3)

a single reader-allocated t§i2 3) is used for every evaluation of tlggiasiquote expression.

The standard Schengpiasiquote has been extended so thatquote andunquote-splicing work within
immediate boxes:
‘#&((— 2 1) ,@(list 2 3)) ; = #&(1 2 3)

2. Basic Syntax Extensions 2.8. Binding Forms

See§l1.2.4for more information about immediate boxes.

MzScheme defines thenquote andunquote-splicing identifiers as top-level syntactic forms that always
report a syntax error. Thguasiquote form recognizes normalnquote andunquote-splicing uses via
module-identifier=? . (Seeg12.3.1for more information on identifier comparisons.)

2.8 Binding Forms

2.8.1 Definitions

A procedure definition
(define variable (lambda formals expr)

can be abbreviated
(define (variable . formals) expr ---1)

In addition to this standard Scheme abbreviation, MzScheme supports an MIT-style generalization, so that a definition
(define header (lambda formals expr 1)

can be abbreviated
(define (header . formals) expr ---1))

even ifheader is itself a parenthesized procedure abbreviation. The general syndafiné is as follows:
(define variable expr)
(define (header . formals) expr ---1)

header is one of
variable
(header . formals)

formals is one of

variable
(variable -)
(variable variable .-+ . Vvariable)

Multiple values can be bound to multiple variables at once udéefme-values

(define-values (variable --1) expr)

The number of values returned bypr must match the number ghriable s provided, and theariable s must
be distinct. No procedure-definition abbreviation is availabledffine-values

Examples:
(define x 1)
X ; =1
(define (f x) (+ x 1)
(f 20, =3

(define (((g x)yz). w (list XYy zw)

(let [h (g1 223))
(list (h45 (he); ='(123@5)(@23(@E)

2.8. Binding Forms

2. Basic Syntax Extensions

(define-values (X) 2)

X ; = 2

(define-values (X y) (values 3 4))

X ; =3

y ; = 4

(define-values (X y) (values 5 (addl X))
y ; = 4

(define-values () (values)) ; same as (void)

(define x (values 7 8)) ; = error: 2 values for 1-value context
(define-values (X y) 7); = error: 1 value for 2-value context
(define-values () 7) ; = error: 1 value for O-value context

2.8.2 Local Bindings

Local variables are bound with standard Scheniets, let x, and letrec MzScheme'sletrec form
guarantees sequential left-to-right evaluation of the binding expressions. I€ffee bound in the result of
(scheme-report-environment 5) , however, is defined exactly asRIRS)

Multiple values are bound to multiple local variables at once wihvalues , let x-values , and

letrec-values . The syntax fotet-values is:

(let-values (((variable) expr) ---) body-expr ---1)

As in define-values
declared in the corresponding clause.
let-values expression.

, the number of values returned by easkpr must match the number ofariable s
Eacipr remains outside of the scope of all variables bound by the

The syntax folet *-values andletrec-values is the same as fdet-values
for each form corresponds to the single-value binding form:

, and the binding semantics

e Inalet xvalues expression, the scope of the variables of each clause includes all of the remaining binding
clauses. The clause expressions are evaluated and bound to variables sequentially.

e In aletrec-values expression, the scope of the variables of each clause includes all of the binding clauses.
The clause expressions are evaluated and bound to variables sequentially.

When aletrec orletrec-values expression is evaluated, each variable binding is initially assigned the special
undefined value (s€g3.1); the undefined value is replaced after the corresponding expression is evaluated.

Examples:
(define x 0)
(let [x5 [yx]) y); =20
(let. « [x5 [yx]) y); =5
(letec [x 51 [y Xx]) y);: =5
(letrec ([xy] [y 5) x); = undefined
(let-values ([()51 [C y) xD y); =0
(let-values ([(X y) (values 5 X)) vy); =0
(let =x-values ([()5 [(y) X)) yv); =5
(let «-values ([(X y) (values 5 X)) vy); =20
(letrec-values ([()51 [C y) x) vy); =5

(letrec-values ([(= undefined

(letrec-values ([(

X y) (values 5 X))
odd even) (values
(lambda (n) (if (zero?

y) .

n) # (even (subl n))))

2. Basic Syntax Extensions 2.8. Binding Forms

(lambda (n) (if (zero? n) # (odd (subl n))H)])
(odd 17)) ; = #

2.8.3 Assignments
The standargset! form assigns a value to a single global, local, or module variable. Multiple variables can be
assigned at once usisgt!-values

(set!-values (variable --1) expr)

The number of values returned bypr must match the number wfriable s provided.

Thevariable s, which must be distinct, can be any mixture of global, local, and module variables. Assignments
are performed sequentially from the fixgtriable to the last. If an error occurs in one of the assignments (perhaps
because a global variable is not yet bound), then the assignments for the precathible s will have already
completed, but assignments for the remainmagable s will never complete.

2.8.4 Fluid-Let

The syntax for dluid-let expression is the same as fet :

(fluid-let ((variable expr) ---) body-expr .-}

Eachvariable = must be either a local variable or a global or module variable that is bound befdheaithiet
expression is evaluated. Before thedy-expr s are evaluated, the bindings for thariable s areset! to the
values of the correspondirexpr s. Once thebody-expr s have been evaluated, the values of the variables are
restored. The value of the entiflaid-let expression is the value of the ldsidy-expr

2.8.5 Syntax Expansion and Internal Definitions

All binding forms are syntax-expanded irdefine-values ,let-values ,letrec-values , define-syntaxes ,
and letrec-syntaxes +values expressions. Theet!-values form is expanded tdet-values with
set! . See§12.6.1for more information.

All define-values expressions that are inside onbegin expressions are treated as top-level definitions.
Body define-values expressions in anodule expression are handled specially as describegbid. Any
other define-values expression is either amternal definition or syntactically illegal. The same is true of
define-syntaxes expressions.

Internal definitions can appear at the start of a sequence of expressions, such as thelataliad acase-lambda

orlet body. Atleast one non-definition expression must follow a sequence of internal definitions. The first expression
in abegin0 expression cannot be an internal definition; for the purposes of internal definitions, the second expression
is the start of the sequence.

When abegin expression appears within a sequence, its content is inlined into the sequence (recursively, if the
begin expression contains othbegin expressions). Like top-levélegin expressions (and unlike othkegin
expressions), begin expression within an internal definition sequence can be empty.

An internaldefine-values or define-syntaxes expression is transformed, along with the expressions fol-
lowing it, into aletrec-syntaxes +values expression: the identifiers bound by the internal definitions become
the binding identifiers of the neletrec-syntaxes +values expression, and the expressions that follow the

definitions become the body of the néstrec-syntaxes +values expression.

Multiple adjacent definitions are collected into a sinlgizec-syntaxes +values transformation, so that the

2.9. Case-Lambda 2. Basic Syntax Extensions

definitions can be mutually recursive, but the definitions expressions must be adjacent. A non-definition marks the
start of a sequence of expressions to be moved into the body of the newly detegeesyntaxes +values
form.

Internal definitions are detected after a partial syntax expansion that stops at core forms, and thushegioses
define-values , anddefine-syntaxes . Forms are expanded left to right, and whenever a definition is discov-
ered, a binding is introduced immediately for further expansion, so a definition can shadow variables when later forms
are expanded. Furthermore, whenefine-syntaxes form is discovered, the right-hand side is immediately
evaluated, and the result is bound as syntax to the corresponding identifier(s); thus, a locally defined macro can be
used to generate later definitions in the same internal-definition context.

2.9 Case-Lambda

Thecase-lambda form creates a procedure that dispatches to a particular body of expressions based on the number
of arguments that the procedure receives. ddme-lambda form provides a mechanism for creating variable-arity
procedures with more control and efficiency than usidgnabda “rest argument,” such as thein (lambda (a

x) expr --1y.

A case-lambda expression has the form:

(case-lambda

(formals expr ---1)
)
formals is one of

variable

(variable -)

(variable .-+ . Vvariable)
Each(formals expr ---1) clause of acase-lambda expression is analogous tdambda expression of the
form (lambda formals expr ---1y . The scope of theariable s in each clause®rmals includes only

the same clause&sxpr s. Theformals variables are bound to actual arguments in an application in the same way
thatlambda variables are bound in an application.

When acase-lambda procedure is invoked, one clause is selected arekjts s are evaluated for the application;
the result of the lastxpr in the clause is the result of the application. The clause that is selected for an application is
the first one with dormals specification that can accommodate the number of arguments in the application.

Examples:

(define f
(case-lambda
[(x) x]
[(xy) (+ xy)]
[(a . any) a]))
(f1,; =1
(f12,; =3
(f 4567 ; =4
(f) ; = raises exn:fail:contract:arity

The result of acase-lambda expression is a procedure, just like the result ddrmabda expression. Thus, the
procedure? predicate returngt when applied to the result of@se-lambda expression.

1t is possible that a clause incase-lambda expression can never be evaluated because a preceding clause always matches the arguments.

10

2. Basic Syntax Extensions 2.10. Procedure Application

2.10 Procedure Application

The “empty application” forn{) expands to the quoted empty ligt .

2.11 Variable Reference

The#%variable-reference form returns a value representing the address of a top-level or module variable:
(#%variable-reference variable)
(#%variable-reference (#%top . variable))

In the non#%top form, a syntax error is reportedvariable is not bound to a top-level or module variable.

The result of @%variable-reference expression is opaque, with no useful operation in MzSchemelnSieke
PLT MzSchemor information on its use in low-level extensions to MzScheme.

11

3. Basic Data Extensions

3.1 Void and Undefined

MzScheme returns the unigweid value — printed a#<void > — for expressions that have unspecified results in
RP°RS The procedurgoid takes any number of arguments and returns void:

e (void v --:) returns void.

e (void? v) returns#t if v is void,#f otherwise.

Variables bound byetrec-values that are accessible but not yet initialized are bound to the unigdefined
value, printed ag <undefined >.

3.2 Booleans

Unless otherwise specified, two instances of a particular MzScheme data tyggual® only when they areq?.
Two values ar@qv? only when they are eithexq?, both+nan.0 , or both= and have the same exactness and sign.
(The inexact number8.0 and—0.0 are noteqv? , although they are-.)

Theandmap andormap procedures apply a test procedure to the elements of a list, returning immediately when the
result for testing the entire list is determined. The argumengsitbmap andormap are the same as fonap, but a
single boolean value is returned as the result, rather than a list:

e (andmap proc list ---1) appliesproc to elements of thdist s from the first elements to the last,
returning#f as soon as any application retus#fs. If no application ofproc returns#f , then the result of
the last application gproc is returned; more specifically, the applicationpsbc to the last elements in the
list sisin tail position with respect to ttendmap call. If thelist s are empty, the#it is returned.

e (ormap proc list ...y appliesproc to elements of théist s from the first elements to the last. If
any application returns a value other thién, that value is immediately returned as the result ofdhmap
application. If all applications gbroc return#f , then the result igf ; more specifically, iforoc is applied to
the last elements of thest s, the application is in tail position with respect to tirenap call. If thelist s
are empty, thewf is returned.

Examples:

(andmap positive? '(1 2 3)) ; = #t

(ormap eq? '(a b ¢) '(@a b ¢)) ; = #t

(andmap positive? '(1 2 a)) ; = raises exn:fail:contract
(ormap positive? '(1 2 a)) ; = #t

(andmap positive? '(1 -2 a)) ; = #f

(andmap + 2 2 3) '(4 5 6)) ; = 9

(ormap + '(1 2 3) '4 5 6) ; = 5

12

3. Basic Data Extensions 3.3. Numbers

3.3 Numbers

A number in MzScheme is one of the following:

e afixnum exact integer (30 bitsplus a sign bit)

e abignum exact integer (cannot be represented in a fixnum)

e afraction exact rational (represented by two exact integers)

e aflonum inexact rational (double-precision floating-point number)

e acomplex number; either the real and imaginary parts are both exact or inexact, or the number has an exact zero
real part and an inexact imaginary part; a complex number with an inexact zero imaginary part is a real number

MzScheme extends the number syntaReRSin three ways:

e Allinput radixes @b, #0, #d, and#x) allow “decimal” numbers that contain a period or exponent marker. For
example#bl.1 is equivalenttdl.5 . In hexadecimal numbers,andd always stand for a hexadecimal digit,
not an exponent marker.

e The mantissa of a number with an exponent marker can be expressed as a fraction. For ed@efples
equivalent t00.0 , and1/2e2+1/2e4di is equivalent td0.0+5000.0i

e The following are inexact numerical constantsnf.0 (infinity), -inf.0 (negative infinity),+nan.0 (not
a number), andnan.0 (same astnan.0). These names can also be used within complex constants, as in
—inf.0 +inf.0i . These names are case-insensitive.

The special inexact numbersinf.0 , —inf.0 , and+nan.0 have no exact form. Dividing by an inexact zero
returns+inf.0 or —inf.0 , depending on the sign of the dividend. The infinities are integers, and they aftswer
for botheven? andodd?. The-+nan.0 value is not an integer and is net to itself, but+nan.0 is eqv? to
itself? Similarly, (= 0.0 —0.0) is#t,but(equ? 0.0 —0.0) is#f.

All multi-argument arithmetic procedures operate pairwise on arguments from left to right.

The string->number procedure works on all number representations and exact integer radix values in the range
2 to 16 (inclusive). Thenumber->string procedure accepts all number types and the radix vau8s10, and

16; however, if an inexact number is provided with a radix other th@nthe exn:fail:contract exception is
raised.

Theaddl andsubl procedures work on any number:

e (addl 2z) returnsz +1.

e (subl 2z) returnsz —1.
The following procedures work on integers:

e (quotient/remainder nl n2) returns two values:(quotient nl n2) and (remainder nl
n2) .

130 bits for a 32-bit architecture, 62 bits for a 64-bit architecture.
2This definition ofeqv? technically contradict®°RS butR°RSdoes not address strange “numbers” likean.0 .

13

3.3. Numbers 3. Basic Data Extensions

e (integer-sqrt n) returns the integer square-root mf For positiven, the result is the largest positive
integer bounded by thsgrt n) . For negativen, the resultig « (integer-sqrt (—n)) 0 +i) .

e (integer-sqgrt/remainder n) returns two values: (integer-sqrt n) and (— n (expt
(integer-sqrt n) 2))

The following procedures work on exact integers in their (semi-infinite) two's complement representation:

e (bitwise-ior n --.) returns the bitwise “inclusive or” of thes. If no arguments are provided, the result
is0.

e (bitwise-and n ---) returns the bitwise “and” of thes. If no arguments are provided, the resullis

e (bitwise-xor n ---) returns the bitwise “exclusive or” of thes. If no arguments are provided, the result
is0.

¢ (bitwise-not n) returns the bitwise “not” of.

e (arithmetic-shift n m) returns the bitwise “shift” oh. The integem is shifted left bymbits; i.e.,m

new zeros are introduced as rightmost digitanl§ negativen is shifted right by—mbits; i.e., the rightmosmn
digits are dropped.

Therandom procedure generates pseudo-random numbers:

e (random k) returns a random exact integer in the rafge k — 1 wherek is an exact integer between 1 and

231 _ 1, inclusive. The number is provided by the current pseudo-random number generator, which maintains
an internal state for generating numbeérs.

(random) returns a random inexact number betw&and 1, exclusive, using the current pseudo-random
number generator.

(random-seed k) seeds the current pseudo-random number generatokywéh exact integer between 0

and 21 — 1, inclusive. Seeding a generator sets its internal state deterministically; seeding a generator with a
particular number forces it to produce a sequence of pseudo-random numbers that is the same across runs and
across platforms.

(pseudo-random-generator->vector generator) produces a vector that represents the complete
internal state ofjenerator . The vector is suitable as an argumentéctor->pseudo-random-generator
to recreate the generator in its current state (across runs and across platforms).

(vector->pseudo-random-generator vec) produces a pseudo-random number generator whose in-
ternal state correspondsytec . The vectorvec must contain six exact integers; the first three integers must

be in the rang® to 4294967086 , inclusive; the last three integers must be in the rahg@ 4294944442 |

inclusive; at least one of the first three integers must be non-zero; and at least one of the last three integers must
be non-zero.

(current-pseudo-random-generator) returns the current pseudo-random number generator, and
(current-pseudo-random-generator generator) sets the current generator generator
See als@7.9.1.10

(make-pseudo-random-generator) returns a new pseudo-random number generator. The new gener-
ator is seeded with a number derived frgearrent-milliseconds)

e (pseudo-random-generator? V) returns#t if v is a pseudo-random number generatbrotherwise.

3The random number generator uses a 54-bit version of L'Ecuyer's MRG32k3a algorithm.

14

3. Basic Data Extensions 3.4. Characters

The following procedures convert between Scheme numbers and common machine byte representations:

e (integer-bytes->integer bytes signed? [big-endian?]) converts the machine-format num-
ber encoded ibytes to an exact integer. Thigytes must contain either 2, 4, or 8 bytes. digned? is
true, then the bytes are decoded as a two’s-complement number, otherwise it is decoded as an unsigned integer.
If big-endian? s true, then the first character's ASCII value provides the most significant eight bits of the
number, otherwise the first character provides the least-significant eight bits, and so on. The default value of
big-endian? s the result okystem-big-endian?

e (integer->integer-bytes n size-n signed? [big-endian? to-bytes]) converts the
exact integemn to a machine-format number encoded in a byte string of lesgté-n , which must be 2,
4, or 8. Ifsigned? s true, then the number is encoded with two’s complement, otherwise it is encoded as an
unsigned bit stream. Big-endian? s true, then the most significant eight bits of the number are encoded
in the first character of the resulting byte string, otherwise the least-significant bits are encoded in the first byte,
and so on. The default value big-endian? s the result obystem-big-endian?

If to-bytes is provided, it must be a mutable byte string of lengite-n ; in that case, the encoding ofis
written intoto-bytes , andto-bytes is returned as the result. if-bytes is not provided, the resultis a
newly allocated byte string.

If n cannot be encoded in a string of the requested size and formatxmhfail:contract exception is
raised. Ifto-bytes is provided and it is not of lengthize-n , the exn:fail:contract exception is
raised.

¢ (floating-point-bytes->real bytes [big-endian?]) converts the IEEE floating-point number

encoded irbytes to an inexact real number. Thgtes must contain either 4 or 8 bytes.lfg-endian?

is true, then the first byte's ASCII value provides the most significant eight bits of the IEEE representation,
otherwise the first byte provides the least-significant eight bits, and so on. The default Viigeotlian?

is the result obystem-big-endian?

e (real->floating-point-bytes X size-n [big-endian? to-bytes) converts the real
numberx to its IEEE representation in a byte string of lengite-n , which must be 4 or 8. Ibig-endian?
is true, then the most significant eight bits of the number are encoded in the first byte of the resulting byte
string, otherwise the least-significant bits are encoded in the first character, and so on. The default value of
big-endian? s the result okystem-big-endian?

If to-bytes is provided, it must be a mutable byte string of lengitte-n ; in that case, the encoding ofis
written intoto-bytes , andto-bytes is returned as the result. if-bytes is not provided, the resultis a
newly allocated byte string.

If to-bytes is provided and it is not of lengthize-n , theexn:fail:contract exception is raised.

e (system-big-endian?) returns#t if the native encoding of numbers is big-endian for the machine run-
ning MzSchemeif if the native encoding is little-endian.

3.4 Characters

MzScheme characters range over Unicode scalar valueglseé), which includes characters whose values range
from#x0 to #x10FFFF, but not including#xD800 to #xDFFF. The procedurehar->integer returns a charac-
ter's code-point number, andteger->char converts a code-point number to a charactemtiéger->char

is given an integer that is either outsid®0 to #x10FFFF or in the excluded rang#xD800 to #xDFFF, the
exn:fail:contract exception is raised.

Character constants include special named characters, stithasline , plus octal representations (e 4)251),
and Unicode-style hexadecimal representations #\giQ3BB). See§11.2.4for more information on character con-
stants.

15

3.4. Characters 3. Basic Data Extensions

The character comparison proceduckar=? , char<? , char-ci=? , etc. take two or more character arguments
and check the arguments pairwise (like the numerical comparison procedures). Two charaetg?swinenever they
arechar=? . The expressiofichar<? charl char2) produces the same result @s (char->integer

charl) (char->integer char2)) , etc. The case-independeait procedures compare characters after case-
folding with char-foldcase (described below).

The character predicates produce results consistent with the Unicode datahégesually) SRFI-14. These proce-
dures are fully portable; their results do not depend on the current platform or locale.

e (char-alphabetic? char) —returns#t if char ’s Unicode general categorylisi, LI , Lt ,Lm orLo,
#f otherwise.

e (char-lower-case? char) —returns#t if char has the Unicode “Lowercase” property.

e (char-upper-case? char) —returns#t if char has the Unicode “Uppercase” property.

e (char-title-case? char) — returns#t if char 's Unicode general categorylid , #f otherwise.

e (char-numeric? char) —returnstt if char 's Unicode general category idd, #f otherwise.

e (char-symbolic? char) — returns#t if char 's Unicode general category 8m Sc, Sk, or So, #f
otherwise.

e (char-punctuation? char) —returns#t if char ’'s Unicode general category ik, Pd, Ps, Pe, Pi
Pf, orPo, #f otherwise.

e (char-graphic? char) — returns#t if char 's Unicode general category isln Mc, Me or if
one of the following produce#t when applied tochar : char-alphabetic? , char-numeric? |,

char-symbolic? , or char-punctuation?

e (char-whitespace? char) — returns#t if char 's Unicode general category s, ZI , or Zp, or if
char is one of the following#\tab , #\newline ,#\vtab ,#\page, or#\return

e (char-blank? char) — returns#t if char 's Unicode general category &s or if char is #\tab .
(These correspond to horizontal whitespace.)

e (char-iso-control? char) — return#t if char is betweer#\u0O000 and#\uOO1F inclusive or
#\uO07F and#\uOO09F inclusive.

e (char-general-category char) —returns a symbol representing the character’s Unicode general cat-
egory, whichislu ,’ll ,’'lt ,’Im ,’lo ,’'mn,’'mc,’'me,’'nd ,’'nl ,’'no,’ps,’'pe,’pi ,’'pf ,’pd,

‘pc ,’po ,’sc ,’'sm,’sk ,’so ,’zs ,’zp ,’zl ,’cc ,’cf ,’cs ,’co ,or’cn .

Character conversions are also consistent with the 1-to-1 code point mapping defined by Unicode. String procedures
(see§3.5) handle the case where Unicode defines a locale-independent mapping from the code point to a code-point
sequence (in addition to the 1-1 mapping on scalar values).

e (char-upcase char) produces a character according to the upcase mapping provided by the Unicode
database fochar ; if char has no upcase mappinthar-upcase produceshar .

e (char-downcase char) produces a character according to the downcase mapping provided by the Uni-
code database fahar ;if char has no downcase mappirghar-downcase produceshar .

e (char-titlecase char) produces a character according to the titlecase mapping provided by the Uni-
code database fahar ; if char has no titlecase mappinghar-titlecase produceghar .

4The current version of MzScheme uses Unicode version 4.1.

16

3. Basic Data Extensions 3.5. Strings

e (char-foldcase char) produces a character according to the case-folding mapping provided by the Uni-
code database fahar .

(make-known-char-range-list) produces a list of three-element lists, where each three-element list rep-
resents a set of consecutive code points for which the Unicode standard specifies character properties. Each three-
element list contains two integers and a boolean; the first integer is a starting code-point value (inclusive), the second
integer is an ending code-point value (inclusive), and the boole#h ishen all characters in the code-point range

have identical results for all of the character predicates above. The three-element lists are ordered in the overall result
list such that later lists represent larger code-point values, and all three-element lists are separated from every other by
at least one code-point value that is not specified by Unicode.

(char-utf-8-length char) produces the same result @g/tes-length (string- >bytes/utf-8
(string char))) .

3.5 Strings

Since a string consists of a sequence of characters, a string in MzScheme is a Unicode code-point sequence. MzScheme
also provides byte strings, as well as functions to convert between byte strings and strings with respect to various
encodings, including UTF-8 and the current locale’s encoding. §$&&for an overview of Unicode, locales, and
encodings, and s€8.6 for more specific information on byte-string conversions.

A string can be mutable or immutable. When an immutable string is provided to a procedure like
string-set! , the exn:fail:contract exception is raised. String constants generateddayl are im-
mutable. (string->immutable-string string) returns an immutable string with the same content as
string , anditreturnstring itself if string is immutable. (See aldmmmutable? in §3.10)

(substring string start-k [end-k]) returns a mutable string, even if tlering argument is im-
mutable. Theend-k argument defaults téstring-length string)

(string-copy! dest-string dest-start-k src-string [src-start-k src-end-k) changes
the characters afest-string from positionsdest-start-k (inclusive) todest-end-k (exclusive) to match
the characters isrc-string from src-start-k (inclusive). If src-start-k is not provided, it defaults to
0. If src-end-k s not provided, it defaults téstring-length src-string) . The stringdest-string

andsrc-string can be the same string, and in that case the destination region can overlap with the source region;
the destination characters after the copy match the source characters from before the copy.déatgtaft-k ,
src-start-k ,orsrc-end-k are out of range (taking into account the sizes of the strings and the source and des-
tination regions), thexn:fail:contract exception is raised.

When a string is created withake-string without a fill value, it is initialized with the null characte#\(nul) in
all positions.

The string comparison procedurs8ing=? , string<? , string-ci=? , etc. take two or more string argu-

ments and check the arguments pairwise (like the numerical comparison procedures). String comparisons are per-
formed through pairwise comparison of characters; for-the operations, the two strings are first case-folded using
string-foldcase (described below). Comparisons using all of these functions are fully portable; the results do
not depend on the current platform or locale.

The following string-conversion procedures take into account Unicode’s locale-independent conversion rules that map
code-point sequences to code-point sequences (instead of simply mapping a 1-to-1 function on code points over the
string). In each case, the string produced by the conversion can be longer than the input string.

e (string-upcase string) returns a string whose characters are the upcase conversion of the characters
in string

17

3.5. Strings 3. Basic Data Extensions

e (string-downcase string) returns a string whose characters are the downcase conversion of the char-
acters instring

e (string-titlecase string) returns a string where the first character in each sequence of cased char-
acters instring (ignoring case-ignorable characters) is converted to titlecase, and all other cased characters
are downcased.

e (string-foldcase string) returns a string whose characters are the case-fold conversion of the char-
acters instring

Examples:
(string-upcase "abc!") ; = "ABC!"
(string-upcase "Stra \xDFe") ; = "STRASSE"
(string-downcase "aBC!") ; = "abc!"
(string-downcase "Stra \xDFe") ; = "stra \xDFe"
(string-downcase " \u039A\u0391 \u039F \u03A3") ; = "\u03BA\uO3bl\uO3BF\u03C2"
(string-downcase " \uO3A3") ; = "\u03C3"
(string-titlecase "aBC twQ") ; = "Abc Two"
(string-titlecase "y2k") ; = "Y2K"
(string-titlecase "main stra \xDFe") ; = "Main Stra \xDFe"
(string-titlecase "stra \xDFe") ; = "Stra Sse"
(string-foldcase "aBC!") ; = "abc!"
(string-foldcase "Stra \xDFe") ; = "strasse"
(string-foldcase " \UO39A\u0391 \u039F \u03A3") ; = "\uO3BA\uO3bl\uO3BF\u03C3"

In addition to the character-based string procedures, MzScheme provides the following locale-sensitive procedures
(see alsg1.2.2and§7.9.1.1):

e (string-locale=? stringl string2)

e (string-locale<? stringl string2)

e (string-locale>? stringl string2 D

e (string-locale-ci=? stringl string2 b

e (string-locale-ci<? stringl string2)

e (string-locale-ci>? stringl string2 b

e (string-locale-upcase string) — may produce a string that is longer or shorter teaimg if

the current locale has complex case-folding rules.

e (string-locale-downcase string) — like string-locale-upcase , may produce a string that
is longer or shorter thastring

These procedures depend only on the current locale’s case-conversion and collation rules, and not on its encoding
rules.

MzScheme provides four Unicode-normalization procedures:

18

3. Basic Data Extensions 3.6. Byte Strings

e (string-normalize-nfd string) — returns a string that is the Unicode normalized form D of
string

e (string-normalize-nfkd string) — returns a string that is the Unicode normalized form KD of
string

e (string-normalize-nfc string) — returns a string that is the Unicode normalized form C of
string

e (string-normalize-nfkc string) — returns a string that is the Unicode normalized form KC of
string

For each of the normalization procedures, if the given string is already in the corresponding Unicode normal form, the
string may be returned directly as the result (instead of a newly allocated string).

3.6 Byte Strings

A byte string is like a string, but it a sequence of bytes instead of charactebgtedis an exact integer betwe@nand
255 inclusive;(byte? v) producestt if v is such an exact integetf otherwise. Two bytes strings aegual?
if they are bytewise equal, and two byte stringsege? only if they areeq?.

MzScheme provides byte-string operations in parallel to the character-string operations:

o (bytes? v)

e (bytes byte --.1)

e (make-bytes k [byte])

e (bytes-length bytes)

o (bytes-ref bytes k)

e (bytes-set! bytes k byte)

o (bytes-fill! bytes byte)

e (subbytes bhytes start-k [end-k])
o (bytes-append bytes --.1)

o (bytes-copy bytes)

o (bytes-copy! dest-bytes dest-start-k src-bytes [src-start-k src-end-k D
o (bytes->list bytes)

o (list->bytes byte-list)

e (bytes->immutable-bytes bytes)

e (bytes=? bytesl bytes2 ...1)

o (bytes<? bytesl bytes2 ...1)

o (bytes>? bytesl bytes2 -..1)

19

3.6. Byte Strings 3. Basic Data Extensions

A byte-string constant is written like a string, but prefixed witljwith no space betweeth and the opening double-
quote). A byte-string constant can contain escape sequences#asrih, just like strings; arexn:fail:read
exception is raised if a\U” sequence appears within a byte string and the given hexadecimal value is larger than 255.

Like character strings, byte strings generateddad are immutable, and when an immutable string is provided to a
procedure likebytes-set! | theexn:fail:contract exception is raised.

The following procedures convert between byte strings and character strings:

o (bytes->string/utf-8 bytes [err-char start-k end-k]) — produces a string by decoding
thestart-k to end-k substring ofbytes as a UTF-8 encoding of Unicode code points.etf-char
is provided and no#f , then it is used for bytes that fall in the range200 to #0377 but are not part of a
valid encoding sequence. (This is consistent with reading characters from a pdjt;lsetor more details.)
If err-char is#f or not provided, and if thetart-k to end-k substring ofoytes is not a valid UTF-
8 encoding overall, then thexn:fail:contract exception is raised. Itart-k or end-k are not
provided, they default t6 and(bytes-length bytes), respectively.

e (bytes->string/locale bytes [err-char start-k end-k]) — produces a string by decod-
ing thestart-k to end-k substring ofbytes using the current locale’s encoding (see aj§a2.9. If
err-char is provided and notf , it is used for each byte ibytes that is not part of a valid encoding; if
err-char is#f or not provided, and if thetart-k ~ to end-k substring ofbytes is not a valid encoding
overall, then theexn:fail:contract exception is raised. l§tart-k or end-k are not provided, they
default to0 and(bytes-length bytes), respectively.

o (bytes->string/latin-1 bytes [err-char start-k end-k]) — produces a string by decod-
ing thestart-k toend-k substring obytes as a Latin-1 encoding of Unicode code points; i.e., each byte
translated directly to a character usinteger->char , S0 the decoding always succeédEheerr-char
argument is ignored, but for consistency with the other operations, it must be a charatftef provided. If
start-k orend-k are not provided, they default tband(bytes-length bytes), respectively.

S

e (string->bytes/utf-8 string [err-byte start-k end-k]) — produces a byte string by end-
ing thestart-k toend-k substring ofstring via UTF-8 (always succeeding). Tleer-char argument
is ignored, but for consistency with the other operations, it must be a byte drprovided. If start-k or
end-k are not provided, they default @and(string-length string), respectively.

e (string->bytes/locale string [err-byte start-k end-k]) — produces a string by encod-
ing thestart-k to end-k substring ofstring using the current locale’s encoding (see ®.9). If
err-byte is provided and no#f , it is used for each characterstring that cannot be encoded for the cur-
rent locale; iferr-byte is#f or not provided, and if thetart-k ~ to end-k substring ofstring cannot
be encoded, then thexn:fail:contract exception is raised. I§tart-k or end-k are not provided,
they default tad and(string-length string), respectively.

e (string->bytes/latin-1 string [err-byte start-k end-k]) — produces a string by en-
coding thestart-k toend-k substring ostring using Latin-1; i.e., each character is translated directly to
a byte usinghar->integer . If err-byte is provided and notf , it is used for each characterstring
whose value is greater th@b5 ;5 if err-byte is#f or not provided, and if thetart-k ~ toend-k substring
of string has a character with a value greater tB&b, then theexn:fail:contract exception is raised.
If start-k orend-k are not provided, they default @and(string-length string), respectively.

e (string-utf-8-length string [start-k end-k) returns the length in bytes of the UTF-8 en-
coding ofstring 's substring fromstart-k to end-k , but without actually generating the encoded bytes.
If start-k is not provided, it defaults t0, andend-k defaults to(string-length string).

5See also the Latin-1 footnote §f.2.3
6See also the Latin-1 footnote §f.2.3

20

3. Basic Data Extensions 3.6. Byte Strings

e (bytes-utf-8-length bytes [err-char start-k end-k) returns the length in characters of
the UTF-8 decoding obytes 's substring fromstart-k to end-k , but without actually generating the
decoded characters. sfart-k is not provided, it defaults t06, andend-k defaults to(bytes-length
bytes). If err-char is#f and the substring is not a UTF-8 encoding overall, the resiit isOtherwise,
err-char is used to resolve decoding errors abyes->string/utf-8

o (bytes-utf-8-ref bytes [skip-k err-char start-k end-k) returns theskip-k th char-
acter in the UTF-8 decoding dfytes ’s substring fromstart-k to end-k , but without actually gener-
ating the other decoded characters. stidirt-k is not provided, it defaults t®, andend-k defaults to
(bytes-length bytes). If the substring is not a UTF-8 encoding up to #iep-k th character (when
err-char is #f), or if the substring decoding produces fewer tisiip-k characters, the result # . If
err-char is not#f , it is used to resolve decoding errors abyes->string/utf-8

o (bytes-utf-8-index bytes [skip-k err-char start-k end-k) returns the offset in bytes
into bytes at which theskip-k th character’s encoding starts in the UTF-8 decodingyiés 's substring
fromstart-k toend-k (but without actually generating the other decoded charactersjarfk is not
provided, it defaults t@, andend-k defaults tobytes-length bytes). The resultis relative to the start
of bytes , not tostart-k . If the substring is not a UTF-8 encoding up to tlep-k th character (when
err-char is #f), or if the substring decoding produces fewer tisiip-k characters, the result # . If
err-char is not#f , it is used to resolve decoding errors abytes->string/utf-8

A string converter can be used to convert directly from one byte-string encoding of characters to another byte-string
encoding.

¢ (bytes-open-converter from-name-string to-name-string) — produces a string converter
to go from the encoding named frpm-name-string to the encoding named lg-name-string f
the requested conversion pair is not availalifejs returned instead of a converter.

Certain encoding combinations are always available:

— (bytes-open-converter "UTF-8" "UTF-8") — the identity conversion, except that encoding
errors in the input lead to a decoding failure.
— (bytes-open-converter "UTF-8-permissive" "UTF-8") — the identity conversion, ex-

cept that any input byte that is not part of a valid encoding sequence is effectively replaced by
(char->integer # \?) . (This handling of invalid sequences is consistent with the interpretation of
port bytes streams into characters; §&&.1)

— (bytes-open-converter " "UTF-8") — converts from the current locale’s default encoding
(see§1.2.2 to UTF-8.

— (bytes-open-converter "UTF-8" ") — converts from UTF-8 to the current locale’s default
encoding (seél.2.2.

— (bytes-open-converter "platform-UTF-8" "platform-UTF-16") — converts UTF-8

to UTF-16 under Unix and Mac OS X, where each UTF-16 code unit is a sequence of two bytes ordered
by the current platform’s endianess. Under Windows, the input can include encodings that are not valid
UTF-8, but which naturally extend the UTF-8 encoding to support unpaired surrogate code units, and
the output is a sequence of UTF-16 code units (as little-endian byte pairs), potentially including unpaired

surrogates.
— (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-16") —
like (bytes-open-converter "platform-UTF-8" "platform-UTF-16") , but an input
byte that is not part of a valid UTF-8 encoding sequence (or valid for the unpaired-surrogate extension
under Windows) is effectively replaced wifbhar->integer # \?) .
— (bytes-open-converter "platform-UTF-16" "platform-UTF-8") — converts UTF-

16 (bytes orderd by the current platform’s endianness) to UTF-8 under Unix and Mac OS X. Under
Windows, the input can include UTF-16 code units that are unpaired surrogates, and the corresponding
output includes an encoding of each surrogate in a natural extension of UTF-8. Under Unix and Mac OS
X, surrogates are assumed to be paired: a pair of bytes with th&xXid800 starts a surrogate pair, and

21

3.6. Byte Strings 3. Basic Data Extensions

the#x03FF bits are used from the pair and following pair (independent of the value ¢BREOO bits).
On all platforms, performance may be poor when decoding from an odd offset within an input byte string.

A newly opened byte converter is registered with the current custodia{s8eso that the converter is closed

when the custodian is shut down. A converter is not registered with a custodian (and does not need to be
closed) if it is one of the guaranteed combinations not invol/ingunder Unix, or if it is any of the guaranteed
combinations (including") under Windows and Mac OS X.

The set of available encodings and combinations varies by platform, depending @orthdibrary that is
installed. Under Windowsgonv.dll or libiconv.dll must be in the same directory l#snzsch VERS.dIl (where
VERS is a version number),in the user’s path, in the system directory, or in the current executable’s directory
at run time, and the DLL must either supplgrrno or link to msvert.dll for _errno ; otherwise, only the
guaranteed combinations are available.

e (bytes-close-converter bytes-converter) — closes the given converter, so that it can no longer
be used withbytes-convert or bytes-convert-end

e (bytes-convert bytes-converter src-bytes [src-start-k src-end-k dest-bytes dest-start-k
dest-end-k]) converts the bytes frorsrc-start-k tosrc-end-k insrc-bytes . If dest-bytes
is supplied and not#f , the converted byte are written intdest-bytes from dest-start-k to
dest-end-k . If dest-bytes is not supplied or istf , then a newly allocated byte string holds the con-
version results, and the size of the result byte string is no more(thamlest-end-k start-start-k).
If src-start-k or dest-start-k is not provided, it defaults t®. If src-end-k is not provided,
it defaults to(bytes-length src-bytes . If src-end-k is not provided or ig#f , then it defaults
to (bytes-length dest-bytes) whendest-bytes s a byte string or to an arbitrarily large integer
otherwise.

The result obytes-convert is three values:

— result-bytes or dest-wrote-k — a byte string ifdest-bytes is #f or not provided, or the
number of bytes written intdest-bytes otherwise.
— src-read-k — the number of bytes successfully converted frenatbytes
— 'complete ,’continues ,’aborts ,or’error — indicates how conversion terminated.
x 'complete : The entire input was processed, amd-read-k will be equal to{ — src-end-k
src-start-k).
x ‘continues : Conversion stopped due to the limit on the result size or the spatssirbytes
in this case, fewer thah— dest-end-k dest-start-k) bytes may be returned if more space
is needed to process the next complete encoding sequeseliytes
x 'aborts : The input stopped part-way through an encoding sequence, and more input bytes are
necessary to continue. For example, if the last byte of inpta 803 for a"UTF-8-permissive”
decoding, the result isborts , because another byte is needed to determine how to uge303

byte.

x 'error . The bytes starting dt+ src-start-k src-read-k) bytes insrc-bytes do not
form a legal encoding sequence. This result is never produced for some encodings, where all byte
sequences are valid encodings. For example, sibdé--8-permissive" handles an invalid

UTF-8 sequence by dropping characters or generating “?”, every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third rebytesfconvert is
‘complete). This state can affect both further processing of input and further generation of output, but only
for conversions that involve “shift sequences” to change modes within a stream. To terminate an input sequence
and reset the converter, usgtes-convert-end

e (bytes-convert-end bytes-converter [dest-bytes dest-start-k dest-end-k D —
like bytes-convert |, but instead of converting bytes, this procedure generates an ending sequence for the
conversion (sometimes called a “shift sequence”), if any. Few encodings use shift sequences, so this function

7In PLT’s software distributions for Windows, a suitalidenv.dll is included withlibmzsch VERS.dII.

22

3. Basic Data Extensions 3.7. Symbols

will succeed with no output for most encodings. In any case, successful output of a (possibly empty) shift
sequence resets the converter to its initial state.

The result obytes-convert-end is two values:
— result-bytes or dest-wrote-k — a byte string ifdest-bytes is #f or not provided, or the
number of bytes written intdest-bytes otherwise.
— '‘complete or 'continues — indicates whether conversion completed.’cémplete , then an

entire ending sequence was producedcdhtinues , then the conversion could not complete due to
the limit on the result size or the spacedest-bytes , and the first result is either an empty byte string

or0.
e (bytes-converter? v) returns#t if v is a byte converter produced tpytes-open-converter ,
#f otherwise.
¢ (locale-string-encoding) returns a string for the current locale’s encoding (i.e., the encoding normally
identified by™). See als®ystem-language+country in §15.5
3.7 Symbols

For information about symbol parsing and printing, §&&.2.4and§11.2.5 respectively.
MzScheme provides two ways of generatinguamterned symbol, i.e., a symbol that is n@q?, eqv? , orequal?
to any other symbol, although it may print the same as another symbol:

e (string->uninterned-symbol string) is like (string->symbol string), but the resulting
symbol is a new uninterned symbol. Callisiging->uninterned-symbol twice with the samstring
returns two distinct symbols.

e (gensym [symbol/string]) creates an uninterned symbol with an automatically-generated name. The
optionalsymbol/string argument is a prefix symbol or string.

Regular (interned) symbols are only weakly held by the internal symbol table. This weakness can never affect the
result of aneq?, eqv?, orequal? test, but a symbol may disappear when placed into a weak bo%18e® used
as the key in a weak hash table (§8el4), or used as an ephemeron key (§&8.2).

3.8 Keywords

A symbol-like datum that starts with a hash and colon (“#:") is parsediasaord constant. Keywords behave like
symbols — two keywords areq? if and only if they print the same — but they are a distinct set of values.

e (keyword? v) returnstt if v is a keyword#f otherwise.

e (keyword->string keyword) returns a string for thdisplay ed form ofkeyword , not including the
leading#: .
e (string->keyword string) returns a keyword whostisplay ed form is the same as thatsifing

but with a leading?: .

Like symbols, keywords are only weakly held by the internal keyword table§&&dor more information.

23

3.9. Vectors 3. Basic Data Extensions

3.9 Vectors

When a vector is created withake-vector without a fill value, it is initialized withO in all positions. A vector
can be immutable, such as a vector returnedyoytax-e , but vectors generated bgad are mutable. (See also
immutable? in §3.10)

(vector->immutable-vector vec) returns an immutable vector with the same conteweas, and it returns
vec itself if vec isimmutable. (See alsaimutable? in §3.10)

(vector-immutable v ---1) islike (vector v --.1) except that the resulting vector is immutable. (See
alsoimmutable? in §3.10)

3.10 Lists

A cons cell can be mutable or immutable. When an immutable cons cell is provided to a procedset-tike
the exn:fail:contract exception is raised. Cons cells generateddad are always mutable.

The global variablewull is bound to the empty list.

(reverse! list) isthe same ageverse list), butlist is destructively reversed usisgt-cdr! (i.e.,
each cons cell itist is mutated).

(append! list --.1) islike (append list), but it destructively appends ttist s (i.e., except for the last
list ,the last cons cell of eadlst is mutated to append the lists; empty lists are essentially dropped).

(list* v ---1) is similar to (list v ---1) but the last argument is used directly as tue of the last pair
constructed for the list:

(list* 1 2 3 4) ; ='(123.4
(cons-immutable vl v2) returns an immutable pair whosar isvl andcdr isv2.
(list-immutable v -1 s like (list v ---1), but using immutable pairs.
(list*-immutable v ---1) s like (list* v ---1), but using immutable pairs.

(immutable? v) returns#t if v is an immutable cons cell, string, vector, box, or hash taiflegtherwise.

The list-ref and list-tail procedures accept an improper list as a first argument. If either procedure
is applied to an improper list and an index that would require takingctire or cdr of a non-cons-cell, the
exn:fail:contract exception is raised.

The member, memy andmemgprocedures accept an improper list as a second argument. If the membership search
reaches the improper tail, tiexn:fail:contract exception is raised.

The assoc , assv , andassq procedures accept an improperly formed association list as a second argument. If
the association search reaches an improper list tail or a list element that is not a peimnflad:contract
exception is raised.

3.11 Boxes

MzScheme provideBoxes, which are records that have a single field:

e (box v) returns a new mutable box that contains

24

3. Basic Data Extensions 3.12. Procedures

e (box-immutable v) returns a new immutable box that contains
e (unbox box) returns the content dfox . For anyv, (unbox (box v)) returnsv.
e (set-box! mutable-box v) sets the content ghutable-box tov.

e (box? V) returns#t if v is a box#f otherwise.

Two boxes arequal? if the contents of the boxes aegual? .

A box returned bysyntax-e (see §12.2.9 is immutable; if set-box! is applied to such a box, the
exn:fail:contract exception is raised. A box produced tgad (via#&) is mutable. (See alsmmutable?
in §3.10)

3.12 Procedures

Seet4.6for information on defining new procedure types.

3.12.1 Arity
MzScheme’procedure-arity procedure returns the input arity of a procedure:
e (procedure-arity proc) returns information about the number of arguments accepted by the procedure

proc . The resulta is either:
— an exact non-negative integer the procedure always takes exaalarguments;

— anarity-at-least 8 instance = the procedure takegrity-at-least-value a) or more
arguments; or
— a list containing integers aratity-at-least instances= the procedure takes any number of argu-

ments that can match one of the arities in the list.

e (procedure-arity-includes? proc k) returns#t if the procedure can acceptarguments (where
k is an exact, non-negative intege#j, otherwise.

Examples:
(procedure-arity cons) ; = 2
(procedure-arity list) ; = #<struct:arity —at —least >
(arity-at-least? (procedure-arity list)) ; = #t
(arity-at-least-value (procedure-arity list)) ; =0
(arity-at-least-value (procedure-arity (lambda (X . y)yx)y; =1
(procedure-arity (case-lambda [(x) O] [(xy) 1)) ; =12
(procedure-arity-includes? cons 2) ; = #t
(procedure-arity-includes? display 3) ; = #f
When compiling dambda or case-lambda expression, MzScheme looks foimaethod-arity-error prop-
erty attached to the expression ($8€.6.9. If it is present with a true value, and if no case of the procedure accepts
zero arguments, then the procedure is marked so thakaffiail:contract:arity exception involving the

procedure will hide the first argument, if one was provided. (Hiding the first argument is useful when the procedure
implements a method, where the first argument is implicit in the original source). The property affects only the format
of exn:fail:contract:arity exceptions, not the result pfocedure-arity

8Thearity-at-least structure type is transparent to all inspectors ¢Be§).

25

3.13. Promises 3. Basic Data Extensions

3.12.2 Primitives

A primitive procedure is a built-in procedure that is implemented in low-level language. Not all built-in procedures
are primitives, but almost aR°RSprocedures are primitives, as are most of the procedures described in this manual.

e (primitive? V) returns#t if v is a primitive procedure g#f otherwise.

e (primitive-result-arity prim-proc) returns the arity of the result of the primitive procedure
prim-proc (as opposed to the procedure’s input arity as returnedrity ; see§3.12.1). For most primi-
tives, this procedure returrs since most primitives return a single value when applied. For information about
arity values, seg3.12.1

e (primitive-closure? v) returns#t if v is internally implemented as a primitive closure rather than a
simple primitive procedureif otherwise. This information is intended for use by tiwez compiler.

3.12.3 Procedure Names

Seet6.2.3for information about the names of primitives, and the names inferreldfioinda andcase-lambda
procedures.

3.12.4 Closure Equality

(procedure-closure-contents-eq? procl, proc2) return#t if the procedureprocl andproc?2
refer to the same code closed over the same values, where each value is compagg@ with

Inlining and other compiler optimizations limit the usefulness of this procedure, because code can be duplicated or
merged. Since the amount of duplication from inlining is limited, howqwercedure-closure-contents-eq?
is useful for some caching purposes.

Example:

(let ([f #])
;7 Using set! likely prevents inlining:
(sett f (lambda (x) (lambda () x)))

(procedure-closure-contents-eq? (fa) (f a),; = #t, probably
(procedure-closure-contents-eq? (f ra) (f 'b); = #f, definitely
(let [f (lambda (x) (lambda () XN
(procedure-closure-contents-eq? (f a) (f 'a))
v = #f, probably, because inling likely duplicates f’s body

3.13 Promises

Theforce procedure can only be applied to values returnedddgy , and promises are never implicitigrce d.

(promise? v) returns#t if v is a promise created lgelay , #f otherwise.

3.14 Hash Tables

(make-hash-table [flag-symbol flag-symbol]) creates and returns a new hash table. If provided, each
flag-symbol must one of the following:

26

3. Basic Data Extensions 3.14. Hash Tables

e 'weak — creates a hash table with weakly-held keys (e 1).

e ‘equal — creates a hash table that compares keys wejngl? instead oeq? (heeded, for example, when
using strings as keys).

By default, key comparisons us?. If the secondlag-symbol is redundant, thexn:fail:contract
exception is raised.

Two hash tables amqual? if they are created with the same flags, and if they map the same kegsad? values
(where “same key” means eitheq? or equal? , depending on the way the hash table compares keys).

(make-immutable-hash-table assoc-list [flag-symbol]) creates an immutable hash table. (See
alsoimmutable? in §3.10) Theassoc-list must be a list of pairs, where tlvar of each pair is a key, and the
cdr isthe corresponding value. The mappings are added to the table in the order that they aqogrear-list , SO
later mappings can hide earlier mappings. If the optidlagtsymbol argument is provided, it must bequal
and the created hash table compares keyse&qthal? ; otherwise, the created table compares keys @dfh.

(hash-table? v [flag-symbol flag-symbol) returns#t if v was created bynake-hash-table

or make-immutable-hash-table with the givenflag-symbol s (or more) #f otherwise. Each provided
flag-symbol must be a distinct flag supported ake-hash-table ; if the secondlag-symbol is redun-
dant, theexn:fail:contract exception is raised.

(hash-table-put! hash-table key-v v) mapskey-v tov in hash-table , overwriting any existing
mapping forkey-v . If hash-table is immutable, theexn:fail:contract exception is raised.

(hash-table-get hash-table key-v [failure-thunk-or-value) returns the value fokey-v

in hash-table . If no value is found forkey-v , then failure-thunk-or-value determines the re-
sult: if failure-thunk-or-value is not provided, theexn:fail:contract exception is raised; if
failure-thunk-or-value is a procedure, it is called (through a tail call) with no arguments to produce the
result; finally, iffailure-thunk-or-value is provided and not a procedure, it is used as the result.

(hash-table-remove! hash-table key-v) removes the value mapping fdeey-v if it exists in
hash-table . If hash-table is immutable, theexn:fail:contract exception is raised.

(hash-table-map hash-table proc) applies the procedugoc to each elementihash-table , accu-
mulating the results into a list. The procedym®c must take two arguments: a key and its value. See the caveat
below about concurrent modification.

(hash-table-for-each hash-table proc) appliesthe procedupgoc to each elementihash-table
(for the side-effects gproc) and returns void. The procedupeoc must take two arguments: a key and its value.
See the caveat below about concurrent modification.

(hash-table-count hash-table) returns the number of keys mappedhmgsh-table . If hash-table
is not created withweak , then the result is computed in constant time and atomicallgash-table is created
with 'weak , see the caveat below about concurrent modification.

(hash-table-copy hash-table) returns a mutable hash table with the same mappings, same key-comparison
mode, and same key-holding strengthhash-table

(eg-hash-code V) returns an exact integer; for any tveq? values, the returned integer is the same. Further-
more, for the result integée and any other exactinteger (= k j) implies(eq? k j).

(equal-hash-code V) returns an exact integer; for any tvegual? values, the returned integer is the same.
Furthermore, for the result integkrand any other exact integer (= k j) implies(eq? k j). If v contains a
cycle through pairs, vectors, boxes, and inspectable structure fieldgghahhash-code applied tov will loop
indefinitely.

27

3.14. Hash Tables 3. Basic Data Extensions

Caveat concerning concurrent modification: A hash table can be manipulated wittash-table-get ,
hash-table-put! , andhash-table-remove! concurrently by multiple threads, and the operations are pro-
tected by a table-specific semaphore as needed. A few caveats apply, however:

e Ifathreadisterminated while applyitgsh-table-get , hash-table-put! , orhash-table-remove!

to a hash table that usegual? comparisons, all current and future operations on the hash table block indefi-
nitely.

Thehash-table-map , hash-table-for-each , andhash-table-count procedures do not use the

table’s semaphore. Consequently, if a hash table is extended with new keys by another thread while a map,
for-each, or count is in process, arbitrary key—value pairs can be dropped or duplicated in the map or for-each.
Similarly, if a map or for-each procedure itself extends the table, arbitrary key—value pairs can be dropped or
duplicated. However, key mappings can be deleted or remapped by any thread with no adverse affects (i.e., the
change does not affect a traversal if the key has been seen already, otherwise the traversal skips a deleted key or
uses the remapped key’s new value).

Caveat concerning mutable keysif a key into anequal? -based hash table is mutated (e.g., a key string is modified
with string-set!), then the hash table’s behavior for put and get operations becomes unpredictable.

28

4. Structures

A structure type is a record datatype composing a numbefialds. A structure, an instance of a structure type, is

a first-class value that contains a value for each field of the structure type. A structure instance is created with a
type-specific constructor procedure, and its field values are accessed and changed with type-specific selector and setter
procedures. In addition, each structure type has a predicate procedure that atisfeegrsistances of the structure

type and#f for any other value.

4.1 Defining Structure Types

A new structure type can be created with one of foefine-struct forms:
(define-struct s (field ---) [inspector-expr)
(define-struct (s t) (field --+) [inspector-expr)

wheres, t , and eacliield are identifiers. The latter form is describedih 2. The optionainspector-expr ,
which should produce an inspector#ir, is explained ir§4.5.

A define-struct expression witn field s defines 4 2n names:

e struct: s, astructure type descriptor value that represents the new datatype. This value is rarely used directly.
e make- s, a constructor procedure that takearguments and returns a new structure value.

e s?, apredicate procedure that retuttis for a value constructed hyake- s (or the constructor for a subtype;
seet4d.?) and#f for any other value.

e s-field ,foreacHield ,anaccessor procedure thattakes a structure value and extracts the viale for

e set- s-field !, foreachfield , a mutator procedure that takes a structure and a new field value. The field
value in the structure is destructively updated with the new value, and void is returned.

e s, a syntax binding that encapsulates information about the structure type declaration. This binding is used to
define subtypes (s€g.2). It also works with theshared andmatch forms (see Chapter 40 and Chapter 25
of PLT MzLib: Libraries Manudl. For detailed information about the expansion-time information storsd in

see§l2.6.4
Each time adefine-struct expression is evaluated, a new structure type is created with distinct constructor,
predicate, accessor, and mutator procedures. If the dafiree-struct expression is evaluated twice, instances

created by the constructor returned by the first evaluation will angifveto the predicate returned by the second
evaluation.

Examples:
(define-struct cons-cell (car cdr))
(define x (make-cons-cell 1 2)

29

4.2. Creating Subtypes 4. Structures

(cons-cell? x) ; = #t

(cons-cell-car x), =1

(set-cons-cell-car! x 5)

(cons-cell-car x); =5

(define orig-cons-cell? cons-cell?)
(define-struct cons-cell (car cdr))
(define y (make-cons-cell 1 2)

(cons-cell? y) ; = #t
(cons-cell? x) ; = #, cons-cell? now checks for a different type

(‘orig-cons-cell? x), = #t
(‘orig-cons-cell? y), = #f
Thelet-struct form binds structure identifiers in a lexical scope; it does not suppartspector-expr
(let-struct s (field o)
body-expr ---1)
(let-struct (s t) (field)

body-expr ---1)

4.2 Creating Subtypes

The latterdefine-struct form shown in§4.1 creates a new structure type that igracture subtype of an existing
base structure type. An instance of a structure subtype can always be used as an instance of the base structure type,
but the subtype gets its own predicate procedure and may have its own fields in addition to the fields of the base type.

Thet identifier in a subtypinglefine-struct form must be bound to syntax describing a structure type decla-
ration. Normally, it is the name of a structure type previously declared aéfme-struct . The information
associated with is used to access the base structure type for the new subtype.

A structure subtype “inherits” the fields of its base type. If the base typmfiekls, and ifn fields are specified in the
subtypingdefine-struct expression, then the resulting structure typerhasn fields. Consequentlyn+ n field
values must be provided to the subtype’s constructor procedure. Values for tmeffiists of a subtype instance are
accessed with selector procedures for the original base type, and thatasiccessed with subtype-specific selectors.
Subtype-specific accessors and mutators for therfifiids are not created.

Examples:
(define-struct cons-cell (car cdr))
(define x (make-cons-cell 1 2)
(define-struct (tagged-cons-cell cons-cell) (tag))
(define z (make-tagged-cons-cell 34 1)
(cons-cell? z) ; = #t
(tagged-cons-cell? z), = #t
(tagged-cons-cell? x), = #f
(cons-cell-car z); = 3
(tagged-cons-cell-tag z), =t

4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties
The make-struct-type procedure creates a new structure type in the same way define-struct form

of §4.1, but provides a more general interface. In particularntiaée-struct-type procedure supports structure
type properties.

30

4. Structures 4.3. Structure Types with Automatic Fields, Immutable Fields, and Properties

e (make-struct-type name-symbol super-struct-type init-field-k auto-field-k [auto-v
prop-value-list inspector-or-false proc-spec immutable-k-list guard-proc]) cre-
ates a new structure type. Thame-symbol argument is used as the type namesuper-struct-type
is not#f , the new type is a subtype of the corresponding structure type, as descriiged in

The new structure type hasit-field-k + auto-field-k fields (in addition to any fields from
super-struct-type), but only init-field-k constructor arguments (in addition to any constructor
arguments fronsuper-struct-type). The remaining fields are initialized wituto-v , which defaults

to #f .

The prop-value-list argument is a list of pairs, where tioar of each pair is a structure type property
descriptor, and thedr is an arbitrary value. The default rmull . See§4.4 for more information about
properties.

Theinspector-or-false argument controls access to debugging information about the structure type and

its instances; segt.5for more information.

The proc-spec argument can bé&f , an exact non-negative integer, or a procedure. The defaft.islf
an integer or procedure is provided, instances of the structure type act as procedurég.6 $aefurther
information.

The immutable-k-list argument provides a list of exact, non-negative integers that identify immutable
field positions. Each element in the list should be unique, otherasisefail:contract exception is
raised. Each element should also fall in the rafiggnclusive) andinit-field-k (exclusive), otherwise
exn:fail:contract exception is raised.

The guard-proc argument is either a procedure oft 1 arguments o#f , wheren is the number of ar-
guments for the new structure type’s constructor (irt;field-k plus constructor arguments implied

by super-struct-type , if any). If guard-proc is a procedure, then the procedure is called whenever

an instance of the type is constructed, or whenever an instance of a subtype is created. The arguments to
guard-proc are the values provided for the structure’s firdtelds, followed by the name of the instantiated
structure type (which inmame-symbol , unless a subtype is instantiated). Therd-proc result should be

n values, which become the actual value for the structure’s fields.gliaed-proc can raise an exception

to prevent creation of a structure with the given field values. If a structure subtype has its own guard, the sub-
type guard is applied first, and the firstvalues produced by the subtype’s guard procedure become the first
arguments tguard-proc

The result of make-struct-type is five values, which are similar to the values produced by
define-struct (sees4.l):

— a structure type descriptor,

a constructor procedure,

a predicate procedure,

an accessor procedure, which consumes a structure and a field index between 0 (inclusive) and
init-field-k + auto-field-k (exclusive), and

a mutator procedure, which consumes a structure, a field index, and a field value.

Unlike define-struct , make-struct-type returns a single accessor procedure and a single mutator proce-
dure for all fields. Thamake-struct-field-accessor and make-struct-field-mutator procedures
convert a type-specific accessor or mutator returnechélye-struct-type into a field-specific accessor or muta-
tor:

e (make-struct-field-accessor accessor-proc field-pos-k field-name-symbol) re-
turns a field accessor that is equivalent to
(lambda (s) (accessor-proc s field-pos-k)

Theaccessor-proc must be an accessor returnedbgke-struct-type . The name of the resulting pro-
cedure for debugging purposes is derived fifigtd-name-symbol and the name adccessor-proc s
structure type.

31

4.4. Structure Type Properties 4. Structures

e (make-struct-field-mutator mutator-proc field-pos-k field-name-symbol) returns
a field mutator that is equivalent to

(lambda (s v) (mutator-proc s field-pos-k v)
The mutator-proc must be a mutator returned Inyake-struct-type . The name of the resulting pro-
cedure for debugging purposes is derived frigeid-name-symbol and the name afhutator-proc s
structure type.
Examples:
(define-values (struct:a make-a a? a-ref a-set!)

(make-struct-type 'a #f 2 1 ’uninitialized))
(define an-a (make-a X 'y))
(a-ref an-a 1), =Y
(a-ref an-a 2) ; = ’uninitialized
(define a-first (make-struct-field-accessor a-ref 0))
(a-first an-a) = X

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type 'b struct:a 1 2 ’b-uninitialized))
(define a-b (make-b 'x 'y 'z))
(a-ref a-b 1) ; =Yy
(a-ref a-b 2) ; = 'uninitialized
(b-ref a-b 0 ; =z
(‘b-ref a-b 1) ; = ’b-uninitialized
(‘b-ref a-b 2) ; = ’b-uninitialized
(define-values (struct:c make-c c¢? c-ref c-set!)
(make-struct-type 'c struct:b 0 0 #f null (make-inspector) #f null
;; Guard checks for a number, and makes it inexact
(lambda (al a2 bl name)
(unless (number? a2)
(error (string->symbol (format "make-"a" name))
"second field must be a number"))
(values al (exact->inexact a2) bl))))
(make-c 'x''y 'z) ; = error: "make-c: second field must be a number"

(define a-c (make-c 'x 2 ’z))
(a-ref a-c 1) ; = 20

4.4 Structure Type Properties

A structure type property allows per-type information to be associated with a structure type (as opposed to per-instance
information associated with a structure value). A property value is associated with a structure type through the
make-struct-type procedure (se4.3). Subtypes inherit the property values of their parent types, and sub-
types can override an inherited property value with a new value.§Beg.10for a built-in property that controls how

struct values are printed.)

(make-struct-type-property name-symbol [guard-proc]) creates a new structure type property and
returns three values:

e a structure property type descriptor, for use witake-struct-type ;

32

4. Structures 4.5. Structure Inspectors

e a predicate procedure, which takes an arbitrary value and rettirifghe value is a descriptor or instance of a
structure type that has a value for the propettyotherwise;

e an accessor procedure, which returns the value associated with structure type given its descriptor or one of its
instances; if the structure type does not have a value for the property, or if any other kind of value is provided,
theexn:fail:contract exception is raised.

If the optional guard-proc is supplied, it is called bynake-struct-type before attaching the property

to a new structure type. Thguard-proc must accept two arguments: a value for the property supplied to
make-struct-type , and a list containing information about the new structure type. The list contains the val-
ues thatstruct-type-info would return for the new structure type if it skipped the current-inspector control
check (seg4.5).

The result of callingguard-proc is associated with the property in the target structure type, instead of the
value supplied tanake-struct-type . To reject a property association (e.g., because the value supplied to
make-struct-type is inappropriate for the property), the guard can raise an exception. Such an exception pre-
ventsmake-struct-type from returning a structure type descriptor.

(struct-type-property? v) returns#t if v is a structure type property descriptor valgg,otherwise.

Examples:

(define-values (prop:p p? p-ref) (make-struct-type-property 'p))

(define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type 'a #f 2 1 'uninitialized (list (cons prop:p 8))))
(p? structa) ; = #t
(p? 13) ; = #f
(define an-a (make-a 'X 'y))
(p? an-a) ; = #t
(p-ref an-a) ; = 8

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type 'b #f 0 0 #f))
(p? structb) ; = #f

4.5 Structure Inspectors

An inspector provides access to structure fields and structure type information without the normal field accessors and
mutators. (Inspectors are also used to control access to module bindin§8;&pispectors are primarily intended
for use by debuggers.

When a structure type is created, an inspector can be supplied. The given inspector is not the one that will control
the new structure type; instead, the given inspector’s parent will control the type. By using the parent of the given
inspector, the structure type remains opaque to “peer” code that cannot access the parent inspector. Thus, an expression
of the form

(define-struct s (field)]

creates a structure type whose instances are opaque to peer code. In contrast, the following idiom creates a structure
type that is transparent to peer code, because the supplied inspector is a newly created child of the current inspector:

(define-struct s (field --+) (make-inspector))

33

4.5. Structure Inspectors 4. Structures

Instead of supplying an inspectéf, can be provided, which makes the structure transparent to all code. Thus,

(define-struct s (field <) #)

creates a structure type that is transparent to all code.

Thecurrent-inspector parameter determines a default inspector argument for new structure types. An alternate
inspector can be provided though the opticimapector-expr expression of thelefine-struct form (see
§4.1), as shown above, or through an optioimaslpector ~ argument tanake-struct-type (sees4.3).

(make-inspector [inspector]) returns a new inspector that is a subinspectorinsgpector . If
inspector is not provided, the new inspector is a subinspector of the current inspector. Any structure type con-
trolled by the new inspector is also controlled by its ancestor inspectors, but no other inspectors.

(inspector? V) returns#t if v is an inspectorf otherwise.

Thestruct-info andstruct-type-info procedures provide inspector-based access to structure and structure
type information:

e (struct-info V) returns two values:

— struct-type . a structure type descriptor &if ; the result is a structure type descriptor of the most
specific type for whiclv is an instance, and for which the current inspector has control, or the re#filt is
if the current inspector does not control any structure type for whickttinet is an instance.

— skipped? : #f if the first result corresponds to the most specific structure type #t otherwise.

e (struct-type-info struct-type) returns eight values that provide information about the structure
type descriptostruct-type , assuming that the type is controlled by the current inspector:

— name-symbol : the structure type’s name as a symbol;

— init-field-k : the number of fields defined by the structure type provided to the constructor procedure
(not counting fields created by its ancestor types);

— auto-field-k : the number of fields defined by the structure type without a counterpart in the construc-
tor procedure (not counting fields created by its ancestor types);

— accessor-proc . an accessor procedure for the structure type, like the one returned by
make-struct-type ;

— mutator-proc @ a mutator procedure for the structure type, like the one returned by
make-struct-type ;

— immutable-k-list : an immutable list of exact non-negative integers that correspond to immutable
fields for the structure type;

— super-struct-type . a structure type descriptor for the most specific ancestor of the type that is

controlled by the current inspector, #F if no ancestor is controlled by the current inspector;
— skipped? : #f if the seventh result is the most specific ancestor type or if the type has no sup#ttype,

otherwise.
If the type forstruct-type is not controlled by the current inspector, than:fail:contract exception
is raised.

e (struct-type-make-constructor struct-type) returns a constructor procedure to create in-
stances of the type fatruct-type . If the type forstruct-type is not controlled by the current inspector,
theexn:fail:contract exception is raised.

e (struct-type-make-predicate struct-type) returns a predicate procedure to recognize in-
stances of the type fatruct-type . If the type forstruct-type is not controlled by the current inspector,
theexn:fail:contract exception is raised.

34

4. Structures 4.6. Structures as Procedures

4.6 Structures as Procedures

If an integer or procedure is provided as ffrec-spec argument tanake-struct-type (seeg4.3), instances

of the new structure type are procedures. In particular, vidneoedure? is applied to the instance, the result will

be#t . When an instance is used in the function position of an application expression, a procedure is extracted from
the instance and used to complete the procedure call.

If proc-spec is an integer, it designates a field within the structure that should contain a procedure. The
proc-spec integer must be between 0 (inclusive) a@nit-field-k (exclusive). The designated field becomes
immutable, so that after an instance of the structure is created, its procedure cannot be changed. (Otherwise, the arity
and name of the instance could change, and such mutations are generally not allowed for procedures.) When the
instance is used as the procedure in an application expression, the value of the designated field in the instance is used
to complete the procedure callThat procedure receives all of the arguments from the application expression. The
procedure’s name (s&€é.2.3 and arity (se€3.12.7) are also used for the name and arity of the structure. If the value

in the designated field is not a procedure, then the instance behavésaldelambda) (i.e., a procedure which

does not accept any number of arguments).

Example:

(define-values (struct:ap make-annotated-proc annotated-proc? ap-ref ap-set!)
(make-struct-type 'annotated-proc #f 2 0 #f null #f 0))
(define (proc-annotation p) (ap-ref p 1))
(define plusl (make-annotated-proc
(lambda (x) (+ x 1))
"adds 1 to its argument"))
(procedure? plusl) ; = #t

(‘annotated-proc? plusl), = #t
(plusi 10) ; = 11
(proc-annotation plusl) ; = "adds 1 to its argument"

If proc-spec is a procedure, it should accept at least one argument. When an instance of the structure is used in
an application expression, tipeoc-spec procedure is called with the instance as the first argument. The remaining
arguments to th@roc-spec procedure are the arguments from the application expression. Thus, if the applica-
tion expression contained five argumemmc-spec s called with six arguments. The name of the instance (see
§6.2.3 is unaffected byproc-spec , but the instance’s arity is determined by subtracting one from every possible
argument count gbroc-spec . If proc-spec cannot accept at least one argument, then the instance behaves like
(case-lambda)

(define-values (struct:fish make-fish fish? fish-ref fish-set!)
(make-struct-type ’‘fish #f 2 0 #f null #f
(lambda (f n) (fish-set! f 0 (+ n (fish-ref f o)

(define (fish-weight f) (fish-ref f 0))
(define (fish-color f) (fish-ref f 1))
(define wanda (make-fish 12 'red))

(fish? wanda) ; = #t

(procedure? wanda) ; = #t

(fish-weight wanda), = 12

(for-each wanda (1 2 3))

(fish-weight wanda), = 18

If a structure type generates procedure instances, then subtypes of the type also generate procedure instances. The
instances behave the same as instances of the original type. When-apec is supplied with a supertype that

1This procedure can be another structure that acts as a procedure. The immutability of procedure fields disallows cycles in the procedure graph,
so that the procedure call will eventually continue with a non-structure procedure.

35

4.7. Structures as Synchronizable Events 4. Structures

already behaves as a procedure,ghe:fail:contract exception is raised.

4.7 Structures as Synchronizable Events

The built-inprop:evt structure type property identifies structure types whose instances can serve as synchronizable
events; se7.7 for information on synchronization and events.

The property value can be any of the following:

e An eventevt : In this case, using the structure as an event is equivalent to eging

e Aprocedureproc of one argument: In this case, the structure is similar to an event generagedtayevt
except that the would-be guard procedprec receives the structure as an argument, instead of no arguments.

e An exact, non-negative integer betwe(inclusive) andnit-field-k (exclusive): The integer identifies a
field in the structure. If the field contains an object or an event-generating procedure of one argument, the event
or procedure is used as above. Otherwise, the structure acts as an event that is never ready.

Examples:

(define-values (struct:wt make-wt wt? wt-ref wt-set!)
(make-struct-type 'wt #f 2 0 #f (list (cons prop:evt 0)) #f #f '(0)))

(define sema (make-semaphore))

(sync/timeout 0 (make-wt sema #f)) ; = #f

(semaphore-post sema)

(sync/timeout 0 (make-wt sema #f)) ; = sema

(semaphore-post sema)

(sync/timeout 0 (make-wt (lambda (self) (wt-ref self 1)) sema)) ; = sema

(semaphore-post sema)

(define my-wt (make-wt (lambda (self) (wrap-evt
(wt-ref self 1)
(lambda (x) self)))

sema))
(sync/timeout 0 my-wt) ; = my-wt
(sync/timeout O my-wt) ; = #f

4.8 Structure Utilities

The following utility procedures work on all structure instances:

36

e (struct->vector v [opaque-v |) creates a vector representimg The first slot of the result vector
contains a symbol of the forstruct: s. The each remaining slot contains either the value of a field iin
it is accessible via the current inspectoropaque-v for a field that is not accessible. A singdpaque-v
value is used in the vector for contiguous inaccessible fields. (Consequently, the size of the vector does not
match the size of thetruct if more than one field is inaccessible.) The symbol is the default value for
opaque-v .

e (struct? v) returns#t if struct->vector exposes any fields of with the current inspecto#f
otherwise.

4. Structures 4.8. Structure Utilities

Two structure values areqv? if and only if they areeq?. Two structure values arequal? if and only if they
are instances of the same structure type, no fields are opaque, and the results of appigireyector to the
structs areequal? . (Consequentlyequal? testing for structures depends on the current inspector.)

Each kind of value returned ljefine-struct andmake-struct-type has a recognizing predicate:

e (struct-type? V) returns#t if v is a structure type descriptor valu#, otherwise.

e (struct-constructor-procedure? v) returns#t if v is a constructor procedure generated by
define-struct or make-struct-type , #f otherwise.

e (struct-predicate-procedure? v) returns #t if v is a predicate procedure generated by
define-struct or make-struct-type , #f otherwise.

e (struct-accessor-procedure? v) returns #t if v is an accessor procedure generated by
define-struct , make-struct-type , or make-struct-field-accessor , #f otherwise.

e (struct-mutator-procedure? v) returns #t if v is a mutator procedure generated by
define-struct , make-struct-type , or make-struct-field-mutator , #f otherwise.

37

5. Modules

MzScheme provides a module system for managing the scope of variable and syntax definitions, and for directing
compilation. Module declarations can appear only at the top level. The space of module names is separate from the
space of top-level variable and syntax names.

A module declaration consists of the name for the module, the name of a module to supply an initial set of syntax
and variable bindings, and a module body:

(module module-identifier initial-required-module-name body-datum)

A module encapsulates syntax definitions to be used in expanding the body of the module, as well as expressions and
definitions to be evaluated when the module is executed. When a syntax identifier is exportpdowvidle (as
described irt5.2), its transformer can be used during the expansion of an importing module; when a variable identifier

is exported, its value can be used (but not assignedseith) during the execution of an importing module.

A module nameanzscheme is built in, and it exports the procedures and syntactic forms descrid@tRBand this
manual. Thanzscheme module supplies the initial syntax and variable bindings for a typical module.

Example:

(module hello-world ; the module name
mzscheme ; initial syntax and variable bindings
; for the module body
; the module body
(display "Hello world!")
(newline))

In general, the initial import serves as a kind of "language” declaration. By initially importing a module other than
mzscheme, a module can be defined in terms of a commonly-used variant of Scheme that contains more than the
MzScheme built-in syntax and procedures, or a variant of Scheme that contains fewer constructs. The initial import
might even omit syntax for declaring additional imports. For exanidl2,5shows an example module that defines a
lambda-calculus language.

5.1 Module Expansion and Execution

When a module declaration is evaluated, the module’s body is syntax-expanded and compiled, but not executed. The
body is executed only when the module is explicitly invoked, viequire or require-for-syntax expression
at the top level, or a call tdynamic-require

When a module is invoked, its body definitions and expressions are evaluated. First, however, the definitions and
expressions are evaluated for each module importedégiaire) by the invoked module. The import-initialization

rule applies up the chain of modules, so that every module used (directly or indirectly) by the invoked module is
executed before any module that uses its exports. A module can only import from previously declared modules, so the
module-import relationship is acyclic.

38

5. Modules 5.2. Module Bodies

Every module is executed at most once in response to an invocation, regardless of the number of times it is imported
into other modules. Every top-level invocation executes only the modules needed by the invocation that have not been
executed by previous invocations.

Example:

(module never-used ; unused module
mzscheme
(display "This is never printed")
(newline))

(module hello-world-printer ; module used by hello-world2
mzscheme
(define (print-hello-world)
(display "Hello world!")
(newline))
(display "printer ready")
(newline)
(provide print-hello-world) ; export

(module hello-world2

mzscheme ; initial import
(require hello-world-printer) ; additional import
(print-hello-world)
(require hello-world2) ;= prints "printer ready", then "Hello world!"

Separating module declarations from module executions benefits compilation in the presence of expressive syntax
transformers, as explained§a2.3.4

5.2 Module Bodies

In general, the format of a module body depends on the initial import. Sincenziseheme module defines the
procedures and syntactic forms describeBiRSand this manual, theody-datum s of a module usingizscheme
as its initial import must conform to the usual MzScheme top-level grammar.

Therequire form is used both to invoke a module at the top level, and to import syntax and variables into a module.

(require require-spec c)
require-spec is one of
module-name
(only module-name identifier)
(prefix prefix-identifier module-name)
(all-except module-name identifier)
(prefix-all-except prefix-identifier module-name identifier)
(rename module-name local-identifier exported-identifier)

The module-name form imports all exported identifiers from the named module. Tddy module-name

identifier ---) form imports only the listed identifiers from the named module. Tpeefix
prefix-identifier module-name) form imports all identifiers from the named module, but locally pre-
fixes each identifier wittprefix-identifier . The (all-except module-name identifier)

form imports all identifiers from the named module, except for the listed identifiers(praéx-all-except

39

5.2. Module Bodies 5. Modules

prefix-identifier module-name identifier --+) form combines theorefix and all-except
forms. Finally, the(rename module-name local-identifier exported-identifier) imports
exported-identifier from module-name , binding it locally toidentifier

Theprovide form (legal only within a module declaration) exports syntax and variable bindings from the current
module for use by other modules. The exported identifiers must be either defined or imported in the module, but the
export of an identifier may precede its definition or import.

(provide provide-spec)
provide-spec is one of

identifier

(rename local-identifier export-identifier)

(struct struct-identifier (field-identifier)]

(all-from module-name)

(all-from-except module-name identifier)

(all-defined)

(all-defined-except identifier)

(prefix-all-defined prefix-identifier)

(prefix-all-defined-except prefix-identifier identifier)

(protect provide-spec)
The identifier form exports the (imported or defined) identifier from the module. Theame
local-identifier export-identifier) form exportslocal-identifier from the module with the
external namexport-identifier ; other modules importing from this one will segport-identifier
instead of local-identifier . The (struct struct-identifier (field-identifier _)
form exports the names thédefine-struct struct-identifier (field-identifier -+4)) gen-
erates. Theall-from module-name) form exports all of the identifiers imported from the named mod-
ule, using their local names. THall-from-except module-name identifier --.) form is sim-
ilar, except that the listed imported identifiers are not exported. {Ehedefined) form exports all
of the identifiers defined (not imported) in the module. Tla#-defined-except identifier <)
form is similar, except that the listed defined identifiers are not exported. (prefix-all-defined
prefix-identifier) and(prefix-all-defined-except prefix-identifier identifier .
-) forms are likeall-defined andall-defined-except , butprefix-identifier is prefixed onto each

defined identifier for its external name.

The(protect provide-spec --+) form is like the sequence of individuptovide-spec s, but the provided
identifiers are protected (s€8.4); theprovide-spec s must not contain anotherotect form, anall-from
form, or anall-from-except form, and they must not name any identifier that is imported into the providing

module, instead of defined within the module.

The scope of all imported identifiers covers the entire module body, as does the scope of any identifier defined within
the module body. Se#l2.3.5for additional information concerning macro-generated definitioemlire declara-

tions, andprovide declarations. Andentifier can be defined by a definition or import at most once, except
than anidentifier can be imported multiple times if each import is from the same module. All exports must
be unique. A module body cannot contain free variables. A module is not permitted to mutate an imported variable
with set! . However, mutations to an exported variable performed by its defining module are visible to modules that
import the variable.

At syntax-expansion time, expressions and definitions within a module are partially expanded, just enough to de-
termine whether the expression is a definition, syntax definition, import, export, or a non-definition. If a partially
expanded expression is a syntax definition, the syntax transformer is immediately evaluated and the syntax name is
available for expanding successive expressions. Import expressions are treated similarly, so that imported syntax is
available for expansion following its import. (The ordering of syntax definitions does not affect the scope of the syntax
names; a transformer féx can produce expressions containBigwhile the transformer foB produces expressions

40

5. Modules 5.3. Modules and Macros

containingA, regardless of the order of declarations foand B. However, a syntactic form that produces syntax
definitions must be defined before it is used.) Dlegin form at the top level for a module body works likegin
at the top level, so that the sub-expressions are flattened out into the module’s body.

At run time, expressions and definitions are evaluated in order as they appear within the module. Accessing a (nhon-
syntax) identifier before it is initialized signals a run-time error, just like accessing an undefined global variable.

Example:

(module a mzscheme
(provide x)
(define x 1))

(module b mzscheme
(provide f (rename x y))
(define x 2)

(define (f) (set! X 7))

(module ¢ mzscheme

(require (prefix a. a) (prefix b. b))
(b.f)
(display (4+ ax by)
(newline))
(require c) ; = executes c, prints 8

5.3 Modules and Macros

Macros defined witlsyntax-rules follow the rules specified iR°RSregarding the binding and free references in

the macro template. In particular, the template of an exported macro may refer to an identifier defined in the module
or imported into the module; uses of the macro in other modules expand to references of the identifier defined or
imported at the macro-definition site, as opposed to the use site. Uses of a macro in a module must not expand to a
setl assignment of an identifier from any other module (including the module that defines the macro).

Example:

(module a mzscheme
(provide Xm)
(define y 2)
(define-syntax xm ; a macro that expands to y
(syntax-rules ()

[(xm) y]))
(module b mzscheme
(require a)
(printf ""a™n" (xm)))

(require b) ;= prints 2

For further information about syntax definitions, $4€.3.4 See§12.6.5for information on extracting details about
an expanded or compiled module declaration. $eéfor information on how unexported and protected identifiers in
a macro expansion are constrained to their macro-introduced contexts.

41

5.4. Module Paths 5. Modules

5.4 Module Paths

In practice, the modules composing a program are rarely declared together in a single file. Multiple module-declaring
files can be loaded in sequence withd , but modules that are intended as libraries have complex interdependencies;
constructing an appropriate sequencafl expressions — one that loads each module declaration exactly once and
before all of its uses — can be difficult and tedious. Worse, even though module declarations prevent collisions among
syntax and variable names, module names themselves can collide.

To solve these problems,module-name can describe a path to a module source file, which is resolved by the
currentmodule name resolver. The default module name resolver loads the source for a given module path the first
time that the source is referenced. To avoid module name collisions, the module in the referenced file is assigned a
name that identifies its source file.

A module path resolved by the standard resolver can take any of four forms:

unix-relative-path-string
(file path-string)

(lib filename-string collection-string)

(planet . datum)

path

e When a module name is a stringnix-relative-path-string , it is interpreted as a path relative
to the source of the containing module (as determinecatunyent-load-relative-directory or
current-directory). Regardless of the platform running MzScheme, the path is always parsed as a Unix-

format path:/ is the path delimiter (multiple adjacenare treated as a single delimiter)accesses the parent
directory, and. accesses the current directory. To avoid portability problems, the path elements are further
constrained to contain only alpha-numeric characters plys, and space, and the path may not be empty or
contain a leading or trailing slash.

e When a module name has the fof(file path-string), thenpath-string is interpreted as a file
path using the current platform’s path conventionspdth-string is a relative path, it is resolved rela-
tive to the source of the containing module (as determinecliosent-load-relative-directory or
current-directory).

e When a module name has the foflilb filename-string collection-string -++), it specifies
a collection-based library; see Chaptérfor more information about libraries and collections.

¢ When a module name has the fo(pianet . datum) , it is passed to the PLaneT resolver as described
in §5.4.1

e Since path values (s€d1.3.) cannot be written as literal syntaxpath never appears irequire forms.
However, an absolute path value may be passegtiamic-require , and itis treated in the same way as a
file form.

A source file that is referenced by a module path must contain a single module declaration. The name of the declared
module must match the source’s filename, minus its suffix.

Different module paths can access the same module, but for the purpgsesidé declarations usingll-from
andall-from-except , source module paths are compared syntactically (instead of comparing resolved module
names).

5.4.1 Module Name Resolver

In general, the module name resolver is invoked by MzScheme whmadalle-name is not an identifier. The
grammar of non-symbolic module names is determined by the module name resolver. The module name resolver, in

42

5. Modules 5.4. Module Paths

turn, is determined by theurrent-module-name-resolver parameter (see al$d.9.1.13. The resolver is a
function that takes one, three, and four arguments:

e When given one argument, it is a symbol for a module that is already loaded. Such a call to the module name
resolver is a notification that the corresponding module does not need to be loaded (for the current namespace,
or any other namespace that shared the module registry). The procedure result is ignored.

e When given three argument, the first is an arbitrary value for the module path, a symbol for the source module’s
name, and a syntax object#f . The procedure result must be a symbol for the resolved name.

e The four-argument case is the same as the three-argument case, but with a boolean argument ti#t twan be
request resolving a name without loading the module (if it is not already loaded).

Except for(planet . datum) paths (which are handled as described below), the standard module name resolver
creates a module identifier as the expanded, simplified, case-normalized, and de-suffixed path of the file designated by
the module path. (Seég.1.3for details on platform-specific path handling.) To better supgwgnamic-require ,

the standard module name resolver accepts a path objedl(k€e] and treats it like dile module path.

The standard module name resolver keeps a per-registry table of loaded module identifiers (where the registry is
obtained from a namespace; see Chap)elf the resolved identifier is not in the table, a#fl is not provided as the
module name resolver’s fourth argument, then the identifier is put into the table and the corresponding file is loaded
with a variant ofload/use-compiled that passes the expected module name to the load handler.

While loading a file, the standard resolver setsaheent-module-name-prefix parameter, so that the name

of any module declared in the loaded file is given a prefix. This mechanism enables the resolver to avoid module name
collisions. The resolver sets the prefix to the resolved module name, minus the de-suffixed file name. It also loads the
file by calling the load handler or load extension handler with the name of the expected modgte fsee

Module loading is supressed (i.¢f, is supplied as a fourth argument to the module name resolver) when resolving
module paths in syntax objects (S€€2.2). When a syntax object is manipulated, the current namespace might not
match the original namespace for the syntax object, and the module should not necessarily be loaded in the current
namespace.

The current module name resolver is called with a single argumentnespace-attach-module to notify

the resolver that a module was attached to the current namespace (and should not be loaded in the future for the
namespace’s registry). No other MzScheme operation invokes the module name resolver with a single argument, but
other tools (such as DrScheme) might call this resolver in this mode to avoid redundant module loads.

When the default module name resolver is given a module path of the (jolanet . datum) as its first
argument, it provides all of the resolver arguments to the PLaneT resolver. If the PLaneT resolver has not yet
been loaded, it is loaded in the initial namespace by requplaget-module-name-resolver from (lib
"resolver.ss" "planet") . Thereafter, the PLaneT resolver is called for every one-argument call to the de-
fault module name resolver, in addition to calls for har(glanet . datum) paths.

5.4.2 Module Names and Compilation

When syntax-expanding or compilingnaodule declaration, MzScheme resolves module names for imports (since
some imported identifier may have syntax bindings), but it also preserves the module path name. Consequently, a
compiled module can be moved to another filesystem, where the module name resolver can resolve inter-module
references among compiled code.

43

5.5. Dynamic Module Access 5. Modules

5.5 Dynamic Module Access

(dynamic-require module-path-v provided-symbol) dynamically invokes the module specified by
module-path-v in the current namespace’s registry if it is not yet invokedndfdule-path-v is not a symbol,

the current module name resolver may load a module declaration to resolve it. For example, the default module-name
resolver accepts a path valuerasdule-path-v . The path is not resolved with respect to any other module, even

if the current namespace corresponds to a module body.

If provided-symbol is#f |, then the result is void. Otherwise, whprovided-symbol is a symbol, the value

of the module’s export with the given name is returned. If the module has no such exported variable or if the variable
is protected (seg9.4), theexn:fail:contract exception is raised. The expansion-time portion of the module is
not executed.

If provided-symbol is void, then the module is partially invoked, where its expansion-time expressions are evalu-
ated, but not its normal expressions (though the module may have been invoked previously in the current namespace’s
registry). The result is void.

(dynamic-require-for-syntax module-path-v provided-symbol-or-#f) is similar todynamic-require
except that it accesses a value from an expansion-time module instance (the one that could be used by transformers in
expanding top-level expressions in the current namespace). Aslwiimic-require , the module name resolver

may load a module declaration to resofwedule-path-v if it is not a symbol.

5.6 Re-declaring Modules

When a module is re-declared in a namespace whose registry already contains a declaration of the module (see Chap-
ter 8),, the new declaration’s syntax and variable definitions replace and extend the old declarations. If a variable in
the old declaration has no counterpart in the new declaration, it continues to exist, but becomes inaccessible to newly
compiled code. In other words, a module name in a particular registry maps to a namespace containing the module
body’s definitions; see alsnodule->namespace in §8.3.

If a module is invoked before it is re-declared, each re-declaration of the module is immediately invoked. The imme-
diate invocation is necessary to keep the module-specific namespace consistent with the module declaration.

When a module re-declaration implies invocation, the invocation can fail at the definition of a binding that was
constant in the original module (where any definition withowe# within the module counts as a constant def-
inition); preventing re-definition protects potential optimizations (for the original declaration) that rely on constant
bindings. Set theompile-enforce-module-constants parameter (se¢7.9) to #f to disable optimizations

that rely on constant bindings and to allow unrestrcted re-definition of module bindings. To enable re-definition, the
compile-enforce-module-constants parameter must be set before the original declaration of the module.

In addition to the constraint on constant definitions, a module can be redeclared only when the current code inspector

— as determined by theurrent-code-inspector parameter (se§7.9.1.9 — controls the invocation of the
module in the current namespace’s registry. If the current code inspector does not control the invocation at the time of
a re-declaration attempt, tlesn:fail:contract exception is raised.

5.7 Built-in Modules

The built-inmzscheme module is implemented by several primitive modules whose names stadS4itim general,
module names starting wit¥bare reserved for use by MzScheme and embedding applications. The built-in modules
are declared in the initial namespace’s registryndmespace-attach-module , S0 they cannot be re-declared
and their private namespaces are not availablenddule->namespace

44

5. Modules 5.8. Modules and Load Handlers

5.8 Modules and Load Handlers

The second argument to a load handler or load extension handler indicates whether the load is expected (and required)
to produce a module declaration. If the second argumetit jghe file is loaded normally, otherwise the argument
will be a symbol and the file must be checked specially before it is loaded.

When the second argument to the local handler is a symbol, the handler is responsible for ensuring that the file-to-load
actually contains anodule declaration (possibly compiled); if not, it must raise an exception without evaluating the
declaration. The handler must also raiseean:fail exception if the name in the module declaration is not the
same as the symbol argument to the handler (before applying any prefirrént-module-name-prefix).

Furthermore, while reading the file and expanding the module declaration, the load handler must set reader parameter
values (seg7.9.1.3 to the following states:

(read-case-sensitive #t)
(read-square-bracket-as-paren #t)
(read-curly-brace-as-paren #t)
(read-accept-box #t)
(read-accept-compiled #t)
(read-accept-bar-quote #t)
(read-accept-graph #t)
(read-decimal-as-inexact #t)
(read-accept-dot #t)
(read-accept-quasiquote #t)
(read-accept-reader #t)

These states are the same as the normal defaults, except that compiled-code reading is enabled. Note that a module
body can be made case sensitive by prefixing the module#ggh(sees11.2.9.

Finally, before compiling or evaluating a module declaration from source, the handler must replace antestliley
identifier with an identifier that is bound to tlmeodule export of MzScheme. Evaluating the expression will then
produce a module declaration, regardless of the bindimgazfule in the current namespace.

Separate compilation ofiodule declarations introduces the possibility of import cycles when the module declarations
are executed. Thexn:fall exception is raised when such a cycle is detected.

45

6. Exceptions and Control Flow

6.1 Exceptions

MzScheme supports the exception system proposed by Friedman, Haynes, and'DMk@igheme’s implementation
extends that proposal by defining the specific exception values that are raised by each primitive error.

e (raise V) raises an exception, whexe represents the exception being raised. Vhargument can be
anything; it is passed to the curremxtception handler. Breaks are disabled from the time the exception is raised
until the exception handler obtains control, and the handler itsgdhiameterize-break ed to disable
breaks initially; se€6.7 for more information on breaks.

e (current-exception-handler) returns the current exception handler that is useddye , and
(current-exception-handler f) installs the proceduré as the current exception handler. The
current-exception-handler procedure is a parameter (sge9).

Any procedure that takes one argument can be an exception handler, but it is an error if the exception handler
returns to its caller when invoked bigise . If an exception handler returns, the current error display handler
and current error escape handler are called directly to report the handler's mistake. Furthermore, the call to
an exception handler jzarameterize d to setcurrent-exception-handler to the default exception
handler, and it iparameterize-break ed to disable breaks.

The default exception handler prints an error message using the current error display handler (see

error-display-handler in §7.9.1.7) and then escapes by calling the current error escape handler
(see error-escape-handler in §7.9.1.7. The call to each handler iparameterize d to set
error-display-handler to the default error display handfeand it isparameterize-break ed to

disable breaks. The call to the error escape handler is further parameterizedrtorsescape-handler
to the default error escape handler.

¢ (with-handlers ((pred handler) ---) expr ---}) is a syntactic form that evaluates thgpr
body, installing a new exception handler before evaluatingettpr s and restoring the handler when a value
is returned (or when control escapes from the expression)piidte andhandler expressions are evaluated
in the order that they are specified, before the fisgtr and before the exception handler is changed. The
exception handler is installed and restored vpilnameterize (see§7.9.2.

The new exception handler processes an exception only if one pféke procedures returns a true value when
applied to the exception, otherwise the original exception handler is invoked (by raising the exception again).
If an exception is handled by one of thandler procedures, the result of the entingth-handlers

expression is the return value of the handler.

When an exception is raised during the evaluatioexgdr s, each predicate procedyreed is applied to the
exception value; if a predicate returns a true value, the correspohdimdjer procedure is invoked with the
exception as an argument. The predicates are tried in the order that they are specified.

Before any predicate or handler procedure is invoked, the continuation of theweitliseandlers expres-
sion is restored, but algsarameterize-break ed to disable breaks. Thus, breaks are disabled by default

1See http://www.cs.indiana.edu/scheme-repository/doc.proposals.exceptions.html
2|f the current error display handler is the default handler, then the error-display call is parameterized to install an emergency error display
handler that attempts to print directly to a console and never fails.

46

6. Exceptions and Control Flow 6.1. Exceptions

during the predicate and handler procedures §§e9, and the “original” exception handler is active (i.e., the
one present before thvéith-handlers expression was evaluated).

Theexn:fail? procedure is useful as a handler predicate to catch all error exceptions. Avoidlasibga

(x) #t) asapredicate, because then:break exception typically should not be caught (unless it will be
re-raised to cooperatively break). Beware, also, of catching and discarding exceptions, because discarding an
error message can make debugging unnecessarily difficult.

e (with-handlers « ((pred handler) ---) expr ---1) isthe same awith-handlers , but if a
handler procedure is called, breaks are not explicitly disabled, and the call is in tail position with respect to
thewith-handlers x form.

The following example defines a divide procedure that retthiné.0 when dividing by zero instead of signaling an
exception (other exceptions raised/bwre signaled):

(define div-w-inf

(lambda (n d)
(with-handlers ([exn:fail:contract:divide-by-zero?
(lambda (exn) +inf.0)])

(/' nd)))

The following example catches and ignores file exceptions, but lets the enclosing context handle breaks:

(define (file-date-if-there filename
(with-handlers ([exn:fail:filesystem? (lambda (exn) #f)])
(file-or-directory-modify-seconds filename)))

6.1.1 Primitive Exceptions

Whenever a primitive error occurs in MzScheme, an exception is raised. The value that is passed to the current
exception handler is always an instance ofélxa structure type. Evergxn structure value has message field

that is a string, the primitive error message. The default exception handler recognizes exception valuegwith the
predicate and passes the error message to the current error display handé&rqisdesplay-handler in

§7.9.1.9.

Primitive errors do not create immediate instances ofetkie structure type. Instead, an instance from a hierarchy

of subtypes ofexn is instantiated. The subtype more precisely identifies the error that occurred and may contain
additional information about the error. The table below defines the type hierarchy that is used by primitive errors and
matches each subtype with the primitive errors that instantiate it. In the table, each bulleted line is a separate structure
type. A type is nested under another when it is a subtype. The full name of the structure type (as used by predicates
and selectors in the global environment) is built by combining the full name of the immediate supertype with “:” and
the subtype name.

For example, reading an ill-formed expression raises an exception as an instarodaif.read . An exception
handler can test for this kind of exception using the glabai:fail:read? predicate. Given such an exception,
an error string can be extracted usign-message , while exn:fail:read-source accesses a list of source
locations for the error.

Fields of the built-inexn structure types are immutable, so field mutators are not provided. Field-type contracts are
enforced through guards; for examp(ejake-exn "Hello" #f) raisesexn:fail:contract because the
second argument is not a continuation mark set. All buigsn structure types are transparent to all inspectors (see

§4.5).

e exn : notinstantiated directly by any primitive
fields: message — error message (typémmutable strin

47

6.2. Errors 6. Exceptions and Control Flow

continuation-marks — value returned bgurrent-continuation-marks immediately
before the exception is raised (typmark se}

e fail :exceptions that represent errors

e contract :inappropriate run-time use of a function or syntactic form
arity : application with the wrong number of arguments
divide-by-zero : divide by zero
continuation : attempt to cross a continuation barrier
variable : unbound/not-yet-defined global or module variable

fields: id — the variable’s identifier (typesymbo)
e syntax :syntax error, but not eead error

fields: exprs — illegal expression(s) (typemmutable list of syntax objegts
e read :read parsing error
fields: srclocs — source location(s) of error (typ@nmutable list okrcloc s (se€§11.2.1.))

e eof : unexpected end-of-file
e non-char : unexpected non-character
o filesystem . error manipulating a filesystem object
e exists : attempt to create a file that exists already
e version :version mismatch loading an extension
e network : TCP and UDP errors
e out-of-memory : out of memory
e unsupported : unsupported feature
e user : forend users
break : asynchronous break signal
fields: continuation — resumes from the break (typescape continuatign

In addition to the built-in structure types for exceptions, MzScheme provides one built-in structure-type property (see
84.4):

e The prop:exn:srclocs property identifies exceptions that have a list of source locations, which includes
exn:fail:read and exn:fail:syntax . The exn:srclocs? predicate recognizes structures and
structure types that have thpeop:exn:srclocs property. Theexn:srclocs-accessor procedure
takes a structure or structure type with then:srclocs property and returns a procedure; when the proce-
dure is applied to a structure of the same type, it returns a lstobfc s (see11.2.1.).

Primitive procedures that accept a procedure argument with a particular required arigalewith-input-file ,

calllcc) check the argument’s arity immediately, raisiexn:fail:contract if the arity is incorrect.
6.2 Errors
The procedurerror raises the exceptioexn:fail (which contains an error string). Thegror procedure has

three forms:

e (error symbol) creates a message string by concatenagngpr: with the string form osymbol .

e (error msg-string v --+) creates a message string by concatenatisg-string with string versions
of thev s (as produced by the current error value conversion handlef7sed.7). A space is inserted before
eachv.

e (error src-symbol format-string v ---) creates a message string equivalent to the string created
by:

48

6. Exceptions and Control Flow 6.2. Errors

(format (string-append "s: " format-string)
src-symbol v)

In all cases, the constructed message string is passedke-exn:fail and the resulting exception is raised.
The raise-user-error procedure is the same amror , except that it constructs an exception with
make-exn:fail:user instead ofmake-exn:fail . The default error display handler does not show a “stack
trace” for exn:fail:user exceptions (se€6.6), soraise-user-error should be used for errors that are
intended for end users. Lilexror , raise-user-error has three forms:

e (raise-user-error symbol)

e (raise-user-error msg-string v)

e (raise-user-error src-symbol format-string v)
6.2.1 Application Errors
(raise-type-error name-symbol expected-string v) creates arexn:fail:contract value
andraise s it as an exception. Theame-symbol argument is used as the source procedure’s name in the er-
ror message. Thexpected-string argument is used as a description of the expected typey daadhe value

received by the procedure that does not have the expected type.

(raise-type-error name-symbol expected-string bad-k v) is similar, except that the bad argu-
ment is indicated by an index (from 0), and all of the original argumerase provided (in order). The resulting error
message names the bad argument and also lists the other argumbatskifis not less than the number g, the
exn:fail:contract exception is raised.

(raise-mismatch-error name-symbol message-string v) creates anexn:fail:contract

value andraise s it as an exception. Theame-symbol is used as the source procedure’s name in the error
message. Thmessage-string is the error message. Theargument is the improper argument received by the

procedure. The printed form of is appended tonessage-string (using the error value conversion handler; see

§7.9.1.7.

(raise-arity-error name-symbol-or-procedure arity-v [arg-v --]) creates aexn:fail:contract:arity
value andaise s itas an exception. Theme-symbol-or-procedure is used for the source procedure’s name

in the error message. Tlagity-v ~ value must be a possible result frggrocedure-arity (sees3.12.0, and it

is used for the procedure’s arity in the error messagearfie-symbol-or-procedure is a procedure, its actual

arity is ignored. Thearg-v arguments are the actual supplied arguments, which are shown in the error message
(using the error value conversion handler; §8®.1.7; also, the number of supplietg-v s is explicitly mentioned

in the message.

6.2.2 Syntax Errors

(raise-syntax-error name message-string [expr sub-expr]) creates arexn:fail:syntax
value andraise s it as an exception. Macros use this procedure to report syntax errorsnaffeeargument is
usually#f whenexpr is provided; it is described in more detail below. Timessage-string is used as the

main body of the error message. The optioggbr argument is the erroneous source syntax object or S-expression.
The optionalsub-expr argument is a syntax object or S-expression witwpr that more precisely locates the
error. If sub-expr is provided, it is used (in syntax form) for tlexprs field of the generated exception record,
else theexpr is used if provided, otherwise thexprs field is the empty list. Source location information in the
error-message text is similarly extracted freab-expr orexpr , when at least one is a syntax object.

49

6.3. Continuations 6. Exceptions and Control Flow

The form name used in the generated error message is determined through a combinatiovaofethexpr , and
sub-expr arguments. Theame argument cadf or a symbol:

e #f : Whennameis #f , and wherexpr is either an identifier or a syntax pair containing an identifier as its first
element, then the form name from the error message is the identifier's symbol.

If expr is not provided, or if it is not an identifier or a syntax pair containing and identifier as its first element,
then the form name in the error messag&ls .

e symbol : Whennameis a symbol, then the symbol is used as the form name in the generated error message.

See als@7.9.1.7

6.2.3 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values, such as procedures. For
example, evaluating the following expression:

(et (f (ambda () O)) (f 1 2 3))

produces an error message because too many arguments are provided to the procedure. The error message is able to
report “f” as the name of the procedure. In this case, MzScheme decides, at compile-time, to haamligescedures
created by théet -boundlambda .

Names are inferred whenever possible for procedures. Names closer to an expression take precedence. For example,
in

(define my-f
(let (f (lambda () 0)]) f))

the procedure bound tay-f will have the inferred name “f”.

When ar'inferred-name property is attached to a syntax object for an expression§E2é.2), the property
value is used for naming the expression, and it overrides any name that was inferred from the expression’s context.

When an inferred name is not available, but a source location is available, a name is constructed using the
source location information. Inferred and property-assigned names are also available to syntax transformers, via
syntax-local-name ; see§12.6for more information.

(object-name v) returns a value for the name wofif v has a nameff otherwise. The argument can be any

value, but only (some) procedures, structs, struct types, struct type properties, regexp values, and ports have names.
The name of a procedure, struct, struct type, or struct type property is always a symbol. The name of a regexp value
is a string, and a byte-regexp value’s name is a byte string. The name of a port is typically a path or a string, but it can
be arbitrary. All primitive procedures have names (§2é2.2.

6.3 Continuations

MzScheme supports delimited continuations, and even continuations captwatith-current-continuation

(or calllcc) are delimited by a prompt. Prompt instances are tagged, and continuations are cap-
tured with respect to a particular prompt. Thus, MzSchensak-with-current-continuation ac-

cepts an optional prompt-tag argumer{tall-with-current-continuation proc [prompt-tag),
whereprompt-tag must be a result from eithatefault-continuation-prompt-tag (the default) or
make-continuation-prompt-tag . Prompts, prompt tags, and composable continuations are described fur-
ther in§6.5.

50

6. Exceptions and Control Flow 6.4. Dynamic Wind

The macrdet/cc binds a variable to the continuation in an immediate body of expressions:

(let/cc k expr ---1)
=expands=>
(call/cc (lambda (k) expr ---1)

Capturing a continuation also captures the current continuation marks§@s&eup to the relevant prompt.
The current parameterization (s§&.9) is captured if it was extended viparamaterize or installed via
call-with-parameterization since the prompt.

A continuation can be invoked from the thread (see Chaptether than the one where it was captured. Multiple
return values can be passed to a continuation{8&2.

MzScheme installs aontinuation barrier around evaluation in the following contexts, preventing full-continuation
jumps across the barrier:

e applying an exception handler, an error escape handler, or an error display handiér{see

e applying a macro transformer (s€&2.6, evaluating a compile-time expression, or applying a module name
resolver (se§5.4.);

e applying a custom-port procedure (sgklL.1.79), an event guard procedure (s€é7), or a parameter guard
procedure (seg7.9);

e applying a security-guard procedure ($6€l);
e applying a will procedure (s€g3.3); or

e evaluating or loading code from the stand-alone MzScheme command lingl{§ee

In addition, extensions of MzScheme may install barriers in additional contexts. In particular, MrEd installs a contin-
uation barrier around most every callback. Finalball-with-continuation-barrier thunk) applies
thunk with a barrier between the application and the current continuation.

In addition to regulacall/cc , MzScheme providesall-with-escape-continuation (orcalllec)and

let/'ec . A continuation obtained fronsall/ec is actually a kind of prompt: applying an escape continuation
can onlyescapeback to the continuation (possibly past a continuation barrier); that is, an escape continuation is only
valid when the current continuation is an extension of the escape continuation. Further, the applicatibecf 's
argument is not a tail call. Escape continuations are provided mainly for backward compatibility, since they pre-date
general prompts in MzScheme.

The exn:fail:contract:continuation exception is raised when a continuation application would cross a
continuation barrier, or when an escape continuation is applied outside of its dynamic scope.

6.4 Dynamic Wind

(dynamic-wind pre-thunk value-thunk post-thunk) applies its three thunk arguments in order. The
value of adynamic-wind expression is the value returned Bglue-thunk . Thepre-thunk procedure is
invoked before callingralue-thunk and post-thunk is invoked aftervalue-thunk returns. The special
properties oflynamic-wind are manifest when control jumps into or out of trdue-thunk application (either
due to a prompt abort or a continuation invocation): every time control jumps intealbe-thunk application,
pre-thunk isinvoked, and every time control jumps outv@flue-thunk , post-thunk is invoked. (No special
handling is performed for jumps into or out of thee-thunk andpost-thunk applications.)

51

6.4. Dynamic Wind 6. Exceptions and Control Flow

When dynamic-wind calls pre-thunk for normal evaluation ofvalue-thunk , the continuation of
the pre-thunk application callsvalue-thunk (with dynamic-wind 's special jump handling) and then
post-thunk . Similarly, the continuation of th@ost-thunk application returns the value of the preceding

value-thunk application to the continuation of the entiofgnamic-wind application.

Whenpre-thunk s called due to a continuation jump, the continuatiopie-thunk

1. jumps to a more deeply nestpde-thunk , if any, or jumps to the destination continuation; then

2. continues with the context of th@re-thunk 's dynamic-wind call.

Normally, the second part of this continuation is never reached, due to a jump in the first part. However, the second part
is relevant because it enables jumps to escape continuations that are contained in the contedynafiewind

call. Furthermore, it means that the continuation marks §{6e® and parameterization (s§&.9) for pre-thunk

correspond to those of thgynamic-wind call that installedpore-thunk . The pre-thunk call, however, is
parameterize-break ed to disable breaks (see akt7).

Similarly, whenpost-thunk is called due to a continuation jump, the continuatiorpoét-thunk jumps to

a less deeply nestgubst-thunk , if any, or jumps to gre-thunk protecting the destination, if any, or jumps
to the destination continuation, then continues from plest-thunk ’'s dynamic-wind application. As for
pre-thunk , the parameterization of the origindynamic-wind call is restored for the call, and the call is
parameterize-break ed to disable breaks.

Example:
(let [v (let/ec out
(dynamic-wind
(lambda () (display "in ")

(lambda ()
(display "pre ")
(display (call/cc out))
#f)

(lambda () (display "out "))
(when v (v "post "))
; = displays in pre out in post out

(let/ec ko
(let/ec k1
(dynamic-wind
void
(lambda () (kO ’cancel))
(lambda () (k1 ’cancel-canceled)))))
= ’cancel-canceled

(let = ([x (make-parameter 0)]
[null]
[add (lambda (a b)
(set! 1 (append | (list (cons a b))
(let ([k (parameterize ([x 5]
(dynamic-wind
(lambda () (add 1 (x)))

(lambda () (parameterize ([X 6])
(let [k+e (let/cc k (cons k void))])
(add 2 (x))

52

6. Exceptions and Control Flow 6.5. Prompts and Composable Continuations

((cdr k+e))
(car k+e)))
(lambda () (add 3 (x))])
(parameterize ([X 7))
(let/cc esc
(k (cons void esc)))))
I); ='((1.5 (2.6)3.5@.5 (2.6) 3.5)

6.5 Prompts and Composable Continuations

For an introduction to composable continuations, see Sitaram and Felleisen, “Control Delimiters and Their Hierar-
chies,"Lisp and Symbolic Computatiph990.

MzScheme’s support for prompts and composable continuations most closely resembles Dorai SHaaach’'s
fcontrol operators (see “Handling ControRroc. Conference on Programming Language Design and Implemen-
tation, 1993). Since composable continuations capture and irdphkamic-wind thunks, however, thigontrol

operator is split into separate capture and abort operations, giving programmers more flexibility with respect to es-
capes. Composable continuations also capture continuation marks (€ee

See also Chapter 13 &fLT MzLib: Libraries Manualffor wrappers of MzScheme’s primitives. The wrapper are
generally simpler to use and have more standard names.

(call-with-continuation-prompt thunk [prompt-tag handler-proc-or-false]) callsthunk
with the current continuation extended by a prompt. The prompt is taggedooypt-tag , which must be a result
from eitherdefault-continuation-prompt-tag (the default) omake-continuation-prompt-tag

The handler-proc-or-false argument specifies a handler procedure; the handler is called in tail po-
sition with repsect to thecall-with-continuation-prompt call when the installed prompt is the
target of aabort-current-continuation call with prompt-tag , and the remaining arguments of
abort-current-continuation are supplied to the handler procedurehahdler-proc-or-false is #f

or not supplied, the default handler accepts a siagtat-thunk argument and caliEall-with-continuation-prompt
abort-thunk prompt-tag #f) ; that is, the default handler re-installs the prompt and continues with a given
thunk.

(abort-continuation-prompt prompt-tag obj ...1) resets the current continuation to that of
the nearest prompt tagged kgrompt-tag in the current continuation; if no such prompt exists, the
exn:fail:contract:continuation exception is raised. Thebj s are delivered as arguments to the target
prompt’s handler procedure.

(make-continuation-prompt-tag [symbol]) creates a prompt tag that is rejual? to the result of any
other value (including prior or future results framake-continuation-prompt-tag). The optionakymbol
argument, if supplied, is used when printing the prompt tag.

(default-continuation-prompt-tag) returns a constant prompt tag for a which a prompt is installed at

the start of every thread’s continuation; the handler for each thread’s initial prompt accepts any number of values and
returns. The result odlefault-continuation-prompt-tag is the default tag for more any procedure that
accepts a prompt tag.

A continuation captured bycall-with-current-continuation ... promt-tag) is truncated at
the nearest prompt tagged hyrompt-tag in the current continuation; if no such prompt exists, the
exn:fail:contract:continuation exception is raised. The truncated continuation includes only

dynamic-wind thunks (seg6.4) installed since the prompt.

When a continuation procedure is applied, it removes the portion of the current continuation up to the
nearest prompt tagged bprompt-tag (not including the prompt; if not such prompt it exists, the

53

6.6. Continuation Marks 6. Exceptions and Control Flow

exn:fail:contract:continuation exception is raised), or up to the nearest continuation frame (if any)
shared by the current and captured continuations — whichever is first. While removing continuation frames,
dynamic-wind post-thunk s are executed. Finally, the (unshared portion of the) captured continuation is ap-
pended to the remaining continuation, applydymamic-wind pre-thunk s.

(call-with-composable-continuation proc [prompt-tag]) is similar tocall-with-current-continuation

but applying the resulting continuation procedure does not remove any portion of the current continuation. In-
stead, application always extends the current continuation with the captured continuation (without installing any
prompts other than those be captured in the continuation). \akwith-composable-continuation

is called, if a continuation barrier appears in the continuation before the closest prompt taggethpyrtag , the
exn:fail:contract:continuation exception is raised.

(continuation-prompt-available? prompt-tag [cont]) returns#t if cont includes a prompt
tagged byprompt-tag , #f otherwise. Theont argument defaults to the current continuation.

Examples:

6.6 Continuation Marks

To evaluate a sub-expression, MzScheme creates a continuation for the sub-expression that extends the current contin-
uation. For example, to evaluaggpr ; in the expression

(begin
expr 1
expr 2)

MzScheme extends the continuation of begin expression with oneontinuation frame to create the continuation
for expr 1. In contrastexpr » is in tail position for the begin expression, so its continuation is the same as the
continuation of théegin expression.

A continuation mark is a keyed mark in a continuation frame. A program can install a mark in the first frame of its
current continuation, and it can extract the marks from all of the frames in any continuation (up to the nearest prompt
for a specified prompt tag).

Continuation marks support debuggers and other program-tracing facilities; in particular, continuation frames roughly
correspond to stack frames in traditional languages. For example, when a procedure is called, MzScheme automatically
installs a continuation mark with the procedure’s name and source location; when an exception occurs, the marks can
be extracted from the current continuation to produce a “stack trace” for the excégtiomre sophisticated debugger

can annotate a source program to store continuation marks that relate individual expressions to source locations.

The list of continuation marks for a kéyand a continuatio® that extend€ is defined as follows:

e If Cis an empty continuation, then the mark lishigll

e If C's first frame contains a mankfor k, then the mark list foC is (cons m 1g) , wherel ¢ is the mark list
for k in G.

e If C's first frame does not contain a mark keyedikhythen the mark list foC is the mark list forC,.

Thewith-continuation-mark form installs a mark on the first frame of the current continuation:

3Since stack-trace marks are applied dynamically, they do not necessarily correspond toxigesarftinuation-mark on the source,
and stack-trace marks can be affected by optimization or just-in-time compilation of the code. A stack traces is therefore useful as a debugging hint
only.

54

6. Exceptions and Control Flow 6.6. Continuation Marks

(with-continuation-mark key-expr mark-expr
body-expr)

Thekey-expr , mark-expr ,andbody-expr expressions are evaluated in order. Akey-expr is evaluated to
obtain a key andhark-expr is evaluated to obtain a mark, the key is mapped to the mark in the current continuation’s
initial frame. If the frame already has a mark for the key, it is replaced. Finallyholdg-expr is evaluated; the
continuation for evaluatingpody-expr is the continuation of thevith-continuation-mark expression (so

the result of thdody-expr s the result of thevith-continuation-mark expression, andody-expr isin

tail position for thewith-continuation-mark expression).

The continuation-marks procedure extracts the complete set of continuation marks from a continuation (up to
a prompt), and theontinuation-mark-set->list procedure extracts mark values for a particular key from
a continuation mark set. The complete set of continuation-mark procedures follows:

e (continuation-marks cont [prompt-tag]) returns an opague value containing the set of continu-
ation marks for all keys in the continuati@mont up to the prompt tagged lgyrompt-tag . If cont is an
escape continuation (séé.3), then the current continuation must extexwt , or theexn:fail:contract
exception is raised. Ifont was not captured with respect ppompt-tag and does not include a prompt
for prompt-tag , theexn:fail:contract exception is raised. Therompt-tag argument defaults to
(default-continuation-prompt-tag)

e (current-continuation-marks [prompt-tag |) returns an opaque value containing the set
of continuation marks for all keys in the current continuation up pgmmpt-tag . In other
words, it produces the same value &sall-with-current-continuation (lambda (k)
(continuation-marks k prompt-tag)) prompt-tag). As usual,prompt-tag defaults to
(default-continuation-prompt-tag) .

e (continuation-mark-set->list mark-set key-v [prompt-tag |) returns a newly-created
list containing the marks forkey-v in mark-set , which is a set of marks returned by
current-continuation-marks . The result list is truncated at the first point, if any, where continuation

frames were originally separated by a prompt tagged pritmpt-tag . As usualprompt-tag defaults to
(default-continuation-prompt-tag)

e (continuation-mark-set->list* mark-set key-list [none-v prompt-tag |) returns a
newly-created list containing vectors of marksiark-set for the keys irkey-list , up toprompt-tag
The length of each vector in the result list is the same as the lendgtbydlist , and a value in a particular
vector position is the value for the corresponding kelag-list . Values for multiple keys appear in a single
vector only when the marks are for the same continuation franmeairk-set . If none-v is supplied, it is
used for vector elements to indicate the lack of a value; the defaiit.is

e (continuation-mark-set-first optional-mark-set key-v [prompt-tag |) returns the
first element of the list that would be returned kigontinuation-mark-set->list (or
optional-mark-set (current-continuation-marks prompt-tag)) key-v prompt-tag),

or #f if the result would be the empty list. Typically, this result can be computed more quickly using
continuation-mark-set-first

¢ (continuation-mark-set? V) returns#t if v is a mark set created lyontinuation-marks or
current-continuation-marks , #f otherwise.
e (continuation-mark-set->context mark-set) returns a list representing a “stack trace” for

mark-set ’s continuation. The list contains pairs, where tfag of each pair contains eithéff or a symbol
for a procedure name, and tb@r of each pair contains eith&f or asrcloc value for the procedure’s source
location (se€11.2.1.); thecar andcdr are never bothf .

The stack-trace list is the result cbntinuation-mark-set->list with mark-set and MzScheme'’s
private key for procedure-call marks. A stack trace is extracted from an exception and displayed by the default
error display handler (s&®) for exceptions other thaexn:fail:user (seeraise-user-error in §6.2).

55

6.7. Breaks 6. Exceptions and Control Flow

Examples:

(define (extract-current-continuation-marks key)
(continuation-mark-set->list
(current-continuation-marks)

key))

(with-continuation-mark ’key 'mark
(extract-current-continuation-marks key)) = ’(mark)

(with-continuation-mark ’keyl 'markl
(with-continuation-mark ’'key2 'mark2

(list
(extract-current-continuation-marks 'keyl)
(extract-current-continuation-marks 'key2)))) ; = '((markl) (mark2))

(with-continuation-mark ’key 'markl
(with-continuation-mark ’'key 'mark2 ; replaces the previous mark
(extract-current-continuation-marks 'key)))) = ’(mark2)

(with-continuation-mark ’key 'markl
(list ; continuation extended to evaluate the argument
(with-continuation-mark 'key ’'mark2
(extract-current-continuation-marks 'key)))) ; = '((markl mark2))

(let loop ([n 1000])
(if (zero? n)
(extract-current-continuation-marks
(with-continuation-mark ’key n
(loop (subl n)))) ; = (1)

key)

In the final example, the continuation mark is set 1000 timesektraict-current-continuation-marks

returns only one mark value. Becausep is called tail-recursively, the continuation of each calldop is always
the continuation of the entire expression. Therefore,viite-continuation-mark expression replaces the
existing mark each time rather than adding a new one.

Whenever MzScheme creates an exception record, it fillsctminuation-marks field with the value of
(current-continuation-marks) , thus providing a snapshot of the continuation marks at the time of the
exception.

When a continuation procedure returnecthif-with-current-continuation or call-with-composable-continuation
is invoked, it restores the captured continuation, and also restores the marks in the continuation’s frames to the marks
that were present wherall-with-current-continuation or call-with-composable-continuation

was invoked.

6.7 Breaks

A break is an asynchronous exception, usually triggered through an external source controlled by the user, or through
the break-thread procedure (se&7.3). A break exception can only occur in a thread while breaks are enabled.
When a break is detected and enabled, éke:break exception is raised in the thread sometime afterward; if
breaking is disabled whemreak-thread is called, the break is suspended until breaking is again enabled for the
thread. While a thread has a suspended break, additional breaks are ignored.

56

6. Exceptions and Control Flow 6.7. Breaks

Breaks are enabled through tveeak-enabled parameter-like procedure, and throughpleameterize-break

form, which is analogous tparameterize (see§7.9). Thebreak-enabled procedure does not represent a pa-
rameter to be used witharameterize , because changing the break-enabled state of a thread requires an explicit
check for breaks, and this check is incompatible with the tail evaluatiorpafameterize expression’s body.

e (break-enabled [on?]) — gets or sets the break enabled state of the current threanf? Ifs not supplied,
the result igft if break are currently enablegétf otherwise. Ifon? is supplied a#f , breaks are disabled, and
if on? is a true value, breaks are enabled.

e (parameterize-break boolean-expr expr -..1) evaluates boolean-expr to determine
whether breaks are initially enabled in while evaluatiegpr s in sequence. The result of the
parameter-break expression is the result of the lastpr .

Like parameterize (see§7.9), a fresh thread cell (s€g'.8) is allocated to hold the break-enabled state of
the continuation, and calls treak-enabled within the continuation access or modify the new cell.

e (current-break-parameterization) is analogous to(current-parameterization) (see
§7.9); it returns a break-parameterization (effectively a thread cell) that holds the current continuation’s break-
enable state.

e (call-with-break-parameterization break-param thunk) isanalogous técall-with-parameterization
parameterization thunk) (see §7.9); it calls thunk in a continuation whose break-enabled
state is in break-param . The thunk is not called in tail position with respect to the
call-with-break-parameterization call.

Certain procedures, such ssmaphore-wait/enable-break , enable breaks temporarily while performing a
blocking action. If breaks are enabled for a thread, and if a break is triggered for the thread but not yet delivered as an
exn:break exception, then the break is guaranteed to be delivered before breaks can be disabled in the thread. The
timing of exn:break exceptions is not guaranteed in any other way.

Before calling awith-handlers predicate or handler, an exception handler, an error display handler, an error
escape handler, an error value conversion handlerpoedhunk or post-thunk for adynamic-wind (see

§6.4), the call isparameterize-break ed to disable breaks. Furthermore, breaks are disabled during the tran-
sitions among handlers related to exceptions, during the transitions bepreséimunk s andpost-thunk s for
dynamic-wind , and during other transitions for a continuation jump. For example, if breaks are disabled when a
continuation is invoked, and if breaks are also disabled in the target continuation, then breaks will remain disabled until
from the time of the invocation until the target continuation executes unless a refigveamic-wind pre-thunk

or post-thunk explicitly enables breaks.

If a break is triggered for a thread that is blocked on a nested threadaléée-nested-thread), and if breaks
are enabled in the blocked thread, the break is implicitly handled by transferring it to the nested thread.

When breaks are enabled, they can occur at any point within execution, which makes certain implementation tasks
subtle. For example, assuming breaks are enabled when the following code is executed,

(with-handlers ([exn:break? (lambda (x) (void))])
(semaphore-wait s))

then it isnotthe case that a void result means the semaphore was decremented or a break was ezchkisadbly

It is possible thabothoccur: the break may occur after the semaphore is successfully decremented but before a void
result is returned bgemaphore-wait . A break exception will never damage a semaphore, or any other built-in
construct, but many built-in procedures (includggmaphore-wait) contain internal sub-expressions that can be
interrupted by a break.

In general, it is impossible using onlgemaphore-wait to implement the guarantee that either the
semaphore is decremented or an exception is raised, but not both. MzScheme therefore supplies

57

6.8. Error Escape Handler 6. Exceptions and Control Flow

semaphore-wait/enable-break (see§7.4), which does permit the implementation of such an exclusive guar-
antee:

(parameterize ([break-enabled #f])
(with-handlers ([exn:break? (lambda (x) (void))])
(semaphore-wait/enable-break s))

In the above expression, a break can occur at any point until breaks are disabled, in which case a break
exception is propagated to the enclosing exception handler. Otherwise, the break can only occur within
semaphore-wait/enable-break , which guarantees that if a break exception is raised, the semaphore will
not have been decremented.

To allow similar implementation patterns over blocking port operations, MzScheme prozatebytes-avail!/enable-break
(see§11.2.]), write-bytes-avail/enable-break (see§11.2.9, and other procedures.

6.8 Error Escape Handler

Special control flow for exceptions is performed by aror escape handler that is called by the default exception
handler. An error escape handler takes no arguments and must escape from the expression that raised the exception.
The error escape handler is obtained or set usingffwe-escape-handler parameter (se¢7.9.1.7.

An error escape handler cannot invoke a full continuation that was created prior to the exceptiocabinioke an
escape continuation (s€é.3).

The error escape handler is normally called directly by an exception handler, in a parameterization that sets the error
display and escape handlers to the default handlersparaimeterize-break ed to disable breaks. To escape
from a run-time error, useise (see§6.1) orerror (see§6.2) instead.

If an exception is raised while the error escape handler is executing, an error message is printed using a primitive error
printer and a primitive error escape handler is invoked.

In the following example, the error escape handler is set so that errors do not escape from areadteaval -
print loop:

(let ([orig (error-escape-handler)])
(let/ec exit
(let retry-loop 0
(let/ec escape
(error-escape-handler
(lambda () (escape #f)))
(let loop ()
(let ([e (my-read)])
(if (eof-object? e)
(exit 'done)
(let [v (my-eval e)])
(my-print v)
(loop))))))

(retry-loop)
(error-escape-handler orig))

See alsgead-eval-print-loop in §14.1for a simpler implementation of this example.

58

7. Threads

MzScheme supports multiple threads of control within a program. Threads are implemented for all operating systems,
even when the operating system does not provide primitive thread support.

(thread thunk) invokes the procedurthunk with no arguments in a new thread of control. Tiheead
procedure returns immediately withthread descriptor value. When the invocation ghunk returns, the thread
created to invokéhunk terminates.

Example:

(thread (lambda () (sleep 2) (display 7) (newline))) ; = a thread descriptor

display s7 after two seconds pass

Each thread has its own parameter settings §{8€9, such as the current directory or current exception handler. A
newly-created thread inherits the parameter settings of the creating thread, except

e theerror-escape-handler parameter, which is initialized to the default error escape handler; and

¢ thecurrent-exception-handler parameter, which is initialized to the valueioitial-exception-handler

When a thread is created, it is placed into the management of the current custodithdsaed added to the current
thread group (se€9.3). A thread can have any number of custodian managers added thtoaegd-resume

A thread that has not terminated can be “garbage collected” if it is unreachable and suspended, or if it is unreachable
and blocked on a set of unreachable events thr@eghaphore-wait or semaphore-wait/enable-break

(see §7.4), channel-put or channel-get (see §7.5), sync or sync/enable-break (see §7.7), or
thread-wait .

All constant-time procedures and operations provided by MzScheme are thread-safe becauseatbheyicar&or
exampleset! assigns to a variable as an atomic action with respect to all threads, so that no thread can see a “half-
assigned” variable. Similarlyector-set! assigns to a vector atomically. Thash-table-put! procedure

is not atomic, but the table is protected by a lock; $&d 4 for more information. Port operations are generally not
atomic, but they are thread-safe in the sense that a byte consumed by one thread from an input port will not be returned
also to another thread, and proceduresike-commit-peeked (see§11.2.]) andwrite-bytes-avail (see

§11.2.2 offer specific concurrency guarantees.

7.1 Suspending, Resuming, and Killing Threads

(thread-suspend thread) immediately suspends the executiorttwfead if it is running. If the thread has
terminated or is already suspendéutead-suspend has no effect. The thread remains suspended (i.e., it does
not execute) until it is resumed withread-resume . If the current custodian (s&€€.2) does not managhread

1in MrEd, a handler thread for an eventspace is blocked on an internal semaphore when its event queue is empty. Thus, the handler thread is
collectible when the eventspace is unreachable and contains no visible windows or running timers.

59

7.2. Synchronizing Thread State 7. Threads

(and none of its subordinates manatfegad), theexn:fail:contract exception is raised, and the thread is
not suspended.

(thread-resume thread [thread-or-custodian) resumes the execution tifread if it is suspended
and has at least one custodian (possibly added thritughd-or-custodian , as described below). If the thread
has terminated, or if the thread is already running thnelad-or-custodian is not supplied, or if the thread has
no custodian anthread-or-custodian is not supplied, thethread-resume has no effect. Otherwise, if
thread-or-custodian is supplied, it triggers up to three additional actions:

e If thread-or-custodian is a thread, whenever it is resumed from a suspended state in the future, then
thread is also resumed. (Resumitiyyead may trigger the resumption of other threads that were previously
attached tahread throughthread-resume)

e New custodians may be addedttwead 's set of managers. thread-or-custodian is a thread, then
all of the thread’s custodians are addedhmead . Otherwise thread-or-custodian is a custodian,
and it is added téhread (unless the custodian is already shut down}httad becomes managed by both
a custodian and one or more of its subordinates, the redundant subordinates are removbdceidm. If
thread is suspended and a custodian is added, thexad is resumed only after the addition.

e If thread-or-custodian is a thread, whenever it receives a new managing custodian in the future, then
thread also receives the custodian. (Adding custodiarittead may trigger adding the custodians to other
threads that were previously attachedhread throughthread-resume)

(kill-thread thread) terminates the specified thread immediately, or suspends the thréaddafl was
created withthread/suspend-to-kill . Terminating the main thread exits the applicationthifead has
already terminatedill-thread does nothing. If the current custodian ($8e2) does not managiiread (and
none of its subordinates managhsead), the exn:fail:contract exception is raised, and the thread is not
killed or suspended.

Unless otherwise noted, procedures provided by MzScheme (and MrEd) are kill-safe and suspend-safe; that is, killing
or suspending a thread never interferes with the application of procedures in other threads. For example, if a thread is
killed while extracting a character from an input port, the character is either completely consumed or not consumed,

and other threads can safely use the port.

(thread/suspend-to-kill thunk) is like (thread thunk), except that “killing” the current thread
throughkill-thread or custodian-shutdown-all (see§9.2) merely suspends the thread instead of ter-
minating it.

7.2 Synchronizing Thread State

(thread-wait thread) blocks execution of the current thread urntiread has terminated. Note that
(thread-wait (current-thread)) deadlocks the current thread, but a break can end the deadlock (if break-
ing is enabled; seg5.7).

(thread-dead-evt thread) returns a synchronizable event ($€€7) that is ready if and only ithread has
terminated. Unlike usinghread directly, however, a reference to the event does not prateead from being
“garbage collected.”

(thread-resume-evt thread) returns a synchronizable event ($g€7) that becomes ready whehread

is running. (Ifthread has terminated, the event never becomes readthydhd runs and is then suspended after
a call tothread-resume-evt , the result event remains ready; after each suspenidredd a fresh event is
generated to be returned tyread-resume-evt . The result of the event ithread , but if thread is never
resumed, then reference to the event does not préwerad from being “garbage collected.”

60

7. Threads 7.3. Additional Thread Utilities

(thread-suspend-evt thread) returns a synchronizable event ($g€7) that becomes ready whéimread
is suspended. (hread has terminated, the event will never unblock.}hfead is suspended and then resumes
after a call tahread-suspend-evt , the result event remains ready; after each resurtfeefd created a fresh

event to be returned thread-suspend-evt

7.3 Additional Thread Utilities

(current-thread) returns the thread descriptor for the currently executing thread.
(thread? v) returns#t if v is a thread descripto#f otherwise.

(sleep [x]) causes the current thread to sleep for at Irastconds, where is a non-negative real number. The
argument defaults to 0 (allowing other threads to execute when operating system threads are not used). The value of
can be non-integral to request a sleep duration to any precision, but the precision of the actual sleep time is unspecified.

(thread-running? thread) returns#t if thread has not terminated and is not suspenddédptherwise.
(thread-dead? thread) returns#t if thread has terminatedf otherwise.

(break-thread thread) registers a break with the specified thread. If breaking is disabl¢dréad |, the
break will be ignored until breaks are re-enabled &@).

(call-in-nested-thread thunk [custodian]) creates a nested thread managedistodian to ex-
ecutethunk .2 The current thread blocks unttiunk returns, and the result of thwall-in-nested-thread
call is the result returned punk . The default value ofustodian is the current custodian (s€@.2).

The nested thread’s exception handler is initialized to a procedure that jumps to the beginning of the thread and
transfers the exception to the original thread. The handler thus terminates the nested thread and re-raises the exception
in the original thread.

If the thread created byall-in-nested-thread dies beforghunk returns, thexn:fail exception is raised
in the original thread. If the original thread is killed befdheink returns, a break is queued for the nested thread.

If a break is queued for the original thread (whileak-thread) while the nested thread is running, the break is
redirected to the nested thread. If a break is already queued on the original thread when the nested thread is created,
the break is moved to the nested thread. If a break remains queued on the nested thread when it completes, the break
is moved to the original thread.

7.4 Semaphores

A semaphore is a value that is used to synchronize MzScheme threads. Each semaphore has an internal counter;
when this counter is zero, the semaphore can block a thread’s execution (tseraghhore-wait) until another

thread increments the counter (usBgnaphore-post). The maximum value for a semaphore’s internal counter is
platform-specific, but always at least 10000.

A semaphore’s counter is updated in a single-threaded manner, so that semaphores can be used for reliable synchro-
nization. Semaphore waiting i&ir: if a thread is blocked on a semaphore and the semaphore’s internal value is
non-zero infinitely often, then the thread is eventually unblocked.

e (make-semaphore [init-k]|) creates and returns a new semaphore with the counter initially set to
init-k , which defaults td. If init-k is larger than a semaphore’s maximum internal counter value, the
exn:fail:contract exception is raised.

°The nested thread’s current custodian is inherited from the creating thread, independentisfadan argument.

61

7.5. Channels 7. Threads

e (semaphore? v) returnstt if v is a semaphore created make-semaphore , #f otherwise.

e (semaphore-post sema) increments the semaphore’s internal counter and returns void. If the
semaphore’s internal counter has already reached its maximum valexfiei| exception is raised.

e (semaphore-wait sema) blocks until the internal counter for semaphsema is non-zero. When the
counter is non-zero, it is decremented aethaphore-wait returns void.

e (semaphore-try-wait? sema) is like semaphore-wait , but semaphore-try-wait? never
blocks execution. IEema’s internal counter is zer@emaphore-try-wait? returns#f immediately with-
out decrementing the counter.sdéma’s counter is positive, it is decremented a#tdis returned.

e (semaphore-wait/enable-break sema) is like semaphore-wait , but breaking is enabled (see
§6.7) while waiting onsema. If breaking is disabled whesemaphore-wait/enable-break is called,
then either the semaphore’s counter is decremented extinbreak exception is raised, but not both.

e (semaphore-peek-evt sema) creates and returns a new synchronizable event (for useswuit , for
example) that is ready whesema is ready, but synchronizing the event does not decreisemia’s internal
count.

¢ (call-with-semaphore sema proc [try-fail-thunk arg -++]) waits onsemausingsemaphore-wait
callsproc with all arg s, and then posts ema. A continuation barrier blocks full continuation jumps into
or out ofproc (see§6.3), but escape jumps are allowed, a®ma is posted on escape.thy-fail-thunk
is provided and is natf , thensemaphore-try-wait? is called onsema instead ofsemaphore-wait
andtry-fail-thunk is called if the wait fails.

e (call-with-semaphore/enable-break sema proc |[try-fail-thunk arg <) s like
call-with-semaphore , except thasemaphore-wait/enable-break is used withsema in non-
try mode. Whentry-fail-thunk is provided and no#f , then breaks are enabled around the use of
semaphore-try-wait? onsema.

See als@ync in §7.7.

7.5 Channels

A synchronous channel is a value that is used to synchronize MzScheme threads: one thread sends a value to another
thread, and both the sender and the receiver block until the (atomic) transaction is complete. Multiple senders and
receivers can access a channel at once, but a single sender and receiver is selected for each transaction.

Channel synchronization fair: if a thread is blocked on a channel and transaction opportunities for the channel occur
infinitely often, then the thread eventually participates in a transaction.

For buffered asynchronous channels, see ChapteP26MzLib: Libraries Manual

e (make-channel) creates and returns a new channel. The channel can be usechaithel-get , with

channel-try-get , or as a synchronizable event (s§€7) to receive a value through the channel. The
channel can be used withannel-put or through the result athannel-put-evt to send a value through
the channel.

e (channel? v) returnstt if v is a channel created bgake-channel , #f otherwise.

e (channel-get channel) blocks until a sender is ready to provide a value throcigdnnel . The result
is the sent value.

e (channel-try-get channel) receives and returns a value frahannel if a sender is immediately
ready, otherwise returrsd .

62

7. Threads 7.6. Alarms

e (channel-put channel v) blocks until a receiver is ready to accept the valubroughchannel . The
result is void.

e (channel-put-evt channel v) returns a fresh synchronizable event for use wjthc (see§7.7). The
event is ready whefchannel-put channel v) would not block, and the event’s synchronization result
is the event itself.

7.6 Alarms

An alarm is a synchronizable event (sg&7) that is ready only after particular date and time. The time is specified as
a real number that is consistent withrrent-inexact-milliseconds (see§l15.1.9.

(alarm-evt msecs-n) returns a synchronizable event for use wiync . The event is not ready when
(current-inexact-milliseconds) would return a value that is less tharsecs-n , and it is ready when
(current-inexact-milliseconds) would return a value that is more tharsecs-n .

Thesync function accepts a timeout argument in addition to alarm events. Unlike the timeout, however, the result of
alarm-evt can be combined wittvrap-evt and other event operations.

7.7 Synchronizing Events

(sync evt ---1) blocks as long as none of the synchronizable evewtss are ready, as defined below. Certain
kinds of objects double as events, including ports and threads, and other kinds of objects exist only for their use as
events.

(sync/timeout timeout evt .-y is like sync , but with a timeout. If ncevt is ready befordimeout
seconds have passed, the resultfis Thetimeout argument can be a real numberddr; if timeout is #f , then
sync/timeout behaves likesync . If timeout is 0, eachevt is checked at least once, sdimeout value of
0 can be used for polling. (Sedarm-evt in §7.6for an alternative timeout mechanism.)

For eithersync or sync/timeout , when at least oneevt is ready, its result (ofterevt itself) is re-
turned. If multiple evt s are ready, one of thevt s is chosen pseudo-randomly for the result. (The
current-evt-pseudo-random-generator parameter sets the random-number generator that controls this
choice; se¢7.9.1.10)

Choosing a readgvt may affect the state vt . For example, if the chosen readyt is a semaphore, then the
semaphore’s internal count is decremented, just asseitiaphore-wait . For most kinds of events, however (such
as a port)evt s state is not modified.

Only certain kinds of built-in values, listed below, act as events in stand-alone MzScheme. If any other kind of value
is provided tosync , the exn:fail:contract exception is raised. An extension or embedding application can
extend the set of primitive events — in particular, an eventspace in MrEd is an event — and new structure types can
generate events (séé.7).

e semaphore — a semaphore is ready only wheamaphore-wait (see§7.4) would not block. The syn-
chronization result ofemaphore is semaphore itself.

e semaphore-peek — a semaphore returned tgemaphore-peek-evt applied tosemaphore (see
§7.4) is ready exactly whersemaphore is ready. The synchronization result sémaphore-peek is
semaphore-peek itself.

e channel — a channel returned bmake-channel is ready wherchannel-get would not block (see
§7.5). The channel’s result as an event is the same astthenel-get result.

63

7.7. Synchronizing Events 7. Threads

64

channel-put — an event returned byhannel-put-evt applied to channel is ready when
channel-put would not block onchannel (see§7.5. The synchronization result @hannel-put is
channel-put itself.

input-port — an input port is ready as an event whead-byte would not block. The synchronization
result ofinput-port is input-port itself.

output-port — an output port is ready whenrite-bytes-avalil would not block (se€11.2.9 or
when the port contains buffered characters arite-bytes-avail x can flush part of the buffer (although
write-bytes-avail might block). The synchronization resultafitput-port is output-port itself.

progress — an event produced bgort-progress-evt applied toinput-port is ready after any
subsequent read fromput-port . The synchronization result pfogress is progress itself.

tcp-listener — a TCP listener is ready wheop-accept (see§11.4.0) would not block. The synchro-
nization result ofistener is listener itself.

thread — athread is ready whehread-wait (see§7.2) would not block. The synchronization result of
thread isthread itself.

thread-dead — an event returned bthread-dead-evt (see§7.2) applied tothread is ready when
thread has terminated. The synchronization resulttoéad-dead isthread-dead itself.

thread-resume — an event returned bthread-resume-evt (see§7.2) applied tothread is ready
whenthread subsequently resumes execution (if it was not already running). The event's reéktatid

thread-suspend — an event returned bthread-suspend-evt (see§7.2) applied tothread is
ready whenthread subsequently suspends execution (if it was not already suspended). The event’s result
is thread

alarm — an event returned bglarm-evt (see§7.6) is ready after a particular date and time. The synchro-
nization result ofllarm isalarm itself.

subprocess — a subprocess is ready whembprocess-wait (see§15.2 would not block. The synchro-
nization result oubprocess is subprocess itself.

will-executor — a will executor is ready whewill-execute (see§13.3 would not block. The syn-
chronization result ofvill-executor is will-executor itself.
udp — an event returned bydp-send-evt or udp-receive!-evt (see§l1.4.9 is ready when a send

or receive on the original socket would block, respectively. The synchronization resalpas udp itself.

choice — an eventreturned bshoice-evt (see below) is ready when one or more oféwé s supplied to
chocie-evt are ready. If the choice event is chosen, one of its readlys is chosen pseudo-randomly, and
the result is the chosesvt ’s result.

wrap — an event returned byrap-evt applied toevt andproc is ready wherevt is ready. The event's
result is obtained by a call foroc (with breaks disabled) on the resulteft .

handle — an event returned blgandle-evt applied toevt andproc is ready wherevt is ready. The
event's result is obtained by a tail callpooc on the result oévt .

guard — an event returned bguard-evt applied tothunk generates a new event every time thaard

is used withsync (or whenever it is part of a choice event used vésimc , etc.); the generated event is the
result of callingthunk when the synchronization begins;tifunk returns a non-event, thehunk ’s result

is replaced with an event that is ready and whose resgliasd .

7. Threads 7.7. Synchronizing Events

e nack-guard — an event returned bgack-guard-evt applied toproc generates a new event every
time thatnack-guard is used withsync (or whenever it is part of a choice event used vagmc , etc.);
the generated event is the result of callproc with a NACK (“negative acknowledgment”) event when the
synchronization begins; ffroc returns a non-event, thgmoc ’s result is replaced with an event that is ready
and whose result isack-guard-evt

If the event fromproc is not ultimately chosen as the unblocked event, then the NACK event supppealto

becomes ready with a void value. This NACK event becomes ready when the event is abandoned because some
other event is chosen, because the synchronizing thread is dead, or because control escaped from the call to
sync (even ifnack-guard 's proc has not yet returned a value). If the event returnegtme is chosen,

then the NACK event never becomes ready.

e poll-guard — an event returned byoll-guard-evt applied toproc generates a new event every time
that poll-guard is used withsync (or whenever it is part of a choice event used wstmc , etc.); the
generated event is the result of callipgbc with a boolean#t if the event will be used for a polgf for a
blocking synchronization.

If #t is supplied toproc , if breaks are disabled, if the polling thread is not terminated, and if polling the
resulting event produces a result, the event will certainly be chosen for its result.

e struct — a structure whose type has thmp:evt property identifies/generates an event through the prop-
erty; seeg4.7 for further information.

e always-evt — a constant event that is always ready. The synchronization resawafys-evt is
always-evt itself.

e never-evt — a constant event that is never ready.

(sync/enable-break evt ---1) is like sync , but breaking is enabled (s§8.7) while waiting on theevt s.
If breaking is disabled whesync/enable-break is called, then either alevt s remain unchosen or the
exn:break exception is raised, but not both.

(sync/timeout/enable-break timeout evt .- is like sync/enable-break , but with a timeout
in seconds (o#f , as forsync/timeout).

(choice-evt evt --.) creates and returns a single event that combineswthe. Supplying the result teync
is the same as supplying eae¥t to the same call.

(wrap-evt evt wrap-proc) creates an event that is in a ready wigen is ready, but whose result is deter-
mined by applyingvrap-proc to the result ofevt . The call towrap-proc is parameterize-break ed to
disable breaks initially. Thevt cannot be an event createdtgndle-evt or any combination ofhoice-evt
involving an event fromhandle-evt

(handle-evt evt handle-proc) is like wrap-evt , except thahandle-proc is called in tail position
with respect to the synchronization request, and without breaks explicitly disabled.

(guard-evt generator-thunk) creates avalue that behaves as an event, but that is actually an event generator.
For details, sesync , above.

(nack-guard-evt generator-proc) creates a value that behaves as an event, but that is actually an event
generator; the generator procedure receives an event that becomes ready with a void value if the generated event was
not ultimately chosen. For details, sgc , above.

(poll-guard-evt generator-proc) creates a value that behaves as an event, but that is actually an event
generator; the generator procedure receives a boolean indicating whether the event is used for polling. For details, see
sync , above.

65

7.8. Thread-Local Storage Cells 7. Threads

always-evt is a global constant event that is always ready, with itself as its result.
never-evt is a global constant event that is never ready.

(evt? v) returns#t if v is a synchronizable eventf otherwise. Sesync , above, for the list of built-in types
that act as synchronizable events.

(handle-evt? evt) returns#t if evt was created byhandle-evt or by choice-evt applied to an-
other event for whicthandle-evt? produces#t . Such events are illegal as an argumenhamdle-evt or
wrap-evt , because they cannot be wrapped further. For any other dvamd|e-evt? produces#f , and the
eventis a legal argument lmndle-evt orwrap-evt for further wrapping.

7.8 Thread-Local Storage Cells

A thread cell contains a thread-specific value; that is, it contains a specific value for each thread, but it may contain
different values for different threads. A thread cell is created with a default value that is used for all existing threads.
When the cell’s content is changed witiread-cell-set! , the cell's value changes only for the current thread.
Similarly, thread-cell-ref obtains the value of the cell that is specific to the current thread.

A thread cell’s value can bpreserved, which means that when a new thread is created, the cell’s initial value for the
new thread is the same as the creating thread’s current value. If a thread cell is non-preserved, then the cell’s initial
value for a newly created thread is the default value (which was supplied when the cell was created).

Within the current thread, the current values of all preserved threads cells can be captured through
current-preserved-thread-cell-values . The captured set of values can be imperatively installed into
the current thread through another callciarrent-preserved-thread-cell-values . The capturing and
restoring threads can be different.

e (make-thread-cell v [preserved?]) creates and returns a new thread cell. Initiallyis the cell’s
value for all threads. Ipreserved? is true, then the cell’'s initial value for a newly created threads is the
creating thread'’s value for the cell, otherwise the cell's value is initialiy all future threads. The default value
of preserved? is#f .

e (thread-cell? V) returns#t if v is a thread cell created bigake-thread-cell , #f otherwise.
e (thread-cell-ref cell) returns the current value g&ll for the current thread.
e (thread-cell-set! cell v) setsthe valueicell tov forthe current thread.

e (current-preserved-thread-cell-values [thread-cell-vals) when called with no ar-
guments produces thread-cell-vals that represents the current values (in the current thread) for
all preserved thread cells. When called withtraead-cell-vals generated by a previous call to
current-preserved-thread-cell-values , the values of all preserved thread cells (in the current
thread) are set to the values capturedhread-cell-vals ; if a preserved thread cell was created after
thread-cell-vals was generated, then the thread cell’s value for the current thread reverts to its initial
value.

Examples:

(define cnp (make-thread-cell '(nerve) #f))
(define cp (make-thread-cell '(cancer) #t))

(thread-cell-ref cnp) ; = ’(nerve)
(thread-cell-ref cp) ; = ’(cancer)

66

7. Threads 7.9. Parameters

(thread-cell-set! cnp ’'(nerve nerve))
(thread-cell-set! cp ’(cancer cancer))
(thread-cell-ref cnp) ; = ’(nerve nerve)
(thread-cell-ref cp) ; = ’(cancer cancer)

(define ch (make-channel))
(thread (lambda ()

(channel-put ch (thread-cell-ref cnp))
(channel-put ch (thread-cell-ref cp))
(channel-get ch) ; to wait

(channel-put ch (thread-cell-ref cp)))

(channel-get ch) ; = ’(nerve)
(channel-get ch) ; = ’(cancer cancer)

(thread-cell-set! cp ’'(cancer cancer cancer))

(thread-cell-ref cp) ; = ’'(cancer cancer cancer)
(channel-put ch ’'ok)
(channel-get ch) ; = ’(cancer cancer)

7.9 Parameters

A parameter is a setting that is both thread-specific and continuation-specific, such as the current output port or the
current directory for resolving relative file paths. parameter procedure retrieves and sets the value of a specific
parameter. For example, tlearrent-output-port parameter procedure sets and retrieves a port value that is
used bydisplay when a specific output port is not provided. Applying a parameter procedure without an argument
obtains the current value of a parameter in the current thread and continuation, and applying a parameter procedure
to a single argument sets the parameter’s value in the current thread and continuation (returning void). For example,
(current-output-port) returns the current default output port, whitirrent-output-port p) sets

the default output port tp.

In the empty continuation, each parameter corresponds to a preserved thread ¢@lIg)séiee parameter procedure
accesses and sets the thread cell's value (for the current thread). To parameterize code in a continuation-friendly
manner, us@arameterize . Theparameterize form introduces a fresh thread cell for the dynamic extent of

its body expressions. The syntaxpE#rameterize is:

(parameterize ((parameter-expr value-expr) ---) body-expr -1

The result of gparameterize expression is the result of the lasbdy-expr . The parameter-expr s de-

termine the parameters to set, and Wadue-expr s determine the corresponding values to install while evaluat-

ing thebody-expr s. All of the parameter-expr s are evaluated first (and checked widrameter?), then

all value-expr s are evaluated, and then the parameters are bound in the continuation to preserved thread cells
that contain the values of thealue-expr s. The lastbody-expr s in tail position with respect to the entire
parameterize form.

Outside the dynamic extent ofpmrameterize expression, parameters remain bound to other thread cells. Effec-
tively, therefore, old parameters settings are restored as control exjjarti@eterize expression.

If a continuation is captured during the evaluationpaframeterize , invoking the continuation effectively re-
introduces the parameterization. More generally, a continuation’s parameter-to-thread-cell mapping is ealled a
rameterization, and a parameterization is associated to a continuation via a continuation magé (§eesing a

67

7.9. Parameters 7. Threads

private key. Thecurrent-parameterization procedure returns the current continuation’s parameterization.
The call-with-parameterization procedure takes a parameterization and a thunk; it sets the current contin-
uation’s parameterization to the given one, and calls the thunk through a tail call.

When a new thread is created, the parameterization for the new thread’s initial continuation is the parameterization of
the creator thread. Since each parameter’s thread cell is preserved, the new thread “inherits” the parameter values of its
creating thread. When a continuation is moved from one thread to another, settings introdugedavithterize

effectively move with the continuation. In contrast, direct assignment to a parameter (by calling the parameter pro-
cedure with a value) changes the value in a thread cell, and therefore changes the setting only for the current thread.
(Consequently, as far as the memory manager is concerned, the value originally associated with a parameter through
parameterize remains reachable as long the continuaton is reachable, even if the parameter is mutated.)

Examples:
(parameterize ([exit-handler (lambda (X) 'no-exit)])
(exit)) ; = void

(define pl (make-parameter 1))
(define p2 (make-parameter 2))
(parameterize ([pl 3]
[p2 (pl)])
(cons (p1) (p2)); ='G .1

(let | k (let/cc out
(parameterize ([pl 2])

(p1 3)
(cons (let/cc k
(out k)
(p1)MND
(if (procedure? k)
(k (p1))

k) ; ="'1.3)

(define ch (make-channel))
(parameterize ([pl 0])
(thread (lambda ()
(channel-put ch (cons (pl) (p2)))))
(channel-get ch) ; ="'0. 2

(define k-ch (make-channel))
(define (send-k)
(parameterize ([pl 0]
(thread (lambda ()
(let/ec esc
(channel-put ch

((let/cc k

(channel-put k-ch k)

(esc)))N))
(send-k)
(thread (lambda () ((channel-get k-ch ') (let (v (pl)]) (lambda () v)))))
(channel-get ch) ; =1
(send-k)
(thread (lambda () ((channel-get k-ch) pl))

(channel-get ch); =0

68

7. Threads 7.9. Parameters

MzScheme parameters correspongiteserved thread fluids in Scsh. See also “Processes vs. User-Level Threads in
Scsh” by Gasbichler and Sperber (proceedings of the 2002 Scheme Workshop).

7.9.1 Built-in Parameters

MzScheme’s built-in parameter procedures are listed in the following sectionandke-parameter procedure,
described ir§7.9.2 creates a new parameter and returns a corresponding parameter procedure.

7.9.1.1 QRRENTDIRECTORY

e (current-directory [path]) gets or sets a path that determines the current directory. When the param-
eter procedure is called to set the current directory, the path argument is expanded and then simplified using
simplify-path (see§l11.3.]); expansion and simplification raise an exception if the path is ill-formed. The
path is not checked for existence when the parameter is set.

7.9.1.2 BRTS

e (current-input-port [input-port]) gets or sets an input port used bgad , read-byte
read-char , etc. when a specific input port is not provided.

e (current-output-port [output-port]) gets or sets an output port used Bigplay , write |,
print ,write-char , etc. when a specific output port is not provided.

e (current-error-port [output-port]) gets or sets an output port used by the default error display
handler.
¢ (global-port-print-handler [proc]) gets or sets a procedure that takes an arbitrary value and an

output port. Thisglobal port print handler is called by the default port print handler (sgelL.2.7) to print
values into a port.

e (port-count-lines-enabled [on?]) gets or sets a boolean value that determines whether line counting
is enabled automatically for newly created ports; see @l4a?2.1.1 The default value igf .

7.9.1.3 RRSING

e (read-case-sensitive [on?]) gets or sets a boolean value that controls parsing input symbols. When
this parameter’s value if , the reader case-folds symbols (elg.,when the input is any one &ii , Hi, HI,
or hl). The parameter also affects the way thaite prints symbols containing uppercase characters; if the
parameter’s value if , then symbols are printed with uppercase characters quoted by a back}larskeftical
bar (). The parameter’s value is overridden by backslash and vertical-bar quotes #ad thed#ci prefixes;
see§11.2.4for more information. While a module is loaded, the parameter is g#t {zees5.8).

¢ (read-square-bracket-as-paren [on?]) gets or sets a boolean value that controls whether square
brackets (“[" and “]") are treated as parentheses. §&de?.4for more information.

e (read-curly-brace-as-paren [on?]) gets or sets a boolean value that controls whether curly braces
(“{"and “}") are treated as parentheses. §&&.2.4for more information.

e (read-accept-box [on?]) gets or sets a boolean value that controls parging input. See§11.2.4for
more information.

e (read-accept-compiled [on?]) gets or sets a boolean value that controls parsing pre-compiled input.
See§11.2.4for more information.

69

7.9. Parameters 7. Threads

e (read-accept-bar-quote [on?]) gets or sets a boolean value that controls parsing and printing a verti-
cal bar () in symbols. Se§11.2.4and§11.2.5for more information.

e (read-accept-graph [on?]) gets or sets a boolean value that controls parsing input with sharing. See
§11.2.5.1for more information.

e (read-decimal-as-inexact [on?]) gets or sets a boolean value that controls parsing input numbers
with a decimal point or exponent (but no explicit exactness tag) §5&€.5.1for more information.

¢ (read-accept-dot [on?]) gets or sets a boolean value that controls parsing input with a dot, which is
normally used for literal cons cells. Sg&l1.2.4for more information.

e (read-accept-quasiquote [on?]) gets or sets a boolean value that controls parsing input with a back-
quote or comma, which is normally used fprasiquote , unquote , andunquote-splicing abbrevia-

tions. Seg11.2.4for more information.

e (read-accept-reader [on?]) gets or sets a boolean value that controls whetiheader is allowed
for selecting a parser. Sé&1.2.4for more information.

e (current-reader-guard [proc]) gets or sets a procedure of one argument that converts or rejects (by
raising an exception) a module-path datum followdtrgader . See§11.2.4for more information.

e (current-readtable [readtable-or-false]) gets or sets a readtable that adjust the parsing of S-
expression input, a#f for the default behavior. Séd 1.2.8for more information.

7.9.1.4 RRINTING

e (print-unreadable [on?]) gets or sets a boolean value that controls printing values that have no
read able form (using the default reader), including structures that have a custom-write procedure (see
§11.2.10; defaults to#t . See§11.2.5for more information.

e (print-graph [on?]) gets or sets a boolean value that controls printing data with sharing; defatifts to
See§11.2.5.1for more information.

e (print-struct [on?]) gets or sets a boolean value that controls printing structure values in vector form;
defaults to#f . See§11.2.5for more information. This parameter has no effect on the printing of structures that
have a custom-write procedure ($64.2.10.

e (print-box [on?]) gets or sets a boolean value that controls printing box values; defatitts ®ee§11.2.5
for more information.

e (print-vector-length [on?]) gets or sets a boolean value that controls printing vectors; defagts to
See§11.2.5for more information.

e (print-hash-table [on?]) gets or sets a boolean value that controls printing hash tables; defaéts to
See§11.2.5for more information.

e (print-honu [on?]) gets or sets a boolean value that controls printing values in an alternate syntax. See
819 for more information.

7.9.1.5 RAD-EVAL-PRINT

e (current-prompt-read [proc]) gets or sets a procedure that takes no arguments, displays a prompt
string, and returns an expression to evaluate. Tnisnpt read handler is called by the read phase of
read-eval-print-loop (see§14.71). The default prompt read handler prints " and returns the result of

(parameterize ((read-accept-reader #t))
(read-syntax name-string)

70

7. Threads 7.9. Parameters

wherename-string corresponds to the current input source.

e (current-eval [proc]) gets or sets a procedure that takes an expression—in the form of syntax object,
S-expression, compiled expression, or compiled expression wrapped in a syntax object—and returns the expres-
sion’s value (or values; séR.2). This evaluation handler is called byeval , eval-syntax , the default load
handler, andead-eval-print-loop to evaluate an expression (sgkt.1). The handler should evaluate
its argument in tail position, likeval . The default evaluation handler compiles and executes the expression
in the current namespace (determined bydbgent-namespace parameter); if the argument is a syntax
object, it is treated like an argumentdwal-syntax ~ and not given additional context. The default evaluation
handler also partly expands expressions to splice the body of topHegah forms into the top level (the
compiler is called only on the individual spliced forms, and not the top-leggin form), and each spliced
top-level form is evaluated before the next one is compiled.

e (current-compile [proc]) gets or sets a procedure that takes two arguments—a syntax object and
a boolean—and returns the compiled form of its first argument. Thispilation handler is called
by compile (see §14.3, and indirectly byeval , eval-syntax , the default load handler, and
read-eval-print-loop (see§l4.l). The compilation handler’s first argument has the lexical content
needed for expansion and compilation. The compilation handler’'s second argurent the compiled ex-
pression will be used only for immediate evaluation#brif the compiled form may be saved for later use; the
default compilation handler is optimized for the special case of immediate evaluation. The result of a compila-
tion handler must be a compiled expression (&ee3.

e (current-namespace [namespace]) gets or sets a namespace value &ehat determines the name-
space used to resolve module and identifier referencescurhet namespace is used by the default evaluation
handler, theompile procedure, and other built-in procedures that operate on “global” bindings.

e (current-print [proc]) gets or sets a procedure that takes a value to print. prhishandler is called by
read-eval-print-loop (see§14.]) to print the result of an evaluation (and the result is ignored). The de-
fault print handleprint s the value to the current output port (determined byctimeent-output-port
parameter) and then outputs a newline, except that it does nothing when the value is void.

e (compile-allow-set!-undefined [on?]) gets or sets a boolean value indicating how to compile a
set! expression that mutates a global variable. If the value of this parameter is a truesedluegxpressions
for global variables are compiled so that the global variable is set even if it was not previously defined. Oth-
erwise,set! expressions for global variables are compiled to raiseestmefail:contract:variable
exception if the global variable is not defined at the timegbe is performed. Note that this parameter is
used when an expressiondempiled not when it isevaluated

e (compile-enforce-module-constants [on?]) gets or sets a boolean value indicating how a
module form should be compiled. When constants are enforced, and when the macro-expanded body of a
module contains nget! assignment to a particular variable defined within the module, then the variable is
marked as constant when the definition is evaluated. Afterward, the variable’s value cannot be assigned or
undefined througmodule->namespace , and it cannot be defined by redeclaring the module. Enforcing
constants allows the compiler to inline some variable values, and it allows the native-code just-in-time compiler
to generate code that skips certain run-time checks.

e (eval-jit-enabled [on?]) gets or sets a boolean value that determines whether the native-code just-
in-time compiler (JIT) is enabled for code (compiled or not) that is passed to the default evaluation handler.
The default is#t , unless the JIT is disabled through theo-jit or -j command-line flag to stand-alone
MzScheme (or MrEd), or through tlETNOMZJIT environment variable (set to any value).

7.9.1.6 LOADING

e (current-load [proc]) gets or sets a procedure that loads a file and returns the value (or values; see
§2.2) of the last expression read from the file. Thimd handler is called byload , load-relative ,
load/use-compiled , andload/cd

71

7.9. Parameters 7. Threads

72

A load handler procedure takes two arguments: a path(sied.] and an expected module name. The expected
module name is either a symbol#ir; see§5.8for further information.

The default load handler reads expressions from the file (with compiled expressions enabled and line-counting
enabled) and passes each expression to the current evaluation handler. The default load handler also treats a
hash mark on the first line of the file as a comment (gele2.4. The current load directory for loading the file

is set before the load handler is called (§&¢é.1).

(current-load-extension [proc]) gets or sets a procedure that loads a dynamic extension (see
§14.4) and returns the extension’s value(s). Thiad extension handler is called byload-extension ,
load-relative , andload/use-compiled

A load extension handler procedure takes two arguments: a pathl(€2]) and an expected module name.
The expected module name is either a symbditforsee§5.8for further information.

The default load extension handler loads an extension using operating system primitives.

(current-load/use-compiled [proc]) gets or sets a procedure that loads a file or a compiled version

of the file; se€;14.1for more information. Aload/use-compiled handler procedure takes the same arguments

as a load handler. The handler is expected to call the load handler or the load-extension handler. Unlike a load
handler or load-extension handler, a load/use-compiled handler is expected to set thdaadreziative

directory.

(current-load-relative-directory [path]) gets or sets a complete directory path (see
§11.3.) or # . This current load-relative directory is set byload , load-relative ,
load/use-compiled , load/cd , load-extension , andload-relative-extension to the di-
rectory of the file being loaded. This parameter is usetbhg-relative , load/use-compiled and
load-relative-extension (see§l14.1). When a new path or string is provided to the parameter proce-
durecurrent-load-relative-directory , itis immediately expanded (s§&1.3.7) and converted to

a path. (The directory need not exist.)

(current-write-relative-directory [path]) gets or sets a complete directory path ($&&.3.])

or #f . This path is used when writing compiled code that contains source-location pathnames for procedures;
paths within this directory (syntactically) are converted to relative paths. When compiled code is read, relative
paths are converted back to complete paths using the current load-relative directory (if i¢tig not

(use-compiled-file-paths [path-list]) gets or sets a list of paths, which defaults(list
(string- >path "compiled")) . It is used byload/used-compiled (and thusrequire) as a
search path for compiled versions of files. §&é.1for more information. When a new list of paths and strings
is provided to the parameter procedure, it is converted to an immutable list of paths.

(current-library-collection-paths [path-list) gets or sets a list of complete directory
paths (seg11.3.]) for library collections used byequire . See Chaptet6 for more information. When

a new list of paths and strings is provided to the parameter procedure, it is converted to an immutable list of
paths.

(use-user-specific-search-paths [on?]) gets or sets a boolean value that determines whether
user-specific paths, which are in the directory produce(fing-system-path 'addon-dir) , are in-
cluded in search paths for collections, C libraries, etc. For exarfipielibrary-collection-paths

(sees16) omits the user-specific collection directory when this parameter’s valtfe. is

(current-command-line-arguments [string-vector) gets or sets a vector of strings represent-

ing command-line arguments. When a new vector of strings is provided to the parameter procedure, it is con-
verted to an immutable vector of immutable strings. The stand-alone version of MzScheme (and MrEd) initial-
izes the parameter to contain command-line arguments that are not processed directly by MzScheme and MrEd.
(The same vector is also installed as the value ofitige global.) If command-line arguments are provided to
MzScheme/MrEd as a byte strings, they are converted to strings using the current locale’s encodihg.(3ee

7. Threads 7.9. Parameters

7.9.1.7 EXCEPTIONS

e (current-exception-handler [proc]) gets or sets a procedure that is invoked to handle an exception.
See§6.1for more information about exceptions.

e (initial-exception-handler [proc]) gets or sets a procedure that is used as the initial current ex-
ception handler for a new thread.

e (error-escape-handler [proc |) gets or sets a procedure that takes no arguments and escapes from the
dynamic context of an exception. S&& 8 for further information about the error escape handler. The default
error escape handler escapes to the start of the current threagabteéval-print-loop (see§14.]) also
sets the escape handler. To report a run-time erroraise (see§6.1) orerror (see§6.2) instead of calling
the error escape procedure directly. Unlike all other parameters, the valueasfahescape-handler
parameter in a new thread is not inherited from the creating thread; instead, the parameter is always initialized
to the default error escape handler.

e (error-display-handler [proc]) gets or sets a procedure that takes two arguments: a string to print
as an error message, and a value representing a raised exceptiorrrdihiisplay handler is called by the
default exception handler with an error message and the exception valui (BeelThe default error display
handlerdisplay s its first argument to the current error port (determined byctiveent-error-port
parameter) and extracts a stack trace {§e@ to display from the second argument if it isexn value but not
anexn:fail:user value? To report a run-time error, usaise (see§6.1) or procedures likerror (see
£6.2) instead of calling the error display procedure directly.

e (error-print-width [k]) gets or sets an exact integer greater tBafhis value is used as the maximum
number of characters used to print a Scheme value that is embedded in a primitive error message.

e (error-print-context-length [k]) gets or sets a non-negative, exact integer. This value is used by
the default error display handler as the maximum number of lines of context (or “stack trace”) to print; a single
“..." line is printed if more lines are available after the fikstines. A0 value fork disables context printing
entirely.

e (error-value->string-handler [proc]) gets or sets a procedure that takes an arbitrary Scheme
value and an integer and returns a string. Bhisr value conversion handler is used to print a Scheme value that
is embedded in a primitive error message. The integer argument to the handler specifies the maximum number
of characters that should be used to represent the value in the resulting string. The default error value conversion
handlerprint s the value into a string;if the printed form is too long, the printed form is truncated and the
last three characters of the return string are setto “...".

If the string returned by an error value conversion handler is longer than requested, the string is destructively
“truncated” by setting the first extra position in the string to the null character. If a non-string is returned, then
the string"..." is used. If a primitive error string needs to be generated before the handler has returned, the
default error value conversion handler is used.

Call to an error value conversion handler pegameterized to re-install the default error value conversion
handler, and to enable printing of unreadable values§g&el.9.

e (error-print-source-location [include?]) gets or sets a boolean that controls whether read and
syntax error messages include source information, such as the source line and column or the expression. This
parameter also controls the error message when a module-defined variable is accessed before its definition is
executed; the parameter determines whether the message includes a module name. Only the message field of an
exn:fail:read , exn:fail:syntax , or exn:fail:contract:variable structure is affected by
the parameter. The default#s .

3The default error display handler in DrScheme also uses the second argument to highlight source locations.
4Using the current global port print handler; $ge9.1.2

73

7.9. Parameters 7. Threads

7.9.1.8 SCURITY

e (current-security-guard [security-guard) gets or sets a security guard ($€¢€l) that controls
access to the filesystem and network.

e (current-custodian [custodian]) gets or sets a custodian (SEE2) that assumes responsibility for
newly created threads, ports, TCP listeners, UDP sockets, and byte converters.

e (current-thread-group [thread-group]) gets or sets a thread group (§8e3) that determines CPU
allocation for newly created threads.

e (current-inspector [inspector]) gets or sets an inspector (ge5) that controls debugging access
to newly created structure types.

e (current-code-inspector [inspector]) gets or sets an inspector (§ge4) that controls debugging
access to module bindings and redefinitions.

7.9.1.9 KITING

e (exit-handler [proc]) gets or sets a procedure that takes a single argument.edinisandler is called
by exit . The default exit handler takes any argument and shuts down MzSchemnid4ds2ér information
about exit codes.

7.9.1.10 RNDOM NUMBERS

e (current-pseudo-random-generator [generator]) gets or sets a pseudo-random number gener-
ator (se€3.3) used byrandom andrandom-seed

e (current-evt-pseudo-random-generator [generator]) gets or sets a pseudo-random number
generator (seg3.3) used bysync andsync/enable-break (see§7.7).

7.9.1.11 IoCALE

e (current-locale [string-or-#f) gets or sets a string/boolean value that controls the interpretation
of characters for functions such aging-locale<? , andstring-locale-upcase (seeg§l.2.2and
§3.5). When locale sensitivity is disabled by setting the parametéf {strings are compared in a fully portable
manner, which is the same as the standard procedures; otherwise, they are interpreted according to a locale
setting (in the sense of the C librarysetlocale). The™ locale is always a synonym for the current
machine’s default locale; other locale names are platform-spéc8tang or character printing witvrite is
not affected by the parameter, and neither are symbol case or regular expressigig)sébe parameter’'s
default value is" .

7.9.1.12 MODULES

e (current-module-name-resolver [proc]) gets or sets a procedure used to resolve module paths.
Seet5.4for more information.

e (current-module-name-prefix [symbol-or-false) gets or sets a symbol to be prefixed onto a
module declaration when it is evaluated, wh&femeans no prefix. This parameter is intended for use by a
module name resolver; sB.4for more information.

5The"C" locale is also always available; setting the localédb is the same as disabling locale sensitivity wifhonly when string operations
are restricted to the first 128 characters.

74

7. Threads 7.9. Parameters

7.9.1.13 RBRFORMANCETUNING

e (current-thread-initial-stack-size [k]) gets or sets a positive exact integer; the integer pro-
vides a hint about how much space to reserve for a thread’s local variables. The actual space used by a compu-
tation is affected by just-in-time (JIT) compilation, but it is otherwise platform-independent.

7.9.2 Parameter Utilities

(make-parameter v [guard-proc |) returns a new parameter procedure. The value of the parameter is initial-

ized tov in all threads. Ifguard-proc s supplied, itis used as the parameter’s guard procedure. A guard procedure
takes one argument. Whenever the parameter procedure is applied to an argument, the argument is passed on to the
guard procedure. The result returned by the guard procedure is used as the new parameter value. A guard procedure
can raise an exception to reject a change to the parameter’s value.

(parameter? v) returnstt if v is a parameter procedurd, otherwise.

(parameter-procedure=? a b) returns#t if the parameter proceduresandb always modify the same
parameter#f otherwise.

(current-parameterization) returns the current continuation’s parameterization.

(call-with-parameterization parameterization thunk) calls thunk (via a tail call) with
parameterization as the current parameterization.

(parameterization? V) returns#t if v is a parameterization returned byrrent-parameterization ,
#f otherwise.

75

8. Namespaces

MzScheme supports multipleamespaces for top-level variable bindings, syntax bindings, module imports, and mod-
ule declarations.

A new namespace is created with tiiake-namespace procedure, which returns a first-class namespace value.
A namespace is used by setting tberrent-namespace parameter value (se$7.9.1.5, by providing the
namespace to procedures suchemal andeval-syntax . The MzScheme versions of the R5RS procedures
scheme-report-environment andnull-environment produce namespaces.

The current namespace is used by many procedures, inclesialg, load , compile , andexpand .2 After an
expression igval ed, the global variable references in the expression are permanently attached to a particular name-
space, so the current namespace at the time that the code is execubpedssd as the namespace for referencing
global variables in the expression.

Example:

(define x ’orig) ; define in the original namespace
;7 The following let expression is compiled in the original

;; namespace, so direct references to X see ’‘orig.
(let n (make-namespace)]) ; make new namespace
(parameterize ([current-namespace n))

(eval '(define x 'new)) ; evals in the new namespace
(display x) ; displays ’orig
(display (eval 'x)))) ; displays 'new

A namespace actually encapsulates three top-level environments: one for normal expressions, one for macro trans-
former expressions, and one for macro templatesg$&dor more information about the transformer environment,

and seg12.3.4for more information about the template environment. Module declarations are shared by the envi-
ronments, but module instances, variable bindings, syntax bindings, and module imports are distinct. More precisely,
the transformer environment never contains any syntax bindings, and its variables, module instances, and module im-
ports are distinct from the variables, module instances, and module imports of the normal top-level environment. The
template environment contains module imports, only.

Each namespace hasnaodule registry that maps module names to module declarations (see ChapteThe
module->namespace procedure returns a namespace with the same module registry as the current namespace,
but whose environment and bindings correspond to the body of an instantiated module. (This facility is primarily
useful for debugging, and its use is limited by the current code inspector; se@al3o

1The resulting namespace contains syntax importg$app, #%datum, and#%top , because syntax expansion requires them§s&e), but
those names are not led&iRSidentifiers.
2More precisely, the current namespace is used by the evaluation and load handlers, rather than déreatlyandload .

76

8. Namespaces 8.1. Identifier Resolution in Namespaces

8.1 Identifier Resolution in Namespaces

Identifier resolution in a namespace’s top-level environment, for compilation or expansion, proceeds in two steps.
First, the environment determines whether the identifier is mapped to a top-level variable, to syntax, or to a module
import (which can be either syntax or a variable). Second, if the identifier is mapped to a top-level variable, then the
variable’s location is found,; if the identifier is mapped to syntax, then the expansion-time binding is found; and if the
identifier is mapped to an import, then the source module is consulted.

Importing a variable from a module witequire is notthe same as defining the variable; the import does not create
a new top-level variable in the environment, but instead maps an identifier to the module’s variable, in the same way
that a syntax definition maps an identifier to a transformer.

Redefining a previously-defined variable is the same as mutating the variablgatlith Rebinding a syntax-bound
or import-bound identifier (to syntax or an import) replaces the old binding with the new one for future uses of the
environment.

If an identifier is bound to syntax or to an import, then defining the identifier as a variable shadows the syntax or import

in future uses of the environment. Similarly, if an identifier is bound to a top-level variable, then binding the identifier

to syntax or an import shadows the variable; the variable’s value remains unchanged, however, and may be accessible
through previously evaluated expressions.

Example:

(define x 5)
(define (f) x)
X ; =5
(f); =5
(define-syntax x (syntax-rules ()))
X ; = bad syntax
(f); =5
(define x 7)
X, =7
(f)y, =17
(module m mzscheme (define x 8) (provide X))
(require m
X ; = 8
= 7

(f)

8.2 Initial Namespace

In the stand-alone MzScheme application, the initial namespace’s module registry contains declarations for
mzscheme and the primitive#%named modules (s€®.7). The normal top-level environment of the initial name-
space contains imports for all MzScheme syntax, and it contains variable bindings (as opposed to imports) for every
built-in procedure and constant. The transformer top-level environment of the initial namespace imports all MzScheme
syntax, procedures, and constants.

Applications embedding MzScheme may extend or modify the set of initial bindings, but they will usually only add
primitive modules with#%prefixed names. (MrEd add®omred-kernel for its graphical toolbox.)

8.3 Namespace Utilities

(make-namespace [flag-symbol]) creates a new namespace with a new module registrigipesymbol
is an option that determines the initial bindings in the namespace. The allowed valtlagfymbol are:

77

8.3. Namespace Utilities 8. Namespaces

e initial (the default) — the new namespace contains the module declarations of the initial namespace (see
§8.2), and the new namespace’s normal top-level environment contains bindings and imports as in the initial
namespace. However, the namespace’s transformer top-level environment is empty.

e 'empty — creates a hamespace with no initial bindings or module declarations.

(namespace? V) returnstt if v is a namespace valugf, otherwise.

(namespace-symbol->identifier symbol) is similar to datum->syntax-object (see§12.2.) re-
stricted to symbols. The lexical context of the resulting identifier corresponds to the top-level environment of the
current namespace; the identifier has no source location or properties.

(namespace-variable-value symbol [use-mapping? failure-thunk namespace) returns a
value forsymbol in namespace , wherenamespace defaults to the current namespace. The returned value de-
pends oruse-mapping?

e If use-mapping? istrue (the default), and §ymbol maps to a top-level variable or an imported variable (see
§8.1), then the resultis the same as evaluaiygnbol as an expression. $iymbol maps to syntax or imported

syntax, theexn:fail:syntax exception is raised (dailure-thunk is called; see below). Bymbol is
mapped to an undefined variable or an uninitialized module variablextinéil:contract:variable
exception is raised (dailure-thunk is called).

e If use-mapping? is false, the namespace’s syntax and import mappings are ignored. Instead, the
value of the top-level variable nameymbol in namespace is returned. If the variable is undefined, the

exn:fail:contract:variable exception is raised (drilure-thunk is called).
If failure-thunk is provided nhamespace-variable-value callsfailure-thunk to produce the return
value in place of raising aexn:fail:contract:variable or exn:fail:syntax exception.
(namespace-set-variable-value! symbol v [map? namespace]) sets the value ofymbol in the

top-level environment afiamespace (wherenamespace defaults to the current namespace) defirspmbol if it
is not already defined. thap?is supplied as true, then the namespace’s identifier mapping is also adjustgél. (see
so thatsymbol maps to the variable. The default value foap?is #f .

(namespace-undefine-variable! symbol namespace) removes thesymbol variable, if any, in the
top-level environment of theamespace , wherenamespace defaults to the current namespace. The namespace’s
identifier mapping is unaffected.

(namespace-mapped-symbols [namespace |) returns a list of all symbols that are mapped to variables, syn-
tax, and imports imamespace , wherenamespace defaults to the current namespace.

(namespace-require guoted-require-spec) performs the import correspondingdaoted-require-spec

in the top-level environment of the current namespace (like a top-tegelire expression). See also Chapter
Module paths imquoted-require-spec are not resolved with respect to any other module, even if the current
namespace corresponds to a module body.

(namespace-transformer-require guoted-require-spec) performs the import corresponding to
guoted-require-spec in the top-level transformer environment (like a top-lenexjuire-for-syntax ex-
pression). See also ChapterModule paths iquoted-require-spec are not resolved with respect to any other

module, even if the current namespace corresponds to a module body.

(namespace-require/copy quoted-require-spec) is like namespace-require for syntax ex-
ported from the module, but exported variables are treated differently: the export’s current value is copied to a top-level
variable in the current namespace.

78

8. Namespaces 8.3. Namespace Utilities

(namespace-require/expansion-time guoted-require-spec) is like namespace-require
but only the transformer part of the module is executed. If the required module has not been invoked before, the
module’s variables remain undefined.

(namespace-attach-module src-namespace module-path-v [dest-namespace) attaches the
instantiated module named byodule-path-v in src-namespace to the registry ofdest-namespace

(which is the current namespace dést-namespace is not supplied). Ifmodule-path-v is not a sym-

bol, the current module name resolver is called to resolve the path, but no module is loaded; the resolved form
of module-path-v is used as the module name diest-namespace . In addition tomodule-path-v

every module that it imports (directly or indirectly) is also recorded in the current namespace’s registry. If
module-path-v does not refer to an instantiated modulesio-namespace |, or if the name of any module to

be attached already has a different declaration or instandesianamespace , then theexn:fail:contract

exception is raised. The inspector of the module invocatioteist-namespace is the same as inspector of the
invocation insrc-namespace

(namespace-unprotect-module inspector module-path-v) namespace changes the inspector for
the instance of the module referencedrhgdule-path-v in namespace ’s registry so that it is controlled by
the current code inspector.nmespace is not supplied, it is the current namespace. The gimspector must
currently control the invocation of the modulenamespace s registry, otherwise thexn:fail:contract ex-
ception is raised. See al§6.4.

(namespace-module-registry namespace) returns the registry of the given namespace. This value is
useful only for identification viaq? .

(module->namespace module-path-v) returns a namespace that corresponds to the body of an instantiated
module in the current namespace’s registry. The returned namespace has the same module registry as the current
namespace. Modifying a binding in the namespace changes the binding seen in modules that require the namespace’s
module. Module paths in a top-levequire expression are resolved with respect to the namespace’s module. New
provide declarations are not allowed. If the current code inspector does not control the invocation of the module

in the current namespace’s registry, then:fail:contract exception is raised; see al§8.4. Bindings in the
namespace cannot be modified if tbempile-enforce-module-constants parameter was true when the

module was declared, unless the module declaration itself included assignments to the binsktlg via

(namespace-syntax-introduce stx) returns a syntax object lik&x , except that the current namespace’s
bindings are included in the syntax object’'s context E23. The additional context is overridden by any existing
top-level context in the syntax object, or by any existing or future module context§1®e2for more information
about syntax objects.

(module-provide-protected? module-path-index symbol) returns#f if the module declaration for
module-path-index definessymbol and exports it unprotectedit otherwise (which may mean that the sym-
bol corresponds to an unexported definition, a protected export, or an identifier that is not defined at all within the

module). Themodule-path-index argument can be a symbol; sgE.6.5for more information on module path
indices. Typically, the arguments teodule-provide-protected? correspond to the first two elements of a list
produced bydentifier-binding (see§l12.3.

79

9. Security

MzScheme offers several mechanisms for managing security:

Custodians{9.2) manage resource allocation.

Security guards$0.1) control access to the filesystem and network.

Inspectors {4.5) control access to the content of otherwise opaque structures and modulés. {see

Namespaceg8) control access to Scheme bindings.

Thread groupss0.3) control CPU allocation.

All security mechanisms rely on thread-specific parameters§(&ée

9.1 Security Guards

A security guard provides a set of access-checking procedures to be called when a thread initiates access of afile, direc-
tory, or network connection through a primitive procedure. For example, when a threadpeilsnput-file ,

the thread’s current security guard is consulted to check whether the thread is allowed read access to the file. If access
is granted, the thread receives a port that it may use indefinitely, regardless of changes to the security guard (although
the port’s custodian could shut down the port; §8€).

A thread’s current security guard is determined bydheent-security-guard parameter (se¢7.9.1.9. Ev-

ery security guard has a parent, and a parent’s access procedures are called whenever a child’s access procedures are
called. Thus, a thread cannot increase its own access arbitrarily by installing a new guard. The initial security guard
enforces no access restrictions other than those enforced by the host platform.

(make-security-guard parent-security-guard file-proc network-proc [link-proc) cre-
ates a new security guard whose parempairent-security-guard

Thefile-proc procedure must accept three arguments:
e a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to
deny access.

e apath (se€l1.3.]) or#f for pathless queries, such@sirrent-directory) , (filesystem-root-list) ,
and(find-system-path symbol) . A path provided tdile-proc is not expanded or otherwise nor-
malized before checking access; it may be a relative path, for example.

e an immutable list containing one or more of the following symbols:

— read —read a file or directory
— 'write — modify or create a file or directory
— 'execute — execute a file

80

9. Security 9.2. Custodians

— 'delete — delete afile or directory
— 'exists — determine whether a file or directory exists, or that a path string is well-formed

The’exists symbol is never combined with other symbols in the last argumditétproc , but any other
combination is possible. When the second argumefitetgproc is #f , the last argument always contains
only 'exists

Thenetwork-proc procedure must accept four arguments:

e a symbol for the primitive operation that triggered the access check, which is useful for raising an exception to
deny access.

e an immutable string representing the target hostname for a client connection or the accepting hostname for a
listening server#f for a listening server or UDP socket that accepts connections at all of the host's address; or
#f an unbound UDP socket.

e an exact integer betweenand65535 (inclusive) representing the port number,#r for an unbound UDP
socket. In the case of a client connection, the port number is the target port on the server. For a listening server,
the port number is the local port number.

e a symbol, eitheiclient or’server ,indicating whether the check is for the creation of a client connection
or a listening server. The opening of an unbound UDP socket is identifie@tlesrd ~ connection; explicitly
binding the socket is identified asserver action.

Thelink-proc argument can b&f (the default) or a procedure of three arguments:

¢ a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to
deny access.

e acomplete path (ség 1.3.] representing the file to create as link.
e a path representing the content of the link, which may be relative the second-argument path; this path is not
expanded or otherwise normalized before checking access.
If link-proc is#f or unprovided, then a default procedure is used that always isekil

The return value ofile-proc , network-proc , orlink-proc is ignored. To deny access, the procedure must
raise an exception or otherwise escape from the context of the primitive call. If the procedure returns, the parent’s
corresponding procedure is called on the same inputs, and so on up the chain of security guards.

Thefile-proc , hetwork-proc , andlink-proc procedures are invoked in the thread that called the access-
checked primitive. Breaks may or may not be enabled §8€8. Full continuation jumps are blocked going into or
out of thefile-proc or network-proc call (se€$6.3).

(security-guard? v) returns#t if v is a security guard valuéf otherwise.

9.2 Custodians

A custodian manages a collection of threads, file-stream ports, TCP ports, TCP listeners, UDP sockets, and byte
converters. Whenever a thread, file-stream port, TCP port, TCP listener, or UDP socket is created, it is placed under
the management of the current custodian (as determined loyithent-custodian parameter; se¢7.9.1.9.

1In MrEd, custodians also manage eventspaces.

81

9.2. Custodians 9. Security

The main operation on a custodian is to shut down its managed valuegst@ian-shutdown-all . In other
words,custodian-shutdown-all generalizeill-thread to forcibly and immediately close a set of ports,

TCP connections, etc., as well as terminate (or suspend) a set of threads. For example, a web server might use a
custodian to manage all of the resources of a particular session so that the session can be cleanly terminated if it
exceeds its allowed lifetime.

A custodian that has been shut down cannot manage new objects. If the current custodian is shut down before a
procedure is called to create a managed resourcedpan;input-port ,thread), theexn:fail:contract
exception is raised.

Athread can have multiple managing custodians, and a suspended thread credteeadisuspend-to-Kkill

can have zero custodians. Extra custodians become associated with a thread timeaddesume (see§7.1).

When a thread has multiple custodians, it is not necessarily killed dystodian-shutdown-all , but shut-

down custodians are removed from the thread’s managing set, and the thread is killed when its managing set becomes
empty.

The values managed by a custodian are only weakly held by the custodian. As a result, a Will3($pean be

executed for a value that is managed by a custodian. In addition, a custodian only weakly references its subordi-
nate custodians; if a subordinate custodian is unreferenced but has its own subordinates, then the custodian may be
collected, at which point its subordinates become immediately subordinate to the collected custodian’s superordinate
custodian.

(make-custodian [custodian]) creates a new custodian that is subordinatectistodian . When
custodian s directed (viecustodian-shutdown-all) to shut down all of its managed values, the new subor-
dinate custodian is automatically directed to shut down its managed values as well. The default \als®tban

is the current custodian.

(custodian-shutdown-all custodian) closes all open ports and closes all active TCP listeners and UDP
sockets that are managed bystodian . It also removesustodian (and its subordinates) as managers of all
threads; when a thread has no managers, it is killfdhe current thread is to be killed, all other shut-down actions
take place before killing the thread.

(custodian? V) returns#t if v is a custodian valueif otherwise.

(custodian-managed-list custodian super-custodian) returns a list of immediately man-
aged objects and subordinate custodians doistodian , where custodian is itself subordinate to
super-custodian (directly or indirectly). Ifcustodian is not strictly subordinate tesuper-custodian ,
the exn:fail:contract exception is raised.

(custodian-require-memory need-k custodian) registers a require check if MzScheme is compiled
with support for memory accounting, otherwise thea:fail:unsupported exception is raised. If a check is
registered, and if MzScheme later reaches a state after garbage collectiGhIskevhereneed-k bytes are not
available to the current custodiasystodian is shut down.

(custodian-limit-memory limit-custodian limit-k stop-custodian) registers a limit check

if MzScheme is compiled with support for memory accounting (a.k.a. “3m”), otherwisextinéail:unsupported
exception is raised. If a check is registered, and if MzScheme later reaches a state after garbage collegtidd)(see
wherelimit-custodian owns more thatimit-k bytes, therstop-custodian is shut down.

2 Killing” a thread created wittthread/suspend-to-kill merely suspends the thread.

82

9. Security 9.3. Thread Groups

9.3 Thread Groups

A thread group is a collection of threads and other thread groups that have equal claim to the CPU. By nesting thread
groups and by creating certain threads within certain groups, a programmer can control the amount of CPU allocated
to a set of threads. Every thread belongs to a thread group, which is determinedchyrémd-thread-group

parameter (se€7.9.1.9 when the thread is created. Thread groups and custodiang(&pare independent.

The root thread group receives all of the CPU that the operating system gives MzScheme. Every thread or nested
group in a particular thread group receives equal allocation of the CPU (a portion of the group’s access), although a
thread may relinquish part of its allocation by sleeping or synchronizing with other processes.

(make-thread-group [thread-group |) creates a new thread group that belongthtead-group . The
default value forthread-group is the current thread group, as determined bydheent-thread-group
parameter.

(thread-group? v) returns#t if v is a thread group valuéf otherwise.

9.4 Inspectors and Modules

In the same way that inspectors control access to structure field§4&peinspectors also control access to module
bindings (seg5). The default inspector for module bindings is determined byctireent-code-inspector

parameter, instead of thoeirrent-inspector parameter.
When amodule declaration is evaluated, the value of tharent-code-inspector parameter is associated
with the module declaration. When the module is invokedreguire or dynamic-require , & sub-inspector

of the module’s declaration-time inspector is created, and this sub-inspector is associated with the module invocation.
Any inspector that controls the sub-inspector (i.e., the declaration-time inspector and its superior) controls the module
invocation.

Control over a module invocation enables

¢ the use ofnodule->namespace on the module;
e access to the module’s protected identifiers, i.e. those identifiers exported from the modyleteith ; and

e access to the module’s protected and unexported variables within compiled code&wnisees14.3.

If the value ofcurrent-code-inspector never changes, then no control is lost for any module invocation, since
the module’s invocation is associated with a sub-inspectountnt-code-inspector

The inspector for a module invocation is specific to a particular module registry, in case a module is attached to a new
registry vianamespace-attach-module . The invocation inspector in a particular registry can be changed via
namespace-unprotect-module (but changing the inspector requires control over the old one).

Control over a module declaration (as opposed to a mere invocation) enables the reconstruction of syntax objects that
contain references to the module’s unexported identifiers. Otherwise, the compiler and macro expander prevent any
reference to an unexported identifier, unless the reference appears within an expression that was generated by the
module’s macros (or, more precisely, a macro from a module whose declaration inspector controls the invocation of
the identifier's module). Segl2.6.3for further information.

83

10. Regular Expressions

MzScheme provides built-in support for regular expression pattern matching on strings, byte strings, and input ports.
Regular expressions are specified as strings or byte strings, using the same pattern language as the dgreptility

or Perl. A string-specified pattern produces a character regexp matcher, and a byte-string pattern produces a byte
regexp matcher. If a character regexp is used with a byte string or input port, it matches UTF-8 encodifigg (3ee

of matching character streams; if a byte regexp is used with a character string, it matches bytes in the UTF-8 encoding
of the string.

Regular expressions can be compiled integexp value for repeated matches. Thegexp andbyte-regexp

procedures convert a string or byte string (respectively) into a regexp value using one syntax of regular expressions
that is most compatible tegrep . Thepregexp andbyte-pregexp procedures produce a regexp value using

a slightly different syntax of regular expressions that is more compatible with Perl. In addition, Scheme constants
written with#rx or #px (see§11.2.4 produce compiled regexp valués.

For a gentle introduction to regular expression usingpifegexp syntax, see Chapter 34 BLT MzLib: Libraries
Manual

The two supported regular expression syntaxes share a common core that is shown inlidusesl 10.2 Fig-
ure 10.3completes the grammar foegexp , which treats curly braces{" and “}”) as literals, backslash (*) as a
literal within ranges, and backslash\(J as a literal producer outside of ranges. Figutés4and10.5complete the
grammar forpregexp , which uses curly braces{* and “}") for bounded repetition and uses backslasti) for
meta-characters both inside and outside of ranges.

In addition to matching a grammars, regular expressions must meet two syntactic restrictions:

e In aRepeat other tharAtom?, thenAtom must not match an empty sequence.

e Ina (*<=Regexp) or (?<!'Regexp), theRegexp must match a bounded sequence, only.

These contraints are checked syntactically by the type system in Figusat the end of this chapter. A tyge, m)
corresponds to an expression that matches betwesmd m characters. In the rule foRggexp), N means the

number such that the opening parenthesis is\itieopening parenthesis for collecting match reports. Non-emptiness

is inferred for a backreference patteiiN, so that a backreference can be used for repetition patterns; in the case

of mutual dependencies among backreferences, the inference chooses the fixpoint that maximizes non-emptiness.
Finiteness is not inferred for backreferences (i.e., a backreference is assumed to match an arbitrarily large sequence).

If a byte string is used to express a grammar, its bytes are interpreted as Latin-1 encodings of charagfefsJsee

and the resulting regexp “matches a character” by matching a byte whose Latin-1 decoding is the character. The
exception is thatp{Property } and\P{Property } match UTF-8 encoded characters with the corresponding
Property

By default, a regular expression matches characters case-sensitively, and newlines are not treated spelkiatle The

1The implementation is based on Henry Spencer’s package.
2The internal size of a regexp value is limited to 32 kilobytes; this limit roughly corresponds to a source string with 32,000 literal characters or
5,000 operators.

84

10. Regular Expressions

Regexp Pieces MatchPieces
Regexp |Regexp Match eithelRegexp, try left first
Pieces Piece MatchPiece
PiecePieces Match firstPiece followed by secondPieces
Piece Repeat MatchRepeat , longest possible
Repeat ? MatchRepeat , shortest possible
Atom Match Atom exactly once
Repeat Atom* Match Atom 0 or more times
Atom+ MatchAtom 1 or more times
Atom? MatchAtom O or 1 times
Atom (Regexp) Match sub-expressioRegexp and report match
| [Range] Match any character iRange
| ["Range] Match any character not iRange
| . Match any character (except newline in multi mode)
|~ Match start of input (or after newline in multi mode)
| $ Match end of input (or before newline in multi mode)
| Literal Match a single literal character
| (?Mode:Regexp) Match sub-expressioRegexp usingMode
| (?>Regexp) Match sub-expressioRegexp, only first possible
| Look Match empty ifLook matches
| (?PredPieces |Pieces) Match firstPieces if Pred, secondPieces if not Pred
| (?PredPieces) MatchPieces if Pred , empty if notPred
Range =] Range contains] only
| - Range contains - only
| Mrange Range contains everything iMrange
| Mrange - Range contains - and everything iMrange
Mrange =]Lrange Mrange contains] and everything ibrange
| -Lrange Mrange contains - and everything iorange
| Lrange Mrange contains everything ihrange
Lrange = Riiteral Lrange contains a literal character
| Rliteral -Rliteral Lrange contains Unicode range inclusive
| LrangeLrange Lrange contains everything in both

Figure 10.1: Common grammar for regular expressions

portion of an (Mode:Regexp) form changes the matching mode fRegexp:

e If the new mode is case-insensitive, tHeegexp is generalized so that where it matches a particular character,
then it also matches lowercase, uppercase, titlecase, and case-folded variants of the same character. For byte-
string regular expressions, matching is case-insensitive on ASCII characters, only.

wy

¢ Ifthe new mode is multi, then a dot (“.”) iRegexp never matches a newline character, but a caret (“™”) matches
after a newline (in addition to the beginning of the input), and a dollar sign (“$”) matches before a newline (in
addition to the end of the input).

A few subtle points about the regexp language are worth noting:

e When an opening square bracket (“[") that starts a range is immediately followed by a closing square bracket
(“", then the closing square bracket is part of the range, instead of ending an empty range. For example,
"la]" matches any string that contains a lowercase “a” or a closing square bracket. A dash (“-") at the start
or end of a range is treated specially in the same way.

e When a caret (™) or dollar sign (“$") appears in the middle of a regular expression (not in a range) and outside
of “multi” mode, the resulting regexp is legal even though it is usually not matchable. For exdiafhii,

85

10. Regular Expressions

Look = (?=Regexp) Match if Regexp matches
| (?'Regexp) Match if Regexp doesn’t match
| (?<=Regexp) Match if Regexp matches immediately preceeding
| (?<!Regexp) Match if Regexp doesn’t match immediately preceeding

Pred = (N) True if Nth (has a match
| Look True if Look matches
Mode := Like the enclosing mode
| Modei Like Mode, but case-insensitive
| Modei Like Mode, but sensitive
| Modes Like Mode, but not in multi mode
| Modes Like Mode, but in multi mode
| Modem Like Mode, but in multi mode
| Mode-m Like Mode, but not in multi mode

Figure 10.2: Common predicate, lookahead/lookbehind, and mode grammar

Literal = Any character except (,), *, +, 2, [, .,\, or]
| \Aliteral MatchAliteral

Aliteral = Any character

Rliteral = Any character except] or -

Figure 10.3: Specific grammar foegexp , byte-regexp , and#rx

is unmatchable, because no string can contain the letter “b” after the end of the string. In ctafiast,
matches any string that ends with a lowercase “a”, since zero “b”s will match the part of the regexp after “$”.

e Abackslash ({") in a regexp pattern specified with a Scheme string literal must be protected with an additional
backslash. For example, the strihg\." describes a pattern that matches any string containing a period. In this
case, the first backslash protects the second to generate a Scheme string containing two characters; the second
backslash (which is the first slash in the actual string value) protects the period in the regexp pattern.

The regular expression procedures are as follows:

e (regexp string) takes a string representation of a regular expression (using the syntax of Higgrand
compiles it into a regexp value. Other regular expression procedures accept either a string or a regexp value as
the matching pattern. If a regular expression string is used multiple times, it is faster to compile the string once
to a regexp value and use it for repeated matches instead of using the string each time.

Theobject-name procedure (seg6.2.3 returns the source string for a regexp value.

e (pregexp string) is like regexp , except that it uses the syntax of Figur@.4 The result can be used
with regexp-match , etc., just like the result fromegexp .

e (regexp? V) returns#t if v is aregexp value created bggexp orpregexp ,#f otherwise.

e (pregexp? V) returnstt if v is a regexp value created pyegexp (notregexp), #f otherwise.

o (byte-regexp bytes) takes a byte-string representation of a regular expression (using the syntax of Fig-
ure 10.3 and compiles it into a byte-regexp value. Thigject-name procedure (se€6.2.3 returns the

source byte string for a regexp value.

o (byte-pregexp string) islike byte-regexp , except that it uses the syntax of Figuf@4 The result
can be used withegexp-match , etc., just like the result frorhyte-regexp

86

10. Regular Expressions

\p{Property } Match a (UTF-8 encoded) characternoperty
\P{Property } Match a (UTF-8 encoded) character noFiroperty

Repeat = see Figurel0.1
| Atom{N} Match Atom exactlyN times
| Atom{N,} MatchAtom N or more times
| Atom{,M} Match Atom between 0 and/ltimes
| Atom{N,M} Match Atom betweerN andMtimes
Atom = see Figurel0.1
| \N Match latest reported match fbith (
| Class Match any character iGlass
| \b Match betweefw and\W, start, or end
| \B Match betweenw and\w or \W and\W, start, or end
|

Literal := Any character except (,), *,+,?, 4, }, .., \, or|
| \Aliteral MatchAliteral
Aliteral := Any character except a-z, A-Z, 0-9
Lrange = see Figurel0.1
| Class Lrange contains all characters @lass
| Posix Lrange contains all characters iPosix
Rliteral := Any character except },, or -

Figure 10.4: Specific grammar fpregexp , byte-pregexp , and#px

o (byte-regexp? v) returns#t if v is a regexp value created byte-regexp or byte-pregexp , #f

otherwise.

o (byte-pregexp? V) returnst#t if v is a regexp value created byte-pregexp (notbyte-regexp),
#f otherwise.

e (regexp-match pattern string [start-k end-k output-port |) attempts to matchattern

(a string, byte string, regexp value, or byte-regexp value) once to a portgirirgf ; see below for informa-

tion on using a byte string or input port in placestfing

The optionalstart-k andend-k arguments select a substringstfing for matching, and the default is
the entire string. Thend-k argument can b&f , which is the same as not supplyiegd-k . The matcher

finds a portion oftring that matchegattern and is closest to the start of the selected substring.

If the match fails#f is returned. If the match succeeds, a list containing strings, and pog$iblg returned.
The list contains byte strings (substrings of the UTF-8 encodirgirofg) if pattern is a byte string or a
byte regexp value.

The first [byte] string in a result list is the portion efring that matchedpattern . If two portions of
string can matctpattern , then the match that starts earliest is found.

Additional [byte] strings are returned in the listphttern contains parenthesized sub-expressions (but not
when the open parenthesis is followed by “?:"). Matches for the sub-expressions are provided in the order of
the opening parenthesespattern . When sub-expressions occur in branches of an “df),(fn a “zero or

more” pattern (“*”), or in a “zero or one” pattern (“?”),# is returned for the expression if it did not contribute

to the final match. When a single sub-expression occurs in a “zero or more” pattern (“*”) or a “one or more”
pattern (“+”) and is used multiple times in a match, then the rightmost match associated with the sub-expression
is returned in the list.

If the optionaloutput-port is provided, the part adtring that precedes the match is written to the port.
All of string up toend-k is written to the port if no match is found. This functionality is not especially
useful, but it is provided for consistency witegexp-match on input ports. The@utput-port argument
can be#f , which is the same as not supplying it.

e (regexp-match pattern bytes [start-k end-k output-port]) is analogous teegexp-match
with a string (see above). The result is always a list of byte strings#énatven ifpattern is a character
string or a character regexp value.

87

10. Regular Expressions

Sc| Sk| Sm| So Unicode general category
S Union of Sc, Sk, Sm, and So
Zl | Zp|Zs Unicode general category
z Union of ZI, Zp, and Zs
Union of all general categories

Class n=\d Class contains 0-9
| \D Class contains ASCII other than those id
[\w Class contains a-z, A-Z, 0-9,
| \W Class contains ASCII other than those i
| \s Class contains space, tab, newline, formfeed, return
| \S Class contains ASCII other than those is
Posix @m= [:alpha] Posix contains a-z, A-Z
| [:alnumj Posix contains a-z, A-Z, 0-9
| [:ascii] Posix contains all ASCII characters
| [:blank] Posix contains space and tab
| [:entrl] Posix contains all characters with scalar value j 32
| [«digit:] Posix contains 0-9
| [:graph] Posix contains all ASCII characters that use ink
| [:lower] Posix contains space, tab, and ASCII ink users
| [:print] Posix contains A-Z
| [:space Posix contains space, tab, newline, formfeed, return
| [:upper] Posix contains A-Z
| [:word] Posix contains a-z, A-Z, 0-9,
| [:xdigit:] Posix contains 0-9, a-f, A-F
Property := Category Property includes all characters i@ategory
| "Category Property includes all characters not Bategory
Category = LlI|Lu|Lt|Lm Unicode general category
| L& Union of LI, Lu, Lt, and Lm
| Lo Unicode general category
| L Union of L& and Lo
| Nd|NI'|No Unicode general category
| N Union of Nd, NI, and No
| Ps|Pe|Pi|Pf Unicode general category
| Pc|Pd|Po Unicode general category
| P Union of Ps, Pe, Pi, Pf, Pc, Pd, and Po
| Mn|Mc|Me Unicode general category
| M Union of Mn, Mc, and Me
|
|
|
|
|

Figure 10.5: Properties and classesgorgexp (Figurel0.4)

e (regexp-match pattern input-port [start-k end-k output-port]) is similar toregexp-match
with a byte string (see above), except that the match is found in the stream of bytes prodirgad-pprt
The optionaktart-k argument indicates the number of bytes to skip before matgdttgrn , andend-k
indicates the maximum number of bytes to consider (including skipped bytes)erithk argument can be
#f , which is the same as not supplyiegd-k . The default is to skip no bytes and read until the end-of-file if
necessary. If the end-of-file is reached befstat-k bytes are skipped, the match fails.

In pattern , a start-of-string caret (*™) refers to the first read position after skipping, and the end-of-string
dollar sign (“$") refers to thend-k th read byte or the end of file, whichever comes first.

The optionaloutput-port receives all bytes that precede a match in the input port, or @pdek bytes
(by default the entire stream) if no match is found. Tlput-port argument can b#f , which is the same
as not supplying it.

When matching an input port stream, a match failure reads epdek bytes (or end-of-file), even gattern
begins with a start-of-string caret (“™"); see alsgexp-match/fail-without-reading in Chapter 41
of PLT MzLib: Libraries Manual On success, all bytes up to and including the match are eventually read

10. Regular Expressions

from the port, but matching proceeds by first peeking bytes from the port (psiek-bytes-avail! ;
see§ll.2.]), and then (re-)reading matching bytes to discard them after the match result is determined. Non-
matching bytes may be read and discarded before the match is determined. The matcher peeks in blocking
mode only as far as necessary to determine a match, but it may peek extra bytes to fill an internal buffer if
immediately available (i.e., without blocking). Greedy repeat operatgoatiern , such as “*” or “+”, tend

to force reading the entire content of the port (ugtal-k) to determine a match.

If the port is read simultaneously by another thread, or if the port is a custom port with inconsistent reading
and peeking procedures (sg&l.1.7, then the bytes that are peeked and used for matching may be differ-

ent than the bytes read and discarded after the match completes; the matcher inspects only the peeked bytes.
To avoid such interleaving, usegexp-match-peek (with a progress-evt argument) followed by
port-commit-peeked

e (regexp-match-positions pattern string/bytes/input-port [start-k end-k output-port D
is like regexp-match , but returns a list of number pairs (a#fl) instead of a list of strings. Each pair of
numbers refers to a range of characters or bytasring/bytes/input-port . If the result for the same
arguments witliegexp-match would be a list of byte strings, the resulting ranges correspond to byte ranges;
in that case, istring/bytes/input-port is a character string, the byte ranges correspond to bytes in the
UTF-8 encoding of the string.

Range results are returned irsabstring - andsubbytpe -compatible manner, independentstért-k
In the case of an input port, the returned positions indicate the number of bytes that were read, including
start-k , before the first matching byte.

e (regexp-match? pattern string/bytes/input-port [start-k end-k output-port D is
like regexp-match , but returns merelyt when the match succeeds, otherwise.

e (regexp-match-peek pattern input-port [start-k end-k progress-evt]) islike regexp-match
on input ports, but only peeks bytes franput-port instead of reading them. Furthermore, instead of an
output port, the last optional argument is a progress eveimport-port (see§11.2.)). If progress-evt
becomes ready, then the match stops peeking firgrat-port and returnsg#f . The progress-evt
argument can béf , in which case the peek may continue with inconsistent information if another process
meanwhile reads frormput-port

o (regexp-match-peek-positions pattern input-port [start-k end-k progress-evt D
is like regexp-match-positions on input ports, but only peeks bytes franmput-port instead of
reading them.

e (regexp-match-peek-immediate pattern input-port [start-k end-k progress-evt D
is like regexp-match-peek , but it attempts to match only bytes that are available frgpait-port with-
out blocking. The match fails if not-yet-available characters might be used to ipaitienn

e (regexp-match-peek-positions-immediate pattern input-port [start-k end-k progress-evt
is like regexp-match-peek-positions , but it attempts to match only bytes that are available from
input-port without blocking. The match fails if not-yet-available characters might be used to match
pattern

e (regexp-replace char-pattern string insert-string) performs a match usinghar-pattern
on string and then returns a string in which the matching portion string is replaced with
insert-string . If char-pattern matches no part aftring , thenstring is returned unmodified.

Thechar-pattern must be a string or a character regexp value (not a byte string or a byte regexp value).

If insert-string contains “&”, then “&” is replaced with the matching portion sfring before it is
substituted intstring . If insert-string contains n” (for some integen), then it is replaced with the
nth matching sub-expression frastring .° “&” and “ \0” are synonymous. If theth sub-expression was not

3The backslash is a character in the string, so an extra backslash is required to specify the string as a Scheme constant. For example, the Scheme
constant' \\1" is “\1".

89

10. Regular Expressions

used in the match or if is greater than the number of sub-expressionmitern , then “\n” is replaced with
the empty string.

A literal “&” or “ \" is specified as {&” or “ \\", respectively. Ifinsert-string contains \$”, then “\$”
is replaced with the empty string. (This can be used to terminate a nunfbowing a backslash.) If a\" is
followed by anything other than a digit, “&",\", or “$”, then it is treated as\0".

e (regexp-replace byte-pattern string-or-bytes insert-string-or-bytes) is analo-
gous toregexp-replace on strings, wherdyte-pattern is a byte string or a byte regexp value. The
result is always a byte string.

e (regexp-replace char-pattern string proc) is like regexp-replace , but instead of an
insert-string third argument, the third argument is a procedure that accepts match strings and produces
a string to replace the match. Tipeoc must accept the same number of argumentsegexp-match
produces list elements for a successful match whithr-pattern

e (regexp-replace byte-pattern string-or-bytes proc) is analogous toegexp-replace
on strings and a procedure argument, but the procedure accepts byte strings to produce a byte string, instead of
character strings.

e (regexp-replace* pattern string insert-string) is the same asegexp-replace , ex-
cept that every instance phattern in string is replaced withinsert-string . Only non-overlapping
instances opattern in the originalstring are replaced, so instancespattern within inserted strings
arenot replaced recursively. If, in the process of repeating matgbetsern matches an empty string, the

exn:fail exception is raised.
e (regexp-replace* byte-pattern bytes insert-bytes) is analogous teegexp-replace*
on strings.
o (regexp-replace* char-pattern string proc) is like regexp-replace with a procedure ar-

gument, but with multiple instances replaced. The gwet is called once for each match.

e (regexp-replace* byte-pattern bytes proc) is like regexp-replace* with a string and
procedure argument, but the procedure accepts and produces byte strings.

Examples:

(define r (regexp "(-[0-9] *) +"))
(regexp-match r "a-12--345b") ; = '("-12--345" "-345")
(regexp-match-positions r "a-12--345b") ; = '((1 . 10) (5 . 10))
(regexp-match "x +" "12345") ; = #f
(regexp-replace "mi" "mi casa" "su") ; = "su casa"
(regexp-replace "mi" "mi casa" string-upcase) ; = "MI casa"
(define r2 (regexp "([IMm)i ([a-zA-Z] x)")
(define insert "\\1ly \\2")
(regexp-replace r2 "Mi Casa" insert) ; = "My Casa"
(regexp-replace r2 "mi cerveza Mi Mi Mi" insert) ; = "my cerveza Mi Mi Mi"
(regexp-replace* r2 "mi cerveza Mi Mi Mi" insert) ; = "my cerveza My Mi Mi"
(regexp-replace* r2 "mi cerveza Mi Mi Mi"

(lambda (all one two)

(string-append (string-downcase one) "y"
(string-upcase two)))) ; = "myCERVEZA myMI Mi"

(define p (open-input-string "a abcd"))
(regexp-match-peek ". xbc" p) ; = '("a abc")
(regexp-match-peek ". «bc" p 2) ; = ’("abc")

90

10. Regular Expressions

(regexp-match ". «bc" p 2) ; = '("abc")
(peek-char p) ; = #\d
(regexp-match ". xbc" p) ; = #f

(peek-char p) ; = #<eof >

(define p (open-input-string "aaaaaaaaaaa abcd"))
(define o (open-output-string))

(regexp-match "abc" p 0 # o0); = ’("abc")
(get-output-string 0) ; = "aaaaaaaaaaa "

(define r (byte-regexp #'(-[0-9] %) +")

(regexp-match r #"a-12--345b") ; = '(#"-12--345" "-345")
(regexp-match #".." #" \uC8x") ; = '(#" \310x")

;7 The UTF-8 encoding of # \uC8 is two bytes: 195 followed by 136
(regexp-match #".." " \uC8x") ; = '(#" \303\210")

Regexp1: (n,m;) Regexps: (ny,mp) Piece :(n;,m) Pieces : (ny,mp)
Regexp 1|Regexp 2 : < (ng,ny), (Mg, mp) > PiecePieces : (np+ny,my +np)

Repeat : (n,m) Atom: (nm) n>0
Repeat ? : (n,m) Atom* : (0,)

Atom : (nm) n>0 Atom : (n,m) Atom: (n,m) n>0
Atom+ : (1, 00) Atom? : (0,m) Atom{N}: (n-N,m-N)

Atom : (nm) n>0 Atom: (nm) n>0 Atom: (nm) n>0
Atom{N,} : (n-N,) Atom{,M} : (O,m-M) Atom{N,M} : (n-N,m-M)

Regexp : (n,m) Regexp : (n,m) Regexp : (n,m)
(Regexp) : (n,m aN=n (Mode:Regexp) : (n,m) (?=Regexp) : (0,0)

Regexp : (n,m) Regexp : (n,m) m<o Regexp : (n,m) m<o
(?'Regexp) : (0,0) (?<=Regexp) :(0,0) (?<!'Regexp) : (0,0)

Regexp : (n,m) Pred : (np,mp) Pieces 1:(n;,m) Pieces 2: (ny,mp)
(?>Regexp) : (n,m) (?PredPieces 1|Pieces 7) : < (ng,ny),(mg,mp) >

Pred : (np,mp) Pieces : (ni,m)
(?PredPieces) : (0,my) (N) : (o,)

[Range] : (1,1) ["Range] : (1,1) . (L)1) ~:(0,0)
$:(0,0) Literal :(1,1) \N: {aN,) Class :(1,1)
\b : (0,0) \B : (0,0) \p{Property }:(1,6) \P{Property }:(1,6)

Figure 10.6: Type rules for regular expressions

91

11. Input and Output

11.1 Ports

By definition, ports in MzScheme produce and consume bytes. When a port is provided to a character-based operation,
such agead , the port's bytes are read and interpreted as a UTF-8 encoding of characters (sgeZafyo Thus,

reading a single character may require reading multiple bytes, and a proceduteikeady? may need to peek

several bytes into the stream to determine whether a character is available. In the case of a byte stream that does not
correspond to a valid UTF-8 encoding, functions suckeasl-char may need to peek one byte ahead in the stream

to discover that the stream is not a valid encoding.

When an input port produces a sequence of bytes that is not a valid UTF-8 encoding in a character-reading context,
then bytes that constitute an invalid sequence are converted to the character “?”. Specifically, bytes 255 and 254 are
always converted to “?”, bytes in the range 192 to 253 produce “?” when they are not followed by bytes that form

a valid UTF-8 encoding, and bytes in the range 128 to 191 are converted to “?” when they are not part of a valid
encoding that was started by a preceding byte in the range 192 to 253. To put it another way, when reading a sequence
of bytes as characters, a minimal set of bytes are changed wo@Bat the entire sequence of bytes is a valid UTF-8
encoding.

See§3.6for procedures that facilitate conversions using UTF-8 or other encodings. Seeaisode-input-port
andreencode-output-port in Chapter 33 oPLT MzLib: Libraries Manuafor obtaining a UTF-8-based port
from one that uses a different encoding of characters.

(port? v) returns#t if either (input-port? v) or (output-port? v) is#t , #f otherwise.
(file-stream-port? port) returns#t if the given port is a file-stream port (sé&1.1.6 #f otherwise.
(terminal-port? port) returns#t if the given port is attached to an interactive termiwl,otherwise.

11.1.1 End-of-File Constant

The global variableof is bound to the end-of-file value. The standard Scheme predio&isbject? returnstt
only when applied to this value.

Reading from a port produces an end-of-file result when the port has no more data, but some ports may also return
end-of-file mid-stream. For example, a port connected to a Unix terminal returns an end-of-file when the user types
control-d; if the user provides more input, the port returns additional bytes after the end-of-file.

11.1.2 Current Ports

The standard Scheme procedugesrent-input-port and current-output-port are implemented as
parameters in MzScheme. Sge9.1.2for more information.

163 is the same gghar->integer # \?) .

92

11. Input and Output 11.1. Ports

11.1.3 Opening File Ports

Theopen-input-file andopen-output-file procedures accept an optional flag argument after the filename
that specifies a mode for the file:

e 'binary — bytes are returned from the port exactly as they are read from the file. Binary mode is the default
mode.
e 'text —return and linefeed bytes (10 and 13) are written to and read from the file are filtered by the portin a

platform specific manner:

— Unix and Mac OS X: no filtering occurs.

— Windows reading: a return-linefeed combination from a file is returned by the port as a single linefeed;
no filtering occurs for return bytes that are not followed by a linefeed, or for a linefeed that is not preceded
by a return.

— Windows writing : a linefeed written to the port is translated into a return-linefeed combination in the file;
no filtering occurs for returns.

In Windows,'text mode works only with regular files; attempting to usext with other kinds of files
triggers arexn:fail:filesystem exception.

The open-output-file procedure can also take a flag argument that specifies how to proceed when a file with
the specified name already exists:

e ‘error — raiseexn:fail:filesystem (this is the default)

e replace — remove the old file and write a new one

e 'truncate = — overwrite the old data

e 'truncate/replace —try 'truncate ; if it fails, try 'replace

e 'append — append to the end of the file under Unix and Mac OS X; under Windappend is equivalent

to’update , except that the file position is immediately set to the end of the file after opening it
e ‘'update — open an existing file without truncating it; if the file does not exist ghiefail:filesystem
exception is raised

The open-input-output-file procedure takes the same argumentspEsn-output-file , but it produces

two values: an input port and an output port. The two ports are connected in that they share the underlying file
device. This procedure is intended for use with special devices that can be opened by only one process, such as
COM1 in Windows. For regular files, sharing the device can be confusing. For example, using one port does not
automatically flush the other port’s buffer (sgEL.1.6for more information about buffers), and reading or writing in

one port moves the file position (if any) for the other port. For regular files, use sepaetanput-file and
open-output-file calls to avoid confusion.

Extra flag arguments are passed tpen-output-file in any order. Appropriate flag arguments
can also be passed as the last argument(s)a-with-input-file , With-input-from-file ,
call-with-output-file , and with-output-to-file . When conflicting flag arguments (e.g.,
both ’error and 'replace) are provided toopen-output-file , Wwith-output-to-file , or
call-with-output-file , theexn:fail:contract exception is raised.

Both with-input-from-file andwith-output-to-file close the port they create if control jumps out of

the supplied thunk (either through a continuation or an exception), and the port remains closed if control jumps back
into the thunk. The current input or output port is installed and restoredpaittimeterize (see§7.9.2.

See§11.1.6for more information on file ports. When an input or output file-stream port is created, it is placed into the
management of the current custodian (§&€).

93

11.1. Ports 11. Input and Output

11.1.4 Pipes

(make-pipe [limit-k input-name-v output-name-v]) returns two port values (s€@.2): the first port
is an input port and the second is an output port. Data written to the output port is read from the input port. The ports
do not need to be explicitly closed.

The optionalimit-k argument can b&f or a positive exact integer. limit-k is omitted or#f , the new pipe

holds an unlimited number of unread bytes (i.e., limited only by the available memorinitHk is a positive
number, then the pipe will hold at mdghit-k unread/unpeeked bytes; writing to the pipe’s output port thereafter
will block until a read or peek from the input port makes more space available. (Peeks effectively extend the port’s
capacity until the peeked bytes are read.)

The optionalinput-name-v andoutput-name-v are used as the names for the returned input and out ports,
respectively, if they are supplied. Otherwise, the name of each ppipe .

(pipe-content-length pipe-port) returns the number of bytes contained in a pipe, whgre-port is
either of the pipe’s ports produced yake-pipe . The pipe’s content length counts all bytes that have been written
to the pipe and not yet read (though possibly peeked).

11.1.5 String Ports

Scheme input and output can be read from or collected into a string or byte string:

e (open-input-bytes bytes [name-v]) creates an input port that reads characters foytes (see
§3.6). Modifying bytes afterward does not affect the byte stream produced by the port. The opiemmalv
argument is used as the name for the returned port; the deféstliing

e (open-input-string string [name-v]) creates an input port that reads bytes from the UTF-8 en-
coding (seg1.2.3 of string . The optionahame-v argument is used as the name for the returned port; the
default is’string

e (open-output-bytes [name-v |) creates an output port that accumulates the output into a byte string.
The optionahame-v argument is used as the name for the returned port; the defaatlting

e (open-output-string [name-v]) creates an output port that accumulates the output into a byte string.
This procedure is the same @gen-output-bytes

e (get-output-bytes string-output-port) returns the bytes accumulatedsining-output-port
so far in a freshly-allocated byte string. The bytes also remain in the port for further accumulation or for later
calls toget-output-bytes or get-output-string

e (get-output-string string-output-port) returngbytes->string/utf-8 (get-output-bytes
string-output-port) #\?); see als@3.6.

String input and output ports do not need to be explicitly closed. fllégosition procedure, described in
§11.1.6 works for string ports in position-setting mode.

Example:

(define i (open-input-string "hello world"))
(define o (open-output-string))

(write (read i) o)

(get-output-string 0) ; = "hello"

94

11. Input and Output 11.1. Ports

11.1.6 File-Stream Ports

A port created byopen-input-file , open-output-file , subprocess , and related functions is Ale-
stream port. The initial input, output, and error ports in stand-alone MzScheme are also file-stream ports. The
file-stream-port? predicate recognizes file-stream ports.

An input port is block buffered by default, which means that on any read, the buffer is filled with immediately-available
bytes to speed up future reads. Thus, if a file is modified between a pair of reads to the file, the second read can produce
stale data. Callindjle-position to set an input port’s file position flushes its buffer.

Most output ports are block buffered by default, but a terminal output port is line buffered, and the error output port
is unbuffered. An output buffer is filled with a sequence of written bytes to be committed as a group, either when the
buffer is full (in block mode) or when a newline is written (in line mode).

A port’s buffering can be changed \iige-stream-buffer-mode (described below). The two ports produced
by open-input-output-file have independent buffers.

The following procedures work primarily on file-stream ports:

e (flush-output [output-port]) forces all buffered data in the given output port to be physically written.
If output-port is omitted, then the current output port is flushed. Only file-stream ports and custom ports
(see§11.1.7) use buffers; when called on a port without a buffersh-output has no effect.

By default, a file-stream port is block-buffered, but this behavior can be modifiedilei$tream-buffer-mode
In addition, the initial current output and error ports are automatically flushed veéweh?, read-line
read-bytes , read-string , etc. are performed on the initial standard input port.

o (file-stream-buffer-mode port [mode-symbol]) gets or sets the buffer mode fport , if pos-
sible. All file-stream ports support setting the buffer mode, TCP portsi(skeé) support setting and getting the
buffer mode, and custom ports (Sg€l.1.7) may support getting and setting buffer modes.

If mode-symbol is provided, it must be one dhone , 'line (output only), orblock , and the port’s
buffering is set accordingly. If the port does not support setting the modexthéil exception is raised.

If mode-symbol is not provided, the current mode is returnedbris returned if the mode cannot be deter-
mined. Iffile-stream-port is an input port andnode-symbol is’line , theexn:fail:contract
exception is raised.

For an input port, peeking always places peeked bytes into the port's buffer, even when the port's
buffer mode is’none ; furthermore, on some platforms, testing the port for input (her-ready?

or sync) may be implemented with a peek. If an input port's buffer modensne , then at most

one byte is read foread-bytes-avail!* , read-bytes-avail! , peek-bytes-avail'* , or
peek-bytes-avail! ; if any bytes are buffered in the port (e.g., to satisfy a previous peek), the procedures
may access multiple buffered bytes, but no further bytes are read.

o (file-position port) returns the current read/write positiongdrt . For file-stream and string ports,
(file-position port k-or-eof) sets the read/write position keor-eof relative to the beginning
of the file/string ifk-or-eof is a number, or to the current end of the file/string-ibr-eof is eof . In
position-setting modefjle-position raises theexn:fail:contract exception for port kinds other
than file-stream and string ports. Callifitg-position without a position on a non-file/non-string input
port returns the number of bytes that have been read from that port if the position is knowjilseé.),
otherwise thexn:fail:filesystem exception is raised.

When (file-position port k) sets the positiok beyond the current size of an output file or string,
the file/string is enlarged to sizeand the new region is filled wit\nul . If k is beyond the end of an input
file or string, then reading thereafter retusf without changing the port’s position.

2Flushing is performed by the default port read handler §dde2.§ rather than byead itself.

95

11.1. Ports 11. Input and Output

Not all file-stream ports support setting the positionfile-position is called with a position argument
on such a file-stream port, tlen:fail:filesystem exception is raised.

When changing the file position for an output port, the port is first flushed if its buffer is not empty. Similarly,
setting the position for an input port clears the port's buffer (even if the new position is the same as the old
position). However, although input and output ports producedd®n-input-output-file share the file
position, setting the position via one port does not flush the other port’s buffer.

e (port-file-identity file-stream-port) returns an exact positive integer that represents the iden-
tity of the device and file read or written lije-stream-port . For two ports whose open times overlap,
the result ofport-file-identity is the same for both ports if and only if the ports access the same de-
vice and file. For ports whose open times do not overlap, no guarantee is provided for the port identities (even
if the ports actually access the same file) — except as can be inferred through relationships with other ports.

If file-stream-port is closed, theexn:fail exception is raised. Under Windows 95, 98, and Me, if
file-stream-port is connected to a pipe instead of a file, then:fail:filesystem exception is
raised.

11.1.7 Custom Ports

The make-input-port and make-output-port procedures create custom ports with arbitrary control pro-
cedures. Correctly implementing a custom port can be tricky, because it amounts to implementing a device driver.
Custom ports are mainly useful to obtain fine control over the action of committing bytes as read or written.

Many simple port variations can be implemented using threads and pipes. For exargplendt-char is a
function that produces either a characteeof , it can be turned into an input port as follows

(let-values ([(r w) (make-pipe 4096)])
;; Create a thread to move chars from get-next-char to the pipe
(thread (lambda () (let loop ()
(let (v (get-next-char N
(if (eof-object? v)
(close-output-port w)
(begin
(write-char (AR
(loop)))))))

;; Return the read end of the pipe

r)

Theport.ss in MzLib provides several other port constructors; see Chapter 88 6fMzLib: Libraries Manual

11.1.7.1 @STOMINPUT

(make-input-port name-v read-proc optional-peek-proc close-proc [optional-progress-evt-proc
optional-commit-proc optional-location-proc count-lines!-proc init-position optional-buffer-mode-proc

creates an input port. The port is immediately open for readingotfe-proc procedure has no side effects, then

the port need not be explicitly closed.

e name-v — the name for the input port, which is reporteddbject-name (see§6.2.3.

e read-proc — a procedure that takes a single argument: a mutable byte string to receive read bytes. The
procedure’s result is one of the following:

— the number of bytes read, as an exact, non-negative integer;
— eof ;

96

11. Input and Output 11.1. Ports

— a procedure of arity four (representing a “special” result, as discussed further below) and optionally of
arity two, but a procedure result is allowed only whaptional-peek-proc is not#f ; or

— a synchronizable event (sg&.7) that becomes ready when the read is complete (roughly): the event's
value can one of the above three results or another event like itself; in the last case, a reading process loops
with sync until it gets a non-event result.

Theread-proc procedure must not block indefinitely. If no bytes are immediately available for reading, the
read-proc must returrD or an event, and preferably an event (to avoid busy waits) ré&eé-proc should

not return0 (or an event whose value @& when data is available in the port, otherwise polling the port will
behave incorrectly. An event result from an event can also break polling.

If the result of aread-proc call is not one of the above values, thgn:fail:contract exception

is raised. If a returned integer is larger than the supplied byte string’s lengtlexthfail:contract

exception is raised. lbptional-peek-proc is #f and a procedure for a special result is returned, the
exn:fail:contract exception is raised.

Theread-proc procedure can report an error by raising an exception, but only if no bytes are read. Similarly,
no bytes should be readébf , an event, or a procedure is returned. In other words, no bytes should be lost due
to spurious exceptions or non-byte data.

A port’s reading procedure may be called in multiple threads simultaneously (if the port is accessible in multiple
threads), and the port is responsible for its own internal synchronization. Note that improper implementation of
such synchronization mechanisms might cause a non-blocking read procedure to block indefinitely.

If optional-peek-proc , optional-progress-evt-proc , andoptional-commit-proc are all
provided and now# , then the following is an acceptable implementatiomeafd-proc

(lambda (bstr)
(let =« ([progress-evt (progress-evt-proc)
[v (peek-proc bstr 0 progress-evt)]
(cond
[(sync/timeout O progress-evt) 0] ; try again
[(evt? v) (wrap-evt v (lambda (x) 0))] ; sync, then try again
[(@nd (number? v) (zero? v)) 0] ; try again
[else
(if (optional-commit-proc (if (number? v) v 1)
progress-evt
always-evt)
% ; got a result
0)))) ; try again

An implementor may choose not to implement tional- procedures, however, and even an implementor
who does supplypptional- procedures may provide a differenetad-proc that uses a fast path for non-
blocking reads.

e optional-peek-proc — either#f or a procedure that takes three arguments:

— a mutable byte string to receive peeked bytes;
— a non-negative number of bytes (or specials) to skip before peeking; and
— either#f or a progress event produced dytional-progress-evt-proc

The results and conventions foptional-peek-proc are mostly the same as foead-proc . The
main difference is in the handling of the progress event, if it is#fat If the given progress event becomes
ready, theoptional-peek-proc must abort any skip attempts and not peek any values. In particular,
optional-peek-proc must not peek any values if the progress event is initially ready.

Unlike read-proc , optional-peek-proc should producéf (or an event whose value#) if no bytes
were peeked because the progress event became readyrehikgroc , a0 result indicates that another
attempt is likely to succeed, $bis inappropriate when the progress event is ready. Alsorllel-proc
optional-peek-proc must not block indefinitely.

97

11.1. Ports 11. Input and Output

The skip count provided toptional-peek-proc is a number of bytes (or specials) that must remain
present in the port—in addition to the peek results—when the peek results are reported. If a progress event is
supplied, then the peek is effectively canceled when another process reads data before the given number can
be skipped. If a progress event is not supplied and data is read, then the peek must effectively restart with the
original skip count.

The system does not check that multiple peeks return consistent results, or that peeking and reading produce
consistent results.

If optional-peek-proc is #f , then peeking for the port is implemented automatically in terms of reads,
but with several limitations. First, the automatic implementation is not thread-safe. Second, the automatic
implementation cannot handle special results (non-byte and non-eof¢adeproc cannot return a pro-
cedure for a special wheoptional-peek-proc is #f . Finally, the automatic peek implementation is
incompatible with progress events, sajftional-peek-proc is #f , thenprogress-evt-proc and
optional-commit-proc must be#f . See alsonake-input-port/peek-to-read in Chapter 33 of

PLT MzLib: Libraries Manual

e close-proc — a procedure of zero arguments that is called to close the port. The port is not considered
closed until the closing procedure returns. The port’s procedures will never be used again via the port after it is
closed. However, the closing procedure can be called simultaneously in multiple threads (if the port is accessible
in multiple threads), and it may be called during a call to the other procedures in another thread; in the latter
case, any outstanding reads and peeks should be terminated with an error.

e optional-progress-evt-proc — either#f (the default), or a procedure that takes no arguments and
returns an event. The event must become ready only after data is next read from the port or the port is closed.
After the event becomes ready, it must remain so. (Seesals@phore-peek-evt in§7.4.)

If optional-progress-evt-proc is #f , thenport-provides-progress-evts? applied to the
port will produce#f , and the port will not be a valid argumentgort-progress-evt

e optional-commit-proc — either#f (the default), or a procedure that takes three arguments:

— an exact, positive integés;

— a progress event produced bgtional-progress-evt-proc ;

— an eventdone-evt , that is either a channel-put event, channel, semaphore, semaphore-peek event, al-
ways event, or never event.

A commit corresponds to removing data from the stream that was previously peeked, but only if no other process
removed data first. (The removed data does not need to be reported, because it has been peeked already.) More
precisely, assuming thip bytes, specials, and mid-stre@of s have been previously peeked or skipped at the

start of the port’s streanopptional-commit-proc must satisfy the following constraints:

— It must return only when the commit is complete or when the given progress event becomes ready.

— It must commit only ifk; is positive.

— If it commits, then it must do so with eithdy items ork, items, whichever is smaller, and onlyk is
positive.

— It must never choosdone-evt in a synchronization after the given progress event is ready, or after
done-evt has been synchronized once.

— It must not treat any data as read from the port unfiesge-evt is chosen in a synchronization.

— It must not block indefinitely itlone-evt is ready; it must return soon after the read completes or soon
after the given progress event is ready, whichever is first.

— It can report an error by raising an exception, but only if no data is committed. In other words, no data
should be lost due to an exception, including a break exception.

— It must return a true value if data is committéd, otherwise. When it returns a value, the given progress
event must be ready (perhaps because data was just committed).

— It must raise an exception if no data (includiagf) has been peeked from the beginning of the port's
stream, or if it would have to block indefinitely to wait for the given progress event to become ready.

A call to optional-commit-proc is parameterize-break ed to disable breaks.

98

11. Input and Output 11.1. Ports

e optional-location-proc — either#f (the default), or a procedure that takes no arguments and returns
three values: the line number for the next item in the port's stream (a positive nuniiey, eine column number
for the next item in the port’s stream (a non-negative numbéif 9r and the position for the next item in the
port’s stream (a positive number #f). See alsg11.2.1.1

This procedure is only called if line counting is enabled for the porpeid-count-lines! (in which case
count-lines!-proc is called). Theread , read-syntax , read-honu , andread-honu-syntax
procedures assume that reading a non-whitespace character increments the column and position by one.

e count-lines!-proc — a procedure of no arguments that is called if and when line counting is enabled for
the port. The default procedurevsid .

e init-position — an exact, positive integer that determines the position of the port’s first item, used when
line counting isnot enabled for the port. The defaultis

e optional-buffer-mode-proc — either#f (the default) or a procedure that accepts zero or one argu-
ments. I[foptional-buffer-mode-proc is #f , then the resulting port does not support a buffer-mode
setting. Otherwise, the procedure is called with one symbol arguriidotK or 'none) to set the buffer
mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result must be
‘block ,’none , or#f (unknown). Se¢11.1.6for more information on buffer modes.

Whenread-proc or optional-peek-proc (or an event produced by one of these) returns a procedure, and
the procedure is used to obtain a non-byte resililhe procedure is called bgad ,* read-syntax , read-honu
read-honu-syntax , read-byte-or-special , read-char-or-special , peek-byte-or-special ,

or peek-char-or-special . The special-value procedure can return an arbitrary value, and it will be called zero
or one times (not necessarily before further reads or peeks from the portj1 5&efor more details on the proce-
dure’s arguments and result.

If read-proc or optional-peek-proc returns a special procedure when called by any reading proce-
dure other thanread , read-syntax , read-honu , read-honu-syntax , read-char-or-special ,
peek-char-or-special , read-byte-or-special , or peek-byte-or-special , then theexn:fail.contract

exception is raised.

Examples:

;; A port with no input...
;; Easy: (open-input-bytes #")
5 Hard:
(define /dev/null-in
(make-input-port ’'null
(lambda (s) eof)

(lambda (skip s progress-evt) eof)
void
(lambda () never-evt)
(lambda (k progress-evt done-evt)
(error "no successful peeks!"))))
(read-char /dev/null-in) ; = eof
(peek-char /dev/null-in), = eof
(read-byte-or-special /dev/null-in) ;= eof
(peek-byte-or-special /dev/null-in 100) ; = eof

;; A port that produces a stream of 1s:
(define infinite-ones

3This non-byte result isot intended to return a character @of ; in particular,read-char raises an exception if it encounters a non-byte
from a port.
“More precisely, the procedure is used by the default port read handler; séé B3

99

11.1. Ports 11. Input and Output

(make-input-port

‘ones
(lambda (s)
(bytes-set! s 0 (char->integer # \1)) 1)
#f
void))
(read-string 5 infinite-ones) ; = "l11111"

;; But we can't peek ahead arbitrarily far, because the
;; automatic peek must record the skipped bytes:
(peek-string 5 (expt 2 5000) infinite-ones) ; = error: out of memory

;; An infinite stream of 1s with a specific peek procedure:
(define infinite-ones
(let (one! (lambda (s)

(bytes-set! s 0 (char->integer # \1)) 1))
(make-input-port
‘ones
onel
(lambda (s skip progress-evt) (one! s))
void)))
(read-string 5 infinite-ones), = "11111"

;; Now we can peek ahead arbitrarily far:
(peek-string 5 (expt 2 5000) infinite-ones) ; = "11111"

;; The port doesn’'t supply procedures to implement progress events:
(port-provides-progress-evts? infinite-ones) = #f
(port-progress-evt infinite-ones) ; error: no progress events

;; Non-byte port results:
(define infinite-voids
(make-input-port
'voids
(lambda (s) (lambda args ‘void))
(lambda (skip s) (lambda args ‘void))

void))
(read-char infinite-voids) ; = error: non-char in an unsupported context
(read-char-or-special infinite-voids) ;. = 'void

;; This port produces O, 1, 2, 0, 1, 2, etc., but it is not

;; thread-safe, because multiple threads might read and change n.
(define mod3-cycle/one-thread
(let = ([n 2]
[mod! (lambda (s delta)
(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
£3))

(make-input-port
'mod3-cycle/not-thread-safe
(lambda (s)
(set! n (modulo (addl n) 3))
(mod! s 0))
(lambda (s skip)
(mod! s skip))

100

11. Input and Output 11.1. Ports

void)))
(read-string 5 mod3-cycle/one-thread) ; = "01201"
(peek-string 5 (expt 2 5000) mod3-cycle/one-thread) ;. = "20120"

;; Same thing, but thread-safe and kill-safe, and with progress
;; events. Only the server thread touches the stateful part
;; directly. (See the output port examples for a simpler thread-safe
;; example, but this one is more general.)
(define (make-mod3-cycle)
(define read-reg-ch (make-channel))
(define peek-reg-ch (make-channel))

(define progress-reg-ch (make-channel))
(define commit-reg-ch (make-channel))
(define close-req-ch (make-channel))
(define closed? #f)

(define n 0)

(define progress-sema #f)
(define (mod! s delta)
(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
1
;; The server has a list of outstanding commit requests,
; and it also must service each port operation (read,
;; progress-evt, etc.)

(define (serve commit-reqs response-evts)
(apply
sync
(handle-evt read-reg-ch (‘handle-read commit-reqs response-evts)
(handle-evt progress-reg-ch (handle-progress commit-reqs response-evts)
(handle-evt commit-reg-ch (add-commit commit-reqs response-evts)
(handle-evt close-reg-ch (handle-close commit-reqs response-evts)
(append
(map (make-handle-response commit-reqs response-evts) response-evts)
(map (make-handle-commit commit-reqs response-evts) commit-reqs))))
;; Read/peek request: fill in the string and commit
(define ((handle-read commit-reqs response-evts) r)

(let [s (car r)]
[skip (cadr r)]
[ch (caddr)]
[nack (cadddr r)]
[peek? (cddddr r)])
(unless closed?
(mod! s skip)
(unless peek?
(commit! 1))
;; Add an event to respond:
(serve commit-reqs
(cons (choice-evt nack
(channel-put-evt ch (if closed? 0 1))
response-evts))))
;; Progress request: send a peek evt for the current
;; progress-sema
(define ((handle-progress commit-reqs response-evts))
(let [ch (car r)]

101

11.1. Ports 11. Input and Output

[nack (cdr r)])
(unless progress-sema
(set! progress-sema (make-semaphore (if closed? 1 0))))
;; Add an event to respond:
('serve commit-reqs
(cons (choice-evt nack
(channel-put-evt
ch
(semaphore-peek-evt progress-sema)
response-evts))))
;; Commit request: add the request to the list
(define ((add-commit commit-reqs response-evts) r)
(serve (cons r commit-reqs) response-evts)
;; Commit handling: watch out for progress, in which case
;; the response is a commit failure; otherwise, try
;; to sync for a commit. In either event, remove the
;; request from the list

(define ((make-handle-commit commit-reqs response-evts) 1)
(let [k (car r)]
[progress-evt (cadr)]

[done-evt (caddr r)]

[ch (cadddr r)]

[nack (cddddr r)])
;; Note: we don't check that k is < the sum of
;; previous peeks, because the entire stream is actually
;; known, but we could send an exception in that case.

(choice-evt
(handle-evt progress-evt
(lambda (x)
(sync nack (channel-put-evt ch #f))

(serve (remg r commit-reqs) response-evis)))
;7 Only create an event to satisfy done-evt if progress-evt
;; isn't already ready.
;; Afterward, if progress-evt becomes ready, then this
;; event-making function will be called again, because
;; the server controls all posts to progress-evt.

(if (sync/timeout 0 progress-evt)
never-evt
(‘handle-evt done-evt
(lambda (v)
(commit! k)
(sync nack (channel-put-evt ch #t))

(serve (remg r commit-reqs) response-evis)))))))
;; Response handling: as soon as the respondee listens,
;; remove the response
(define ((make-handle-response commit-reqs response-evts) evt)

(handle-evt evt
(lambda (x)
(serve commit-reqs

(remqg evt response-evts M)
;; Close handling: post the progress sema, if any, and set
;; the closed? flag
(define ((handle-close commit-reqs response-evts) r)

102

11. Input and Output 11.1. Ports

(let [ch (car r)]
[nack (cdr r)])
(setl closed? #t)
(when progress-sema
(semaphore-post progress-sema))
(serve commit-reqs
(cons (choice-evt nack
(channel-put-evt ch (void)))
response-evts))))
;; Helper for reads and post-peek commits:
(define (commit! k)
(when progress-sema
(semaphore-post progress-sema)
(setl progress-sema #f))
(set! n (+ n k))
;; Start the server thread:
(define server-thread (thread (lambda () (serve null null))))

;; Client-side helpers:
(define (reg-evt f)
(nack-guard-evt
(lambda (nack)
;; Be sure that the server thread is running:
(thread-resume server-thread (current-thread))
;; Create a channel to hold the reply:
(let ([ch (make-channel)])
(f ch nack)
ch)))
(define (read-or-peek-evt s skip peek?)
(reg-evt (lambda (ch nack)
(channel-put read-reg-ch (list* s skip ch nack peek?)))))
;; Make the port:
(make-input-port 'mod3-cycle
;; Each handler for the port just sends
;; @ request to the server
(lambda (s) (read-or-peek-evt s 0 #f))
(lambda (s skip) (read-or-peek-evt s skip #1))
(lambda () ; close
(sync (reg-evt
(lambda (ch nack)
(channel-put progress-reg-ch (list* ch nack)))))
(lambda () ; progress-evt
(sync (reg-evt
(lambda (ch nack)
(channel-put progress-reg-ch (list* ch nack))))))
(lambda (k progress-evt done-evt) ; commit
(sync (reg-evt
(lambda (ch nack)
(channel-put commit-reg-ch
(list* k progress-evt done-evt ch nack

(let (mod3-cycle (make-mod3-cycle)])
(let ([resultl #f]
[result2 #f])

103

D))

11.1. Ports 11. Input and Output

(let ([t1 (thread (lambda ()

(set! resultl (read-string 5 mod3-cycle)]
[t2 (thread (lambda ()
(set! result2 (read-string 5 mod3-cycle))))])
(thread-wait t1)
(thread-wait t2)
(string-append resultl " result2))) ; = "02120,10201", maybe
(let [s (make-bytes 1)]
[progress-evt (port-progress-evt mod3-cycle)])
(peek-bytes-avail! s 0 progress-evt mod3-cycle) =1
S ;o= #1
(port-commit-peeked 1 progress-evt (make-semaphore 1)
mod3-cycle) ;= #t
(sync/timeout 0 progress-evt) ;= progress-evt
(peek-bytes-avail! s O progress-evt mod3-cycle), =0
(port-commit-peeked 1 progress-evt (make-semaphore 1)
mod3-cycle)) ; = #
(close-input-port mod3-cycle))
11.1.7.2 @sTomM OUTPUT
(make-output-port name-v evt write-proc close-proc [optional-write-special-proc
optional-write-evt-proc optional-special-evt-proc optional-location-proc count-lines!-proc
init-position optional-buffer-mode-proc]) creates an output port. The port is immediately open for
writing. If close-proc procedure has no side effects, then the port need not be explicitly closed. The port can
buffer data within itswrite-proc andoptional-write-special-proc procedures.

e name-v — the name for the output port, which is reporteddiject-name (see§6.2.3.

e evt — a synchronization event (S€&.7; e.g., a semaphore or another port). The event is used in place of
the output port when the port is supplied to synchronization proceduresylite. Thus, the event should be
unblocked when the port is ready for writing at least one byte without blocking, or ready to make progress in
flushing an internal buffer without blocking. The event must not unblock unless the port is ready for writing;
otherwise, the guaranteessfnc will be broken for the output port. Usdways-evt if writes to the port
always succeed without blocking.

e write-proc — a procedure of five arguments:

— an immutable byte string containing bytes to write;

a non-negative exact integer for a starting offset (inclusive) into the byte string;

a non-negative exact integer for an ending offset (exclusive) into the byte string;

a boolean#f indicates that the port is allowed to keep the written bytes in a buffer, and that it is allowed

to block indefinitely#t indicates that the write should not block, and that the port should attempt to flush

its buffer and completely write new bytes instead of buffering them;

— abooleantt indicates that if the port blocks for a write, then it should enable breaks while blocking (e.g.,
usingsync/enable-break ; this argument is alway#f if the fourth argument i¢t .

The procedure returns one of the following:

— a non-negative exact integer representing the number of bytes written or buffered,;

— #f if no bytes could be written, perhaps because the internal buffer could not be completely flushed:;

— a synchronizable event (sé&.7) that acts like the result ofrrite-bytes-avail-evt to complete
the write.

Sincewrite-proc can produce an event, an acceptable implementatiovrité-proc is to pass its first
three arguments to the portgtional-write-evt-proc . Some port implementors, however, may choose

104

11. Input and Output 11.1. Ports

not to provideoptional-write-evt-proc (perhaps because writes cannot be made atomic), or may im-
plementwrite-proc to enable a fast path for non-blocking writes or to enable buffering.

From a user’s perspective, the difference between buffered and completely written data is (1) buffered data can
be lost in the future due to a failed write, and {Rjsh-output forces all buffered data to be completely
written. Under no circumstances is buffering required.

If the start and end indices are the same, then the fourth argumenitéeproc will be #f , and the write
request is actually a flush request for the port’s buffer (if any), and the result shoQlfbba successful flush
(or if there is no buffer).

The result should never Ifeif the start and end indices are different, otherwisegtkiefail:contract ex-
ception is raised. If a returned integer is larger than the supplied byte-string rangentfegl:contract
exception is raised.

The#f result should be avoided, unless the next write attempt is likely to work. Otherwise, if data cannot be
written, return an event instead.

An event returned bwrite-proc can returré#f or another event like itself, in contrast to events produced by
write-bytes-avail-evt or optional-write-evt-proc . A writing process loops witlkync until
it obtains a non-event result.

The write-proc procedure is always called with breaks disabled, independent of whether breaks were en-
abled when the write was requested by a client of the port. If breaks were enabled for a blocking operation, then
the fifth argument tawvrite-proc will be #t , which indicates thatvrite-proc should re-enable breaks

while blocking.

If the writing procedure raises an exception, due either to write or commit operations, it must not have committed
any bytes (though it may have committed previously buffered bytes).

A port’s writing procedure may be called in multiple threads simultaneously (if the port is accessible in multiple
threads). The port is responsible for its own internal synchronization. Note that improper implementation of
such synchronization mechanisms might cause a non-blocking write procedure to block.

e close-proc — a procedure of zero arguments that is called to close the port. The port is not considered
closed until the closing procedure returns. The port's procedures will never be used again via the port after it is
closed. However, the closing procedure can be called simultaneously in multiple threads (if the port is accessible
in multiple threads), and it may be called during a call to the other procedures in another thread; in the latter
case, any outstanding writes or flushes should be terminated immediately with an error.

e optional-write-special-proc — either#f (the default), or a procedure to handlate-special
calls for the port. If#f , then the port does not support special output, pord-writes-special? will
return#f when applied to the port.

If a procedure is supplied, it takes three arguments: the special value to write, a boolean#that the
procedure can buffer the special value and block indefinitely, and a boolean #tatfithe procedure should
enable breaks while blocking. The result is one of the following:

— anon-event true value, which indicates that the special is written;
— #f if the special could not be written, perhaps because an internal buffer could not be completely flushed;
— asynchronizable event (sg€.7) that acts like the result efrite-special-evt to complete the write.

Sinceoptional-write-special-proc can return an event, passing the first argument to an implementa-
tion of option-write-special-evt-proc is acceptable as aptional-write-special-proc

As forwrite-proc , the#f resultis discouraged, since it can lead to busy waiting. Also asrfite-proc
an event produced hyptional-write-special-proc is allowed to producéf or another event like it-
self. Theoptional-write-special-proc procedure is always called with breaks disabled, independent
of whether breaks were enabled when the write was requested by a client of the port.

e optional-write-evt-proc — either#f (the default) or a procedure of three arguments:

— an immutable byte string containing bytes to write;

105

11.1. Ports 11. Input and Output

— anon-negative exact integer for a starting offset (inclusive) into the byte string, and
— anon-negative exact integer for an ending offset (exclusive) into the byte string.

The result is a synchronizable event (§&€/) to act as the result afrite-bytes-avail-evt for the port
(i.e., to complete a write or flush), which becomes available only as data is committed to the port’s underlying
device, and whose result is the number of bytes written.

If optional-write-evt-proc is #f , thenport-writes-atomic? will produce#f with applied to
the port, and the port will not be a valid argument to procedures suahi@sbytes-avail-evt

Otherwise, an event returned bgtional-write-evt-proc must not cause data to be written to the port
unless the event is chosen in a synchronization, and it must write to the port if the event is chosen (i.e., the write
must appear atomic with respect to the synchronization).

If the event’s result integer is larger than the supplied byte-string rangexthtail:contract exception

is raised by a wrapper on the event. If the start and end indices are the same (i.e., no bytes are to be written), then
the event should produ@when the buffer is completely flushed. (If the port has no buffer, then it is effectively
always flushed.)

If the event raises an exception, due either to write or commit operations, it must not have committed any new
bytes (though it may have committed previously buffered bytes).

Naturally, a port's events may be used in multiple threads simultaneously (if the port is accessible in multiple
threads). The port is responsible for its own internal synchronization.

optional-write-special-evt-proc — either #f (the default), or a procedure to handle
write-special-evt calls for the port. This argument must#k if eitheroptional-write-special-proc

or optional-write-evt-proc is #f , and it must be a procedure if both of those arguments are proce-
dures.

If it is a procedure, it takes one argument: the special value to write. The resulting event (with its constraints) is
analogous to the result optional-write-evt-proc

If the event raises an exception, due either to write or commit operations, it must not have committed the special
value (though it may have committed previously buffered bytes and values).

optional-location-proc — either#f (the default), or a procedure that takes no arguments and returns
three values: the line number for the next item written to the port’s stream (a positive nur#ber tire column
number for the next item written to port’s stream (a non-negative numbiér prand the position for the next
item written to port’s stream (a positive numberidr). See als¢11.2.1.1

This procedure is only called if line counting is enabled for the portpdg-count-lines! (in which
casecount-lines!-proc is called).
count-lines!-proc — a procedure of no arguments that is called if and when line counting is enabled for

the port. The default procedurevsid .

init-position — an exact, positive integer that determines the position of the port’s first output item, used
when line counting imotenabled for the port. The defaultis

optional-buffer-mode-proc — either#f (the default) or a procedure that accepts zero or one argu-
ments. [foptional-buffer-mode-proc is #f , then the resulting port does not support a buffer-mode
setting. Otherwise, the procedure is called with one symbol arguridotK , ’line , or’'none) to set the

buffer mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result
must beblock ,’line ,’none , or#f (unknown). Se§11.1.6for more information on buffer modes.

Examples:

;; A port that writes anything to nowhere:
(define /dev/null-out

106

(make-output-port

11. Input and Output

11.1. Ports

null
always-evt
(lambda (s start end non-block? breakable?) (— end start))
void
(lambda (special non-block? breakable?) #t)
(lambda (s start end) (wrap-evt
always-evt
(lambda (x)

(— end start))))
(lambda (special) always-evt)))

(display "hello" /dev/null-out) ; =void

(write-bytes-avalil #'hello" /dev/null-out), =5

(' write-special 'hello /dev/null-out) ;o =t

(sync (write-bytes-avail-evt #'hello" /dev/null-out) =5

;» A part that accumulates bytes as characters in a list,
;; but not in a thread-safe way:
(define accum-list null)
(define accumulator/not-thread-safe
(make-output-port
'accum/not-thread-safe
always-evt
(lambda (s start end non-block? breakable?)
(setl accum-list
(append accum-list
(map integer->char
(bytes- >list (subbytes s start end NN
(— end start))

void))
(display "hello" accumulator/not-thread-safe)
accume-list ;o= '(# \h #\e #\| #\| #\0)

; Same as before, but with simple thread-safety:
(define accum-list null)
(define accumulator

(let * ([lock (make-semaphore 1)]

[lock-peek-evt (semaphore-peek-evt lock)i
(make-output-port
‘accum
lock-peek-evt
(lambda (s start end non-block? breakable?)
(if (semaphore-try-wait? lock)
(begin

(setl accum-list
(append accum-list
(map integer->char
(bytes- >list (subbytes s start end NN)

(semaphore-post lock)

(— end start))
;; Cheap strategy: block until the list is unlocked,
;; then return 0, so we get called again
(wrap-evt

lock-peek

(lambda (x) 0))))

107

11.2. Reading and Writing 11. Input and Output

void)))
(display "hello" accumulator)
accume-list ;o= '(# \h #\e #\| #\| #\0)

;v A port that transforms data before sending it on
;; to another port. Atomic writes exploit the
;; underlying port’s ability for atomic writes.
(define (make-latin-1-capitalize port)
(define (byte-upcase s start end)
(list- >bytes
(map (lambda (b) (char->integer
(char-upcase
(integer->char b))
(bytes- >list (subbytes s start end NN
(make-output-port
'byte-upcase
;; This port is ready when the original is ready:

port
;; Writing procedure:
(lambda (s start end non-block? breakable?)

(let [s (byte-upcase s start end)]
(if non-block?
(write-bytes-avail x S port)
(begin
(display s port)
(bytes-length s))))

;; Close procedure --- close original port:

(lambda () (close-output-port port))

#f

;. Write event:

(and (port-writes-atomic? port)

(lambda (s start end)
(' write-bytes-avail-evt (byte-upcase s start end) port)))))

(define orig-port (open-output-string))
(define cap-port (make-latin-1-capitalize orig-port)
(display "Hello" cap-port)
(get-output-string orig-port) ; = "HELLO"
(sync (write-bytes-avail-evt #'Bye" cap-port)); = 3
(get-output-string orig-port) ; = "HELLOBYE"

11.2 Reading and Writing

MzScheme’s support for reading and writing includes many extensions compaReR$oboth at the level of indi-
vidual bytes and characters and at the level of S-expressions.

11.2.1 Reading Bytes, Characters, and Strings

In addition to the standard reading procedures, MzScheme provides byte-reading procedure, block-reading procedures
such agead-line , and more.

e (read-line [input-port mode-symbol) returns a string containing the next line of bytes from
input-port . If input-port is omitted, the current input port is used.

108

11. Input and Output 11.2. Reading and Writing

Characters are read fromput-port until a line separator or an end-of-file is read. The line separator is
not included in the result string (but it is removed from the port's stream). If no characters are read before an
end-of-file is encountere@pf is returned.

Themode-symbol argument determines the line separator(s). It must be one of the following symbols:

— 'linefeed breaks lines on linefeed characters; this is the default.

— return breaks lines on return characters.

— 'return-linefeed breaks lines on return-linefeed combinations. If a return character is not followed
by a linefeed character, it is included in the result string; similarly, a linefeed that is not preceded by a
return is included in the result string.

— 'any breaks lines on any of a return character, linefeed character, or return-linefeed combination. If a
return character is followed by a linefeed character, the two are treated as a combination.

— 'any-one breaks lines on either a return or linefeed character, without recognizing return-linefeed com-
binations.

Return and linefeed characters are detected after the conversions that are automatically performed when reading
a file in text mode. For example, reading a file in text mode under Windows automatically changes return-
linefeed combinations to a linefeed. Thus, when a file is opened in text mModdeed is usually the
appropriataead-line mode.

e (read-bytes-line [input-port mode-symbol]) is analogous toead-line , but it reads bytes
and produces a byte string.

e (read-string k [input-port]) returns a string containing the nekicharacters fronnput-port
The default value oihput-port is the current input port.

If k is 0, then the empty string is returned. Otherwise, if fewer tkasharacters are available before an end-
of-file is encountered, then the returned string will contain only those characters before the end-of-file (i.e., the
returned string’s length will be less th&). ° If no characters are available before an end-of-file, teh is
returned.

If an error occurs during reading, some characters may be lost (eadfstring successfully reads some
characters before encountering an error, the characters are dropped.)

e (read-bytes k [input-port]) is analogous toead-string , but it reads bytes and produces a byte
string.

e (read-string! string [input-port start-k end-k]) reads characters frormput-port
like read-string , but puts them intcstring starting from indexstart-k (inclusive) up toend-k
(exclusive). The default value @fiput-port is the current input port. The default valuesifirt-k is
0. The default value oénd-k is the length of thestring . Like substring , theexn:fail:contract
exception is raised start-k orend-k is out-of-range fostring

If the difference betweestart-k andend-k is 0, thenO is returned anthytes is not modified. If no bytes
are available before an end-of-file, theaf is returned. Otherwise, the return value is the number of bytes
read. Ifmbytes are read and< end-k — start-k , thenbytes is not modified at indicestart-k ~ + m
thoughend-k .

e (read-bytes! string [input-port start-k end-k]) is analogous teead-string! , but it
reads bytes and puts them into a byte string.

e (read-bytes-avail! bytes [input-port start-k end-k) is like read-bytes! | but re-
turns without blocking after reading immediately-available bytes, and it may return a procedure for a “special”
result. Theread-bytes-avail! procedure blocks only if no bytes (or specials) are yet available. Also
unlike read-bytes! , read-bytes-avalil! never drops bytes; ffead-bytes-avail! successfully
reads some bytes and then encounters an error, it suppresses the error (treating it roughly like an end-of-file) and

5A temporary string of siz& is allocated while reading the input, even if the size of the result is lessticharacters.

109

11.2. Reading and Writing 11. Input and Output

110

returns the read bytes. (The error will be triggered by future reads.) If an error is encountered before any bytes
have been read, an exception is raised.

Wheninput-port produces a special value, as describedlifi.1.7 the result is a procedure of four ar-
guments. The four arguments correspond to the location of the special value within the port, as described in

§11.1.7 If the procedure is called more than once with valid argumentssthdail:.contract exception
is raised. Ifread-bytes-avail returns a special-producing procedure, then it does not place characters
in bytes . Similarly, read-bytes-avalil places only as many bytes inbytes as are available before a

special value in the port’s stream.

(read-bytes-avail'* bytes [input-port start-k end-k]) is like read-bytes-avail! ,
except that it return® immediately if no bytes (or specials) are available for reading and the end-of-file is not
reached.

(read-bytes-avail!/enable-break bytes [input-port start-k end-k]) islike read-bytes-avail!
except that breaks are enabled during the read (see &isd. If breaking is disabled when
read-bytes-availl/enable-break is called, and if theexn:break exception is raised as a result

of the call, then no bytes will have been read frimput-port

(peek-string k skip-k [input-port]) is similar toread-string , except that the returned char-

acters are preserved in the port for future reads. (More precisely, undecoded bytes are left for future reads.) The
skip-k argument indicates a number of byte®t characters) in the input stream to skip before collecting
characters to return; thus, in total, the nskip-k bytes plusk characters are inspected.

For most kinds of ports, inspectirgkip-k bytes andk characters requires at leastip-k +k bytes of

memory overhead associated with the port, at least until the bytes/characters are read. No such overhead is
required when peeking into a string port ($8é.1.5, a pipe port (seg11.1.9, or a custom port with a specific

peek procedure (depending on how the peek procedure is implementgd;1lstd.

If a port producegof mid-stream, peek skips beyond thef always produceof until theeof is read.

(peek-bytes k skip-k [input-port]) is analogous t@eek-string , but it peeks bytes and pro-
duces a byte string.

(peek-string! string skip-k [input-port start-k end-k]) is like read-string! , but
for peeking, and with akip-k argument likgpeek-string

(peek-bytes! bytes skip-k [input-port start-k end-k]) is analogous tpeek-string! ,
but it peeks bytes and puts them into a byte string.

(peek-bytes-avail! bytes skip-k [progress-evt input-port start-k end-k]) islike
read-bytes-avail! , but for peeking, and with two extra arguments. HMigp-k argument is as in

peek-bytes . The progress-evt argument must be eithe#f (the default) or an event produced by
port-progress-evt for input-port

To peek,peek-bytes-avail! blocks until finding an end-of-file, at least one byte (or special) past the
skipped bytes, or until a no#f progress-evt becomes ready. Furthermorepifogress-evt is ready
before bytes are peeked, no bytes are peeked or skippedragress-evt may cut short the skipping
process if it becomes available during the peek attempt.

The result ofpeek-bytes-avail! is 0 only in the case thgirogress-evt becomes ready before bytes
are peeked.

(peek-bytes-avail!* bytes skip-k [progress-evt input-port start-k end-k D) is
like read-bytes-avail!* , but for peeking, and wittskip-k and progress-evt arguments like
peek-bytes-avail! . Since this procedure never blocks, it may return before ekgmk bytes are
available from the port.

(peek-bytes-availl/enable-break bytes skip-k [progress-evt input-port start-k

end-k]) is the peeking version ofread-bytes-availl/enable-break , with skip-k and

progress-evt arguments likgpeek-bytes-avail!

11. Input and Output 11.2. Reading and Writing

e (read-byte [input-port 1) is analogous toead-char , butit reads and returns a byte @of) instead
of a character.

e (read-char-or-special [input-port]) is the same asead-char , except that if the input port
returns a non-byte value (through a value-generating procedure in a custom pgfiti seéand§11.2.9.1for
details), the non-byte value is returned.

e (read-byte-or-special [input-port]) is analogous taead-char-or-special , but it reads
and returns a byte instead of a character.

e (peek-char [input-port skip-k) extends the standapek-char with an optional argument (de-
faulting to0) that represents the number of bytes (not characters) to skip.

e (peek-byte [input-port skip-k]) is analogous t@eek-char , but it reads and returns a byte in-
stead of a character.

e (peek-char-or-special [input-port skip-k) is the same apeek-char , except that if the
input port returns a non-byte value afskip-k byte positions, it is returned.

e (peek-byte-or-special [input-port skip-k progress-evt]) is analogous tpeek-char-or-special
but it reads and returns a byte instead of a character, and it supgodgrass-evt argument (which igf
by default) likepeek-bytes-avail!

e (port-progress-evt [input-port]) returns an event that becomes ready after any subsequent read
from input-port , or afterinput-port is closed. After the event becomes ready, it remains ready. If
progress events are unavailable figput-port (as reported byort-provides-progress-evts?)
theexn:fail:contract exception is raised.

e (port-provides-progress-evts? input-port) returns#t if port-progress-evt can re-
turn an event foiinput-port . All built-in kinds of ports support progress events, but ports created with
make-input-port (see§l1.1.7) may not.

e (port-commit-peeked k progress-evt evt [input-port]) attempts to commit as read the first
k previously peeked bytes, non-byte specials, anfls from input-port |, or the firsteof or special

value peeked fromnput-port .° The read commits only iprogress-evt does not become ready

first (i.e., if no other process reads franput-port first), and only ifevt is chosen by aync within
port-commit-peeked (in which case the event result is ignored); thet must be either a channel-

put event, channel, semaphore, semaphore-peek event, always event, or never event. Suspending the thread
that callsport-commit-peeked may or may not prevent the commit from proceeding. The result from
port-commit-peeked is#t if data is committed, andf otherwise.

If no data has been peeked framput-port andprogress-evt is not ready, theexn:fail:contract
exception is raised. If fewer thdnitems have been peeked at the current stairift-port 's stream, then
only the peeked items are committed as reathdéit-port ’s stream currently starts at @of or a non-byte
special value, then only theof or special value is committed as read.

If progress-evt is not a result of port-progress-evt applied to input-port , then
exn:fail:contract exception is raised.

11.2.1.1 (@UNTING POSITIONS, LINES, AND COLUMNS

By default, MzScheme keeps track of thesition in a port as the number of bytes that have been read from or
written to any port (independent of the read/write position, which is accessed or changéditevptisition).
Optionally, however, MzScheme can track the position in terms of characters (after UTF-8 decoding), instead of bytes,
and it can tracKine locations and column locations; this optional tracking must be specifically enabled for a port

via port-count-lines! or theport-count-lines-enabled parameter (seg7.9.1.9. Position, line, and

60nly mid-strearreof s can be committed. Aof when the port is exhausted does not correspond to data in the stream.

111

11.2. Reading and Writing 11. Input and Output

column locations for a port are usedtead-syntax (see§12.2for more information) andead-honu-syntax
Position and line locations are numbered from 1; column locations are numbered from 0.

e (port-count-lines! port) turns on line and column counting for a port. Counting can be turned on
at any time, though generally it is turned on before any data is read from or written to a port. When a port
is created, if the value of thport-count-lines-enabled parameter is true (s€§.9.1.9, then line
counting is automatically enabled for the port. Line counting cannot be disabled for a port after it is enabled.

When counting lines, MzScheme treats linefeed, return, and return-linefeed combinations as a line terminator and
as a single position (on all platforms). Each tab advances the column count to one before the next multiple of 8.
When a sequence of bytes in the range 128 to 253 forms a UTF-8 encoding of a character, the position/column
is incremented is incremented once for each byte, and then decremented appropriately when a complete encoding
sequence is discovered. See d.1for more information on UTF-8 decoding for ports.

A position is known for any port as long as its value can be expressed as a fixnum (which is more than enough tracking
for realistic applications in, say, syntax-error reporting). If the position for a port exceeds the value of the largest

fixnum, then the position for the port becomes unknown, and line and column tacking is disabled. Return-linefeed

combinations are treated as a single character position only when line and column counting is enabled.

¢ (port-next-location port) returns three values: a positive exact integetforfor the line number of
the next read/written item, a non-negative exact integéif ofor the next item’s column, and a positive exact
integer or#f for the next item’s position. The next column and position normally increases as bytes are read
from or written to the port, but if line/character counting is enabledpfot , the column and position results
can decrease after reading or writing a byte that ends a UTF-8 encoding sequence.

Certain kinds of exceptions (s€6.1) encapsulate source-location information usirsgdoc structure, which has
five fields:

e source — An arbitrary value identifying the source, often a path (e 3.).

e line — The line number, a positive exact integer (counts from Bfofunknown).

e column — The column number, a non-negative exact integer (counts from#f) gunknown).

position — The starting position, a positive exact integer (counts from Ef ofunknown).

span — The number of covered positions, a non-negative exact integer (counts fror#f0)anknown).

The fields of asrcloc structure are immutable, so no field-mutator procedures are definesidoc . The
srcloc structure type is transparent to all inspectors (geB).

11.2.2 Writing Bytes, Characters, and Strings

In addition to the standard printing procedures, MzScheme provides byte-writing procedures, block-writing procedures
such aswrite-string , and more.

e (write-string string [output-port start-k end-k) write characters tooutput-port
from string starting from indexstart-k (inclusive) up toend-k (exclusive). The default value of
output-port is the current output port. The default valuestdirt-k is 0. The default value oénd-k
is the length of thestring . Like substring , theexn:fail:contract exception is raised gtart-k
orend-k is out-of-range fostring

The result is the number of characters writtetput-port ~ , which is alwayq — end-k start-k).

112

11. Input and Output 11.2. Reading and Writing

e (write-bytes bytes [output-port start-k end-k]) is analogous tavrite-string , but it
writes a byte string.

o (write-bytes-avail bytes [output-port start-k end-k]) is like write-bytes , butit re-
turns without blocking after writing as many bytes as it can immediately flush. It blocks only if no bytes can be
flushed immediately. The result is the number of bytes written and flusheatpot-port ; if start-k is
the same aend-k , then the result can b& (indicating a successful flush of any buffered data), otherwise the
result is at least but possibly less thap— end-k start-k).

The write-bytes-avail procedure never drops bytes;\ifrite-bytes-avalil successfully writes

some bytes and then encounters an error, it suppresses the error and returns the number of written bytes. (The
error will be triggered by future writes.) If an error is encountered before any bytes have been written, an
exception is raised.

o (write-bytes-avail* bytes [output-port start-k end-k]) is like write-bytes-avail ,
except that it never blocks, it retur#$ if the port contains buffered data that cannot be written immediately,
and it returng) if the port’s internal buffer (if any) is flushed but no additional bytes can be written immediately.

o (write-bytes-avail/enable-break bytes [input-port start-k end-k]) is like write-bytes-avail
except that breaks are enabled during the write. The procedure provides a guarantee about the interaction of writ-
ing and breaks: if breaking is disabled wherite-bytes-avail/enable-break is called, and if the
exn:break exception is raised as a result of the call, then no bytes will have been writberpot-port
See als@6.7.

e (write-byte byte [output-port]) is analogous tevrite-char , but for writing a byte instead of a
character.

e (write-special v [output-port]) writesv directly tooutput-port if it supports special writes,
or raisesexn:fail:contract if the port does not support special write. The result is alw#ysndicating

that the write succeeded.

e (write-special-avail* v [output-port 1) is like write-special , but without blocking. Ifv
cannot be written immediately, the resultis without writing v, otherwise the result it andv is written.

o (write-bytes-avail-evt bytes [output-port start-k end-k]) is similar towrite-bytes-avail ,
but instead of writing bytes immediately, it returns a synchronizable eveng {sge Theoutput-port must
support atomic writes, as indicated pgrt-writes-atomic?

Synchronizing on the object starts a write frdaytes , and the event becomes ready when bytes are written
(unbuffered) to the port. I§tart-k andend-k are the same, then the synchronization reswtvehen the

port’s internal buffer (if any) is flushed, otherwise the result is a positive exact integer. If the event is not selected
in a synchronization, then no bytes will have been writteautput-port

o (write-special-evt v [output-port]) is similar towrite-special , but instead of writing the
special value immediately, it returns a synchronizable event {8&@. The output-port must support
atomic writes, as indicated lport-writes-atomic?

Synchronizing on the object starts a write of the special value, and the event becomes ready when the value is
written (unbuffered) to the port. If the event is not selected in a synchronization, then no value will have been
written tooutput-port

e (port-writes-atomic? output-port) returns#t if write-bytes-avail/enable-break
can provide an exclusive-or guarantee (break or write, but not botlguimut-port , and if the port can
be used with procedures likerite-bytes-avail-evt . MzScheme’s file-stream ports, pipes, string ports,
and TCP ports all support atomic writes; ports created wittke-output-port (see§ll.1.7) may support
atomic writes.

e (port-writes-special? output-port) returns#t if procedures likewrite-special can write
arbitrary values to the port. MzScheme'’s file-stream ports, pipes, string ports, and TCP ports all reject special
values, but ports created withake-output-port (see§11.1.9) may support them.

113

11.2. Reading and Writing 11. Input and Output

11.2.3 Writing Structured Data

Theprint procedure is used to print Scheme values in a context where a programmer expects to see a value:

e (print v [output-port]) outputsv to output-port . The default value obutput-port is the
current output port.

The rationale for providingrint is thatdisplay andwrite both have standard output conventions, and this
standardization restricts the ways that an environment can change the behavior of these procedures. No output con-
ventions should be assumed foint so that environments are free to modify the actual output generatediiy

in any way. Unlike the port display and write handlers, a global port print handler can be installed through the
global-port-print-handler parameter (se§7.9.1.9.

Thefprintf | printf , andformat procedures create formatted output:

o (fprintf output-port format-string v ---) prints formatted output toutput-port , where
format-string is a string that is printedprmat-string can contain special formatting tags:

— ~n or ~% prints a newline

— ~aor~A display s the next argument among the

— ~sor~Swrite s the next argument among the

— ~vor~V print s the next argument among the

— ~e or~E outputs the next argument among the using the current error value conversion handler (see
§7.9.1.7 and current error printing width

— ~C or ~C write-char s the next argument ivs; if the next argument is not a character, the

exn:fail:contract exception is raised

— ~b or ~B prints the next argument among the in binary; if the next argument is not an exact number,
theexn:fail:contract exception is raised

— ~o0 or~O prints the next argument among the in octal; if the next argument is not an exact number, the
exn:fail:contract exception is raised

— ~X or ~X prints the next argument among tki& in hexadecimal; if the next argument is not an exact
number, theexn:fail:contract exception is raised

— ~nr prints a tilde ¢)

— ~w, wherew is a whitespace character, skips character®imat-string until a non-whitespace

character is encountered or until a second end-of-line is encountered (whichever happens first). An end-
of-line is either#\return , #\newline , or#\return followed immediately by#\newline (on all
platforms).

The return value is void.
e (printf format-string v ---) same agprintf with the current output port.

e (format format-string v --+) same agprintf with a string output port where the final string is
returned as the result.

When an illegal format string is supplied to one of these proceduresgxh#ail:contract exception is

raised. When the format string requires more additional arguments than are suppliext:faé:contract

exception is raised. When more additional arguments are supplied than are used by the format string, the
exn:fail:contract exception is raised.

For example,

(fprintf port "a as a string is "s."n" (3 4) "(3 4)"

114

11. Input and Output 11.2. Reading and Writing

prints this message fwort :’

(3 4) as a string is "(3 4)".

followed by a newline.

11.2.4 Default Reader

MzScheme'’s input parser obeys the following non-standard rules. Seglalso8for information on configuring the
input parser through a readtable.

e Square brackets (‘" and “1") and curly braces{{*and “}") can be used in place of parentheses.
An open square bracket must be closed by a closing square bracket and an open curly brace must be
closed by a closing curly brace. Whether square brackets are treated as parentheses is controlled by the
read-square-bracket-as-paren parameter (se§7.9.1.3. Similarly, the parsing of curly braces is
controlled with theead-curly-brace-as-paren parameter. When square brackets and curly braces are
not treated as parentheses, they are disallowed as input. By default, square brackets and curly braces are treated
as parentheses.

e \ector constants can be unquoted, and a vector size can be specified with a decimal integer betivaad the
opening parenthesis. If the specified size is larger than the number of vector elements that are provided, the last
specified element is used to fill the remaining vector slots. For exa(&, 2) is equivalenttag#(l 2 2
2) . If no vector elements are specified, the vector is filled Withf a vector size is provided and it is smaller
than the number of elements provided, &xa:fail:read exception is raised.

e Boxed constants can be created usit®y The datum following#& is treated as a quoted constant and put
into the new box. (Space and comments following #8eare ignored.) Box reading is controlled with the
read-accept-box boolean parameter (s§&.9.1.3. Box reading is enabled by default. When box reading
is disabled ané& is provided as input, thexn:fail:read exception is raised.

e Expressions beginning witi are wrapped witlsyntax in the same way that expressions starting Witlre
wrapped withquote . Similarly, # generategjuasisyntax ,#, generatesinsyntax , and#,@ generates
unsyntax-splicing . See als@12.2.1.2

e The following character constants are recognized:

— #\nul or#\null (ASCII 0)

— #\backspace (ASCII 8)

— #\tab (ASCII9)

— #\newline or#\linefeed (ASCII 10)
— #\vtab (ASCII 11)

— #\page (ASCII 12)

— #\return (ASCII 13)

— #\space (ASCII 32)

— #\rubout (ASCII 127)

Whenever#\ is followed by at least two alphabetic characters, characters are read from the input port until
the next non-alphabetic character is returned. If the resulting string of letters does not match one of the above
constants (case-insensitively), tien:fail:read exception is raised.

Character constants can also be specified through direct Unicode values in octal notation (up#o2Etns
wheren is in the range(, 3] andn, andns are in the range(, 7]. Wheneve##\ is followed by at least two
characters in the rang8 [7], the next character must also be in this range, and the resulting octal number must
be in the range 0QQ0 377%.

7Assuming that the current port display and write handlers are the default ong4:1se&for more information.

115

11.2. Reading and Writing 11. Input and Output

Finally, character constants can be specified through direct Unicode values in hexadecimal notation:
#\u ni... ngor#\Uni... ny, where eachm; is a hexadecimal digit (0-9, a-f, or A-F), akds no more than 4

for #\u or 6 for#\U . Whenevet#\ is followed by au or U and one hexadecimal digit, the character constant

is terminated by either the first non-hexadecimal character in the stream, or the fourth/sixth hexadecimal charac-
ter, whichever comes first. The resulting hexadecimal number must be a valid arguriméegéo->char ,
otherwise thexn:fail:read exception is raised.

Unless otherwise specified above, character-constants are terminated after the character félowikgr
example, if#\ is followed by an alphabetic character other thiaand then a non-alphabetic character, then
the character constant is terminated#1f is followed by a8 or 9, then the constant is terminated.#f is
followed by a non-alphabetic, non-decimal-digit character then the constant is terminated.

e Within string constants, the following escape sequences are recognized in additioand\\ :

116

—\a : alarm (ASCII 7)

— \b : backspace (ASCII 8)

—\t :tab (ASCII 9)

— \n : linefeed (ASCII 10)

— \v : vertical tab (ASCII 11)

— \f : formfeed (ASCII 12)

—\r : return (ASCII 13)

— \e : escape (ASCII 27)

—\" : quote (i.e., the backslash has no effect)

—\o0,\ 00, or\ ooo: Unicode for octab, oo, orooo, where eaclo is0, 1, 2, 3,4,5,6, or 7. The\ ooo
form takes precedence over theo form, and\ oo takes precedence oveo.

— X h or\x hh: Unicode for hexadecimdl or hh, where eact is0, 1, 2, 3,4,5,6,7,a,A b, B, c, C,
d,D, e, E, f,orF. The\x hh form takes precedence over tixeh form.

— \u h, \u hh, \u hhh, or\u hhhh: like \x , but with up to four hexadecimal digits (longer sequences
take precedence). The resulting hexadecimal number must be a valid argunm@ees->char ,
otherwise theexn:fail:read exception is raised.

— \U h, \U hh, \U hhh, \U hhhh, \U hhhhh, \U hhhhhh , \U hhhhhhh , or\U hhhhhhhh : like \x , but
with up to eight hexadecimal digits (longer sequences take precedence). The resulting hexadecimal number
must be a valid argument toteger->char , otherwise thexn:fail:read exception is raised.

Furthermore, a backslash followed by a linefeed, carriage return or return-linefeed combination is elided, allow-
ing string constants to span lines. Any other use of backslash within a string constant is an error.

A string constant preceded Bis a byte-string constant. Byte string constants support the same escape se-
guences as character strings exdéapand\U .

The sequencé << starts ahere string. The characters followingt<< until a newline character define a
terminator for the string. The content of the string includes all characters betwedncthdine and a line

whose only content is the specified terminator. More precisely, the content of the string starts after a newline
following #< <, and it ends before a newline that is followed by the terminator, where the terminator is itself
followed by either a newline or end-of-file. No escape sequences are recognized between the starting and
terminating lines; all characters are included in the string (and terminator) literally. A return character is not
treated as a line separator in this context. If no characters appear bétweeand a newline or end-of-file, or

if an end-of-file is encountered before a terminating line ek fail:read exception is raised.

The syntax for numbers is extended as describg@.id Numbers containing a decimal point or exponent (e.g.,

1.3, 2e78) are normally read as inexact. If thead-decimal-as-inexact parameter is set t#f , then

such numbers are instead read as exact. The parameter does not affect the parsing of numbers with an explicit
exactness tagte or#i).

A parenthesized sequence containing two delimited dot¥) ¢figgers infix parsing. A singlelatum must
appear between the dots, and one or ntaim s must appear before the first dot and after the last dot:

(left-datum .1 first-datum . right-datum)

11. Input and Output 11.2. Reading and Writing

The resulting list consists of thdatum between the dots, followed by the remaingtatum s in order:
(first-datum left-datum .- right-datum)

Consequently, the input expressidn . < . 2) producesit ,and(1 2 . + . 3 4 5) producedb5.

e When theread-accept-dot parameter is set téf , then a delimited dot (*”) is disallowed in input. When
theread-accept-quasiquote parameter is set t#f , then a backquote or comma is disallowed in input.
These modes simplify Scheme’s input model for students.

e MzScheme’s identifier and symbol syntax is considerably more liberal than the syntax specRRRIDYWhen
input is scanned for tokens, the following characters delimit an identifier in addition to whitespace:

L) {1}

In addition, an identifier cannot start with a hash magk’{“unless the hash mark is immediately followed by
a percent sign @8). The only other special characters are backslash) @nd quoting vertical bars (); any
other character is used as part of an identifier.

Symbols containing special characters (including delimiters) are expressed using an escaping bagkstash (“
quoting vertical bars ("):

— A backslash preceding any character includes that character in the symbol literally; double backslashes
produce a single backslash in the symbol.

— Characters between a pair of vertical bars are included in the symbol literally. Quoting bars can be used
for any part of a symbol, or the whole symbol can be quoted. Backslashes and quoting bars can be mixed
within a symbol, but a backslashnst a special character within a pair of quoting bars.

Characters quoted with a backslash or a vertical bar always preserve their case, even when identifiers are read
case-insensitively.

An input token constructed in this way is an identifier when it is not a numerical constant (following the extended
number syntax described §8.3). A token containing a backslash or vertical bars is never treated as a numerical

constant.
Examples:
— (quote a\(b) produces the same symbol@sring->symbol "a(b")
— (quote A\B) produces the same symbol @sring->symbol "aB") when identifiers are read
without case-sensitivity.

— (quote a\ b) , (quote |a b]), and (quote a | |b) all produce the same symbol as
(string->symbol "a b") .

— (quote |a||b]) isthe same aguote |ab]) , which produces the same symbolstsing->symbol
"ab") .

— (quote 10) isthe number 10, bguote |10|) produces the same symbol(@@ging->symbol
"10")

Whether a vertical bar is used as a special or normal symbol character is controlled with the
read-accept-bar-quote boolean parameter (s€€.9.1.3. Vertical bar quotes are enabled by default.
Quoting backslashes cannot be disabled.

e By default, symbols are read case-sensitively. Case sensitivity for reading can be controlled in three ways:

— Quoting part of a symbol with an escaping backslasfi)(br quoting vertical bar (1) always preserves
the case of the quoted portion, as described above.

— The sequencécs can be used as a prefix for any expression to make reading symbols within the ex-
pression case-sensitive.#ei prefix similarly makes reading symbols in an expression case-insensitive.
Whitespace can appear betweedfra or#ci prefix and its expression, and prefixes can be nested. Back-
slash and vertical-bar quotes overridéca prefix.

117

11.2.

Reading and Writing 11. Input and Output

118

— When theread-case-sensitive parameter (seg7.9.1.3 is set to#t , then case is preserved when
reading symbols. The default#4 , and it is set te#t while loading a module (se.8). A #cs or #ci
prefix overrides the parameter setting, as does backslash or vertical-bar quoting.

Symbol case conversions aret sensitive to the current locale (s&k2.2.

A symbol-like expression that starts with an unquoted hash and colon (“#:") is parsed as a keyword constant.
After the leading colon, backslashes, vertical bars, and case sensitivity are handled as for symbols, except that a
keyword expression can never be interpreted as a number.

Expressions of the forndrx string are literal regexp values (s€&0) wherestring is a string constant.
The regexp produced bB¥rx string is the same as produced bggexp string). If string isnota
valid pattern, thexn:fail:read exception is raised.

Expressions of the forr#rx# string are similarly literal byte-regexp values. The regexp produced by
#rx# string is the same as produced fiyyte-regexp # string).

Expressions of the fordipx string and#px# string are like the#rx variants, except that the regexp is as
produced bypregexp andbyte-pregexp (see§l0) instead offegexp andbyte-regexp

Expressions of the forrghash((key-datum . val-datum) --.) are literal immutable hash tables.

The hash table maps ea#ley-datum to its val-datum , comparing keys withequal? . The table

is constructed by adding eadtey-datum mapping from left to right, so later mappings can hide ear-

lier mappings if thekey-datum s areequal? . An expression of the forr#thasheq((key-datum

val-datum) ---) produces an immutable hash table with keys compared wu=siyyg If the value of
read-square-bracket-as-paren parameter (se&7.9.1.3 is true, matching parentheses irfthash

or #hasheq constant can be replaced by matching square brackets. Similarly, matching curly braces can be
used ifread-curly-brace-as-paren is true.

Values with shared structure are expressed usimgand#n#, wheren is a decimal integer. S€d.1.2.5.1
Expressions of the fordi%x are symbols, wherne can be a symbol or a number.
Expressions beginning witti" are interpreted as compiled MzScheme code.§3de3

Multi-line comments are started wit| and terminated witlt . Comments of this form can be nested arbi-
trarily.

A #; comments out the next datum. Whitespace and comments (incl#disgmments) may appear between
the#; andthe commented-out datum. Graph-structure annotationgwitland#n# work within the comment

as if the datum were not commented out (e.g., bindings can be introducedwitfor use in parts of the datum
that are not commented out). Wh&n appears at the beginning of a top-level datum, however, graph-structure
bindings are discarded (along with the first following datum) before reading the second following datum.

If the first line of aload ed file begins with#! , it is ignored by the default load handler. If an ignored line ends
with a backslash ("), then the next line is also ignored. (TK& convention is for shell scripts; see Chaptér
for details.)

A #hx shifts the reader into H-expression mode ($&8 for one H-expression. Asx has no effect in normal
mode, but in H-expression mode, it shifts the reader back to (normal) S-expression modead{menu
andread-honu-syntax procedures read as if the stream starts kiR .

A #honu shifts the reader into H-expression mode ($E9 and reads repeatedly until an end-of-file is encoun-
tered. The H-expression results are wrapped in a module-formed S-expression, as desgtifed in

A #reader must be followed by a datum. The datum is passed to the procedure that is the value of the
current-reader-guard parameter (se&7.9.1.3, and the result is used as a module path. The mod-
ule path is passed tynamic-require (see§5.5) with either’'read or 'read-syntax (depending on
whether parsing started witlead or read-syntax). The resulting procedure should accept the same ar-
guments agead or read-syntax (with all optional arguments as required). The procedure is given the

11. Input and Output 11.2. Reading and Writing

port whose stream containdideader , and it should produce a datum result. If the result is a syntax object
in read mode it is converted to a datum usiegntax-object->datum ; if the result is not a syntax ob-
ject inread-syntax ~ mode, it is converted to one usim;tum->syntax-object . See alsg11.2.9.1
andg11.2.9.%or information on special-comment results and recursive reads. téddeaccept-reader
parameter is set t#f , then#reader is disallowed as input.

Reading from a custom port can produce arbitrary values generated by the poflisée for details. If
the port generates a non-character value in a position where a character is required (e.g., within a string), the
exn:fail:read:non-char exception is raised.

11.2.5 Default Printer

MzScheme’s printer obeys the following non-standard rules (though the rulgsifiir do not apply when the
print-honu parameter is set tét ; see§7.9.1.9.

e A vector can be printed bwrite andprint using the shorthand described§hl.2.4 where the vector’s
length is printed between the leaditigand the opening parenthesis and repeated tail elements are omitted. For
example#(1 2 2 2) isprinted ast4(1 2) . Thedisplay procedure does not output vectors using this
shorthand. Shorthand vector printing is controlled withghiat-vector-length boolean parameter (see
§7.9.1.9. Shorthand vector printing is enabled by default.

e Boxes (se€3.11) can be printed with th&& notation (se€11.2.4. When box printing is disabled, all boxes
are printed uread ably as#<box >. Box printing is controlled with th@rint-box boolean parameter (see
§7.9.1.9. Box printing is enabled by default.

e Structures (see Chaptércan be printed using either a custom-write procedure or vector notatio§f15&e10
for information on custom-write procedures; the following information applies only when no custom-write
procedure is specified. In the vector form of output, the first item is a symbol of thestomet: s — where
s is the name of the structure — and the remaining elements are the elements of the structure, but the vector
exposes only as much information about the structure as the current inspector can accgs$)(séehen
structure printing is disabled, or when no part of the structure is accessible to the current inspector, a structure
is printed umead ably as#<struct: s>. Structure printing is controlled with thgrint-struct boolean
parameter (se¢7.9.1.4. Structure printing is disabled by default.

e Symbols containing spaces or special characteite using escaping backslashes and quoting vertical bars.
When theread-case-sensitive parameter is set t#f , then symbols containing uppercase characters
also use escaping backslashes or quoting vertical bars. In addition, symbols are quoted with vertical bars or
a leading backslash when they would otherwise print the same as a numerical constant. If the value of the
read-accept-bar-quote boolean parameter ¥f (see§7.9.1.3, then backslashes are always used to
escape special characters instead of quoting them with vertical bars, and a vertical bar is not treated as a special
character. Otherwise, quoting bars are used in printing when bar at the beginning and one at the end suffices to
correctly print the symbol. Seg 1.2.4for more information about symbol parsing. Symbdilsplay ~ without
escaping or quoting special characters.

e Keywordswrite anddisplay the same as symbols, except with a leading hash and colon, and without
special handing when the printed form matches a number (since the Ig¢adidigtinguishes the keyword).

e Characters with the special names describe¢llin2.4write using the same name. (Some characters have
multiple names; thét\newline and#\nul names are used instead#flinefeed and#\null). Other
graphic characters (accordingdbar-graphic? ; see§3.4) write as#\ followed by the single character,
and all others characters are writter#ixu notation with four digits o#\ U notation with eight digits (using the
latter only if the character value it does not fit in four digits). All charactisplay as a single character.

e Strings containing non-graphic, non-blank characters (accordiebangraphic? andchar-blank? ;
see§3.4) write using the escape sequences describédin?.4 using\a ,\b ,\t ,\n ,\v ,\f ,\r ,or\e if

119

11.2. Reading and Writing 11. Input and Output

possible, otherwise using with four hexadecimal digits dtJ with eight hexadecimal digits (using the latter
only if the character value does not fit into four digits). All strirttisplay as their literal character sequences.

e Byte stringswrite using#" , where each byte in the string content is written using the corresponding ASCII
decoding if the byte is between 0 and 127 and the character is graphic or blank (accootiaggoaphic?
andchar-blank? ; see§3.4). Otherwise, the byte is written using , \b , \t ,\n,\v ,\f ;\r , or\e if
possible, otherwise using with one to three octal digits (only as many as necessary). All stdigggay
as their literal byte sequence; this byte sequence may not be a valid UTF-8 encoding, so it may not correspond
to a sequence of characters.

e Paths (se@11.3.]) by write like other umead able values using<path:... >. A pathdisplay sinthe
same way as the result path->string applied to the path.

e Regexp values print using the fortinx string , wherestring is thewrite form of the regexp’s source
character string or byte string. Similarly, byte-regexp values print starting#xi .

e Hash tables by default print wead ably as#<hash —table >. When theprint-hash-table pa-
rameter is set to true (s€g’.9.1.94, hash tables print using the for#thash((key . wval) --.) or
#hasheq((key . val) ...) for tables usingequal? or eq? key comparisons, respectively. Hash

tables with weakly held keys always printread ably as#<hash —table >.
¢ Values with shared structure can be printed uging and#n#, wheren is a decimal integer. Séd1.2.5.1

e A value with noread able format prints ag<... >, but only when therint-unreadable parameter is
set to#t (the default; see als§¥.9.1.4. When the parameter’s value#i§ , attempting to print an uead able
value raisegxn:fail:contract

11.2.5.1 $ARING STRUCTURE ININPUT AND OUTPUT

MzScheme can read and print Common LISP-sptephs, values with shared structure (including cycles). Graphs
are described by tagging the shared structure once#mith(using some decimal integerwith no more than eight
digits) and then referencing it later withn# (using the same numbaj. For example, the following datum represents
the infinite list of ones:

#O=(1 . #O#)

If this graph is entered into MzScheme&ad -eval -print loop, MzScheme’s compiler will loop forever, trying
to compile an infinite expression. In contrast, the following expression dejdimes to the infinite list of ones, using
guote to hide the infinite list from the compiler:

(define ones (quote #0 =(1 . #0%#)))

A tagged structure can be referenced multiple times. Heie defined to be a vector containing the sacoas cell
in all three slots:

(define v #(#1 =(cons 1 2) #1# #1#))

A tag#n= must appear to the left of all references#, and all references must appear in the same top-level datum as
the tag. By default, MzScheme'’s printer will display a value without showing the shared structure:

#1.2) Q.2 @1.2)

Graph reading and printing are controlled with thad-accept-graph andprint-graph boolean parameters
(see§7.9.1.94. Graph reading is enabled by default, and graph printing is disabled by default. However, when the
printer encounters a graph containing a cycle, graph printing is automatically enabled, temporarily. (For this reason,

120

11. Input and Output 11.2. Reading and Writing

thedisplay ,write , andprint procedures require memory proportional to the depth of the value being printed.)
When graph reading is disabled and a graph is provided as inp@xihfail:read exception is raised.

If the n in a#n= form or a#n# form contains more than eight digits, tegn:fail:read exception is raised. If
a#n# form is not preceded by#n= form using the sama, theexn:fail:read exception is raised. If twén=
forms are in the same expression for the saintheexn:fail:read exception is raised.

11.2.6 Replacing the Reader

Each input port has its owport read handler. This handler is invoked to read from the port when the builteiad
or read-syntax procedure is applied to the pdrtA port read handler is applied to either one argument or two
arguments:

e A single argument is supplied when the port is used wé#d ; the argument is the port being read. The return
value is the value that was read from the port (or end-of-file).

e Two arguments are supplied when the port is used vafid-syntax ; the first argument is the port being
read, and the second argument is a value indicating the source. The return value is a syntax object that was read
from the port (or end-of-file).

A port’s read handler is configured wigfort-read-handler

e (port-read-handler input-port) returns the current port read handler iigput-port

e (port-read-handler input-port proc) sets the handler fanput-port to proc .

The default port read handler reads standard Scheme expressions with MzScheme’s built-in pagééra<eelt
handles a special result from a custom input port (eke1.7.) by treating it as a single expression, except that
special-comment values (sg&1.2.9.) are treated as whitespace.

Theread andread-syntax procedures themselves can be customized through a readtab$d;1se@for more
information.

11.2.7 Replacing the Printer

Each output port has its owport display handler, port write handler, and port print handler. These handlers are
invoked to output to the port when the standdisplay , write or print procedure is applied to the port. A

port display/write/print handler takes a two arguments: the value to be printed and the destination port. The handler’s
return value is ignored.

e (port-display-handler output-port) returns the current port display handler émtput-port

o (port-display-handler output-port proc) sets the display handler foputput-port to
proc .

e (port-write-handler output-port) returns the current port write handler foutput-port

e (port-write-handler output-port proc) sets the write handler fautput-port to proc .

e (port-print-handler output-port) returns the current port print handler foutput-port

e (port-print-handler output-port proc) sets the print handler fautput-port to proc .

8The port read handler is not used fead/recursive or read-syntax/recursive

121

11.2. Reading and Writing 11. Input and Output

The default port display and write handlers print Scheme expressions with MzScheme’s built-in pringér (8.
The default print handler calls the global port print handler (the value ofjtbleal-port-print-handler
parameter; se¢/.9.1.9; the default global port print handler is the same as the default write handler.

11.2.8 Customizing the Reader through Readtables

A readtable configures MzScheme’s built-in reader by adjusting the way that individual characters are parsed.
MzScheme readtables are just like readtables in Common LISP, except that an individual readtable is immutable,
and the procedures for creating and inspecting readtables are somewhat different than the Common LISP procedures.

The readtable is consulted at specific times by the reader:

e when looking for the start of an S-expression;
e when determining how to parse an S-expression that starts with hash (“#");

e when looking for a delimiter to terminate a symbol or number;

e when looking for an opener (such as “("), closer (such as “)”), or dot (*.") after the first character parsed as a
sequence for a list, vector, or hash table; or

e when looking for an opener aftén in a vector of specified lengtt.

In particular, after parsing a character that is mapped to the default behavior of semi-colon (*;”), the readtable is ignored
until the comment’s terminating newline is discovered. Similarly, the readtable does not affect string parsing until a
closing double-quote is found. Meanwhile, if a character is mapped to the default behavior of an open parenthesis
(“(", then it starts sequence that is closed by any character that is mapped to a close parenthesis (“)"). An apparent
exception is that the default parsing of a vertical bd) (fuotes a symbol until a matching character is found, but the
parser is simply using the character that started the quote; it does not consult the readtable.

For many contexts#f identifies the default readtable for MzScheme. In particufdr,is the initial value for
the current-readtable parameter (se7.9.1.3, which causes the reader to behave as describgdlir?.4
Adjust MzScheme’s default reader by setting therent-readtable parameter to a readtable created with
make-readtable

(make-readtable readtable [char-or-false symbol-or-char readtable-or-proc 1)) cre-
ates a new readtable that is likeadtable (which can be#f), except that the reader’s behavior is modified for each
char according to the givesymbol-or-char andreadtable-or-proc . The- - -1 for make-readtable
applies to all three ofhar , symbol-or-char , andreadtable-or-proc ; in other words, the total number of
arguments tonake-readtable must be one modulo three.

The possible combinations fahar-or-false , symbol-or-char , andreadtable-or-proc are as fol-
lows:
e char ’terminating-macro proc — causeschar to be parsed as a delimiter, and an un-

quoted/uncommentechar in the input string triggers a call to theader macro proc ; the activity ofproc
is described further below. Conceptually, characters like semi-colon (*;”) and parentheses are mapped to termi-
nating reader macros in the default readtable.

e char ’'non-terminating-macro proc — like the'terminating-macro variant, butchar is not
treated as a delimiter, so it can be used in the middle of an identifier or number. Conceptually, hash (“#") is
mapped to a non-terminating macro in the default readtable.

e char ’dispatch-macro proc — like the’'non-terminating-macro variant, butchar only when
it follows a hash (“#") — or, more precisely, when the character follows one that has been mapped to the behavior
of hash in the default readtable.

122

11. Input and Output 11.2. Reading and Writing

e char like-char readtable — causeshar to be parsed in the same way tlie-char is parsed
in readtable , wherereadtable can be#f to indicate the default readtable. Mapping a character to the
same actions as vertical baf"('in the default reader means that the character starts quoting for symbols, and the
same character terminates the quote; in contrast, mapping a character to the same action as a double quote means
that the character starts a string, but the string is still terminated with a closing double quote. Finally, mapping
a character to an action in the default readtable means that the character’'s behavior is sensitive to parameters
that affect the original character; for example, mapping a character to the same action is a curly fjace (*
in the default readtable means that the character is disallowed wheeatkeurly-brace-as-paren
parameter is set téf .

e #f 'non-terminating-macro proc — replaces the macro used to parse characters with no specific
mapping: i.e., characters (other than hash or vertical bar) that can start a symbol or number with the default
readtable.

If multiple 'dispatch-macro mappings are provided for a singthar-or-false , all but the last one are
ignored. Similarly, if multiple noridispatch-macro mappings are provided for a singtbar-or-false , all
but the last one are ignored.

A reader macr@roc must accept six arguments, and it can optionally accept two argument§1 S&efor infor-
mation on the procedure’s arguments and results.

A reader macro normally reads characters from the given input port to produce a value to be used as the “reader macro-
expansion” of the consumed characters. The reader macro might produce a special-comment value to cause the con-
sumed character to be treated as whitespace, and it mightadkecursive or read-syntax/recursive ;
see§11.2.9.1and§11.2.9.2for more information on these topics.

(readtable-mapping readtable char), wherereadtable is not#f , produces information about the
mappings ireadtable for char . The result is three values:

e either a character (mapping is to same behavior as the character in the default reatdtableiting-macro ,
or 'non-terminating-macro ; this result reports the main (i.e., nadispatch-macro) mapping for
char . When the result is a character, thelmar is mapped to the same behavior as the returned character in
the default readtable.

e either#f orareader-macro procedure; the result is a procedure when the first ré&safhinating-macro
or 'non-terminating-macro

e either#f or areader-macro procedure; the result is a procedure when the charactétispatah-macro
mapping inreadtable to override the default dispatch behavior.

Note that reader-macro procedures for the default readtable are not directly accessible. To invoke default behaviors,
useread/recursive or read-syntax/recursive (see§11.2.9.92 with a character and th& readtable.

Extended example:

;. Provides raise-read-error and raise-read-eof-error
(require (lib "readerr.ss" "syntax"))

(define (skip-whitespace port)
;; Skips whitespace characters, sensitive to the current
;; readtable’s definition of whitespace
(let ([ch (peek-char port)])
(unless (eof-object? ch)
;; Consult current readtable:

123

11.2. Reading and Writing

11. Input and Output

(let-values ([(like-ch/sym proc dispatch-proc)
(readtable-mapping (current-readtable)
;; If like-ch/sym is whitespace, then ch is whitespace
(when (and (char? like-ch/sym)
(char-whitespace? like-ch/sym))
(read-char port)
(skip-whitespace port)

(define (skip-comments read-one port src)
;; Recursive read, but skip comments and detect EOF
(let loop ()
(let [v (read-one)])
(cond
[(special-comment? v) (loop)]
[(eof-object? v)

(let-values ([(I ¢ p) (port-next-location port)])
(raise-read-eof-error "unexpected EOF in tuple”
[else V])))
(define (parse port read-one src)

;; First, check for empty tuple
(skip-whitespace port)
(if (eq? # \> (peek-char port))
null
(let (elem (read-one)])
(if (special-comment? elem)
;; Found a comment, so look for > again
(parse port read-one src)
;; Non-empty tuple:
(cons elem

(parse-nonempty port read-one src)

(define (parse-nonempty port read-one src)
;; Need a comma or closer
(skip-whitespace port)

(case (peek-char port)
[# \>) (read-char port)
;; Done
null]

[# \,) (read-char port)
:;; Read next element and recur
(cons (skip-comments read-one port src)
(parse-nonempty port read-one src)]
[else
;; Either a comment or an error; grab location (in case
;; of error) and read recursively to detect comments
(let-values ([(I ¢ p) (port-next-location port)]
[(v) (read-one)])
(cond
[(special-comment? v)
;; It was a comment, so try again
(parse-nonempty port read-one src)
[else
;; Wasn't a comment, comma, or closer; error

124

ch)))

srclcp

)]

11. Input and Output 11.2. Reading and Writing

((if (eof-object? v) raise-read-eof-error raise-read-error)
"expected ‘;’ or ‘ >" srclcp DD

(define (make-delims-table)
;; Table to use for recursive reads to disallow delimiters
;7 (except those in sub-expressions)
(letrec ([misplaced-delimiter
(case-lambda

[(ch port) (unexpected-delimiter ch port #f #f #f #)]
[(ch port src line col pos)
(raise-read-error
(format "misplaced “a’ in tuple" ch) src line col pos DD
(make-readtable (current-readtable)
#\, 'terminating-macro misplaced-delimiter
#\> ’terminating-macro misplaced-delimiter))

(define (wrap |)
‘(make-tuple (list ,@ 1))

(define parse-open-tuple
(case-lambda
[(ch port)
;; ‘read’ mode
(wrap (parse port
(lambda () (read/recursive port #f
(make-delims-table)
(object-name port)))]
[(ch port src line col pos)
;; ‘read-syntax’ mode
(datum->syntax-object

#f
(wrap (parse port
(lambda () (read-syntax/recursive src port #f
(make-delims-table)
src))
(let-values ([(I ¢ p) (port-next-location port)])

(list src line col pos (and pos (— p pos)HND)

(define tuple-readtable

(make-readtable #f # \< ’terminating-macro parse-open-tuple)
(parameterize ([current-readtable tuple-readtable)

(read (open-input-string " <1,2, \"a\">")
i = '(make-tuple (list 1 2 "a")
(parameterize ([current-readtable tuple-readtable)

(read (open-input-string " < #||# L1 #||#, H#H||# 2 #)1#, #]|# \"a\" #||# >")

= ’'(make-tuple (list 1 2 "a"))

(define tuple-readtable +

(make-readtable tuple-readtable
#* 'terminating-macro (lambda a (make-special-comment #))
#_ #\space #f))
(parameterize ([current-readtable tuple-readtable +1)

125

11.2. Reading and Writing 11. Input and Output

(read (open-input-string " <*x1 ,__ 2 _,__x\"a\" x >"))
;o = '(make-tuple (list 1 2 "a")

11.2.9 Reader-Extension Procedures

MzScheme’s reader can be extended in three ways: through a reader-macro procedure in a readgdile (ee
through afreader form (see§l11.2.9, or through a custom-port byte reader that returns a “special” result procedure
(see§l11.1.7.). All three kinds of procedures accept similar arguments, and their results are treated in the same way
byread andread-syntax (or, more precisely, by the default read handler;&ee?2.9.

Calls to these reader-extension procedures can be triggered thmeagh read/recursive , read-syntax

or read-honu-syntax . In addition, a special-read procedure can be triggered by cali®dad-honu
read-honu/recursive , read-honu-syntax , read-honu-syntax/recursive , read-char-or-special ,
or by the context ofread-bytes-avail! , read-bytes-avail!* , read-bytes-avail! , and
peek-bytes-avail'*

Optional arities for reader-macro and special-result procedures allow them to distinguish readslvjatc. from
reads viaead-syntax , etc. in the case that the source valugfisand no other location information is available.

Procedure arguments

A reader-macro procedure must accept six arguments, and it can optionally accept two arguments. The first two
arguments are always the character that triggered the reader macro and the input port for reading. When the reader
macro is triggered byead-syntax (or read-syntax/recursive), the procedure is passed four additional
arguments that represent a source location. When the reader macro is triggeeed bfor read/recursive),

the procedure is passed only two arguments if it accepts two arguments, otherwise it is passed six arguments where
the last four are alif .

A #reader -loaded procedure accepts the same arguments asreiiteror read-syntax , depending on whether
the procedure was loaded througtad , etc. or throughiead-syntax , etc.

A special-result procedure must accept four arguments, and it can optionally accept zero arguments. When the special

read is triggered byead-syntax (or read-honu-syntax , read-syntax/recursive , etc.), the proce-
dure is passed four arguments that represent a source location. When the special read is triggeadd (oy
read-char-or-special , read-honu , read/syntax , etc.), the procedure is passed no arguments if it ac-

cepts zero arguments, otherwise it is passed four arguments that#re all
Procedure result

When a reader-extension procedure is called in syntax-reading modegdayntax , etc.), it should generally
return a syntax object that has no lexical context (e.g., a syntax object createdlaing>syntax-object

with #f as the first argument and with the given location information as the third argument). Another possible result
is a special-comment value (s&&1.2.9.). If the procedure’s result is not a syntax object and not a special-comment
value, it is converted to one usimigtum->syntax-object

When a reader-extension procedure is called in non-syntax-reading modes, it should generally not return a syntax
object. If a syntax object is returned, it is converted to a plain value sinthx-object->datum

In either context, when the result from a reader-extension procedure is a special-comment vajug.¢se€), then
read , read-syntax , etc. treat the value as a delimiting comment and otherwise ignore it.

Also in either context, the result may be copied to prevent mutation to pairs, vectors, or boxes before the read result is
completed, and to support the construction of graphs with cycles. Mutable pairs, boxes, and vectors are copied, along
with any pairs, boxes, or vectors that lead to such mutable values, to placeholders produced by a recursive read (see
§11.2.9.2, or to references of a shared value. Graph structure (including cycles) is preserved in the copy.

126

11. Input and Output 11.2. Reading and Writing

11.2.9.1 ®ECIAL COMMENTS

(make-special-comment v) creates a special-comment value that encapsulates The read ,
read-syntax , etc. procedures treat values constructed wittke-special-comment as delimiting whitespace
when returned by a reader-extension procedure§see.9.

(special-comment? v) returns#t if v is the result oinake-special-comment | #f otherwise.

(special-comment-value sc) returns the value encapsulated by the special-comment saludhis value
is never used directly by a reader, but it might be used by the contexteafdachar-or-special , etc. call that
detects a special comment.

11.2.9.2 RCURSIVEREADS

(read/recursive [input-port char-or-false readtable]) is similar to callingread , but it is nor-
mally used during the dynamic extentrefad within a reader-extension procedure (§&&.2.9. The main effect of
usingread/recursive instead ofread is that graph-structure annotations (§&é.2.5.) in the nested read are

considered part of the overall read. Since the result is wrapped in a placeholder, however, it is not directly inspectable.

If char-or-false is provided and no#f , it is effectively prefixed to the beginning ofput-port ’s stream for
the read. (To prefix multiple characters, usput-port-append from MzLib’s port library; see Chapter 33 of
PLT MzLib: Libraries Manual)

Thereadtable argument, which defaults {@urrent-readtable) , is used for top-level parsing to satisfy the

read request; recursive parsing within the read (e.g., to read the elements of a list) instead uses the current readtable
as determined by theurrent-readtable parameter. A reader macro might cetlad/recursive with a

character and readtable to effectively invoke the readtable’s behavior for the characeadtéfble is #f , the

default readtable is used for top-level parsing.

When called within the dynamic extenti@fad , theread/recursive procedure produces either an opaque place-
holder value, a special-comment value, or an end-of-file. The result is a special-comment valgel(3ee)

when the input stream’s first non-whitespace content parses as a comment. The result is end-of-file when
read/recursive encounters an end-of-file. Otherwise, the result is a placeholder that protects graph references
that are not yet resolved. When this placeholder is returned within an S-expression that is produced by any reader-
extension procedure (sg&1.2.9 for the same outermosgad , it will be replaced with the actual read value before

the outermostead returns.

(read-syntax/recursive [source-name-v input-port char-or-false readtable]) is anal-

ogous to callingead/recursive , but the resulting value encapsulates S-expression structure with source-location
information. As withread/recursive , Whenread-syntax/recursive is used within the dynamic extent

of read-syntax , the result of fronread-syntax/recursive is either a special-comment value, end-of-file,

or opaque graph-structure placeholder (not a syntax object). The placeholder can be embedded in an S-expression or
syntax object returned by a reader macro, etc., and it will be replaced with the actual syntax object before the outermost
read-syntax returns.

Usingread/recursive within the dynamic extent afead-syntax does not allow graph structure for reading
to be included in the outeead-syntax parsing, and neither does usirgad-syntax/recursive within the
dynamic extent ofead . In those casesgead/recursive andread-syntax/recursive produce results

like read andread-syntax

See§11.2.8for an extended example that usead/recursive andread-syntax/recursive

127

11.3. Filesystem Utilities 11. Input and Output

11.2.10 Customizing the Printer through Custom-Write Procedures

The built-in prop:custom-write structure type property associates a procedures to a structure type. The proce-
dure is used by the default printerdsplay orwrite (or print) instances of the structure type.

Seeg4.4for general information on structure type properties.

The procedure for prop:custom-write value takes three arguments: the structure to be printed, the target port,
and a boolean that it for write mode and#f for display mode. The procedure should print the value to the
given port usingnrite |, display |, fprintf | write-special , etc.

The write handler, display handler, and print handler are specially configured for a port given to a custom-write proce-
dure. Printing to the port througtisplay , write , orprint prints a value recursively with sharing annotations.

To avoid a recursive print (i.e., to print without regard to sharing with a value currently being printed), print instead to a
string or pipe and transfer the result to the target port usiriig-string andwrite-special . To recursively

print but to a port other than the one given to the custom-write procedure, copy the given port’s write handler, display
handler, and print handler to the other port.

The port given to a custom-write handler is not necessarily the actual target port. In particular, to detect cycles and
sharing, the printer invokes a custom-write procedure with a port that records recursive prints, and does not retain any
other output.

Recursive print operations may trigger an escape from the call to the custom-write procedure (e.g., for pretty-printing
where a tentative print attempt overflows the line, or for printing error output of a limited width).

The following example definition of auple type includes custom-write procedures that print the tuple’s list content
using angle brackets imrite mode and no bracketsdisplay mode. Elements of the tuple are printed recursively,
so that graph and cycle structure can be represented.

(define (tuple-print tuple port write?)
(when write? (write-string <" port))
(let [| (tuple-ref tuple 0)])
(unless (null? 1)
(Gif write? write display) (car) port)
(for-each (lambda (e)
('write-string ", " port)
((Gf write? write display) e port))
(cdr 1))))
(when write? (write-string ">" port)))
(define-values (s:tuple make-tuple tuple? tuple-ref tuple-set!)
(make-struct-type ‘tuple #f 1 0 #f
(list (cons prop:custom-write tuple-print N)

(display (make-tuple (1 2 "a")) ; prints 1, 2, a
(let [t (make-tuple (list 1 2 "a")])

(set-car! (tuple-ref t 0) t)

(write t)) ; prints #0 =<#0#, 2, "a" >

11.3 Filesystem Utilities

MzScheme provides many operations for accessing and modifying filesystems in a (mostly) platform-independent
manner. Additional filesystem utilities are in MzLib; see also Chapter B dfMzLib: Libraries Manual

128

11. Input and Output 11.3. Filesystem Utilities

11.3.1 Paths

The format of a filesystem path varies across platforms. For example, under Unix, directories are separated by “/”
while Windows uses both “/” and\”. (See§20 for more information on Windows paths in MzScheme.) Furthermore,

for most Unix filesystems, the true name of a file is a byte string, but users prefer to see the bytes decoded in a locale-
specific way when the filename is printed. MzScheme therefore provigatha datatype for managing filesystem

paths, and procedures suchasld-path , path->string , andbytes->path for manipulating paths. Two

paths areequal? when their byte-string representations aggial? .

When a MzScheme procedure takes a filesystem path as an argument, the path can be provided either as a string or
as an instance of thpath datatype. If a string is provided, it is converted to a path usiming->path A
MzScheme procedure that generates a filesystem path always gengraties\alue.

Most MzScheme primitives that take path perform an expansion on the path before using it. (Procedures that build
paths or merely check the form of a path do not perform this expansion.) Under Unix and Mac OS X, a user directory
specification using~” is expanded and multiple adjacent slashes are replaced with a singlé dlaster Windows,

paths that start\?\, redundant backslashes are removed, and an extra backslash is adde@\REL if an extra

one is not already present to separate up-directory indicators from literal path elemefs) feeenore information.

Under Windows for other paths, multiple slashes are converted to single slashes (except at the beginning of a shared
folder name), a slash is inserted after the colon in a drive specification if it is missing.

A path string (or byte string) cannot be empty, and it cannot contain a nul character or byte. When an empty string
or a string containing nul is provided as a path to any procedure eabsptute-path? , relative-path? , or
complete-path? theexn:fail:contract exception is raised.

The basic path utilities are as follows:

e (path? v) returnstt if v is a path value (not a stringjf otherwise.

e (path-string? v) returnstt if v is either a path value or a non-empty string without nul charactérs,
otherwise.

e (string->path string) produces a path whose byte-string namgsising->bytes/locale
string (char->integer # \?)) ; see§3.6for more information orstring->bytes/locale . Be-

ware that the current locale might not encode every string, in whichstasg- >path can produce the
same path for differergtring s.

e (bytes->path bytes) produces a path whose byte-string nambyites . For converting relative path
elements from literals, use insteagtes->path-element (described below), which applies a suitable
encoding for individual elements.

e (path->string path) produces a string that represepé&h by decodingpath s byte-string name using
the current locale’s encoding; “?” is used in the result string where encoding fails, and if the encoding result is
the empty string, then the result'i®" . In addition, under Windows, if the path is relative and the byte-string
version of the path starts withl\ ?\REL, this prefix and the immediately following backslashes (one or two)
are removed from the resulting string. The resulting string is suitable for displaying to a user, string-ordering
comparisons, etc., but it is not suitable for re-creating the path thrsuigiy->path , since decoding and
re-encoding the path’s byte string may lose information.

e (path->bytes path) producespath s byte string representation. No information is lost in this trans-
lation, so that(bytes->path (path->bytes path)) always produces a path is thateégual? to
path . Conversion to and from byte values is useful for marshaling and unmarshaling paths, but manipulating
the byte form of a path is generally a mistake. In particular, the byte string may start \Wjth REL encoding
for Windows for a./~ encoding for Unix and Mac OS X. Instead péith->bytes , usesplit-path and
path-element->bytes (described below) to manipulate individual path elements.

9Under Mac OS X, Finder aliases are zero-length files.

129

11.3. Filesystem Utilities 11. Input and Output

e (bytes->path-element bytes) is like bytes->path , except thabytes corresponds to a single

130

relative element in a path. Thus, under Urbiyfes can start with a tilde (*"), and it is encoded as a literal

part of the path element using a period—slash (“./") prefix. Similarly, under Windows, forward slashes, colons,
trailing dots, trailing whitespace, and special device names (e.g., “aux”) are encoded as a literal part of the path
element by using §\?\REL prefix. Under Unix and Mac OS X, theytes argument must not contain a slash

(“1"), otherwise theexn:fail:contract exception is raised. Under Windowsytes must not contain a
backslash ({"), otherwise theexn:fail:contract exception is raised.

(path-element->bytes path) is like path->bytes , except that any encoding prefix is removed:

J~ for Unix and Mac OS X, oA\\?\REL for Windows. In addition, trailing path separators are removed,

as bysplit-path . Thepath argument must be such thsplit-path applied topath would return
relative as its first result, otherwise thexn:fail:contract exception is raised. For any reasonable
locale, consecutive ASCII characters in the printed fornpath are mapped to consecutive byte values that
match each character’'s code-point value, and a leading or trailing ASCII character is mapped to a leading or
trailing byte, respectively.

(build-path base-path sub-path --+) creates a path given a base path and any number of sub-path
extensions. Ibase-path is an absolute path, the result is an absolute patbase is a relative path, the
result is a relative path. Eacgub-path must be either a relative path, a directory name, the syrupol
(indicating the relative parent directory), or the symisalme (indicating the relative current directory). Under
Windows, ifbase-path is a drive specification (with or without a trailing slash) the fasb-path can be

an absolute (driveless) path. The lagb-path can be a filename.

Under Windows, trailing spaces and periods are removed from the last elemeasepath and all but

the lastsub-path (unless the element consists of only spaces and peroids), except for those that start with
\\?\. If base-path starts\\?\, then after each noR\?\REL\ sub-path is added, all slashes in the
addition are converted to backslashes, multiple consecutive backslashes are converted to a single backslash,
added. elements are removed, and addeclements are removed along with the preceding element; these
conversions are not performed on the originase-path part of the result or on any\?\REL\ sub-path

If a \\?\REL)\ sub-path is added to a non\?\ base-path , the thebase-path (with any additions up

to the \\?\REL\ sub-path) is simplified and converted to &\ ?\ path. In other cases under Windows, a
backslash may be added or removed before combining paths to avoid changing the root meaning of the path
(e.g., combining/x andy producesx/y, becausé#x/y would be a UNC path instead of a drive-relative path).

Under Unix and Mac OS X, whensab-path starts with a period, slash, and tilde €!)) the period and slash

are removed before adding the path. This conversion is performed because an initial sequence period—slash—
tilde (“./~") is the canonical way of representing relative paths whose first element’'s name starts with a tilde.
(See alssplit-path , below.)

Eachsub-path andbase-path can optionally end in a directory separator. If the Rgb-path endsina
separator, it is included in the resulting path.

If base-path or sub-path is an illegal path string (because it is empty or contains a nul character), the
exn:fail:contract exception is raised.

Thebuild-path procedure builds a pathithoutchecking the validity of the path or accessing the filesystem.

The following examples assume that the current directorame/joeuser for Unix examples and:\Joe’s
Files for Windows examples.

11. Input and Output 11.3. Filesystem Utilities

(define pl (build-path (current-directory) "src
; Unix; pl = "/homel/joeuser/src/scheme"
; Windows: pl = "C: \Joe's Files \src \scheme"
(define p2 (build-path 'up 'up "docs" "MzScheme"))
; Unix: p2 = "././docs/MzScheme"
; Windows: p2 = ".. \.. \docs \MzScheme"
(build-path p2 pl)
; Unix and Windows: raises exn:fail:contract because pl is absolute
(build-path pl p2)
; Unix: = "/homeljoeuser/src/scheme/../../docs/MzScheme”
; Windows: = "C: \Joe’s Files \src \scheme\.. \.. \docs \MzScheme"

scheme™"))

e (absolute-path? path) returns#t if path is an absolute pathif otherwise. Ifpath is not a legal
path string (e.g., it contains a nul charactéf),is returned. This procedure does not access the filesystem.

o (relative-path? path) returns#t if path is a relative pathéf otherwise. Ifpath is not a legal path
string (e.g., it contains a nul charactet), is returned. This procedure does not access the filesystem.

e (complete-path? path) returns#t if path is a completely determined pathat relative to a directory
or drive),#f otherwise. Note that under Windows, an absolute path can omit the drive specification, in which
case the path is neither relative nor completgalth is not a legal path string (e.g., it contains a nul character),
#f is returned. This procedure does not access the filesystem.

e (path->complete-path path [base-path |]) returnspath as a complete path. fath is already
a complete path, it is returned as the result. Otherwisgh is resolved with respect to the complete
pathbase-path . If base-path is omitted, path is resolved with respect to the current directory. If
base-path is provided and it is not a complete path, #wn:fail:contract exception is raised. This
procedure does not access the filesystem.

¢ (path->directory-path path) returnspath if path syntactically refers to a directory, otherwise it
returns an extended version péth that specifies a directory. For example, under Unix and Mac OS X, the
pathx/y/ syntactically refers to a directory, buty would be extended tg/y/. This procedure does not access
the filesystem.

e (resolve-path path) expandgath and returns a path that references the same file or directpatias.
Under Unix and Mac OS X, ipath is a soft link to another path, then the referenced path is returned (this may
be a relative path with respect to the directory owrpagh) otherwisepath is returned (after expansion).

e (expand-path path) returns the expanded versionpEth (as described at the beginning of this section).
The filesystem might be accessed, but the source or expanded path might be a non-existent path.

e (simplify-path path [use-filesystem?]) eliminates redundant path separators, up-directory
(“..), same-directory (“.") indicators irpath , such that the result accesses the same file or directory (if it
exists) agpath . Under Windowspath is expanded (see the beginning of this section), apdtifi does not
start with\\ ?\, trailing spaces and periods are removed, a slash is inserted after the colon in a drive specification
if it is missing. Otherwise, if no indicators or redundant separators guatim , thenpath is returned. Under
Unix and Mac OS X, ifpath starts period—slash-tilde (*/), the leading period is the only indicator, and

there are no redundant slashes, thath is returned.

Whenpath is simplified anduse-filesystem? is true (the default), a complete path is returnegaith
is relative, it is resolved with respect to the current directory, and up-directory indicators are removed taking
into account soft links (so that the resulting path refers to the same directory as before).

Whenuse-filesystem? is #f , up-directory indicators are removed by deleting a preceding path element,
and the result can be a relative path with up-directory indicators remaining at the beginning of the path or, under
Unix and Mac OS X, after an initial path element that starts with tilde"}"* Similarly, the result can be the

same agbuild-path 'same) if eliminating up-directory indicators leaves only same-directory indicators,
and the result can start with a same-directory indicator under Unix and Mac OS X if eliminating it would make

131

11.3. Filesystem Utilities 11. Input and Output

the result start with a tilde). For a complete path, up-directory indicators are dropped when they refer to
the parent of a root directory.

The filesystem might be accessed whese-filesystem? is true, but the source or expanded path might
be a non-existent path. ffath cannot be simplified due to a cycle of links, teen:fail:filesystem

exception is raised (but a successfully simplified path may still involve a cycle of links if the cycle did not inhibit
the simplification).

e (normal-case-path path) returnspath with “normalized” case letters. Under Unix and Mac OS X,
this procedure always returns the input path, because filesystems for these platforms can be case-sensitive. Under
Windows, if the path does not stayt?\, the resulting string uses only lowercase letters, based on the current
locale. In addition, under Windows when the path does not st@, all forward slashes (“/”) are converted
to backward slashes\(*), and trailing spaces and periods are removed. This procedure does not access the
filesystem.

e (split-path path) deconstructpath into a smaller path and an immediate directory or file name. Three
values are returned (sé2.2):

— base is either
x a path,
x 'relative if path is an immediate relative directory or filename, or
x #f if path is a root directory or, under Unix and Mac OS X, specifies a user directory through an
initial tilde (“~").
— nameis either
* a directory-name path,

x a filename,
« 'up ifthe last part opath specifies the parent directory of the preceding path (e.g., “..” under Unix),
or
x 'same if the last part ofpath specifies the same directory as the preceding path (e.g., “." under
Unix).
— must-be-dir? is #t if path explicitly specifies a directory (e.g., with a trailing separatéf),oth-

erwise. Note thamust-be-dir? does not specify whetherame is actually a directory or not, but
whethermath syntactically specified a directory.

If base is#f , thenname cannot béup or’same . This procedure does not access the filesystem.
Compared tgath , redundant separators (if any) are removed in the résiske andname.

Under Unix and Mac OS X, the resuiime can start with period—slash—tilde (%7) if the result would other-

wise start with tilde (=") and it is not the start opath . Furthermore, ipath starts with period—slashes—tilde
(“./~", with any non-zero number of “/"), then the period and slash are kept with the following element (i.e.,
they are not split separately).

Under Windows, splitting a path that does not start witf?\ can produce parts that start with?\. For
example, splittingC:/x /faux/ produces\\?\C:\x \ and\\?\REL\\aux; the\\?\ is needed in these cases to
preserve a trailing space afteand to avoid referring to the AUX devide instead ofaa file.

(path-replace-suffix path string-or-bytes) returns a path that is the samepagh , except
that the suffix is changed ttring-or-bytes . If path as no suffix, therstring-or-bytes is added
to the path. A suffix is defined as a period followed by any number of non-period characters/bytes at the end of
the pathname. lpath represents a root, thexn:fail:contract exception is raised.
11.3.2 Locating Paths
Thefind-system-path andfind-executable-path procedures locate useful files and directories:

¢ (find-system-path kind-symbol) returns a machine-specific path for a standard type of path speci-
fied bykind-symbol , which must be one of the following:

132

11. Input and Output 11.3. Filesystem Utilities

— 'home-dir — the current user’'s home directory.
Under Unix and Mac OS X, this directory is determined by expanding the-patthich is expanded by
first checking for &HOME environment variable. If none is defined, thW®ER andLOGNAME environment
variables are consulted (in that order) to find a user name, and then system files are consulted to locate the
user’'s home directory.
Under Windows, the user’'s home directory is the user-specific profile directory as determined by the Win-
dows registry. If the registry cannot provide a directory for some reason, the value WS ERPROFILE
environment variable is used instead, as long as it refers to a directory that exis8€eRPROFILE also
fails, the directory is the one specified by tHOMEDRIVE and HOMEPATH environment variables. If
those environment variables are not defined, or if the indicated directory still does not exist, the directory
containing the MzScheme executable is used as the home directory.

— 'pref-dir — the standard directory for storing the current user’s preferences. Under Unix, the directory
is .plt-scheme in the user’s home directory. Under Windows, iBisT Scheme in the user’s application-
data folder as specified by the Windows registry; the application-data folder is uspaliyation Data
in the user’s profile directory. Under Mac OS X, itlitbrary/Preferences in the user’s home directory.
This directory might not exist.

— 'pref-file — a file that contains a symbol-keyed association list of preference values. The file's
directory path always matches the result returneddef-dir . The file name iplt-prefs.ss under
Unix and Windows, and it isrg.plt-scheme.prefs.ss under Mac OS X. The file’s directory might not
exist. See alsget-preference in Chapter 18 oPLT MzLib: Libraries Manual

— 'temp-dir — the standard directory for storing temporary files. Under Unix and Mac OS X, this is the
directory specified by thEMPDIR environment variable, if it is defined.

— "init-dir — the directory containing the initialization file used by stand-alone MzScheme application.
It is the same as the current user's home directory.

— init-file — the file loaded at start-up by the stand-alone MzScheme application. The directory part
of the path is the same path as returnedifat-dir . The file name is platform-specific:

x Unix and Mac OS X:mzschemerc
x Windows: mzschemerc.ss

— 'addon-dir — a directory for installing PLT Scheme extensions. It's the sampra&dir , except
under Mac OS X, where it'sibrary/PLT Scheme in the user’s home directory. This directory might not
exist.

— 'doc-dir — the standard directory for storing the current user's documents. It's the same as

'home-dir under Unix and Mac OS X. Under Windows, it is the user’s documents folder as specified
by the Windows registry; the documents folder is usuiifyDocuments in the user’s home directory.

— 'desk-dir — the directory for the current user’s desktop. Under Unix, it's the samiecase-dir
Under Windows, it is the user’s desktop folder as specified by the Windows registry; the documents folder
is usuallyDesktop in the user’s home directory. Under Mac OS X, it is the desktop directory, which is
specifically~/Desktop under Mac OS X.

— 'sys-dir — the directory containing the operating system for Windows. Under Unix and Mac OS X,
the result is'/"

— 'exec-file — the path of the MzScheme executable as provided by the operating system for the current
invocation:®

— run-file — the path of the current executable; this may be different from resulekac-file

because an alternate path was provided througihame or -N command-line flag to stand-alone
MzScheme (or MrEd), or because an embedding executable installed an alternate path. In particular a
“launcher” script created bynake-mzscheme-launcher sets this path to the script's path. In the
stand-alone MzScheme application, this path is also bound initiapyagram .

— ’collects-dir — a path to the main collection of libraries (sg&6). If this path is relative, it's
relative to the directory offind-system-path ‘exec-file) . This path is normally embedded in
a stand-alone MzScheme executable, but it can be overridden byctilects or-X command-line
flag.

— 'orig-dir — the current directory at start-up, which can be useful in converting a relative-path result

10For MrEd, the executable path is the name of a MrEd executable.

133

11.3. Filesystem Utilities 11. Input and Output

from (find-system-path ’exec-file) or (find-system-path ’'run-file) to a com-
plete path.
e (path-list-string->path-list string default-path-list) parses a string or byte string

containing a list of paths, and returns a list of path strings. Under Unix and Mac OS X, paths in a path list
are separated by a colon (*:”); under Windows, paths are separated by a semi-colon (*;”). Whenever the path
list contains an empty path, the lidéfault-path-list is spliced into the returned list of paths. Parts of
string that do not form a valid path are not included in the returned list.

¢ (find-executable-path program-sub-path related-sub-path) finds a path for the exe-
cutableprogram-sub-path |, returning#f if the path cannot be found.

If related-sub-path is not #f , then it must be a relative path string, and the path found for
program-sub-path must be such that the file or directorglated-sub-path exists in the same di-
rectory as the executable. The result is then the full path for the foelated-sub-path , instead of the
path for the executable.

This procedure is used by MzScheme (as a stand-alone executable) to find the standard library collection
directory (see Chaptet6). In this case,program is the name used to start MzScheme aathted

is "collects" . The related-sub-path argument is used because, under Unix and Mac OS X,
program-sub-path may involve to a sequence of soft links; in this cassdated-sub-path deter-

mines which link in the chain is relevant.

If program-sub-path has a directory path, exists as a file or link to a file, agldted-sub-path is

not #f , find-executable-path determines whetheaelated-sub-path exists relative to the direc-
tory of program-sub-path . If so, the complete path fqggrogram-sub-path is returned. Otherwise,

if program-sub-path is a link to another file path, the destination directory of the link is checked for
related-sub-path . Further links are inspected untiélated-sub-path is found or the end of the
chain of links is reached.

If program-sub-path is a pathless namédind-executable-path gets the value of theATH en-
vironment variable; if this environment variable is definfidd-executable-path tries each path in

PATH as a prefix forprogram-sub-path using the search algorithm described above for path-containing
program-sub-path s. If thePATH environment variable is not defingokogram-sub-path is prefixed

with the current directory and used in the search algorithm above. (Under Windows, the current directory is al-
ways implicitly the first item inPATH, sofind-executable-path checks the current directory first under
Windows.)

11.3.3 Files

The file management utilities are:

o (file-exists? path) returnst#t if afile (not a directorypath exists#f otherwise!?

e (link-exists? path) returns#t if a link path exists (Unix and Mac OS X}f otherwise. Note that
the predicatefile-exists? or directory-exists? work on the final destination of a link or series of
links, while link-exists? only follows links to resolve the base part péith (i.e., everything except the
last name in the path). This procedure never raisesxhdail:filesystem exception.

o (delete-file path) deletes the file with patpath if it exists, returning void if a file was deleted suc-
cessfully, otherwise thexn:fail:filesystem exception is raised. Ipath is a link, the link is deleted
rather than the destination of the link.

¢ (rename-file-or-directory old-path new-path [exists-ok?]) renames the file or direc-
tory with pathold-path — if it exists — to the patmew-path . If the file or directory is renamed success-
fully, void is returned, otherwise thexn:fail:filesystem exception is raised.

Hunder Windowsfile-exists? reports#t for all variations of the special filenames (e!¢.PT1" , "x:/baddir/LPT1").

134

11. Input and Output 11.3. Filesystem Utilities

This procedure can be used to move a file/directory to a different directory (on the same disk) as well as rename
a file/directory within a directory. Unlessxists-ok? is provided as a true valuagw-path cannot refer

to an existing file or directory. Even éxists-ok? is true,new-path cannot refer to an existing file when
old-path is a directory, and vice versa. (fiew-path exists and is replaced, the replacement is atomic in

the filesystem, except under Windows 95, 98, or Me. However, the check for existence is not included in the
atomic action, which means that race conditions are possible etists-ok? is false or not supplied.)

If old-path is a link, the link is renamed rather than the destination of the link, and it counts as a file for
replacing any existingew-path .

¢ (file-or-directory-modify-seconds path [secs-n fail-thunk |) returns the file or direc-
tory’s last modification date as platform-specific seconds (seesalsd) whensecs-n is not provided or
is #f .12 If secs-n is provided and notf , the access and modification times mdth are set to the

given time. On error (e.g., if no such file exist$jl-thunk is called if it is provided, otherwise the
exn:fail:filesystem exception is raised

o (file-or-directory-permissions path) returns a list containingread , 'write , and/or
‘execute for the given file or directory path. On error (e.g., if no such file exists), the
exn:fail:filesystem exception is raised. Under Unix and Mac OS X, permissions are checked for the
current effective user instead of the real user.

o (file-size path) returns the (logical) size of the specified file in bytes. (Under Mac OS X, this size
excludes the resource-fork size.) On error (e.g., if no such file exist®xthail:filesystem exception
is raised.

e (copy-file src-path dest-path) creates the filelest-path as a copy ofsrc-path . If the
file is successfully copied, void is returned, otherwise ékp:fail:filesystem exception is raised. If
dest-path already exists, the copy will fail. File permissions are preserved in the copy. Under Mac OS X,
the resource fork is also preserved in the copysrtFpath refers to a link, the target of the link is copied,
rather than the link itself.

e (make-file-or-directory-link to-path path) creates a linkpath to to-path under Unix
and Mac OS X. The creation will fail ipath already exists. The¢o-path need not refer to an exist-
ing file or directory, ando-path is not expanded before writing the link. If the link is created success-
fully, void is returned, otherwise thexn:fail:filesystem exception is raised. Under Windows, the
exn:fail:unsupported exception is raised always.

11.3.4 Directories

The directory management utilities are:

e (current-directory) returns the current directory arjdurrent-directory path) sets the cur-
rent directory tgpath . This procedure is actually a parameter, as describéd.th1.1

e (current-drive) returns the current drive name Windows. For other platformsthdail:unsupported
exception is raised. The current drive is always the drive of the current directory.

e (directory-exists? path) returnstt if path refersto a directory#f otherwise.

e (make-directory path) creates a new directory with the paghth . If the directory is created success-
fully, void is returned, otherwise thexn:fail:filesystem exception is raised.

e (delete-directory path) deletes an existing directory with the pathth . If the directory is deleted
successfully, void is returned, otherwise then:fail:filesystem exception is raised.

12For FAT filesystems under Windows, directories do not have modification dates. Therefore, the creation date is returned for a directory (but the
modification date is returned for a file).

135

11.4. Networking 11. Input and Output

e (rename-file-or-directory old-path new-path exists-ok?) , as described in the previous
section, renames directories.

e (file-or-directory-modify-seconds path), as described in the previous section, gets directory
dates.

o (file-or-directory-permissions path), as described in the previous section, gets directory per-
missions.

e (directory-list [path]) returns a list of all files and directories in the directory specifieghéth . If

path is omitted, a list of files and directories in the current directory is returned. Under Unix and Mac OS X,
an element of the list can start with period—slash-tilde(").f it would otherwise start with tilde (*~"). Under
Windows, an element of the list may start with?\REL\\.

o (filesystem-root-list) returns a list of all current root directories. Obtaining this list can be particu-
larly slow under Windows.

11.4 Networking

MzScheme supports networking with the TCP and UDP protocols.

1141 TCP

For information about TCP in general, SEEP/IP lllustrated, Volume by W. Richard Stevens.

e (tcp-listen port-k [max-allow-wait-k reuse? hostname-string-or-false |) creates
a “listening” server on the local machine at the specified port number (witetek is an exact integer be-
tweenl and 65535 inclusive). Themax-allow-wait-k argument determines the maximum number of
client connections that can be waiting for acceptance. (Whax-allow-wait-k clients are waiting ac-
ceptance, no new client connections can be made.) The default valoefeallow-wait-k argument is
4.

If the reuse? argument is true, thetcp-listen will create a listener even if the port is involved in a

TIME_WAIT state. Such a use oéuse? defeats certain guarantees of the TCP protocol; see Stevens’s book
for details. Furthermore, on many modern platforms, a true valueefmse? overridesTIME_WAIT only if
the listener was previously created with a true valuedémise? . The default foreuse? s #f .

If hostname-string-or-false is#f (the default), then the listener accepts connections to all of the lis-
tening machine’s addressesOtherwise, the listener accepts connections only at the interface(s) associated with
the given hostname. For example, providiig7.0.0.1" ashostname-string-or-false creates a
listener that accepts only connections1@7.0.0.1" (the loopback interface) from the local machine.

The return value otcp-listen is a TCP listener value. This value can be used in future calls to
tcp-accept |, tcp-accept-ready? , andtcp-close . Each new TCP listener value is placed into the
management of the current custodian (§&€).

If the server cannot be started tgp-listen , theexn:fail:network exception is raised.

e (tcp-connect hostname-string port-k [local-hostname-string-or-false local-port-k-or-false
attempts to connect as a client to a listening server. Hdstname-string argument is the server host’s

13\MzScheme implements a listener with multiple sockets, if necessary, to accomodate multiple addresses with different protocol families. Under
Linux, if hostname-string-or-false maps to both IPv4 and IPv6 addresses, then the behavior depends on whether IPv6 is supported and
IPv6 sockets can be configured to listen to only IPv6 connections: if IPv6 is not supported or IPv6 sockets are not configurable, then the IPv6
addresses are ignored; otherwise, each IPv6 listener accepts only IPv6 connections.

136

11. Input and Output 11.4. Networking

Internet address nartfe(e.qg., "www.plt-scheme.org"), andport-k (an exact integer betweehand
65535) is the port where the server is listening.

The optional local-hostname-string-or-false and local-port-k-or-false specify the
client's address and port. If both a#é (the default), the client’'s address and port are selected automatically. If
local-hostname-string-or-false is not#f , thenlocal-port-k-or-false must be nor#f .

If local-port-k-or-false is non#f andlocal-hostname-string-or-false is #f , then the

given port is used but the address is selected automatically.

Two values (se§2.2) are returned bycp-connect : an input port and an output port. Data can be received
from the server through the input port and sent to the server through the output port. If the server is a MzScheme
process, it can obtain ports to communicate to the client tgjphaccept . These ports are placed into the
management of the current custodian (§&¢).

Initially, the returned input port is block-buffered, and the returned output port is block-buffered. Change the
buffer mode usindile-stream-buffer-mode (seesl11.1.9.

Both of the returned ports must be closed to terminate the TCP connection. When both ports are still open,
closing the output port witklose-output-port sends a TCP close to the server (which is seen as an end-
of-file if the server reads the connection through a port). In contigstabandon-port (see below) closes

the output port, but does not send a TCP close until the input port is also closed.

Note that the TCP protocol does not support a state where one end is willing to send but not read, nor does

it include an automatic message when one end of a connection is fully closed. Instead, the other end of a

connection discovers that one end is fully closed only as a response to sending data; in particular, some number
of writes on the still-open end may appear to succeed, though writes will eventually produce an error.

If a connection cannot be establishedtby-connect , theexn:fail:network exception is raised.

e (tcp-connect/enable-break hostname-string port-k [local-hostname-string local-port-k
is like tcp-connect , but breaking is enabled (sé&.7) while trying to connect. If breaking is disabled when
tcp-connect/enable-break is called, then either ports are returned or &xa:break exception is
raised, but not both.

e (tcp-accept tcp-listener) accepts a client connection for the server associatedeyitlistener
Thetcp-listener argument is a TCP listener value returnedtty-listen . If no client connection is
waiting on the listening port, the call top-accept will block. (See alsdcp-accept-ready? , below.)

Two values (se@2.2) are returned bycp-accept : an input port and an output port. Data can be received
from the client through the input port and sent to the client through the output port. These ports are placed into
the management of the current custodian {$e8).

In terms of buffering and connection states, the ports act the same as portsffroomnect

If a connection cannot be accepted Mlgp-accept , or if the listener has been closed, the
exn:fail:network exception is raised.

e (tcp-accept-ready? tcp-listener) tests whether an unaccepted client has connected to the server
associated withtcp-listener . The tcp-listener argument is a TCP listener value returned by
tcp-listen . If a client is waiting, the return value it , otherwise it is#f . A client is accepted with
thetcp-accept procedure, which returns ports for communicating with the client and removes the client
from the list of unaccepted clients.

If the listener has been closed, tiven:fail:network exception is raised.
e (tcp-accept/enable-break tcp-listener) is like tcp-accept , but breaking is enabled (see
§6.7) while trying to accept a connection. If breaking is disabled wtwmaccept/enable-break is
called, then either ports are returned or ¢éix@:break exception is raised, but not both.
14)f hostname-string is associated with multiple addresses, they are tried one at a time until a connection succeeds. The name
"localhost" generally specifies the local machine.

137

11.4. Networking 11. Input and Output

e (tcp-close tcp-listener) shuts down the server associated wittp-listener . The
tcp-listener argument is a TCP listener value returnecdiyy-listen . All unaccepted clients receive
an end-of-file from the server; connections to accepted clients are unaffected.

If the listener has already been closed, ¢ixa:fail:network exception is raised.

The listener’'s port number may not become immediately available for new listeners (with the default
reuse? argument oftcp-listen). For further information, see Stevens'’s explanation of tHdE_WAIT

TCP state.

o (tcp-listener? v) returns#t if v is a TCP listener value created top-listen , #f otherwise.

e (tcp-accept-evt tcp-listener) returns a synchronizable event ($€€7) that is in a blocking state
whentcp-accept ontcp-listener would block. If the event is chosen in a synchronization, the result

is a list of two items, which correspond to the two resultdapi-accept . (If the event is not chosen, no
connections are accepted.)

e (tcp-abandon-port tcp-port) is like close-output-port or close-input-port (depend-
ing on whetheitcp-port is an input or output port), but iicp-port is an output port and its associated
input port is not yet closed, then the other end of the TCP connection does not receive a TCP close message
until the input port is also closeld.

e (tcp-addresses tcp-port) returns two strings. The first string is the Internet address for the local
machine a viewed by the given TCP port's connectidithe second string is the Internet address for the other
end of the connection.

If the given port has been closed, tlen:fail:network exception is raised.
e (tcp-port? v) returnstt if v is aportreturned bicp-accept ,tcp-connect |, tcp-accept/enable-break
or tcp-connect/enable-break , #f otherwise.
11.4.2 UDP

For information about UDP in general, SEEP/IP lllustrated, Volume by W. Richard Stevens (which discusses UDP
in addition to TCP).

e (udp-open-socket [family-hostname-string-or-false family-port-k-or-false]) cre-
ates and returns a UDP socket to send and receive datagrams (broadcasting is allowed). Initially, the socket is
not bound or connected to any address or port.

If family-hostname-string-or-false or family-port-k-or-false is provided and no#f ,

then the socket’s protocol family is determined from these arguments. The sonkéb@mund to the hostname

or port number. For example, the arguments might be the hostname and port to which messages will be sent
through the socket, which ensures that the socket’s protocol family is consistent with the destination. Alter-
nately, the arguments might be the same as for a future callipebind! , which ensures that the socket'’s
protocol family is consistent with the binding. If neithtamily-hostname-string-or-false nor
family-port-k-or-false is provided as nos# , then the socket’s protocol family is IPv4.

e (udp-bind! udp-socket hostname-string-or-false port-k) binds an unbounddp-socket
to the local port numbeport-k (an exact integer betwednand65535). The result is always void.

If hostname-string-or-false is#f , then the socket accepts connections to all of the listening machine’s
IP addresses qort-k . Otherwise, the socket accepts connections only at the IP address associated with the

15The TCP protocol does not include a “no longer reading” state on connectionsicpsabandon-port is equivalent to
close-input-port on input TCP ports.

18For most machines, the answer corresponds to the current machine’s only Internet address. But when a machine serves multiple addresses, the
result is connection-specific.

138

11. Input and Output 11.4. Networking

given name. For example, providifig27.0.0.1" ashostname-string-or-false typically creates a
listener that accepts only connection$1@7.0.0.1" from the local machine.

A socket cannot receive datagrams until it is bound to a local address and port. If a socket is not bound before
it is used with a sending procedundp-send , udp-send-to , etc., the sending procedure binds the socket

to a random local port. Similarly, if an event fromdlp-send-evt or udp-send-to-evt is chosen for a
synchronization (se§7.7), the socket is bound; if the event is not chosen, the socket may or may not become
bound. The binding of a bound socket cannot be changed.

If udp-socket s already bound or closed, tleen:fail:network exception is raised.

e (udp-connect! udp-socket hostname-string-or-false port-k-or-false) connects the
socket to the indicated remote address and porhd$tname-string-or-false is a string and
port-k-or-false is an exact integer betwednand65535 . The result is always void.

If hostname-string-or-false is #f , thenport-k-or-false also must be#f , and the port is dis-
connected (if connected). If one bbstname-string-or-false or port-k-or-false is#f and the
other is not, thexn:fail:contract exception is raised.

A connected socket can be used wittp-send (notudp-send-to), and it accepts datagrams only from the
connected address and port. A socket need not be connected to receive datagrams. A socket can be connected,
re-connected, and disconnected any number of times.

If udp-socket is closed, thexn:fail:network exception is raised.
¢ (udp-send-to udp-socket hostname-address port-k bytes [start-k end-k) sends
(subbytes bytes start-k end-k) as a datagram from the unconnectefp-socket to the socket

at the remote machinestname-address on the porfport-k . Theudp-socket need not be bound or
connected; if it is not boundidp-send-to binds it to a random local port. If the socket’s outgoing datagram
queue is too full to support the senatjp-send-to blocks until the datagram can be queued. The result is
always void.

The optionalstart-k argument defaults t6, and the optionaénd-k argument defaults to the length of
bytes . If start-k is greater than the length bijtes , or if end-k is less tharstart-k or greater than

the length otbytes , theexn:fail:contract exception is raised.
If udp-socket is closed or connected, tlean:fail:network exception is raised.

e (udp-send udp-socket bytes [start-k end-k]) islikeudp-send-to , except thatidp-socket
must be connected, and the datagram goes to the connection targhi-dbcket is closed or unconnected,
theexn:fail:network exception is raised.

¢ (udp-send-to* udp-socket hostname-address port-k bytes [start-k end-k]) islike

udp-send-to , except that it never blocks; if the socket’s outgoing queue is too full to support thefSei,
returned, otherwise the datagram is queued and the regtlt is

e (udp-send* udp-socket bytes [start-k end-k]) islikeudp-send , exceptthat (likeidp-send-to)
it never blocks and returnf or #t .

¢ (udp-send-to/enable-break udp-socket hostname-address port-k bytes [start-k
end-k]) is like udp-send-to , but breaking is enabled (s&§é.7) while trying to send the datagram. If
breaking is disabled whemdp-send-to/enable-break is called, then either the datagram is sent or the

exn:break exception is raised, but not both.

e (udp-send/enable-break udp-socket bytes [start-k end-k) is like udp-send , except
that breaks are enabled likelp-send-to/enable-break

e (udp-receive! udp-socket mutable-bytes [start-k end-k]) accepts up toend-k —
start-k bytes ofudp-socket ’s next incoming datagram intmutable-bytes , writing the datagram
bytes starting at positiostart-k ~ within mutable-bytes . Theudp-socket must be bound to a local ad-
dress and port (but need not be connected). If no incoming datagram is immediately avadpbieceive!
blocks until one is available.

139

11.4. Networking 11. Input and Output

140

Three values are returned: an exact integer that indicates the number of received bytes (@eivezsml-k —
start-k), a hostname string indicating the source address of the datagram, and an exact integerlbahdeen
65535 indicating the source port of the datagram. If the received datagram is longesrttdn — start-k

bytes, the remainder is discarded.

The optionalstart-k ~ argument defaults t6, and the optionaénd-k argument defaults to the length of

mutable-bytes . If start-k is greater than the length ofutable-bytes , or if end-k is less than
start-k or greater than the length ofutable-bytes , theexn:fail:contract exception is raised.
(udp-receive!* udp-socket mutable-bytes [start-k end-k) is like udp-receive!

except that it never blocks. If no datagram is available, the three result values+#re all

(udp-receive!/enable-break udp-socket mutable-bytes [start-k end-k |) islike udp-receive!
but breaking is enabled (s€g.7) while trying to receive the datagram. If breaking is disabled when
udp-receive!/enable-break is called, then either a datagram is received oethiebreak exception

is raised, but not both.

(udp-close udp-socket) closesudp-socket , discarding unreceived datagrams. If the socket is al-
ready closed, thexn:fail:network exception is raised.

(udp? v) returns#t if v is a socket created hydp-open-socket | #f otherwise.

(udp-bound? udp-socket) returns#t if udp-socket is bound to a local address and pditt, other-
wise.

(udp-connected? udp-socket) returns#t if udp-socket is connected to a remote address and port,
#f otherwise.

(udp-send-ready-evt udp-socket) returns a synchronizable event (Sge7) that is in a blocking
state wherudp-send-to onudp-socket would block.

(udp-receive-ready-evt udp-socket) returns a synchronizable event (§&€€/) that is in a blocking
state whernudp-receive! onudp-socket would block.

(udp-send-to-evt udp-socket hostname-address port-k bytes [start-k end-k]) re-
turns a synchronizable event. The event is in a blocking state wifigrsend onudp-socket would block.
Otherwise, if the event is chosen in a synchronization, data is sent #sdiprsend-to udp-socket
hostname-address port-k bytes start-k end-k) , and the synchronization result is void. (No
bytes are sent if the event is not chosen.)

(udp-send-evt udp-socket bytes [start-k end-k |) is like udp-send-to-evt , except that
udp-socket must be connected when the event is synchronized, and if the event is chosen in a syn-
chronization, the datagram goes to the connection targeudpfsocket is closed or unconnected, the

exn:fail:network exception is raised during a synchronization attempt.

(udp-receive!-evt udp-socket bytes [start-k end-k]) returns a synchronizable event. The
event is in a blocking state whardp-receive onudp-socket would block. Otherwise, if the event is
chosen in a synchronization, data is receive inytes as for(udp-receive! udp-socket bytes

start-k end-k), and the synchronization result is a list of three values, corresponding to the three results
from udp-receive! . (No bytes are received and thgtes content is not modified if the event is not
chosen.)

12. Syntax and Macros

MzScheme supports theRPRS define-syntax , let-syntax , and letrec-syntax forms with
syntax-rules , with minor pattern and template extensions describe&d il

In addition tosyntax-rules , MzScheme supports macros that perform arbitrary transformations on syntax. In par-
ticular, atransformer expression — the right-hand side of define-syntax ,let-syntax , orletrec-syntax

binding — can be an arbitrary expression, and it is evaluated fitargformer environment. When the expres-

sion produces a procedure, it is associated as a syntax transformer to the identifier balefohd»gyntax ,
let-syntax , orletrec-syntax . This more general, mostly hygienic macro system is baseymiax-case

by Dybvig, Hieb, and Bruggeman (see “Syntactic abstraction in Schemé§jrand Symbolic Computatipbecem-

ber 1993).

A transformer procedure consumes a syntax object and produces a new syntax object. A syntax object encodes S-
expression structure, but also includes source-location information and lexical-binding information for each element
within the S-expression. A syntax object is a first-class value, and it can exist at run-time. However, syntax objects are
more typically used at syntax-expansion time — which is the run-time of a transformer proéedure.

Unlike traditionaldefmacro systems, MzScheme keeps the top-level transformer environment separate from the
normal top-level environment. The environments are separated because the expressions in the different environments
are evaluated at different times (transformer expressions are evaluated at syntax-expansion time, while normal expres-
sions are evaluated at run time). Separating each environment ensures that compilation and analysis tools can process
programs properly. Ség.2.3.3for more information.

Also unlike traditional macro systems, a transformer procedure is invoked whenever its identifier is used in an expres-
sion position, not in application positions only. Even more generally, a transformer expression might not produce a
procedure value, in which case the non-procedure is associated to its identifier as a generic expansion-time value. For
example, a unit signature (see Chapter 5PbT MzLib: Libraries Manugl is associated to an identifier through an
expansion-time value. S€&2.6for more information on transformer applications and expansion-time values.

12.1 syntax-rules Extensions
MzScheme extends the pattern languagesjmtax-rules so that a pattern of the form

(... pattern)

is equivalent tgpattern where... is treated like any other identifier. Similarly, a template of the form

(... template)

is equivalent tdemplate where... istreated like any other identifier.

In a pattern, additional patterns can follow , butonly one.. can appear in a sequence:

(pattern -1 ... pattern = --.)

1In general, modules and for-syntax imports create a hierarchy of run times and expansion tin§é£. Sééor more information.

141

12.1.syntax-rules Extensions 12. Syntax and Macros

Furthermore, a sequence containing can end with a dotted pair:

LA

(pattern pattern pattern)

but in this case, the finglattern is never matched to a syntactic list.

A template element consists of any number.of s after a template. For each after the first one, the preced-

ing element (with earlier.. s) is conceptually wrapped with parentheses for generating output, and then wrapping
parentheses in the output are removed. If a pattern identifier is followed by more ellipses in a template than in the
pattern, then the pattern’s match is expanded normally for inner ellipses (up to the number of ellipses that appear in
the pattern), and then the match is replicated as necessary to satisfy outer ellipses.

To mesh gracefully with modules, literal identifiers are compared mitidlule-identifier=? , Which is equiv-
alent to the comparison behavior RIRSin the absence of modules; s§&2.3.1for more information on identifier
syntax comparisons.

Examples:

(define-syntax exl
(syntax-rules ()

[(ex1 &) '(a (.. ... ND)
(ex1 1) ; = '(1 ..)

(define-syntax ex2

(syntax-rules ()

[(ex2 a ... b)’'(ba.)
(ex2 123); ='B12
(define-syntax ex3

(syntax-rules ()

[(ex3a .. b. c)'(ba..c)

(ex3 1 2 3 4) ; syntax error
(ex3 123 .4; ='B1224

(define-syntax ex4
(syntax-rules ()
[(ex4 (a ..) .. b) 'a b)]))
(ex4 (1) (2 3) 4) ; = '(12 34
The syntax-id-rules form has the same syntax agntax-rules , except that each pattern is used in its
entirety (instead of starting with a keyword placeholder that is ignored). Furthermore, when an idientifdround
as syntax to ayntax-id-rules transformer, the transformer is applied whendderappears in an expression
position — not just when it is in the application position — or when appears as the target of an assignment.
When the identifier appears in an application positioid, expr ---), the entire “application” is provided to the

transformer, and when the identifier appears asth target,(set! id expr), the entireset! expression is
provided to the transformer; otherwise, fide is provided alone to the transformer. Typicabgt! is included as a

keyword in asyntax-id-rules use, and three patterns match the three possible uses of the identifier.
(define-syntax pwd
; For this macro to work, the set! case must
; be first, and the pwd case must be last
(syntax-id-rules (set!)
[(set! pwd expr) (current-directory expr)]
[(pwd expr ..) ((current-directory) expr ..)]

[pwd (current-directory)]))

142

12. Syntax and Macros 12.2. Syntax Objects

(set! pwd "/tmp") ; sets current-directory parameter
pwd ; = "tmp"

(current-directory) ; = "tmp"
(current-directory "/usr/tmp")

pwd ; = "/usrtmp"

12.2 Syntax Objects

(read-syntax [source-name-v input-port) is like read , except that it produces a syntax object with
source-location information. Theource-name-v is used as the source field of the syntax object; it can be an
arbitrary value, but it should generally be a path for the source file. The defauite-name-v s the input port’s
name (according tobject-name ; see§6.2.3. See§11.2.4for more information aboutad andread-syntax
see§l1.2.1.1for information about port locations, and sgi.6.2for information on théparen-shape property

and original-indicator property attached to a syntax objeaelaygl-syntax

The result ofread-syntax is a syntax object with source-location information, but no lexical information. Syntax
objects acquire lexical information during expansion, so that by the time a transformer is called, the provided syntax
object has lexical information.

The eval , compile , expand , expand-once , andexpand-to-top-form procedures work on syntax ob-

jects, especially syntax objects with no lexical context. (If one of these procedures is given a non-syntax S-expression,
the S-expression is converted to a syntax object containing no source information and no lexical context.) Each
of these procedures adds context to the syntax object ugingespace-syntax-introduce before expand-

ing the syntax (but segl4.1for information on the special handling ofodule). In contrast, theval-syntax
compile-syntax , expand-syntax , expand-syntax-once , andexpand-syntax-to-top-form pro-

cedures do not add context to a given syntax object before expanding.

The syntax object produced lexpand , expand-syntax , etc. includes lexical information that influences future
expansion and compilation of the syntax object. Thus, a syntax object produceddigyntax should be passed
toeval orexpand (or another procedure withotgyntax in its name), but a syntax object returneddxpand
should be passed &val-syntax ~ (or another procedure witlsyntax in its name), since the result froexpand

has acquired a lexical context.

For example, if the following text is parsed byad-syntax

(lambda (x) (+ x y))

the result is a syntax object that contains the S-expression strugaumbdda (x) (+ X y)) , butalso source
information indicating that the first is in column 9, etc. Iexpand is applied to the syntax object with a normal
top-level environment, then the result will be a similar syntax object (with the source-location information intact), but
the second in the syntax object will have lexical information that ties it to the firsandy in the syntax object will

be annotated as a free variable. Even the syntax objeatibda will have lexical information tying it to the built-in
lambda form.

Compilation (often as a prelude to interactive evaluation) strips away source and context information as it processes a
syntax object. The compilation ofquote-syntax ~ form is an exception:

(quote-syntax datum)
The quote-syntax ~ form produces a syntax object that preserves the source-location informatidatfon . It
also encapsulates lexical-binding information accumulated by compilation iuibte-syntax expression’s en-

vironment. Aquote-syntax expression rarely appears in normal expressiguste-syntax is more typically
used within a transformer expression.

143

12.2. Syntax Objects 12. Syntax and Macros

In addition to local and lexical information, a syntax object may have properties and certificates attached. Properties are
added or inspected usisyntax-property , as described if12.6.2 Certificates validate references to identifiers
that are not exported from a macro, as describéd in6.3

Thesyntax-object->datum procedure strips away location, lexical, property, and certificate information from a
syntax object to produce a plain S-expression. d&&m->syntax-object procedure wraps syntax information

onto an S-expression, copying the source-location information of a given syntax object, the lexical information of
another syntax object, and the properties of a third syntax object (where some or all three of the given objects can
be the same). Theyntax-e procedure unwraps only the immediate S-expression structure from a syntax object,
leaving nested structure in place. These procedures are descriffstdarm®

Although procedures such agntax-object->datum permit arbitrary manipulation of syntax objects, a syntax
transformer is more likely to use the pattern-matclsggtax-case andsyntax forms, which are described in
the following subsection.

12.2.1 Syntax Patterns

Thesyntax-case form pattern-matches and deconstructs a syntax object:

(syntax-case stx-expr (literal-identifier)
syntax-clause
)
syntax-clause is one of
(pattern expr)
(pattern fender-expr expr)

If stx-expr expression does not produce a syntax object value, itis converted to onéating>syntax-object

with the lexical context of the expression (s€&2.2.9). The syntax is then compared to tipattern in
each syntax-clause until a match is found, and the result of the correspondirgr is the result of the
syntax-case expression. If ayntax-clause contains dender-expr , the clause matches only when both
thepattern matches the syntax object and fleeder-expr returns a true value. If no pattern matches, a “bad
syntax”exn:fail:syntax exception is raised.

A pattern is nearly the same as syntax-rules pattern (seeR°R9, with the ellipsis-escaping extension
(see§12.7). The difference is that the first identifier pattern is not ignored, unlike the leading keyword in a
syntax-rules pattern.

As in syntax-rules , a non-literal identifier in gattern is bound to a corresponding part of the syntax object
within the clause'expr and optionafender-expr . The identifier cannot be used directly, however; a use of the
identifier in an expression position is a syntax error. Instead, the identifier can be used syfyan expressions
within the binding’s scope.

A syntax expression has the form

(syntax template)

wheretemplate is as insyntax-rules (extended, as usual, for escaped ellipses). The resulswhtax ex-
pression is a syntax object. Identifiers in teeplate that are bound by syntax-case pattern are replaced with
their bindings in the generated syntax objecsyhtax expression that contains no pattern identifiers is equivalent to
aquote-syntax expression, except that unlikgiote-syntax , thesyntax form always fails to compile (i.e.,

it loops forever) whertemplate is cyclic.

Thesyntax-rules form can be expressed asyntax-case form wrapped inambda :

144

12. Syntax and Macros 12.2. Syntax Objects

(syntax-rules (literal-identifier)
((ignored-identifier . pattern) template)
)
=expands=>
(lambda (stx)
(syntax-case stx (literal-identifier)
((generated-identifier . pattern) (syntax template))
)

Note that implicittambda of syntax-rules for the transformer procedure is made explicit vatimtax-case
Thedefine-syntax form supportglefine -style abbreviations for transformer procedures s@.1).

The following example shows one reason to sigatax-case instead okyntax-rules . custom error reporting.

(define-syntax (letl stx)
(syntax-case stx ()
[(- id val body)

(begin
i If id is not an identifier, report an error in terms of letl instead of let:
(unless (identifier? (syntax id))
(raise-syntax-error #f "expected an identifier” stx (syntax id)))

(syntax (let ([id val 1) body)))
(letl x 10 (add1l x)) ; = 11
(letl 2 10 (addl x)) ; = letl: expected an identifier at: 2 in: (letl 2 10 (addl x))

Another reason to usgyntax-case is to implement “non-hygienic” macros that introduce capturing identifiers:

(define-syntax (if-it stx)
(syntax-case stx ()
[(src-if-it test then else)
(syntax-case (datum->syntax-object (syntax src-if-it) i) ()

[it (syntax (let (] it test]) (if it then else)ND))
(if-it (memg b '(a b ¢)) it 'nope) ; = (b c)

The nestedsyntax-case is used to bind the pattern variablie . The syntax forit is generated with
datum->syntax-object using the context o$rc-if-it , which means that the introduced variable has the
same lexical context akit at the macro’s use; in other words, acts as if it existed in the input syntax, so it can
bind uses oft intest .

The syntax-case x form is a generalization ofsyntax-case where the procedure for comparing

literal-identifier s is determined by eomparison-proc-expr
(syntax-case x stx-expr (literal-identifier) comparison-proc-expr
syntax-clause
)
The result ofcomparison-proc-expr must be a procedure that accepts two arguments. The first argument is
an identifier fromstx-expr , and the second argument is an identifier frorayatax-clause pattern that is
module-identifier=? to one of thditeral-identifier s. A true result from the comparison procedure

indicates that the first identifier matches the second.

12.2.1.1 BNDING PATTERN VARIABLES

Thewith-syntax ~ form is alet -like form for binding pattern variables:

145

12.2. Syntax Objects 12. Syntax and Macros

(with-syntax ((pattern stx-expr)

expr)

The pattern s are matched thstx-expr values, and all pattern identifiers are boundeipr . The pattern
identifiers across afpattern s must be distinct. If &tx-expr expression does not produce a syntax object, its
result is converted usindatum->syntax-object and the lexical context of thetx-expr (see§l12.2.). If the
result of astx-expr does not match itpattern , theexn:fail:syntax exception is raised.

Theif-it example can be written more simply usingh-syntax

(define-syntax (if-it stx)
(syntax-case stx ()
[(src-if-it test then else)
(with-syntax ([it (datum->syntax-object (syntax src-if-it) i)
(syntax (let ([it test 1) (if it then else))))

Macros that expand to non-hygienic macros rarely work as intended. For example:

(define-syntax (cond-it stx)
(syntax-case stx ()
[(- (test body) . rest)

(syntax (if-it test body (cond-it . rest)))]
[(-) (syntax (void))]))
(cond-it [(memg 'b (& b c)) it] [#t 'nope)]) ; = undefined variable it

The problem is thatond-it introducesif-it (hygienically), socond-it effectively introducest (hygieni-
cally), which doesn't bindt in the source use afond-it . In general, the solution is to avoid macros that expand
to uses of non-hygienic macrés.

12.2.1.2 QASIQUOTING TEMPLATES

Thequasisyntax formis like syntax , except with quasiquoting within the template:

(quasisyntax gquasitemplate)

A quasitemplate is the same as @mplate , except thatinsyntax andunsyntax-splicing escape to
an expression:

(unsyntax expr)
(unsyntax-splicing expr)

The expression must produce a syntax object (or syntax list) to be substituted in place wfstmgax or
unsyntax-splicing form within the quasiquoting template, just likeaquote and unquote-splicing

within quasiquote . (If the escaped expression does not generate a syntax object, it is converted to one in the same
was as for the right-hand sideswith-syntax .) Nestedquasisyntax es introduce quasiquoting layers in the
same way as nesteplasiquote s.

Also analogous t@uote andquasiquote , the reader convert$’ to syntax , # to quasisyntax ,#, to

unsyntax , and#,@ to unsyntax-splicing . See als@11.2.4
Example:
2|n this particular case, Shriram Krishnamurthi points out chanifiiig to use(datum->syntax-object (syntax test) 'it)

solves the problem in a sensible way.

146

12. Syntax and Macros 12.2. Syntax Objects

(with-syntax ([(v ...) (list 1 2 3)])
#O v ... #(+ 2 2) #,@(list 5 6) 7)) ; = syntax for (0 1 2 3456 7)

12.2.1.3 ASSIGNING SOURCELOCATION

Thesyntax/loc ~ form is like syntax , except that the immediate resulting syntax object takes its source-location
information from a supplied syntax object, unlesstégrplate is just a pattern variable:

(syntax/loc location-stx-expr template)

Usesyntax/loc instead okyntax whenever possible to help tools that report source locations. For example, the
earlierif-it example should have been written wityntax/loc

(define-syntax (if-it stx)
(syntax-case stx ()
[(src-if-it test then else)
(with-syntax ([it (datum->syntax-object (syntax src-if-it) it)])
(syntax/loc stx (let ([it test]) (if it then else))

Thequasisyntax/loc form is the quasiquoting analogue $yfntax/loc

(quasisyntax/loc location-stx-expr template)

12.2.2 Syntax Object Content
(syntax? v) returnstt if v is a syntax objectf otherwise.

(syntax-source stx) returns the source for the syntax objstt , or #f if none is known. The source is
represented by an arbitrary value (e.g., one passeshrsyntax), but it is typically a file path string. See also
§14.3

(syntax-line stx) returns the line number (positive exact integer) for the start of the syntax object in its source,
or #f if the line number or source is unknown. The resulfisif and only if (syntax-column stx) produces
#f . See als@11.2.1.1and§14.3

(syntax-column stx) returns the column number (non-negative exact integer) for the start of the syntax object
in its source, o#f if the source column is unknown. The resultfs if and only if (syntax-line stx) produces
#f . See alsg11.2.1.1and§14.3

(syntax-position stx) returns the character position (positive exact integer) for the start of the syntax object
in its source, o#f if the source position is unknown. See a§dd .2.1.1and§14.3

(syntax-span stx) returns the span (non-negative exact integer) in characters of the syntax object in its source,
or #f if the span is unknown. See al§b4.3

(syntax-original? stx) returnst#t if stx has the property thatad-syntax andread-honu-syntax

attach to the syntax objects that they generate{$265.2, and ifstx s lexical information does not indicate that the

object was introduced by a syntax transformer E23. The result is# otherwise. This predicate can be used to
distinguish syntax objects in an expanded expression that were directly present in the original expression, as opposed
to syntax objects inserted by macros.

(syntax-source-module stx) returns a module path index or symbol ($6e.6.5 for the module whose
source containstx , or#f if stx has no source module.

147

12.2. Syntax Objects 12. Syntax and Macros

(syntax-e stx) unwraps the immediate S-expression structure from a syntax object, leaving nested syntax struc-
ture (if any) in place. The result ¢éyntax-e stx) is one of the following:

e asymbol

a syntax pair (described below)

the empty list

a vector containing syntax objects

some other kind of datum, usually a number, boolean, or string

A syntax pairis a pair containing a syntax object as its first element, and either the empty list, a syntax pair, or a syntax
object as its second element.

A syntax object that is the result cfad-syntax reflects the use of dots) in the input by creating a syntax object
for every pair of parentheses in the source, and by creating a pair-valued syntaxoothyefor parentheses in the
source. For example:

input read-syntax result

(a b) stx , where
(syntax-e stx) is equivalent tqlist a-stx b-stx)
and(syntax-e a-stx) is equivalent tda
and(syntax-e b-stx) is equivalent téb

a. (b)) stx , where
(syntax-e stx) is equivalenttdcons a-stx sb-stx)
and(syntax-e a-stx) is equivalent tda
and(syntax-e sb-stx) is equivalent tdlist b-stx)
and(syntax-e b-stx) is equivalent téb

(syntax->list stx) returns an immutable list of syntax objects#r. The resultis a list of syntax objects when
(syntax-object->datum stx) would produce a list. In other words, syntax pairgsgintax-e stx) are
flattened.

(syntax-object->datum stx) returns an S-expression by stripping the syntactic information fsom.

Graph structure is preserved by the conversion.

(datum->syntax-object ctxt-stx v [src-stx-or-list prop-stx) converts the S-expressian

to a syntax object, using syntax objects already in the result. Converted objectsynare given the lexical context
information ofctxt-stx and the source-location informationst-stx-or-list ; if the resulting syntax object

has no properties, then it is given the propertiepudp-stx . Any of ctxt-stx , src-stx-or-list , or
prop-stx can be#f , in which case the resulting syntax has no lexical context, source information, and/or new
properties. Ifsrc-stx-or-list is not#f or a syntax object, it must be a list of five elements:

(list source-name-v line-k column-k position-k span-k)

wheresource-name-v is an arbitrary value for the source nartise-k is a positive, exact integer for the source

line, or#f ; andcolumn-k is a non-negative, exact integer for the source colum#f pposition-k is a positive,

exact integer for the source position,#r; andspan-k is a non-negative, exact integer for the source spa#f or
Theline-k andcolumn-k values must both be numbers or both#ig otherwise theexn:fail exception is

raised. Graph structure is preserved by the conversion, but graph structure that is distributed among distinct syntax
objects inv may be hidden from future applications ®fntax-object->datum andsyntax-graph? to the

new syntax object.

148

12. Syntax and Macros 12.3. Syntax and Lexical Scope

(syntax-graph? stx) returns#t if stx might be preservably shared within a syntax object created
by read-syntax , read-honu-syntax , or datum->syntax-object . In general, sharing detection
is approximate—datum->syntax-object can construct syntax objects with sharing that is hidden from
syntax-graph? —but syntax-graph? reliably returns#t for at least one syntax object in a cyclic struc-

ture. Meanwhile, deconstructing a syntax object with procedures sushnggx-e and comparing the results
with eq? can also fail to detect sharing (even cycles), due to the way lexical information is lazily propagated; only

syntax-object->datum reliably exposes sharing in a way that can be detectedegith
(identifier? V) returns#t if v is a syntax object anfsyntax-e stx) produces a symbol.
(generate-temporaries stx-pair) returns a list of identifiers that are distinct from all other identifiers.

The list contains as many identifiers $tg-pair contains elements. Thetx-pair argument must be a syntax

pair that can be flattened into a list. The elementstrfpair can be anything, but string, symbol, and identifier
elements will be embedded in the corresponding generated name (useful for debugging purposes). The generated
identifiers are built with interned symbols (rggnsyms), so the limitations described §i4.3do not apply.

12.3 Syntax and Lexical Scope

Hygienic macro expansion depends on information associated with each syntax object that records the lexical context
of the site where the syntax object is introduced. This information includes the identifiers that are bdamdbdbey |

let ,letrec , etc., atthe syntax object’s introduction site, thquire d identifiers at the introduction site, and the
macro expansion that introduces the object.

Based on this information, a particular identifier syntax object falls into one of three classifications:

e lexical — the identifier is bound blambda , let ,letrec , or some other form besidesodule or a top-level
definition.

e module-imported — the identifier is bound through @equire declaration or a top-level definition within
module .

e free — the identifier is not bound (and therefore refers to a top-level variable, if the identifier is not within a
module).

The identifier-binding procedure (described i§12.3.9 reports an identifiers classification. Further infor-
mation about a lexical identifier is available only in relative terms, such as whether two identifiers refer to the same
binding (seebound-identifier=? in §12.3.). For module-imported identifiers, information about the module
source is available.

In a freshly read syntax object, identifiers have no lexical information, so they are all classified as free. During
expansion, some identifiers acquire lexical or module-import classifications. An identifier that becomes classified
as lexical will remain so classified, though its binding might shift as expansion proceeds (i.e., as nested binding
expressions are parsed, and as macro introductions are tracked). An identifier classified as module-imported might
similarly shift to the lexical classification, but if it remains module-imported, its source-module designation will never
change.

Lexical information is used to expand and parse syntax in a way that it obeys lexical and module scopes. In addition,
an identifier’s lexical information encompasses a second dimension, which distinguishes the environment of normal
expressions from the environment of transformer expressions. The module bindings of each environment can be
different, so an identifier may be classified differently depending on whether it is ultimately used in a normal expression
or in a transformer expression. Sg.3.3and§12.3.4for more information on the two environments.

149

12.3. Syntax and Lexical Scope 12. Syntax and Macros

12.3.1 Syntax Object Comparisons

(bound-identifier=? a-id-stx b-id-stx) returns #t if the identifier a-id-stx would bind
b-id-stx (or vice-versa) if the identifiers were substituted in a suitable expression cafiteatherwise.

(free-identifier="? a-id-stx b-id-stx) returns#t if a-id-stx and b-id-stx access the same
lexical, module, or top-level binding and return the same resuliyotax-e , #f otherwise.

(module-identifier=2? a-id-stx b-id-stx) returnsit if a-id-stx ~ andb-id-stx ~ access the same
lexical, module, or top-level binding in the normal environment. “Same module binding” means that the identifiers re-
fer to the same original definition site, not necessarilyrdtgiire orprovide site. Due to renaming irequire
andprovide , the identifiers may return distinct results witpntax-e

(module-transformer-identifier="2 a-id-stx b-id-stx) returng#t if a-id-stx andb-id-stx
access the same lexical, module, or top-level binding in the identifiers’ transformer environmefi2(Se.

(module-template-identifier=? a-id-stx b-id-stx) returns#t if a-id-stx and b-id-stx
access the same lexical or module binding in the identifiers’ template environmengd Zs&é).

(check-duplicate-identifier id-stx-list) compares each identifier id-stx-list with every
other identifier in the list withbound-identifier=? . If any comparison returngt , one of the duplicate identi-
fiers is returned (the first one id-stx-list that is a duplicate), otherwise the resulifs.

12.3.2 Syntax Object Bindings

(identifier-binding id-stx) returns one of three kinds of values, depending on the bindiidystk in
its normal environment:

e The result is'lexical if id-stx is bound in its context to anything other than a top-level variable or a
module variable.

e The result is a list of five items whdd-stx is bound in its context to a module-defined identifi@ist
source-mod source-id nominal-source-mod nominal-source-id et?).

— source-mod is a module path index or symbol (s&E2.6.9 that indicates the defining module.

— source-id is a symbol for the identifier's name at its definition site in the source module. This can be
different from the local name returned byntax-object->datum for several reasons: the identifier
is renamed on import, it is renamed on export, or it is implicitly renamed because the identifier (or its
import) was generated by a macro invocation.

— nominal-source-mod is a module path index or symbol (sé&2.6.9 that indicates the module
require d into the context ofd-stx to provide its binding. It can be different frosource-mod
due to a re-export inominal-source-mod of some imported identifier.

— nominal-source-id is a symbol for the identifier's name as exportedigyninal-source-mod
It can be different fromsource-id due to a renamingorovide , even if source-mod and
nominal-source-mod are the same.

— et? is#t if the source definition is for-synta%f otherwise.

e The resultig#f if id-stx is not bound (or bound only to a top-level variable) in its lexical context.

(identifier-transformer-binding id-stx) is like identifier-binding , except that the re-
ported information is for the identifier's bindings in the transformer environment (€e23.3, instead
of the normal environment. If the result idexical for either of identifier-binding or
identifier-transformer-binding , then the result is alwaykexical for both.

150

12. Syntax and Macros 12.3. Syntax and Lexical Scope

(identifier-template-binding id-stx) is like identifier-binding , except that the reported in-
formation is for the identifier’s bindings in the template environment §8€e3.9, instead of the normal environment.
If the result is'lexical for either ofidentifier-binding or identifier-template-binding , then
the result is alway3exical for both.

(identifier-binding-export-position id-stx) returns eithe#f or an exact non-negative integer. It
returns an integer only whedentifier-binding returns a list, wherd-stx represents an imported binding,

and when the source module assigns internal positions for its definitions. This function is intended fomase by

(identifier-transformer-binding-export-position id-stx) islikeidentifier-binding-export-position
except that the reported information is for the transformer environment. This function is intended fomuse by

12.3.3 Transformer Environments

The top-level environment for transformer expressions is separate from the normal top-level environment. Conse-
quently, top-level definitions are not available for use in top-level transformer definitions. For example, the following
program does not work:

(define count 0)
(define (inc!) (set! count (addl count)))

(define-syntax (letl stx)
(syntax-case stx ()
[(-xvVvDb)
(begin
(printf "expanding "a™n" count) ; DOESN'T WORK
(inc!) : ALSO DOESN'T WORK

(syntax (let ([x v]) b))
(letl x 2 (addl x))

The variablezount andinc! are bound in the normal top-level environment, but it is not bound in the transformer
environment, so the attempt to exparldtl x 2 (addl x)) will resultin an undefined-variable error.

In the same way thatefine binds only in the normal environment,raquire expression imports only into

the normal environment, and the imported bindings are not made visible in the transformer environment. A top-
level require-for-syntax imports into the transformer environment without affecting the normal environment.
Furthermore, theequire andrequire-for-syntax forms create separate instantiations of any module that is
imported into both environments, in keeping with the separation of the environments.

The initial namespace created by the stand-alone MzScheme application imports all of MzScheme’s built-in syntax,
procedures, and constants into the transformer environfriemextend this environment, use one of the following:

e define-for-syntax , Which is like define , but binds in the transformer environment. The body of
the definition is also evaluated in the transformer environment. deime-values-for-syntaxes
form is the multiple-values variant afefine-for-syntax . Within a module,define-for-syntax
or define-values-for-syntaxes binds identifiers for unquoted expressions only after the definition
(plus in the right-hand side of the definition itself); in particular, mutually-referential for-syntax definitions in a
module must be defined with a singlefine-values-for-syntaxes

e begin-for-syntax , which is likebegin , but its body is evaluated in the transformer environment. Fur-
thermoredefine , define-values , require , andrequire-for-template declarations are treated
like define-for-syntax , define-values-for-syntax , require-for-syntax , andrequire
declarations, respectively.

3In contrast, a namespace created$gheme-report-environment 5) imports onlysyntax-rules into the transformer environ-
ment.

151

12.3. Syntax and Lexical Scope 12. Syntax and Macros

e require-for-syntax , to import bindings into the transformer environment.

In particular, example above can be repairs by replacing

(define count 0)
(define (inc!) (set! count (addl count)))

with either

(define-for-syntax count 0)

(define-for-syntax (incl) (set! count (addl count)))
or

(begin-for-syntax
(define count 0)
(define (inc!) (set! count (addl count))))

or

(module counter mzscheme
(define count 0)
(define (inc!) (set! count (addl count)))
(provide count inc!))

(require-for-syntax counter)

When an identifier binding is introduced by a form other thasdule or a top-level definition, it extends the environ-

ment for both normal and transformer expressions within its scope, but the binding is only accessible by expressions
resolved in the proper environment (i.e., the one in which it was introduced). In particular, a transformer expression in
alet-syntax or letrec-syntax expression cannot access identifiers bound by enclosing forms, and an iden-
tifier bound in a transformer expression should not appear as an expression in the result of the transformer. Such
out-of-context uses of an identifier are flagged as syntax errors when attempting to resolve the identifier.

A let-syntax or letrec-syntax expression can never usefully appear as a transformer expression, because
MzScheme provides no mechanism for importing into the meta-transformer environment that would be used by meta-
transformer expressions to operate on transformer expressions. In other words, an expression of the form

(let-syntax ([identifier (let-syntax ([identifier expr N
body-expr)])
o)
is always illegal, assuming thédt-syntax is bound in both the normal and transformer environments to the

let-syntax of mzscheme. No syntax (not even function application) is boundexpr ’'s environment. This
restriction in themzscheme language is of little consequence, however, since for-syntax exports allow the definition
of syntax applicable to the abobedy-expr

12.3.4 Module Environments

In the same way that the normal and transformer environments are kept separate at the top level, a module’s normal
and transformer environments are also separated. Normal imports and definitions in a module — both variable and
syntax — contribute to the module’s normal environment, only.

For example, the module expression

(module m mzscheme

152

12. Syntax and Macros 12.3. Syntax and Lexical Scope

(define (id x) x)
(define-syntax (macro stx)
(id (syntax (printf "hi"n")))))

is ill-formed becausé& is not bound in the transformer environment for thacro implementation. To maki
usable from the transformer, the body of the moduleould have to be executed — which is impossible in general,
because a syntax definition suchnaacro affects the expansion of the rest of the module body.

Consequently, if a procedure suchidsis to be used in a transformer, it must either remain local to the transformer
expression, or reside in a different module. For example, the above module is trivially repaired as

(module m mzscheme
(define-syntax macro
(let (id (lambda (x) x)])
(lambda (stx)
(id (syntax (printf "hi'n")))))))

The define-for-syntax , begin-for-syntax , anddefine-syntaxes forms (se€;12.3.3and§12.4) are
useful for defining multiple macros that share helper functions.

In the mzscheme language, the base environment for a transformer expression includes all of MzScheme. The
mzscheme language also provides require-for-syntax form (in the normal environment) for importing
bindings from another module into the importing module’s transformer environment:

(require-for-syntax require-spec)

A for-syntax import oM within N caused to be executed &’s expansion time, instead of (or possibly in addition to)

run time forN. The syntax and variable identifiers exported by the for-syntax module are visible within the module’s
transformer environment, but not its normal environment. Like a normal expression, a transformer expression in a
module cannot contain free variables.

Finally, mzscheme provides theequire-for-template form, which is roughly dual toequire-for-syntax

(require-for-template require-spec)

A for-template import oM within N causes the referenced module to be executed at the run-time Bfthatincludes
a for-syntax import oN. In other wordsrequire-for-template introduces bindings that become available in
a future run time.

Transformer expressions and imports for a moddlare executed once each time a module is expanded dsg
syntax bindings or usin§yl as a for-syntax import. After the module is expanded, its transformer environment is
destroyed, including bindings from modules used at expansion time.

Example:

(module rt mzscheme
(printf "RT here™n")
(define mx (lambda () 7))
(provide mx))

(module tt mzscheme
(printf "RT here, too™n")
(define x 700)
(provide X))

153

12.3. Syntax and Lexical Scope 12. Syntax and Macros

(module et mzscheme
(require-for-template tt)
(printf "ET here™")
;7 The x below is future-time:
(define mx (lambda () (syntax x)))
(provide mx))

(module m mzscheme
(require-for-syntax mzscheme)
(require rt) ; rt provides run-time mx
(require-for-syntax et) ; et provides exp-time mx

;; The mx below is run-time:
(printf ""a™n" (mx)) ; prints 7 when run

;; The mx below is exp-time:

(define-syntax onem (lambda (stx) (mx)))
(printf ""a™n" (onem)) ; prints 700 when run
;» The mx below is run-time:
(define-syntax twom (lambda (stx) (syntax (mx))))
(printf ""a™n" twom))) ; prints 7 when run
v "ET here" is printed during the expansion of m

(require m ; prints "ET here" (for later macro expansion in the top level, if any)
; and "RT here, too" and "RT here" in some order,
; then 7, then 700, then 7

This expansion-time execution model explains the need to execute declared modules only when they are invoked. If
a declared module is imported into other modules only for syntax, then the module is needed only at expansion time
and can be ignored at run time. The separation of declaration and execution also allows a for-syntax module to be
executed once for each module that it expands throeghire-for-syntax

The hierarchy of run times avoids confusion among expansion and executing layers that can prevent separate compila-
tion. By ensuring that the layers are separate, a compiler or programming environment can expand, partially expand,
or re-expand a module without affecting the module’s run-time behavior, whether the module is currently executing or
not.

Since transformer expressions may themselves use macros defined by modules with for-syntax imports (to implement
the macros), expansion of a module creates a hierarchy of run times (or "tower of expanders”). The expansion time of
each layer corresponds to the run time of the next deeper layer.

In the absence dét-syntax andletrec-syntax , the hierarchy of run times would be limited to three levels,
since the transformer expressions for run-time imports would have been expanded before the importing module must be
expanded. Théet-syntax andletrec-syntax forms, however, allow syntax visible in a for-syntax import’s

transformers to appear in the expansion of transformer expressions in the module. Consequently, the hierarchy is
bounded in principle only by the number of declared modules. In practice, the hierarchy will rarely exceed a few
levels.

12.3.5 Macro-Generated Top-Level and Module Definitions
When a top-level definition binds an identifier that originates from a macro expansion, the definition captures only

uses of the identifier that are generated by the same expansion. This behavior is consistent with internal definitions
(see§2.8.5, where the defined identifier turns into a fresh lexical binding.

154

12. Syntax and Macros 12.3. Syntax and Lexical Scope

Example:
(define-syntax def-and-use-of-x
(syntax-rules ()
[(def-and-use-of-x val)

;X below originates from this macro:
(begin (define x val) x)]))

(define x 1)

Xx; =1

(def-and-use-of-x 2),;, =2
X ; =1

(define-syntax def-and-use

(syntax-rules ()
[(def-and-use x val)
; X below was provided by the macro use:
(begin (define x val) x)])
(def-and-use x 3); =3
X ; = 3

For a top-level definition (outside ofiodule), the order of evaluation affects the binding of a generated definition for

a generated identifier use. If the use precedes the definition, then the use refers to a non-generated binding, just as if the
generated definition were not present. (No such dependency on order occurs withdnla , since a module binding

covers the entire module body.) To support the declaration of an identifier before its udefitieesyntaxes

form avoids binding an identifier if the body of tldefine-syntaxes declaration produces zero results (see also

§12.4).
Example:

(define bucket-1 0)
(define bucket-2 0)

(define-syntax def-and-set!-use-of-x
(syntax-rules ()
[(def-and-set!l-use-of-x val)
(begin (set! bucket-1 x) (define x val) (set! bucket-2 x))])
(define x 1)
(def-and-set!-use-of-x 2)
X ; =1
bucket-1 ; =1
bucket-2 ; = 2
(define-syntax defs-and-uses/falil

(syntax-rules ()

[(def-and-use)

(begin

; Initial reference to even precedes definition:

(define (odd x) (if (zero? x) #f (even (subl x))))
(define (even x) (if (zero? x) # (odd (subl x))))
(odd 17))])

(defs-and-uses/fall) ; = error: undefined identifier even

(define-syntax defs-and-uses
(syntax-rules ()
[(def-and-use)
(begin

155

12.4. Binding Multiple Syntax Identifiers 12. Syntax and Macros

; Declare before definition via no-values define-syntaxes:
(define-syntaxes (odd even) (values))
(define (odd x) (if (zero? x) #f (even (subl x))))
(define (even x) (if (zero? X) #t (odd (subl x))))
(odd 17))]))

(defs-and-uses) ; = #t

Within a module, macro-generateguire andprovide clauses also introduce and reference generation-specific
bindings:

e In require (see §5.2), for a require-spec of the form (rename local-identifier
exported-identifier) , thelocal-identifier is bound only for uses of the identifier generated
by the same macro expansionlasal-identifier . Inrequire for otherrequire-spec s, the gen-
erator of therequire-spec determines the scope of the bindings.

e In provide (see§5.2), for aprovide-spec of the formidentifier , the exported identifier is the one
that bindsidentifier within the module in a generator-specific way, but the external name is the plain
identifier . The exceptions foall-from-except andall-defined-except are similarly deter-
mined in a generator-specific way, as is kbeal-identifier binding of arename form, but plain iden-
tifiers are used for the external names. §ouct |, the context of thetruct-identifier determines lo-
cal bindings for all of the expandesruct names. Foall-defined andall-defined-except , only
identifiers with definitions having the same generator aglihéefined or all-defined-except key-
word are exported; the external name is the plain identifier from the definition. The generat@llefram
or all-from-except provide-spec does not affect the set identifiers exported bygrevide-spec

12.4 Binding Multiple Syntax Identifiers

In addition todefine-syntax ,let-syntax , andletrec-syntax , MzScheme providedefine-syntaxes ,
let-syntaxes , andletrec-syntaxes . These forms are analogousiefine-values , let-values , and
letrec-values , allowing multiple syntax bindings at once (Sg28).
(define-syntaxes (identifier <-4) expr)
(let-syntaxes (((identifier --1) expr)
)
expr ---1)
(letrec-syntaxes (((identifier --+) expr)
)
expr ---1)
At the top level,define-syntaxes accepts zero results for any numberiadéntifier s, and in that case, it

neither binds the identifiers nor signals an error. This behavior is usefiddatifier s that are introduced by a
macro that produces top-levééfine s. Se€;12.3.5for more information.

MzScheme also provides latrec-syntaxes+values form for binding both values and syntax in a single,
mutually recursive scope:
(letrec-syntaxes +values (((identifier) expr) --9)
(((identifier -e) oexpr) --1)
expr -1

The first set of bindings are syntax bindings (ateitnec-syntaxes), and the second set of bindings are normal
variable bindings (as itetrec-values).

156

12. Syntax and Macros 12.5. Special Syntax Identifiers

Examples:
;. Defines let/cc and let-current-continuation as the same macro:
(define-syntaxes (let/cc let-current-continuation)

(let (| macro (syntax-rules ()
[(- id bodyl body ..)
(call/cc (lambda (id) bodyl body ..))D
(values macro macro)))

(letrec-syntaxes +values ([(get-id) (syntax-rules ()

[() id DD
((id) (lambda (x) x)]

[(x) (getid)]

x) ; = the id identify procedure

12.5 Special Syntax Identifiers

To enable the definition of syntax transformers for application forms and other data (numbers, vectors, etc.), the syntax
expander treat8%app, #%top , and#%datum as special identifiers.

Any expandable expression of the form

(datum . datum)

where the firstlatum is not an identifier bound to an expansion-time value, is treated as

(#%app datum . datum)

so that the syntax transformer bound#@app is applied. In addition() is treated ag#%app) . Similarly, an
expression

identifier

whereidentifier has no binding other than a top-level binding, is treated as
(#%top . identifier)

Finally, an expression

datum

wheredatum is not an identifier or pair, is treated as
(#%datum . datum)

The mzscheme module binds#%app, #%top, and#%datum as regular application, top-level variable reference,
and implicit quote, respectively. A module can export different transformers with these names to support languages
different from conventional Scheme.

In addition, #%omodule-begin is used as a transformer for a module body.#%module-begin is implic-

itly added around a module body when it contains multiple S-expressions, or when the S-expression expands to a
core form other tham%module-begin or #%plain-module-begin ; the lexical context for the introduced
#%module-begin identifier includes only the exports of the module’s initial import. After such wrapping, if any,

and before any expansion, @amclosing-module-name property is attached to the module-body syntax object;

the property’s value is a symbol for the module name as specified afteratiele keyword.

157

12.6. Macro Expansion 12. Syntax and Macros

The mzscheme module bindst%module-begin to a form that inserts a for-syntax import wizscheme, so that
mzscheme bindings can be used in syntax definitions. It also expé#plain-module-begin , which can be
substituted for#%module-begin to avoid the for-syntax import aihzscheme. Any other transformer used for
#%module-begin must expand tonzscheme’s #%module-begin or #%plain-module-begin

When an expression is fully expanded, all applications, top-level variable references, and literal datum expressions
will appear as explicitt%app, #%top, and #%datum forms, respectively. Those forms can also be used di-
rectly by source code. Th&%module-begin form can never usefully appear in an expression, and the body

of a fully expandedmodule declaration is not wrapped with%module-begin ; instead, it is wrapped with
#%plain-module-begin

The following example shows how the special syntax identifiers can be defined to create a non-Scheme module lan-
guage:
(module lambda-calculus mzscheme

; Restrict lambda to one argument:
(define-syntax lc-lambda
(syntax-rules ()
[(- (x) E) (lambda (x) E)])

; Restrict application to two expressions:
(define-syntax Ic-app
(syntax-rules ()
[(- E1 E2) (E1 E2)])

; Restrict a lambda calculus module to one body expression:
(define-syntax Ic-module-begin
(syntax-rules ()
[(- E) (#%module-begin B)])

; Disallow numbers, vectors, etc.
(define-syntax Ic-datum
(syntax-rules ()))

; Provide (with renaming):

(provide #%top ; keep mzscheme 's free-variable error
(rename Ic-lambda lambda)
(rename Ic-app #%app)
(rename Ic-module-begin #%module-begin)
(rename Ic-datum #%datum)))

(module m lambda-calculus
; The only syntax defined by lambda-calculus is
; unary lambda, unary application, and variables.
; Also, the module must contain exactly one expression.
((lambda (y) (y y))
(lambda (y) (y y)))

(require m ; executes m, loops forever

12.6 Macro Expansion
A define-syntax ,let-syntax , orletrec-syntax form associates an identifier to an expansion-time value.

If the expansion-time value is a procedure of one argument, then the procedure is applied by the syntax expander when
the identifier is used in the scope of the syntax binding.

158

12. Syntax and Macros 12.6. Macro Expansion

The transformer for aidentifier is applied whenever thielentifier appears in an expression position —
not just when it appears after a parenthesiq iaentifier ...) . When it does appear gsdentifier

...) , the entire(identifier ...) expression is provided as the argument to the transformer. Otherwise only
identifier is provided to the transformer.

A typical transformer is implemented as

(lambda (stx)
(syntax-case stx ()

[(- rest-of-pattern) expr]))
so thatidentifier by itself does not match the pattern; thus, é&xa:fail:syntax exception is raised when
identifier does not appear gsdentifier)
(make-set!-transformer proc) also creates a transformer procedure. o argument must be a proce-
dure of one argument; if the result @hake-set!-transformer proc) is bound as syntax tdentifier ,
thenproc is applied as a transformer whetentifier is used in an expression position, or when it is used as
the target of @et! assignment(set! identifier expr) . When the identifier appears aset! target, the

entireset! expression is provided to the transformer.

Example:
(let [x 1]
[y 2]
(let-syntax ([X (make-set!-transformer
(lambda (stx)
(syntax-case stx (set!)
; Redirect mutation of x to y
[(set! id v) (syntax (set! y V))D)I
; Normal use of x really gets X
[id (identifier? (syntax id)) (syntax X)DND
(begin
(setl x 3)
(list xvy)); ="'13)
(set!-transformer? V) returns#t if v is a value created byake-set!-transformer , #f otherwise.
(set!-transformer-procedure transformer) returnsthe procedure passedrtake-set!-transformer
to creatdransformer
(make-rename-transformer id-stx) creates a transformer procedure that inserts the identfi&x in
place of whatever identifier binds the transformer, including in non-application positions, aetl inexpressions.
Such a transformer could be written manually, but the one createdae-rename-transformer cooperates
specially withsyntax-local-value (see below).
(rename-transformer? v) returns#t if v is a value created byake-rename-transformer , #f other-
wise.
(rename-transformer-target transformer) returns the identifier passedrttake-rename-transformer

to creatagransformer

If a transformer expression produces a non-procedure value, the value is associated with the identifier as a generic
expansion-time value. Any use of the identifier in an expression position is rejected as a syntax error, but syntax
transformers can access the value. For exampledéfiae-signature form (see Chapter 52 d?LT MzLib:

Libraries Manua) associates a component interface description to the defined identifier.

159

12.6. Macro Expansion 12. Syntax and Macros

When a syntax transformer is applied, it can query the bindings of identifiers in the lexical environment of the
expression being transformed. For example, uhd/sig form can access a named interface description with
syntax-local-value

e (syntax-local-value id-stx [failure-thunk) returns the expansion-time value iofstx
in the transformed expression’s context. itf-stx is not bound to an expansion-time value (via
define-syntax , let-syntax , etc.) in the environment of the expression being transformed,
the result is obtained by applyinailure-thunk . If failure-thunk is not provided, the
exn:fail:contract exception is raised. Ifd-stx is bound to a rename transformer created with
make-rename-transformer , syntax-local-value effectively calls itself with the target of the re-

160

name and returns that result, instead of the rename transformer.

Resolvingid-stx can use certificates for the expression being transformed;{s&6€.3 as well as inactive
certificates associated wiitk-stx ~ (see§12.6.3.). Furthermore, if the transformer is defined within a module
(i.e., the current transformation was triggered by a use of a module-defined identifier) or if the current expression
is being expanded for the body of a module, then resolidrgfx can access any identifier defined by the
module.

(syntax-local-lift-expression stx) returns a fresh identifier, and it cooperates with the
module , letrec-syntaxes+values , define-syntaxes , begin-for-syntax , and top-level ex-
panders to bind the generated identifier to the expressien. A run-time expression within a mod-

ule is lifted to the module’s top level, just before the expression whose expansion requests the lift.
Similarly, a run-time expression outside of a module is lifted to a top-level definition. A compile-
time expression in detrec-syntaxes+values or define-syntaxes binding is lifted to alet
wrapper around the corresponding right-hand side of the binding. A compile-time expression within
begin-for-syntax is lifted to a define-for-syntax declaration just before the requesting ex-
pression. Other syntactic forms can capture lifts by usiogal-expand/capture-lifts or
local-transformer-expand/capture-lifts

(syntax-local-lift-module-end-declaration stx) cooperates with thenodule form to in-

sertstx as a top-level declaration at the end of the module currently being expanded. The result is void. If the
current expression being transformed is not withimadule form, or if it is not a run-time expression, then
theexn:fail:contract exception is raised.

(syntax-local-name) returns an inferred name for the expression position being transform#tl; see
also§6.2.3
(syntax-local-context) returns eithelexpression , 'top-level ,’'module ,’'module-begin

or a non-empty list of arbitrary values.

The first three possibilities indicate that the expression is being expanded for a (non-definition) expression
position, a top-level position, or a module top-level position, respectively. The next-tdslashile-begin
indicates that the expression is being expanded as the sole form within a module, where it might produce
#%plain-module-begin

The last possibility, a list, indicates expansion for an internal-definition position. The identity of the lists’s first
element (i.e., it®q? ness) reflects the identity of the internal-definition context; in particular two transformer
expansions receive the same first value if and only if they are invoked for the same internal-definition context.
Later values in the list similarly identify internal-definition contexts that are still being expanded, and that
required the expansion of nested internal-definition contexts.

(syntax-local-get-shadower identifier) returnsidentifier if no binding in the current ex-
pansion context shadovdentifier , if identifier has no module context, and if the current expansion
context is not a module. If a binding ofner-identifier shadowsdentifier , the result is the same
as(syntax-local-get-shadower inner-identifier), except that it has the location and prop-
erties ofidentifier . Otherwise, the result is the sameidsntifier with its module context (if any)
removed and the current module context (if any) added. Thus, the result is an identifier corresponding to the

12. Syntax and Macros 12.6. Macro Expansion

innermost shadowing aflentifier in the current context if its shadowed, and a module-contextless version
of identifier otherwise.

e (syntax-local-certifier) returns a procedure that captures any certificates currently available for
syntax-local-value or local-expand . The procedure accepts one to three argumesits: (re-
quired), key-v (optional), andintro-proc (optional). The procedure’s result is a syntax object like
stx , except that it includes the captured certificates as inactive §626.3.). If key-v is supplied
and not#f , it is associated with each captured certificate for later use threygtax-recertify (see
§12.6.3.3. If intro-proc is supplied, and if it is no#f (the default), then it must be a procedure created by
make-syntax-introducer , in which case the certificate applies only to partstaf that are marked as
introduced byintro-proc

e (syntax-transforming?) returns#t if an expression is currently being transformed (so that procedures
like syntax-local-value can be calledyf otherwise.

A transformer can also expand or partially expand subexpressions from its input syntax object:

¢ (local-expand stx context-v stop-id-stx-list intdef-ctx) expandsstx in the lexi-
cal context of the expression currently being expanded. cimext-v argument is used as the result of
syntax-local-context for immediate expansions; for a particular internal-definition context, generate a
unigue value andons it onto the current result afyntax-local-context ifitis a list.

When an identifier irstop-id-stx-list is encountered by the expander in a subexpression, expansions
stops for the subexpression. #¥%app, #%top, or #%datum (see§12.5 appears irstop-id-stx-list)

then application, top-level variable reference, and literal data expressions without the respective explicit form
are not wrapped with the explicit form. $top-id-stx-list is#f instead of a list, thestx is expanded
only as long as the outermost formsik is a macro (i.e., expansion does not proceed to sub-expressions).

The optionalntdef-ctx argument must be eithéf (the default) or the result afyntax-local-make-definition-context

In the latter case, lexical information for internal definitions is addestxto before it is expanded. The lexical

information is also added to the expansion result (because the expansion might introduce bindings or references

to internal-definition bindings).

Expansion ofstx can use certificates for the expression already being expanded1a€e3 , and inactive
certificates associated witix are activated fostx (see§12.6.3.). Furthermore, if the macro expander is
defined within a module (i.e., the current expansion was triggered by a use of a module-defined identifier) or
if the current expression is being expanded for the body of a module, then the expansion ofn use any
identifier defined by the module.

e (local-transformer-expand stx context-v stop-id-stx-list intdef-ctx) is like
local-expand , butstx is expanded as a transformer expression instead of a run-time expression.

¢ (local-expand/capture-lifts stx context-v stop-id-stx-list intdef-ctx) islike
local-expand , but if syntax-local-lift-expression is called during the expansion sfx , the
result is a syntax object that representsegin expression; lifted expression appear with their identifiers in
define-values forms, and the expansion stx is the last expression in thegin . The lifted expressions
are not expanded.

¢ (local-transformer-expand/capture-lifts stx context-v stop-id-stx-list intdef-ctx
is like local-expand/capture-lifts , butstx is expanded as a transformer expression instead of a run-
time expression. Lifted expressions are reportededise-values forms (in the transformer environment).

e (syntax-local-make-definition-context) creates an opaque internal-definition context value to
be used withlocal-expand and other functions. A transformer should create one context for each set
of internal definitions to be expanded, and use it when expanding any form whose lexical context should in-
clude the definitions. After discovering an interrtdfine-values or define-syntaxes form, use
syntax-local-bind-syntaxes to add bindings to the context.

161

12.6. Macro Expansion 12. Syntax and Macros

e (syntax-local-bind-syntaxes id-list expr-or-false intdef-ctx) binds each identi-
fier in id-list within the internal-definition context represented ibydef-ctx , Whereintdef-ctx
is the result osyntax-local-make-definition-context . Supply#f for expr-or-false when
the identifiers correspond tefine-values bindings, and supply a compile-time expression when the iden-
tifiers correspond talefine-syntaxes bindings; the later case, the number of values produces by the ex-
pression should match the number of identifiers, otherwis@xhefail:contract:arity exception is
raised.

To track the introduction of identifiers by a macro (§&2.3, the syntax expander adds a special “mark” to a syntax
object that is provided to a transformer, and also marks the result of the transformer. Consecutive marks cancel, and
each transformer application has a distinct mark, so the only parts of the resulting syntax object with marks are the
parts that were introduced by the transformer. A transformer can explicitly add a current mark to a syntax object using
syntax-local-introduce or the result oimake-syntax-introducer

e (syntax-local-introduce stx) produces a syntax object that is lig&x , except that a mark for the
current expansion is added (possibly canceling an existing mark in pats of

¢ (make-syntax-introducer) produces a procedure that behaves Blgatax-local-introduce ,
except using a fresh mark. Multiple applications of the sama&e-syntax-introducer result procedure
use the same mark, and different result procedures use distinct marks.

Explicit marking is useful on syntax objects that flow into or out of a transformer without being the transformer
argument or result. For example, DrScheme’s Check Syntax tool recoddizappeared-binding and
'disappeared-use properties, which specify bound-binding identifier pairs in the source program that do not
appear in the expansion. Example:

(define-syntax (match-list stx)
(syntax-case stx ()
[(- expr (id ..) result-id)
(let ([ids (syntax- >list (syntax (id ..))]
[result-id (syntax result-id N
;; Make sure the expression is well formed:
(for-each (lambda (id)
(unless (identifier? id)
(raise-syntax-error #f "not an identifier" stx id)))
(append ids (list result-id))
;; Find the matching identifier and produce a list-ref expression:
(let loop ([ids ids] [pos 0])

(cond
[(null? ids) (raise-syntax-error #f "no pattern binding" stx result-id)]
[(bound-identifier=? (car ids) result-id)

;; Found it; produce the list-ref expression, and
;; tell the Check Syntax tool about the pattern-variable binding:
(with-syntax ([pos pos])

(syntax-property

(syntax-property

(syntax (list-ref expr pos)) ; the expansion result
'disappeared-binding

(syntax-local-introduce (car ids)))
‘disappeared-use

(syntax-local-introduce result-id NI

[else (loop (cdr ids) (addl pos)))D)

;o Test it:

162

12. Syntax and Macros 12.6. Macro Expansion

(match-list '23)(abc)b); =2

In this example, Check Syntax will draw a binding arrow from the firsio the second. Without the calls to
syntax-local-introduce , the identifiers stored in the property would appear to have originated from the trans-
former, instead of from the transformer’s argument; consequently, Check Syntax would not draw the arrow, because it
would not know that thés exist in the source program.

12.6.1 Expanding Expressions to Primitive Syntax

(expand stx-or-sexpr) expands all non-primitive syntax istx-or-sexpr , and returns a syntax object
for the expanded expression. See below for the grammar of fully expanded expressions s&edoreexpr is
expanded, its lexical context is enriched widimespace-syntax-introduce as foreval (see8.3and§14.7).
Usesyntax-object->datum to convert the returned syntax object into an S-expression.

(expand-syntax stx) islike(expand stx), exceptthat the argument must be a syntax object, and its lexical
context is not enriched before expansion.

(expand-once stx-or-sexpr) partially expands syntax in thetx-or-sexpr and returns a syntax ob-
ject for the partially-expanded expression. Due to limitations in the expansion mechanism, some context in-
formation may be lost. In particular, callingxpand-once on the result may produce a result that is dif-

ferent from expansion vigxpand . Before stx-or-sexpr is expanded, its lexical context is enriched with
namespace-syntax-introduce as foreval (see§8.3and§14.1).
(expand-syntax-once stx) is like (expand-once stx), except that the argument must be a syntax ob-

ject, and its lexical context is not enriched before expansion.

(expand-to-top-form stx-or-sexpr) partially expands syntax istx-or-sexpr to reveal the outer-
most syntactic form. This partial expansion is mainly useful for detecting top-level ubegiof . Unlike expanding
the result ofexpand-once , expanding the result afxpand-to-top-form with expand produces the same
result as usingxpand on the original syntax. Beforstx-or-sexpr is expanded, its lexical context is enriched
with namespace-syntax-introduce as foreval (see§8.3and§l14.1).

(expand-syntax-to-top-form stx) is like (expand-to-top-form stx), except that the argument
must be a syntax object, and its lexical context is not enriched before expansion.

The possible shapes of a fully expanded expression are defirteggvel-expr

top-level-expr is one of
general-top-level-expr
(module identifier name (#%plain-module-begin module-level-expr)
(begin top-level-expr)

module-level-expr is one of
general-top-level-expr
(provide provide-spec)

general-top-level-expr is one of
expr
(define-values (variable --+) expr)
(define-syntaxes (identifier --4) expr)
(define-values-for-syntax (variable --+) expr)
(require require-spec)
(require-for-syntax require-spec)
(require-for-template require-spec)

163

12.6. Macro Expansion 12. Syntax and Macros

expr is one of

variable
(lambda formals expr)
(case-lambda (formals expr IR

(if expr expr)

(if expr expr expr)

(begin expr ---b

(beginO expr expr --)

(let-values (((variable ..2) expr) ---) expr ---1)
(letrec-values (((variable ..2) expr) ---) expr ---1)
(set! variable expr)

(quote datum)

(quote-syntax datum)

(with-continuation-mark expr expr expr)

(#%app expr ---1)

(#%datum . datum)

(#%top . variable)

(#%variable-reference variable)
(#%variable-reference (#%top . variable))

whereformals is defined ing2.9, andrequire-spec andprovide-spec are defined ir§5.2

When avariable expression appears in a fully-expanded expression, it either refers to a variable béamt s ,
case-lambda , let-values , letrec-values , ordefine (within the current module), or it refers to an im-
ported variable. (In other wordsvariable not wrapped by%top never refers to a top-level variable.)

The keywords in the above grammar are placeholders for identifiers thamadele-identifier=? (or
module-transformer-identifier=? for define-syntax expressions) to the same-named exports of
mzscheme. Due to import renamings, the printed identifier names can be different in the expanded expression.

12.6.2 Syntax Object Properties

Every syntax object has an associated property list, which can be queried or extendgghteihproperty

e (syntax-property stx key-v v) extendsstx by associating an arbitrary property valewith the
keykey-v ;the resultis a new syntax object with the association (wstite itself is unchanged).

e (syntax-property stx key-v) returns an arbitrary property value associatedtto with the key
key-v , or#f if novalue is associated &ix for key-v .

e (syntax-property-symbol-keys stx) returns alist of all symbols that as keys have associated prop-
erties instx . Uninterned symbols (s€8.7) are not included in the result list.

Theread-syntax procedure attaches’paren-shape property to any pair or vector syntax object generated
from parsing a pair of square brackets (“[" and “]") or curly brace§ @nd “}”).% The property value i¢\[in the
former case, an#\{ in the latter case. Thgyntax form copies anyparen-shape property from the sourec of

a template to corresponding generated syntax.

Both the syntax input to a transformer and the syntax result of a transformer may have associated properties. The two
sets of properties are merged by the syntax expander: each property in the original and not present in the result is
copied to the result, and the values of properties present in both are combinemstimmutable (result value

first, original value second).

4More precisely, the property is attached by the default read handler in syntax mode when using the default readtable.

164

12. Syntax and Macros 12.6. Macro Expansion

Before performing the merge, however, the syntax expander automatically add a property to the original syntax object
using the keyorigin . If the source syntax has rorigin property, it is set to the empty list. Then, still before

the merge, the identifier that triggered the macro expansion (as syntzogssmmutable d onto the'origin

property so far.

The’origin property thus records (in reverse order) the sequence of macro expansions that produced an expanded
expression. Usually, th@rigin value is an immutable list of identifiers. However, a transformer might return
syntax that has already been expanded, in which cak#igin list can contain other lists after a merge.

For example, the expression

(or xvy)
expands to
(let ((or-part x) (if or-part or-part (or vy))

which, in turn, expands to

(let-values ([(or-part) x]) (if or-part or-part y)

The syntax object for the final expression will have 'arigin property whose value iflist-immutable
(quote-syntax let) (quote-syntax or))

(syntax-track-origin new-stx orig-stx id-stx) add properties toew-stx in the same way that
macro expansion adds properties to a transformer result. In particular, it merges the properigstf into
new-stx , first addingid-stx as an'origin property, and it returns the property-extended syntax object. Use
the syntax-track-origin procedure in a macro transformer that discards syntax (corresponding-tstx

with a keywordid-stx) leaving some other syntax in its place (correspondinggi@-stx).

Besidesorigin tracking for general macro expansion, MzScheme adds properties to expanded syntax (often using
syntax-track-origin) to record additional expansion details:

e When abegin formis spliced into a sequence with internal definitions ¢ge@.5, syntax-track-origin
is applied to every spliced element from thegin body. The second argumentggntax-track-origin
is thebegin form, and the third argument is thegin keyword (extracted from the spliced form).

e When an internallefine-values ordefine-syntaxes formis converted into ketrec-values+syntaxes
form (see§2.8.5, syntax-track-origin is applied to each generated binding clause. The second argu-
ment tosyntax-track-origin is the converted form, and the third argument isdeéne-values or
define-syntaxes keyword form the converted form.

e When detrec-values+syntaxes expression is fully expanded, syntax bindings disappear, and the result
is either detrec-values form (if the unexpanded form contained non-syntax bindings), or only the body of
the letrec-values+syntaxes form (wrapped withbegin if the body contained multiple expressions).
To record the disappeared syntax bindings, a property is added to the expansion result: an immutable list of
identifiers from the disappeared bindings, adisappeared-binding property.

e When a subtypinglefine-struct form is expanded, the identifier used to reference the base type does not
appear in the expansion. Therefore, thefine-struct transformer adds the identifier to the expansion
result as adisappeared-use property.

e When a reference to an unexported or protected identifier from a module is discovered (and the reference is
certified; se€12.6.3, the’protected property is added to the identifier with#a value.

165

12.6. Macro Expansion 12. Syntax and Macros

e When orread-syntax or read-honu-syntax generates a syntax object, it attaches a property to the
object (using a private key) to mark the object as originating from a readsyirttax-original? predicate
looks for the property to recognize such syntax objects. {$2e.2for more information.)

Thesyntax-original? procedure and thierigin , 'disappeared-binding , and'disappeared-use

properties are used by program-processing tools (such as Check Syntax in DrScheme) to relate source code to
its expanded form. Implementors of macro transformers should consider whether properties added automati-

cally by MzScheme are sufficient for tools to make sense of expansion result, and implementors should use

syntax-track-origin andsyntax-property as necessary to fill in gaps (s¢E2.6for an example).

See§12.6.5for information about properties generated by the expansion of a module declaratiof3. 52éand
§6.2.3for information about properties recognized when compiling a procedure;18e&for information on proper-
ties and byte codes.

12.6.3 Certificates for Protected References

As illustrated in§5.3, a macro can expand into a use of an identifier that is not exported from the macro’s module. In
general, such an identifier must not be extracted from the expanded expression and used in a different context, because
using the identifier in a different context may break invariants of the macro’s module. For example, the following
module exports a macigo that expands to a use ohchecked-go

(module m mzscheme
(provide go)
(define (unchecked-go n x)

;; to avoid disaster, n must be a number
(+ n 17))
(define-syntax (go stx)
(syntax-case stx ()
[- x)

#'(unchecked-go 8 x)])))

If the reference tainchecked-go is extracted from the expansion(§o 'a) , then it might be inserted into a new
expression(unchecked-go #f 'a) , leading to disaster. Thaatum->syntax-object procedure can be

used similarly to construct references to an unexported identifier, even when no macro expansion includes a reference
to the identifier.

To prevent such abuses of unexported identifiers, MzScheme’s macro expander and compiler reject references to un-
exported identifiers unless they appeatdrtified syntax objects. The macro expander always certifies a syntax object

that is produced by a transformer. For example, whga 'a) is expanded t¢ unchecked-go 8 ’'a) , a cer-

tificate is attached to the res(ltnchecked-go 8 'a) . Extracting justunchecked-go removes the identifier

from the certified expression, so that the reference is disallowed when it is insertédinmioecked-go #f 'a)

In addition to checking module references, the macro expander disallows references to local bindings where the bind-
ing identifier is less certified than the reference. Otherwise, the expandigoofa) could be wrapped with a local

binding that redirect§%appto values , thus obtaining the value ainchecked-go . Note that a capturing%app

would have to be extracted from the expansiorf @b 'a) , since lexical scope would prevent an arbitr&Bgapp

from capturing. The act of extractifyoappremoves its certification, whereas #bapp within the expansion is still
certified; comparing these certifications, the macro expander rejects the local-binding referenoehactied-go

remains protected.

In much the same way that the macro expander copies properties from a transformer’s input to its output, the expander
copies certificates from a transformer’s input to its output. Building on the previous example,

(module n mzscheme

166

12. Syntax and Macros 12.6. Macro Expansion

(require m

(provide go-more)

(define y ’hello)

(define-syntax (go-more stx)

#(go)

the expansion of go-more) introduces a reference to the unexponeth (go y), and a certificate allows the
reference toy. As(go y) is expanded t§ unchecked-go 8 y), the certificate that allowsg is copied over, in
addition to the certificate that allows the referencenchecked-go

When a protected identifier becomes inaccessible by direct reference (i.e., when the current code inspector is changed
so that it does not control the module’s invocation; §e€l), the protected identifier is treated like an unexported
identifier.

12.6.3.1 ERTIFICATE PROPAGATION

When the result of a macro expansion contaimmgiate-syntax form, the macro expansion’s certificate must be
attached to the resulting syntax object to support macro-generating macros. In general, when the macro expander
encountergjuote-syntax , it attaches all certificates from enclosing expressions to the quoted syntax constant.
However, the certificates are attached to the syntax constant@sve certificates, and inactive certificates do not

count directly for certifying identifier access. Inactive certificates become active when the macro expander certifies
the result of a macro expansion; at that time, the expander removes all inactive certificates within the expansion result
and attaches active versions of the certificates to the overall expansion result.

For example, suppose that the macro is implemented through a macro:

(module m mzscheme
(provide def-go)
(define (unchecked-go n x)
(+ n 17))
(define-syntax (def-go stx)
(syntax-case stx ()
[(- go)
#'(define-syntax (go stx)
(syntax-case stx ()
[(-x
#'(unchecked-go 8 X))

When def-go is used inside another module, the generated macro should legally generate expressions that use
unchecked-go , sincedef-go in mhad complete control over the generated macro.

(module n mzscheme

(require m
(def-go go)
(go 10)) ; access to unchecked-go is allowed

This example works because the expansiondef-go go) is certified to access protected identifierairincluding
unchecked-go . Specifically, the certified expansion is a definition of the magrpwhich includes a syntax-object
constanunchecked-go . Since the enclosing macro declaration is certified uhehecked-go syntax constant
gets an inactive certificate to access protected identifiars Wfhen(go 10) is expanded, the inactive certificate on
unchecked-go is activated for the macro resylunchecked-go 8 10) , and the access ainchecked-go

is allowed.

To see whyunchecked-go as a syntax constant must be given an inactive certificate instead of an active one, it's

167

12.6. Macro Expansion 12. Syntax and Macros

helpful to write thedef-go macro as follows:

(define-syntax (def-go stx)
(syntax-case stx ()
[(- go)
#'(define-syntax (go stx)
(syntax-case stx ()
[-x
(with-syntax (Jug (quote-syntax unchecked-go)])
#(ug 8 X))

In this caseunchecked-go s clearly quoted as an immediate syntax object in the expansifdeffgo go).

If this syntax object were given an active certificate, then it would keep the certificate—directly on the identifier
unchecked-go —in the result(unchecked-go 8 10) . Consequently, thenchecked-go identifier could

be extracted and used with its certificate intact. Attaching an inactive certificatectiecked-go and activating

it only for the complete resulf unchecked-go 8 10) ensures thatinchecked-go is used only in the way
intended by the implementor def-go

12.6.3.2 NTERNAL CERTIFICATES

In some cases, a macro implementor intends to allow limited destructuring of a macro result without losing the result’s
certificate. For example, given the followingfine-like-y macro,

(module g mzscheme
(provide define-like-y)
(define y ’hello)
(define-syntax (define-like-y stx)
(syntax-case stx ()
[(- id) #(define-values (id) y)])))

someone may use the macro in an internal definition:

(let ()
(define-like-y x)
X)
The implementor of they module most likely intended to allow such usesdefine-like-y . To convert an
internal definition into detrec binding, however, thelefine form produced bydefine-like-y must be

deconstructed, which would normally lose the certificate that allows the referegice to

The internal use oflefine-like-y is allowed because the macro expander treats specially a transformer result
that is a syntax list beginning witthefine-values . In that case, instead of attaching the certificate to the overall
expression, the certificate is instead attached to each individual element of the syntax list, pushing the certificates
into the second element of the list so that they are attached to the defined identifiers. Thus, a certificate is attached
to define-values , X, andy in the expansion resu({define-values (X) Yy), and the definition can be
deconstructed for conversion lietrec

Just like the new certificate that is added to a transformer result, old certificates from the input are similarly moved
to syntax-list elements when the result starts vi#fine-values . Thus, define-like-y could have been
implemented to produgglefine id y), usingdefine instead oflefine-values . Inthat case, the certificate

to allow reference ty would be attached initially to the expansion regdifine x y), but as thedefine is
expanded talefine-values , the certificate would be moved to the parts.

The macro expander treats syntax-list results starting défme-syntaxes in the same way that it treats results
starting withdefine-values . Syntax-list results starting withegin are treated similarly, except that the second

168

12. Syntax and Macros 12.6. Macro Expansion

element of the syntax list is treated like all the other elements (i.e., the certificate is attached to the element instead
of its content). Furthermore, the macro expander applies this special handling recursively, in case a macro produces a
begin form that contains nesteatkfine-values forms.

The default application of certificates can be overridden by attachiogréfy-mode property (se€l12.6.9 to

the result syntax object of a macro transformer. If the property valtmpeque , then the certificate is attached
to the syntax object and not its parts. If the property valugramsparent , then the certificate is attached to
the syntax object’s parts. If the property valuétiansparent-binding , then the certificate is attached to the
syntax object’s parts and to the sub-parts of the second part (defioe-values anddefine-syntaxes).
The'transparent and’transparent-binding modes triggers recursive property checking at the parts, so
that the certificate can be pushed arbitrarily deep into a transformer’s result.

12.6.3.3 GECKING AND TRANSFERRINGCERTIFICATES

In general, a certificate combines a mark (§&2.6, a module name (more precisely, a module path index; see
§12.6.5, an inspector, and an arbitrary key object. Within a certified syntax object, the certificate’s mark is attached
to every piece of syntax that was introduced by the relevant macro transformation (segl&ggirso the certificate

applies only to those pieces of syntax, and only to identifiers that are bound by the transformer’s module. The certifi-
cate’s inspector depends on the module that defined the transformer; specifically, it is the inspector for the module’s
declaration (se€9.4). A certificate’s key is hidden if it is introduced by macro expansion, but applying the result of
syntax-local-certifier (see§12.6 can introduce certificates with other keys.

To check access to an unexported identifier, the compiler or macro expander checks each of the identifier's marks
and module bindings; if, for some mark, the identifier's enclosing expressions include a certificate with the mark, the
identifier's binding module, and with an inspector that controls the module’s invocation (as opposed to the module’s
declaration; see agaf®.4), then the access is allowed. To check access to a protected identifier, only the certificate’s
mark and inspector are used (i.e., the module that bound the transformer is irrelevant, as long as it was evaluated with
a sufficiently powerful inspector). The certificate key is not used in checking references.

To check access to a locally bound identifier, the compiler or macro expander checks the marks of the binding and
reference identifiers; for every mark that they have in common, if the reference identifier has a certificate for the mark
from an enclosing expression, the binding identifier must have a certificate for the mark from an enclosing expression,
otherwise the reference is disallowed. (The reference identifier can have additional certificates for marks that are not
attached to the binding identifier.) The binding module (if any) and the certificate key are not used for checking a local
reference.

Thedatum->syntax-object procedure never transfers a certificate from one syntax object to another, so it cannot
be used to gain access to an unexported identifier. syheax-recertify procedure can be used to transfer a
certificate from one syntax object to another, but only if the certificate’s key is provided, or if a sufficiently powerful
inspector is provided. Thus, a certificate’s inspector serves two roles: it determines the certificate’s power to grant
access, and also allows the certificate to be moved arbitrarily by anyone with a more powerful inspector.

(syntax-recertify new-stx old-stx inspector key-v) copies certain certificates ofd-stx to
new-stx : a certificate is copied if its inspector is eithiaspector or controlled byinspector , or if the
certificate’s key ikey-v ; otherwise the certificate is not copied. The result is a syntax objechékestx , but
with the copied certificates. (Theew-stx object itself is not modified.) Both active and inactive certificates are
copied.

12.6.4 Information on Structure Types
Thedefine-struct form (see§4.1) binds the name of a structure type to an expansion-time value that records the

identifiers bound to the structure type, the constructor procedure, the predicate procedure, and the field accessor and
mutator procedures. This information can be used during the expansion of other expressions by transformer that call

169

12.6. Macro Expansion 12. Syntax and Macros

syntax-local-value (seesl2.6).

For example, thelefine-struct variant for subtypes (se®t.2) uses the base type narheo find the variable

struct :t containing the base type’s descriptor; it also folds the field accessor and mutator information for the base
type into the information for the subtype. Theatch form (see Chapter 25 < MzLib: Libraries Manualuses a

type name to find the predicates and field accessors for the structure type.

Besides using the information, other syntactic forms can even generate information with the same shape. For example,
thestruct form in an imported signature famit/sig (see Chapter 52 dfLT MzLib: Libraries Manugl causes

the unit/sig transformer to generate information about imported structure types, sm#teh and subtyping
define-struct expressions work within the unit.

The expansion-time information for a structure type is represented as an immutable list of six items:

e an identifier that is bound to the structure type’s descripto#f oit none is known;
e an identifier that is bound to the structure type’s constructa#f oit none is known;
e an identifier that is bound to the structure type’s predicatéf oit none is known;

e an immutable list of identifiers bound to the field accessors of the structure type, optionalif vaththe list's
last element. A as the last element indicates that the structure type may have additional fields, otherwise the
list is a reliable indicator of the number of fields in the structure type. Furthermore, the accessors are listed in
reverse order for the corresponding constructor arguments. (The reverse order enables sharing in the lists for a
subtype and its base type.)

e an immutable list of identifiers bound to the field mutators of the structure typ#, dor each field that has
no known mutator, and optionally with an exttf as the list's last element (if the accessor list has suth)a
The list’s order and the meaning of a fir#l are the same as for the accessor identifiers, and the length of the
mutator list is the same as the accessor list's length.

¢ an identifier that determines a super-type for the structure #fpé,the super-type (if any) is unknown, &t
if there is no super-type. If a super-type is specified, the identifier is also bound to structure-type expansion-time
information.

The implementor of a syntactic form can expect users of the form to know what kind of information is available about

a structure type. For example, theatch implementation works with structure information containing an incomplete

set of accessor bindings, because the user is assumed to know what information is available in the context of the
match expression. In particular, theatch expression can appear iruait/sig form with an imported structure

type, in which case the user is expected to know the set of fields that are listed in the signature for the structure type.

12.6.5 Information on Expanded and Compiled Modules

MzScheme provides an interface for obtaining information about an expanded or compiled module declaration’s im-
ports and exports. This information is intended for use by tools such as a compilation manager. The information
usually identifies modules throughn@odule path index, which is a semi-internédopaque value that encodes a rela-

tive module path (se€5.4) and another index to which it is relative.

Where an index is expected, a symbol can usually take its place, representing a literal module name. A symbol is used
instead of an index when a module is imported using its name directlyreghire instead of a module path.

An index that returng#f for its path and base index represents “self” — i.e., the module declaration that was the
source of the index — and such an index is always used as the root for a chain of indices. For example, when

SMultiple references to the same relative module tend to use the same index value, but not always.

170

12. Syntax and Macros 12.6. Macro Expansion

extracting information about an identifier’s binding within a module, if the identifier is bound by a definition within
the same module, the identifier's source module will be reported using the “self” index. If the identifier is instead
defined in a module that is imported via a module path (as opposed to a literal module name), then the identifier's
source module will be reported using an index that containsethgire d module path and the “self” index.

e (module-path-index? v) returns#t if v is a module path indexf otherwise.

e (module-path-index-split module-path-index) returns two values: a non-symbol S-
expression representing a module path, and a base index (to which the module path is relative), symbol, or
#f . A #f second result means “relative to a top-level environment#f Afor the first result implies #&f for
the second result, and means thettdule-path-index represents “self” (see above).

e (module-path-index-join module-path module-path-index) combines module-path
andmodule-path-index to create a new module path index. Tmedule-path argument can be any-
thing except a symbol, and timodule-path-index argument can be a index, symbol #r.

Information for an expanded module declaration is stored in a set of properties attached to the syntax object:

e 'module-direct-requires — an immutable list of module path indices (or symbols) representing the
modules explicitly imported into the module.

e 'module-direct-for-syntax-requires — an immutable list of module path indices (or symbols)
representing the modules explicitly for-syntax imported into the module.

e 'module-direct-for-template-requires — an immutable list of module path indices (or symbols)
representing the modules explicitly for-template imported into the module.

e 'module-variable-provides — an immutable list of provided items, where each item is one of the
following:

— symbol — represents a locally defined variable that is provided with its defined name.

— (cons-immutable provided-symbol defined-symbol) — represents a locally defined
variable that is provided with renaming; the first symbol is the exported name, and the second symbol
is the defined name.

— (list*-immutable module-path-index provided-symbol defined-symbol) —rep-
resents a re-exported and possibly re-named variable from the specified nmoddide-path-index
is either an index or symbol, indicating the source module for the binding.pidaded-symbol is
the external name for the re-export, atefined-symbol is the originally defined name in the module
specified bymodule-path-index

e 'module-syntax-provides — like 'module-variable-provides , but for syntax exports instead
of variable exports.

e 'module-indirect-provides — an immutable list of symbols for variables that are defined in the mod-
ule but not exported; they may be exported indirectly through macro expansions. Definitions of macro-generated
identifiers create uninterned symbols in this list.

e 'module-kernel-reprovide-hint — either#f , #t , orasymbol. Ifitis#t , then the module re-exports
all of the functionality from MzScheme'’s internal kernel module. If it is a symbol, then all kernel exports but the
indicated one is re-exported, and some other export is provided with the indicated name. This ad hoc information
is used in an optimization by thezc compiler.

e 'module-self-path-index — amodule path index whose parts are b#tth This information is used by
themzc compiler to manage syntax objects (which contain module-relative information keyed on the module’s
own index).

171

12.6. Macro Expansion 12. Syntax and Macros

(compiled-module-expression? v) returns#t if v is a compiled expression fomaodule declaration#f
otherwise. See alsil4.3

(module-compiled-name compiled-module-code) takes a module declaration in compiled form (see
§14.3 and returns a symbol for the module’s declared name.

(module-compiled-imports compiled-module-code) takes a module declaration in compiled form
(see§14.3 and returns three values: an immutable list of module path indices (and symbols) for the module’s ex-
plicit imports, an immutable list of module path indices (and symbols) for the module’s explicit for-syntax imports,
and an immutable list of module path indices (and symbols) for the module’s explicit for-template imports.

(module-compiled-exports compiled-module-code) takes a module declaration in compiled form
(see§l4.3 and returns two values: an immutable list of symbols for the module’s explicit variable exports, an im-
mutable list symbols for the module’s explicit syntax exports.

172

13. Memory Management

13.1 Weak Boxes

A weak box is similar to a normal box (s€g3.11), but when the automatic memory manager can prove that the content
value of a weak box is only reachable via weak references, the content of the weak box is repla¢éd Witlveak
reference is a reference through a weak box, through a key reference in a weak hash taiz {de¢hrough a value

in an ephemeron where the value can be replacetf bigee§13.2), or through a custodian (s€8.2).

e (make-weak-box V) returns a new weak box that initially contawns

e (weak-box-value weak-box) returns the value contained weak-box . If the memory manager has
proven that the previous content valuensfak-box was reachable only through a weak reference, ters
returned.

e (weak-box? v) returns#t if v is a weak box#f otherwise.

13.2 Ephemerons

An ephemeron is similar to a weak box (s€g3.1), except that

1. an ephemeron contains a key and a value; the value can be extracted from the ephemeron, but the value is
replaced by#f when the automatic memory manager can prove that either the ephemeron or the key is reachable
only through weak references (s§k3.1); and

2. nothing reachable from the value in an ephemeron counts toward the reachability of an ephemeron key (whether
for the same ephemeron or another), unless the same value is reachable through a non-weak reference, or
unless the value’s ephemeron key is reachable through a non-weak refereryds (s information on weak
references).

In particular, an ephemeron can be combined with a weak hash tabl3de>o produce a mapping where the
memory manager can reclaim key—value pairs even when the value refers to the key. An example is shown below.

e (make-ephemeron key-v v) returns a new ephemeron whose kelggg-v and whose value is initially
V.

e (ephemeron-value ephemeron) returns the value contained @phemeron . If the memory manager
has proven that the key fephemeron is only weakly reachable, then the resultfs.

e (ephemeron? V) returns#t if v is an ephemerontf otherwise.

Example:

;v This weak map is like a weak hash table, but

173

13.3. Will Executors

13. Memory Management

;; without the key-in-value problem:
(define (make-weak-map)
(make-hash-table 'weak))

(define (weak-map-put! m k v)
(hash-table-put! m k (make-ephemeron k (box V))))

(define (weak-map-get m k def-v)

(let [v (hash-table-get m k (lambda () #f))])
(f v
(let [v (ephemeron-value v)])
(if v
(unbox v)
def-v))
def-v)))

(define m (make-weak-map))

(define k (list 1 2))

(weak-map-put! m k k)
(weak-map-get m k #) ; = '1 2)
(set! k #f)

list is eventually GCed even ifiremains reachable

13.3 Will Executors

A will executor manages a collection of values and associatdtprocedures. The will procedure for each value is

ready to be executed when the value has been proven (by the automatic memory manager) to be unreachable, except
through weak references (s&E3.1) or as the registrant for other will executors. A will is useful for triggering clean-up
actions on data associated with an unreachable value, such as closing a port embedded in an object when the object is

no longer used.

Calling thewill-execute

or will-try-execute

procedure executes a will that is ready in the specified will

executor. Wills are not executed automatically, because certain programs need control to avoid race conditions. How-
ever, a program can create a thread whose sole job is to execute wills for a particular executor.

e (make-will-executor) returns a new will executor with no managed values.

o (will-executor? v) returns#t if v is a will executor# otherwise.

o (will-register executor v proc) registers the valug with the will procedureproc in the will
executorexecutor . Whenv is proven unreachable, then the procechnec is ready to be called with as
its argument viavill-execute or will-try-execute . Theproc argumentis strongly referenced until

the will procedure is executed.

o (will-execute executor) invokes the will procedure for a single “unreachable” value registered with
the executoexecutable . The value(s) returned by the will procedure is the result ofihleexecute
call. If no will is ready for immediate executiowjll-execute blocks until one is ready.

e (will-try-execute executor) is like will-execute if a will is ready for immediate execution.

Otherwise#f is returned.

If a value is registered with multiple wills (in one or multiple executors), the wills are readied in the reverse order of
registration. Since readying a will procedure makes the value reachable again, the will must be executed and the value

174

13. Memory Management 13.4. Garbage Collection

must be proven again unreachable through only weak references before another of the wills is readied or executed.
However, wills for distinct unreachable values are readied at the same time, regardless of whether the values are
reachable from each other.

A will executor’s register is held non-weakly until after the corresponding will procedure is executed. Thus, if the
content value of a weak box (sé&3.1) is registered with a will executor, the weak box’s content is not changed to

#f until all wills have been executed for the value and the value has been proven again reachable through only weak
references.

13.4 Garbage Collection

(collect-garbage) forces an immediate garbage collection. Since MzScheme uses a “conservative” garbage
collector, some effectively unreachable data may remain uncollected (because the collector cannot prove that it is
unreachable). This procedure provides some control over the timing of collections, but garbage will obviously be
collected even if this procedure is never called.

(current-memory-use [custodian]) returns an estimate of the number of bytes of memory occupied by
reachable data frorustodian . (The estimate is calculatedthout performing an immediate garbage collection;
performing a collection generally decreases the number returnedrbgnt-memory-use .) If custodian is

not provided, the estimate is a total reachable from any custodians. Unless MzScheme is compiled with special support
for memory accounting, the estimate is the same (i.e., all memory) for any individual custodian.

(dump-memory-stats) dumps information about memory usage to the (low-level) standard output port.

175

14. Support Facilities

14.1 Eval and Load

(eval expr [namespace]) evaluatesxpr in namespace, or in the current namespaceribmespace is

not supplied: (See§8 and§7.9.1.5for more information about namespaces.) Expr is evaluated in tail po-

sition with respect to theval call. Theexpr can be a syntax object, a compiled expression, a compiled ex-
pression wrapped as a syntax object, or an arbitrary S-expression (which will be converted to a syntax object using
datum->syntax-object ; see§l2.2.9). If expr is a syntax object or S-expression, then is enriched with lexical
context usingnamespace-syntax-introduce before it is evaluated. However,gkpr is a pair (or syntax pair)

whose first element imodule-identifier=? to MzScheme’snodule (after giving the identifier context with
namespace-syntax-introduce), then only themodule identifier is given context, and the reste{pr is left

to the module’s language.

(eval-syntax stx [namespace]) is like (eval stx), except thastx must be a syntax object, and its
lexical context is not enriched before it is evaluated.

(load file-path) evaluates each expression in the specified file usiag) .> The return value frortoad is the
value of the last expression from the loaded file (or void if the file contains no expressidile)péth is arelative
path, then it is resolved to an absolute path using the current directory. Before the first expre$iséopath

is evaluated, the curretdad-relative directory (the value of theurrent-load-relative-directory

parameter; se§7.9.1.9 is set to the absolute path of the directory contairfilegpath ; after the last expression in
file-path is evaluated (or when the load is aborted), ltheed-relative directory is restored to its pread
value.

(load-relative file-path) is like load , but whenfile-path is a relative path, it is resolved to
an absolute path using the currdoad-relative directory rather than the current directory. If the current
load-relative directory is#f , thenload-relative is the same alwad .

(load/use-compiled file-path) is like load-relative , but load/use-compiled also checks

for .zo files (usually produced witltompile-file ; see Chapter 11 oPLT MzLib: Libraries Manugl and

s0 (Unix), .dil (Windows), or.dylib (Mac OS X) files The check for a compiled file occurs whenever
file-path ends with any extension (e.gss or .scm), and the check consults the subdirectories indicated by the
use-compiled-file-paths parameter (se&7.9.1.9, relative tofile-path . The subdirectories are checked
in order. A.zo version of the file is loaded if it exists directly in one of the indicated subdirectoriessor.dll/.dylib
version of the file is loaded if it exists withinrative subdirectory of aise-compiled-file-paths directory,

in an even deeper subdirectory as namedystem-library-subpath . A compiled file is loaded only if its
modification date is not older than the date fibe-path . If both .zo and.so/.dll/.dylib files are available, the
.so/.dll/.dylib file is used.

Multiple files can be combined into a singk/.dll/.dylib file by creating a special dynamic extensidsader.so ,

1Theeval procedure actually calls the current evaluation handler§gee1.5 to evaluate the expression.

2The load procedure actually just sets the currdoad-relative directory and calls the current load handler ($6€9.1.6§ with
file-path to load the file. The description tfad here is actually a description of the default load handler.

3The load/use-compiled procedure actually just calls the current load/use-compiled handlef{s@é.§. The default handler, in turn,
calls the load or load-extension handler, depending on the type of file that is loaded.

176

14. Support Facilities 14.2. Exiting

_loader.dll , or _loader.dylib . When such an extension is present where a norsnabll/.dylib would be loaded, then

the _Lloader extension is first loaded. The result returned.lbgder must be a procedure that accepts a symbol. This
procedure will be called with a symbol matching the base pditespath (without the directory path part of the

name and without the filename extension), and the result must be two valgédgsifeturned as the first result, then
load/use-compiled ignores_loader for file-path and continues as normal. Otherwise, the first return value

is yet another procedure. When this procedure is applied to no arguments, it should have the same effect as loading
file-path . The second return value is either a symba#or a symbol indicates that calling the returned procedure

has the effect of declaring the module named by the symbol (which is potentially useful information to a load handler;
see§5.9).

While a .zo, .so, .dll, or .dylib file is loaded (or while a thunk returned hjoader is invoked), the current
load-relative directory is set to the directory of the origirfde-path

(load/cd file-path) isthe same adoad file-path), butload/cd sets both the current directory and

currentload-relative directory to the directory diile-path before the file's expressions are evaluated.
(read-eval-print-loop) starts a newead -eval -print loop using the current input, output, and error
ports. Wherread-eval-print-loop starts, it installs a new error escape procedure {86® that does not exit
theread -eval -print loop. Theread-eval-print-loop procedure does not return ungibf is read as an

input expression; then it returns void.

Theread-eval-print-loop procedure is parameterized by the current prompt read handler, the current evalua-
tion handler, and the current print handler; a custead -eval -print loop can be implemented as in the following
example (see als§y.9.7):

(parameterize ([current-prompt-read my-read |
[current-eval my-eval]
[current-print my-print)

(read-eval-print-loop))

14.2 Exiting

(exit [v]) passew on to the current exit handler (seeit-handler in §7.9.1.9. The default value fov is
#t . If the exit handler does not escape or terminate the thread, void is returned.

The default exit handler quits MzScheme (or MrEd), using its argument as the exit code if it is between 1 and 255
inclusive (meaning “failure”), or 0 (meaning “success”) otherwise.

When MzScheme is embedded within another application, the default exit handler may behave differently.

14.3 Compilation

Normally, compilation happens automatically: when syntax is evaluated, it is first compiled and then the compiled code
is executed. However, MzScheme can also write and read compiled code. MzScheme can read compiled code much
faster than reading syntax and compiling it, so compilation can be used to speed up program loading. The MzLib
procedurecompile-file (see Chapter 11 dPLT MzLib: Libraries Manugl is sufficient for most compilation
purposes.

e (compile expr) returns a compiled expression fexpr such thateval (compile expr)) isthe
same ageval expr). More preciselycompile calls the current compilation handler (s¢&9.1.9 to
compileexpr .

177

14.4. Dynamic Extensions 14. Support Facilities

e (compile-syntax stx) returns a compiled expression f&tix such tha{eval (compile-syntax
stx)) isthe same afeval-syntax stx).

e (compiled-expression? V) returnst#t if v is a compiled expressio#f otherwise.

When a compiled expression is written to an output port, the written form starts#ithThese expressions are
essentially assembly code for the MzScheme interpreter, and reading such an expression produces a compiled expres-
sion. When a compiled expression contains syntax object constants, tftem of the expression drops location
information and properties for the syntax objects ($e&2and§12.6.9.

Theread procedure will not parse input beginning with unless theead-accept-compiled parameter (see
§7.9.1.9 is set to true. When the default load handler is used to load a file, compiled-expression reading is automati-
cally (temporarily) enabled as each expression is read.

Compiled code parsed fro#i may contain references to unexported or protected bindings from a module. At read
time, such references are associated with the current code inspectgv &de, and the code will only execute if
that inspector controls the relevant module invocation {Se§.

A compiled-expression object may contain uninterned symbols §{8€d that were created bgensym or
string->uninterned-symbol . When the compiled object is read wa, each uninterned symbol in the orig-

inal expression is mapped to a new uninterned symbol, where multiple instances of a single symbol are consistently
mapped to the same new symbol. The original and new symbols have the same printed representation.

Due to the above restrictions, do not i ggnsym or string->uninterned-symbol to construct an identifier
for a top-level or module binding. Instead, generate distinct identifiers eitheigettarate-temporaries (see
§12.2.29 or by applying the result ahake-syntax-introducer (see§12.6) to an existing identifier.

14.4 Dynamic Extensions

A dynamically-linked extension library is loaded into MzScheme wittad-extension file-path). The
separate documehtside PLT MzScheneontains information about writing MzScheme extensions. An extension can
only be loaded once during a MzScheme session, although the extension-writer can provide functionality to handle
extra calls tdoad-extension for a single extension.

Aswithload , the currentoad-relative directory (the value of theurrent-load-relative-directory
parameter; se§7.9.1.9 is set while the extension is loaded. Tlbad-relative-extension procedure is like
load-extension , but it loads an extension with a path that is relative to the cutoent-relative directory

instead of the current directory.

The load-extension procedure actually just dispatches to the current load extension handle§7(Sek§.

The result of callingoad-extension is determined by the extension. If the extension cannot be loaded, the
exn:fail:filesystem exception is raised, and if the load fails because the extension has the wrong version,
more specifically thexn:fail:filesystem:version exception is raised.

178

15. System Utilities

15.1 Time

15.1.1 Real Time and Date

(current-seconds) returns the current time in seconds. This time is always an exact integer based on a platform-
specific starting date (with a platform-specific minimum and maximum value).

The value of(current-seconds) increases as time passes (increasing by 1 for each second that passes). The
current time in seconds can be compared with a time returnditebyr-directory-modify-seconds (see
§11.3.3.

(seconds->date secs-n) takessecs-n , a platform-specific time in seconds (an exact integer) returned by
current-seconds or file-or-directory-modify-seconds , and returns an instance of tate struc-
ture type, as described below.sécs-n is too small or large, thexn:fail exception is raised.

The value returned bgurrent-seconds orfile-or-directory-modify-seconds is not portable among
platforms. Convert a time in seconds ussegonds->date when portability is needed.

Thedate structure type has the following fields:

second : 0to61 (60 and61 are for unusual leap-seconds)
minute : 0to59

hour : 0to23

day :1to31

month : 1to12

year :e.g.,1996

week-day : 0 (Sunday) t&6 (Saturday)

year-day : 0 to365 (364 in non-leap years)

dst? : #t (daylight savings time) off

time-zone-offset : the number of seconds east of GMT for this time zone (e.g., Pacific Standard Time is
—28800), an exact integer

Thedate structure type is transparent to all inspectors (geB).

See also Chapter 14 BT MzLib: Libraries Manuafor additional date utilities.

15.1.2 Machine Time

(current-milliseconds) returns the current “time” in fixnum milliseconds (possibly negative). This time is
based on a platform-specific starting date or on the machine’s startup time. Since the result is a fixnum, the value
increases only over a limited (though reasonably long) time.

1The value produced for théme-zone-offset field tends to be sensitive to the value of tA&Z" environment variable, especially on
Unix platforms. Consult the system documentation (usually utedet) for details.

179

15.2. Operating System Processes 15. System Utilities

(current-inexact-milliseconds) returns the current “time” in positive milliseconds, not necessarily an
integer. This time is based on a platform-specific starting date or on the machine’s startup time, but it never decreases
(until the machine is turned off).

(current-process-milliseconds) returns the amount of processor time in fixnum milliseconds that has
been consumed by the MzScheme process on the underlying operating system. (Under Unix and Mac OS X, this
includes both user and system time.) The precision of the result is platform-specific, and since the result is a fixnum,
the value increases only over a limited (though reasonably long) time.

(current-gc-milliseconds) returns the amount of processor time in fixnum milliseconds that has
been consumed by MzScheme’s garbage collection so far. This time is a portion of the time reported by
(current-process-milliseconds)

15.1.3 Timing Execution

Thetime-apply procedure collects timing information for a procedure application:

e (time-apply proc arg-list) invokes the procedungroc with the arguments iarg-list . Four
values are returned: a list containing the result(s) of applping , the number of milliseconds of CPU time
required to obtain this result, the number of “real” milliseconds required for the result, and the number of
milliseconds of CPU time (included in the first result) spent on garbage collection.

The reliability of the timing numbers depends on the platform;§déel.2for more information on time accounting.
If multiple MzScheme threads are running, then the reported time may include work performed by other threads.

Thetime syntactic form reports timing information directly to the current output port:

e (time expr) times the evaluation afxpr , printing timing information to the current output port. The result
of thetime expression is the result ekpr .

15.2 Operating System Processes

(subprocess stdout-output-port stdin-input-port stderr-output-port command-path

arg-string ---) creates a new process in the underlying operating system to examateand-path asyn-
chronously. Theommand-path argumentis a path to a program executable, andttpestring s are command-

line arguments for the program. Under Unix and Mac OS X, command-line arguments are passed as byte strings using
the current locale’s encoding (sg&.2.3.

Under Windows, the firsarg-string can be’exact , which triggers a Windows-specific hack: the second
arg-string is used exactly as the command-line for the subprocess, and no additigrsifing s can be sup-
plied. Otherwise, a command-line string is constructed fommmand-path andarg-string so that a typical
Windows console application can parse it back to an array of argurhéhtexact is provided on a non-Windows
platform, theexn:fail:contract exception is raised.

Unless itis#f , stdout-output-port is used for the launched process’s standard ouspdiy-input-port

is used for the process’s standard input, atakrr-output-port is used for the process’s standard error. All
provided ports must be file-stream ports. Any of the ports ca#fhein which case a system pipe is created and
returned bysubprocess . For each port that is provided, no pipe is created and the corresponding returned value is
#f .

Thesubprocess procedure returns four values:

2For information on the Windows command-line conventions, search for “command line parshitg:Amsdn.microsoft.com/

180

15. System Utilities 15.3. Windows Actions

a subprocess value representing the created process;

an input port piped from the process’s standard outputf oif stdout-output-port was a port;
an output port piped to the process standard inputf oif stdin-input-port was a port;

an input port piped from the process’s standard erro#f oif stderr-output-port was a port.

Important: All ports returned fromsubprocess must be explicitly closed wittclose-input-port and
close-output-port

The returned ports are file-stream ports (e 1.9, and they are placed into the management of the current custodian
(see§9.2). The exn:fail exception is raised when a low-level error prevents the spawning of a process or the
creation of operating system pipes for process communication.

A subprocess value can be used to obtain further information about the process:

e (subprocess-wait subprocess) blocks until the process terminates, then returns void.

e (subprocess-status subprocess) returns'running if the process is still running, or its exit code
otherwise. The exit code is an exact integer, Ariglpically indicates success. If the process terminated due to
a fault or signal, the exit code is non-zero.

e (subprocess-kill subprocess force?) terminates the subprocessfifrce? is true and if the
process still running, then returns void. If an error occurs during terminationgxh#ail exception is
raised.

If force? is#f under Unix and Mac OS X, the subprocess is sent an interrupt signal instead of a kill signal
(and the subprocess might handle the signal without terminating). Under Windows, no action is taken when
force? is#f.

e (subprocess-pid subprocess) returns the operating system’s numerical ID for the process (if any),
valid only as long as the process is running. The ID is an exact integer.

e (subprocess? v) returns#t if v is a subprocess valugf otherwise.

MzLib provides procedures for executing shell commands (as opposed to directly executing a program); see Chapter 36
of PLT MzLib: Libraries Manuafor details.

15.3 Windows Actions

(shell-execute verb-string target-string parameters-string dir-path show-mode-symbol)
performs the action specified bgrb-string ontarget-string in Windows. For example,
(shell-execute #f "http://www.plt-scheme.org” ™ (current-directory) ’sw _shownormal)

opens the PLT Scheme home page in a browser window. For platforms other than Windows, the
exn:fail:unsupported exception is raised.

The verb-string can be#f , in which case the operating system will use a default verb. Common verbs include
"open” ,"edit" ,"find" ,"explore" ,and"print"

Thetarget-string is the target for the action, usually a filename path. The file could be executable, or it could
be a file with a recognized extension that can be handled by an installed application.

The parameters-string argument is passed on to the system to perform the action. For example, in the case of
opening an executable, tiparameters-string is used as the command line (after the executable name).

181

15.4. Operating System Environment Variables 15. System Utilities

Thedir-path is used as the current directory when performing the action.

Theshow-mode-symbol sets the display mode for a Window affected by the action. It must be one of the following
symbols; the description of each symbol’s meaning is taken from the Windows API documentation.

e 'sw _hide or’'SW_HIDE — Hides the window and activates another window.
e 'sw _maximize or'SW_MAXIMIZE — Maximizes the window.

e 'sw _minimize or’SW_MINIMIZE — Minimizes the window and activates the next top-level window in the
z-order.

e 'sw _restore or'SW_RESTORE— Activates and displays the window. If the window is minimized or maxi-
mized, Windows restores it to its original size and position.

e 'sw _show or’'SW_SHOW- Activates the window and displays it in its current size and position.
e 'sw _showdefault or’'SW_SHOWDEFAULF Uses a default.

e 'sw _showmaximized or’SW_SHOWMAXIMIZEB- Activates the window and displays it as a maximized
window.

e 'sw _showminimized or 'SW_SHOWMINIMIZED— Activates the window and displays it as a minimized
window.

e 'sw _showminnoactive or 'SW_SHOWMINNOACTIVE- Displays the window as a minimized window.
The active window remains active.

e 'sw _showna or’'SW_SHOWNA- Displays the window in its current state. The active window remains active.

e 'sw _shownoactivate = or'SW_SHOWNOACTIVATE- Displays a window in its most recent size and posi-
tion. The active window remains active.

e 'sw _shownormal or’'SW_SHOWNORMAL Activates and displays a window. If the window is minimized
or maximized, Windows restores it to its original size and position.

If the action fails, theexn:fail exception is raised. If the action succeeds, the res#dt isIn future versions of
MzScheme, the result may be a subprocess value;($e8) if the operating system did returns a process handle (but
if a subprocess value is returned, its process ID wildhestead of the real process ID).

15.4 Operating System Environment Variables

(getenv name-string) gets the value of an operating system environment variablendime-string argu-
ment cannot contain a null character; if an environment variable namearbg-string exists, its value is returned
(as a string); otherwisef is returned.

(putenv name-string value-string) sets the value of an operating system environment variable. The
name-string andvalue-string arguments are strings that cannot contain a null character; the environment
variable named bpame-string is set tovalue-string . The return value igt if the assignment succeed,
otherwise.

15.5 Runtime Information
(system-type [mode]) returns information about the operating system, build mode, or machine for a running

MzScheme. Thenode argument must be eith&rs (the default),link , or’'machine . In’os mode, the possible
symbol results are:

182

15. System Utilities 15.5. Runtime Information

e 'Unix
e 'windows
e 'Mmacosx

In’link mode, the possible symbol results are:

‘static (Unix)
'shared (Unix)
dil - (Windows)
‘framework (Mac OS X)

(Future ports of MzScheme may expand the list of system and link symbol resultsiadhine mode, then the
result is a string, which contains further details about the current machine in a platform-specific format.

(system-language+country) returns a string to identify the current user’s language and country. Under Unix
and Mac OS X, the string is five characters: two lowercase ASCII letters for the language, an underscore, and two
uppercase ASCII letters for the country. Under Windows, the string can be arbitrarily long, but the language and
country are in English (all ASCII letters or spaces) separated by an underscore. Under Unix, the result is determined
by checking theLC_ALL, LC_TYPE, andLANG environment variables, in that order (and the result is used if the
environment variable’s value starts with two lowercase ASCI| letters, an underscore, and two uppercase ASCII letters,
followed by either nothing or a period). Under Windows and Mac OS X, the result is determined by system calls.

(system-library-subpath [variant?]) returns a relative directory path string. This string can be used to
build paths to system-specific files. For example, when MzScheme is running under Solaris on a Sparc architecture, the
subpath is'sparc-solaris" , while the subpath for Windows on an Intel architecturenis32 \\i386" . The

subpath also distinguishes among MzScheme variants (e.g., the “3m” variant with more precise garbage collection)
by extending the “normal” variant path with a subdirectoryvéfiant? is #f , then the returned path is for the
“normal” variant.

(version) returns an immutable string indicating the currently executing version of MzScheme.

(banner) returns an immutable string for MzScheme’s start-up banner text (or the banner text for an embedding
program, such as MrEd). The banner string ends with a hewline.

(vector-set-performance-stats! mutable-vector [thread |) setselements imutable-vector
to report current performance statistics.thfead is specified, a particular set of thread-specific statistics are re-
ported, otherwise a different set of global statics are reported.

For global statistics, up to 8 elements are set in the vector, starting from the beginning. (In future versions of
MzScheme, additional elements will be set.)mfitable-vector hasn elements whera < 8, then then ele-

ments are set to the firatperformance-statistics values. The reported statistics values are as follows, in the order that
they are set withimutable-vector

e 0: The same value as returned @ayrrent-process-milliseconds (see§15.1.9.
e 1: The same value as returned &yrrent-milliseconds (see§15.1.2.
e 2: The same value as returned @yrrent-gc-milliseconds (see§15.1.9.

: The number of garbage collections performed since start-up.

: The number of thread context switches performed since start-up.

[]
ol Ny w N = o

: The number of internal stack overflows handled since start-up.

183

15.5. Runtime Information 15. System Utilities

6: The number of threads currently scheduled for execution (i.e., threads that are running, not suspended, and
not unscheduled due to a synchronization).

7: The number of syntax objects read from compiled code since start-up.

e 8: The number of hash-table searches performed.

9: The number of additional hash slots searched to complete hash searches (using double hashing).

For thread-specific statistics, up to 4 elements are set in the vector:

e 0: #t if the thread is runningi#f otherwise (same result #&read-running?).
e 1: #t if the thread has terminatetff otherwise (same result #wread-dead?).

e 2: #t ifthe thread is currently blocked on a synchronizable event (or sleeping for some number of milliseconds),
#f otherwise.

e 3: The number of bytes currently in use for the thread’s continuation.

184

16. Library Collections and MzLib

A library is module declaration for use by multiple programs. MzScheme provides a mechanism for grouping
libraries intocollections that can be easily distributed and easily added to a local MzScheme installation. A collection
is normally installed into a directory namedllects that is in the same directory as the MzScheme executaBieh
installed collection is represented as a subdirectory withirdhiects directory.

Client programs incorporate a library by using a module path of the f@iim library-file-path
collection --+) . For example, the following module uses thatch.ss library module from the defaulhzlib
collection, thegetinfo.ss library module from theetup collection, and theards.ss library module from theyames
collection’scards subcollection:

(module my-game mzscheme
(require (lib "match.ss")

(lib "getinfo.ss

(lib "cards.ss" "

setup")
games" "cards"))

Ingenerallib library-file-path collection ---) accesses the module in the filerary-file-path

in the collection named by the firsbllection , Wwhere botHibrary-file-path andcollection are literal
strings that will be used as elements in a path. If additioofiection strings are provided, they are used to form
a path into a subcollection. If thmllection arguments are omitted, the library is accessed imtHid collection.

Theinfo.ss library in a collection is special by convention. This library is used to provide information about the
collection tomzc (the MzScheme compiler) or MrEd. For more information 888 mzc: MzScheme Compiler
ManualandPLT MrEd: Graphical Toolbox Manual

There is usually one standardllects directory, but MzScheme supports any number of directories containing collec-
tions. The search path for collections is determined bycthreent-library-collection-paths parameter
(sees7.9.1.9. The list of paths ircurrent-library-collection-paths is searched from first to last to lo-

cate a collection. To find a sub-collection, the enclosing collection is first found; if the sub-collection is not present in
the found enclosing collection, then the search continues by looking for another instance of the enclosing collection,
and so on. In other words, the directory tree for each element in the search path is spliced together with the directory
trees of other path elements. (The “splicing” of tress applies only to directories; a file within a collection is found only
within the first instance of the collection.)

The value of theurrent-library-collection-paths parameter is initialized by the stand-alone version of
MzScheme to the result ¢find-library-collection-paths) 2 Thefind-library-collection-paths
procedure produces a list of paths as follows:

e The path produced bpuild-path (find-system-path ’addon-dir) (version) "collects")
is the first element of the default collection path list, unless the value oftheiser-specific-search-paths
parameter igf .

1in the PLT distribution of MzScheme for Unix, thellects directory is in the top-leveplt directory, rather than with the platform-specific
binary inplt/bin .
2MrEd initializes thecurrent-library-collection-paths parameter in the same way.

185

16. Library Collections and MzLib

¢ If the executable embeds a list of search paths, they are included (in order) after the first element in the default
collection path list. Embedded relative paths are included only when the corresponding directory exists relative
to the executable.

o If the directory specified byfind-system-path ’collects-dir) is absolute, or if it is relative (to
the executable) and it exists, then it is added to the end of the default collection path list.

e If the PLTCOLLECTS environment variable is defined, it is combined with the default list using
path-list-string->path-list (see§l11.3.9. If it is not defined, the default collection path list (as
constructed by the first three bullets above) is used directly.

The path produced byfind-system-path ’'collects-dir) is normally embedded in an executable; in
stand-alone MzScheme (or MrEd), it can be overridden viaallects or -X command-line flag.
(collection-path collection ---1) returns the path containing the librariesonflection ; if the col-
lection is not found, thexn:fail:filesystem exception is raised.

MzScheme is distributed with a standard collection of utility libraries with MzLib as the representative library. The
name of this collection isizlib , so the libraries are distributed im&lib subdirectory of theollects library collection
directory. MzLib is described iPLT MzLib: Libraries Manual

186

17.

Running MzScheme

The stand-alone version of MzScheme accepts a number of command-line flags.

MzScheme accepts the following flags:

e Startup file and expression flags:

O 0O 0O 0O 0o 0o oo o o0 o

-e expr or--eval expr : Evaluateexpr after MzScheme starts.

-f file or--load file :Loadsfile after MzScheme starts.

-d file or--load-cd file :Usesload/cd toloadfile after MzScheme starts.

-t file or--require file : Requiredile after MzScheme starts.

-F or--Load : Loads each remaining argument as a file after MzScheme starts.

-D or--Load-cd : Loads each remaining argument as a file usirgl/cd after MzScheme starts.

-T or--Require : Requires each remaining argument as a file after MzScheme starts.

-l file or--mzlib file :Requiresthe MzLib libraryile after MzScheme starts.

-L file collect : Requires the librarfile in the collectioncollect after MzScheme starts.

-M collect : Requires the librargollect .ss in the collectioncollect after MzScheme starts.

-r file or--script file : Use this flag for MzScheme-based scripts. It mutes the startup banner
printout, suppresses thead -eval -print loop, and loadéile after MzScheme starts. No argument
afterfile is treated as a flag. The or--script flag is a shorthand foffmv- .

-i file or--script-cd file : Same asr file or --script file , except that the current
directory is changed tlile ’s directory before itis loaded. Theé or--script-cd flag is a shorthand
for -dmv- .

-u file or--require-script file :Sameasr file or--script file , except thafile
isrequire dinstead ofoad ed. The-u or --require-script flag is a shorthand fotmv- .

o -w or--awk : Loads theawk.ss library after MzScheme starts.
o -k n m: Loads code embedded in the executable from file positibm mafter MzScheme starts. This

flag is useful for creating a stand-alone binary by appending code to the normal MzScheme executable.
SeePLT mzc: MzScheme Compiler Mandial more details.

-C or --main : Like -r , then calls the function bound tmain in the top-level environment.

The argument tamain is a list of immutable strings; the first string is the path of the file that
was loaded, and the rest of the list contains leftover command-line arguments (the ones installed in
current-command-line-arguments). Themain function is called only if no previous evalua-

tions or loads resulted in an uncaught exception.

e Initialization flags:

o

-X dir or --collects dir : Setsdir as the path to the main collection of libraries (and makes
(find-system-path ’collects-dir) producedir).

-S dir or--search dir : Addsdir to the library collection search path (after a user-specific direc-
tory, if any, and before the main collection directory).

-U or --no-user-path : Omits paths in the search for collections, C libraries, etc. More specifically,
this flag initializes theuse-user-specific-search-paths parameter ta#f .
-x or--no-lib-path : Suppresses the initialization airrent-library-collection-paths

(as described in Chapté6).

187

17.1. Flag Conventions 17. Running MzScheme

o -N file or--name file : sets the name of the executable as reporteffibg-system-path

‘run-file) tofile . Also,program is initially defined adile
o -g or--no-init-file : Suppresses loading the user’s initialization file, as described below.
o -A or--no-argv : Suppresses the definition afgv andprogram , as described below.
o -] or--no-jit . Disables the native-code just-in-time compiler, settingakal-jit-enabled
parameter ta#f .

e Language setting flags:

o -g or--case-sens : Makes the reader initially case-sensitive (the default).

o -G or --case-insens : Makes the reader initially case-insensitive.

o -s or--set-undef : Creates an initial namespace wheet! will successfully mutate an undefined
global variable (implicitly defining it).

e Miscellaneous flags:

-- : No argument following this flag is used as a flag.

-m or --mute-banner : Suppresses the startup banner text produced by

-V or--version : Suppresses thead -eval -print loop.

-h or--help : Shows information about MzScheme’s command-line flags and then exits, ignoring other
flags.

o -p or--persistent : Catches the SIGDANGER (low page space) signal and ignores it (AlX only).

O O O O

17.1 Flag Conventions

Extra arguments following the last flag are available fromdheent-command-line-arguments parameter
(see§7.9.1.9 as an immutable vector of immutable strings. The name used to start MzScheme is available from
the find-system-path procedure (se€11.3.) using'exec-file . In addition, unlessA is specified, the
argument vector is put into the global varialslegv , and the name used to start MzScheme is put into the global
variableprogram as a path.

Multiple single-letter flags (the ones preceded by a single dash) can be collapsed into a single flag by concatenating
the letters, as long as the first flag is rot. The arguments for each flag are placed after the collapsed flags (in the
order of the flags). For example,

-vfime file expr
and
-v -f file -m -e expr

are equivalent. If a collapsed appears before other collapsed flags, it is implicitly moved to the end of the collapsed
set.

17.2 Executable Name

If the MzScheme executable is given a name of the fecheme- dialect , then the command line is effectively
prefixed with

-qAeC ’(require (lib "init.ss" "script-lang dialect "))’
The first actual command-line argument thus serves as a file to load. The file is loaded into a namespace that is initial-
ized by thedialect -specificinit.ss library. The loaded file should defimsain , which is called with command-line

arguments—starting with the loaded file name—as a list of immutable strings.

188

17. Running MzScheme 17.3. Initialization

17.3 Initialization

The current-library-collection-paths parameter is initialized (as described in Chagtérbefore any
expression or file is evaluated or loaded, unlessxher --no-lib-path flag is specified.

Unless theq or--no-init-file flag is specified, a user initialization file is loaded afterrent-library-collection-paths
parameter is initialized and before any other expression or file is evaluated or loaded. The path to the user initialization
file is obtained from MzSchemefimd-system-path procedure usingnit-file

Expressions and files are evaluated and loaded in order that they are provided on the command line, including calls
to main implied by--main , embeddings loaded bk , and so on. If an uncaught exception occurs, the remaining
expressions and files are skipped. The thread that loads the files and evaluates the expressiansrigtitad.

When the main thread terminates (or is killed), the MzScheme process exits.

After the command-line files and expressions are loaded and evaluated, the main threeddaaisl-print-loop ,
unless thev , --version ,-r ,--script ,-i , or--script-cd flag is specified.

The exit status for the MzScheme process indicates an error if an error occurs evaluating or loading a command-line
expression or file andead-eval-print-loop is not called afterwards, or if the default exit handler is called
with an exact integer between 1 and 255.

189

18. Writing and Running Scripts

Under Unix, a Scheme file can be turned into an executable script using the ghettsnvention. The first two
characters of the file must B8 , and the remainder of the first line must be a command to execute the script. For
some platforms, the total length of the first line is restricted to 32 characters.

The simplest script format uses an absolute path tazscheme executable, followed bygr . For example, if
mzscheme is installed infusr/plt/bin , then a file containing the following text acts as a “hello world” script:

#! Jusr/plt/bin/mzscheme -qr

(display "Hello, world!")

(newline)

In particular, if the above is put into a fileello and the file is made executable (e.g., witimod a+x hello), then
typing ./hello at the shell prompt will produce the output “Hello, world!”.

Instead of specifying a complete path to thescheme executable, an alternative is to require tllascheme is in
the user’s command path, and then “trampoline” whih/sh :

#! /bin/sh

#|

exec mzscheme -qr "$0" ${1+"'$@"}

[#

(display "Hello, world!)

(newline)

The effect is the same, becausstarts a one-line comment #igin/sh , but#| starts a block comment to MzScheme.
Finally, callingmzscheme with exec causes the MzScheme process to replacévthish process.

To implement a script insideodule , use-qu instead ofqr :
#! Jusr/plt/bin/mzscheme -qu
(module hello mzscheme
(display "Hello, world!)
(newline))

The-gr command-line flag to MzScheme is an abbreviation for-thdlag followed by ther flag. As detailed in
Chapterl?7,-q skips the loading of-/.mzschemerc , while-r suppresses MzScheme’s startup banner, suppresses the
read-eval-print loop, and loads the specified file. In the first example above, the fite fersupplied by the shell’'s

#! handling: it automatically puts the name of the executed script at the end #f thiee. In the second example,

the script file name is supplied explicitly wit!$0" . The-qu flag is similarly an abbreviation foig followed by

-u , which acts liker except that itequire s the script file instead dbad ing it.

If command-line arguments are supplied to a shell script, the shell attaches them as extra arguments to the script
command. Among its other jobs, the or-u flag ensures that the extra arguments are not interpreted by MzScheme,
but instead put into theurrent-command-line-arguments parameter as a vector of strings. For example,

the followingmock script prints each command-line argument back on its own line:

#! Jusr/plt/bin/mzscheme -qu

190

18. Writing and Running Scripts

(module mock mzscheme
(for-each (lambda (arg)
(display arg)
(newline))
(vector->list (current-command-line-arguments))))

Thus,mock a b ¢ would print “a”, “b”, and “c”, each on its own line. Thiin/sh version is similar:
#! /bin/sh
#|
exec mzscheme -qu "$0" ${1+"$@"}
|#
(module mock mzscheme
(for-each (lambda (arg)
(display arg)
(newline))
(vector->list (current-command-line-arguments))))

The ${1+"$@"} part of the mzscheme command line copies all shell script arguments to MzScheme for
current-command-line-arguments

For high-quality scripts, use thandline MzLib library to parse command-line arguments (see Chapter BLJf
MzLib: Libraries Manua). The followinghello2 script accepts achinese flag to produce Chinese pinyin output.
Due to the built-in functionality of theommand-line form, the script also accepts-éhelp or -h flag that
produces detailed help on the available command-line options:

#1' /bin/sh

#|

exec mzscheme -qu "$0" ${1+"$@"}

|#

(module hello2 mzscheme

(require (lib "cmdline.ss"))

(define chinese? #f)

(command-line
"hello2"
(current-command-line-arguments)
(once-each
[("--chinese™) "Chinese output"
(set! chinese? #1)]))

(display (if chinese?
"Nihao, shijie!"
"Hello, world!"))
(newline))

191

19. Honu

Honu is a family of languages built on top of MzScheme. Honu syntax resembles Java, instead of Scheme. Like
Scheme, however, Honu has no fixed syntax. Honu supports extensibility through macros and a base syntax of H-
expressions, which are analogous to S-expressions.

The MzScheme reader incorporates an H-expression reader, and MzScheme’s printer also supports printing values in
Honu syntax. The reader can be put into H-expression mode either by incliadngr #honu in the input stream,
or by callingread-honu or read-honu-syntax instead ofread or read-syntax

e (read-honu [input-port]) is the same as callinggad with the same arguments, but wihx implic-
itly in the stream at the start of the read.

¢ (read-honu-syntax [source-name-v input-port]) is the same as callingead-syntax ~ with
the same arguments, but withx implicitly in the stream at the start of the read.

Similarly, print ! produces Honu output when tpeint-honu parameter is set tt .

When the reader encountefhx, it reads a single H-expression, and it produces an S-expression that encodes the
H-expression. Except for atomic H-expressions, evaluating this S-expression as Scheme is unlikely to succeed. In
other words, H-expressions are not intended as a replacement for S-expressions to represent Scheme code.

When the reader encountefbonu , it reads H-expressions repeatedly until an end-of-file is encountered. The col-
lected H-expression results are wrapped wittodule id (lib "honu-module.ss" "honu-module™)

), whereid is generated as described below. Hoau-module.ss module define¢t%module-begin to
parse S-expressions that encode H-expressions; expanding the module produces a Scheme program that corresponds
to the H-expression-based Honu program in the original input stream. Thus, a file that stattisanith can define a
module to beaequire din a Scheme module or another Honu module.

In themodule wrapper forthonu , theid is derived from the read port’s name: if the port's name is a symbol, then
itis used asd ; if the port’'s name is a path, then the last element of the path is converted to a symbol andidsed as
otherwise ,;unknown is used.

The honu-module.ss module and Honu language dialects are documented elsewhere. In principle, MzScheme’s
parsing and printing of H-expressions is independent of the Honu language, so it is currently documented here.

19.1 Honu Input Parsing
Ignoring whitespace, an H-expression is either

e anumber (se§19.1.));

e an identifier (se§19.1.9;

IMore precisely, the default print handler.

192

19. Honu 19.1. Honu Input Parsing

e astring (se¢19.1.3;

e acharacter (se$l9.1.9;

e a sequence of H-expressions between parenthese$l&éaed;

e a sequence of H-expressions between square bracketlGee);
e a sequence of H-expressions between curly braceg{8e&.9;

e a comment followed by an H-expression (§66.1.9;

o #; followed by two H-expressions (s§&9.1.9;

e #hx followed by an H-expression;

e #sx followed by an S-expression (sg&l1.2.9.

Whitespace for H-expressions is as in Scheme: any character for altactwhitespace? returns true counts as
a whitespace.

19.1.1 Numbers

The syntax for Honu numbers is the same as for Java. The S-expression encoding of a particular H-expression number
is the obvious Scheme number.

19.1.2 Identifiers

The syntax for Honu identifiers is the union of Java identifiers plus semicolpreémma (), and a set of operator
identifiers. Anoperator identifier is any combination of the following characters:

+ - =? @ <>. ! % "&*] ~ |
The S-expression encoding of an H-expression identifier is the obvious Scheme symbol.
Input is parsed to form maximally long identifiers. For example, the inpttint; is parsed as four H-
expressionsint ,->,int ,and; .
19.1.3 Strings
The syntax for an H-expression string is exactly the same as for an S-expression string, and an H-expression string is
represented by the obvious Scheme string.
19.1.4 Characters

The syntax for an H-expression character is the same as for an H-expression string that has a single content character,
except that a single quoté) surrounds the character instead of double qudtgsThe S-expression representation
of an H-expression character is the obvious Scheme character.

19.1.5 Parentheses, Brackets, and Braces
A parenthesized (), bracketed [], or bradgdH-expression sequence is represented by a Scheme list. The first element
of the list is'#%parens for a paremnthesized sequeng@pbrackets for a brackets sequence, 'éfobraces

for a braced sequence. The remaining elements are the Scheme representation for the parenthesized, bracketed, or
braced H-expressions in order.

193

19.2. Honu Output Printing 19. Honu

19.1.6 Comments

An H-expression comment starts with eitlieror /* . In the former case, the comment runs until a linefeed or return.
In the second case, the comment runs uiti) but/* ... */ comments can be nested. Comments are treated
like whitespace.

A #; starts an H-expression comment, as in Scheme. It is followed by an H-expression to be treated as white. Note
that#; is equivalent tatsx#;#hx

19.2 Honu Output Printing

Some Scheme values have a standard H-expression representation. For values with no H-expression representation
but with aread able S-expression form, the MzScheme printer produces an S-expression prefixédvitfror

values with neither an H-expression form aread able S-expression form, then printer produces output of the form
#<...> ,asin Scheme mode.

The values with H-expression forms are as follows:

e Every real number has an H-expression form, although the representation for an exact, non-integer rational
number is actually three H-expressions, where the middle H-expresgion is

e Every character string is represented the same in H-expression form as its S-expression form.

e Every character is represented like a single-character string, but (1) using a single quote as the delimiter instead
of double quotes, and (2) protecting a single-quote character content a backslash instead of protecting double-
guote character content.

e A list is represented with the H-expression sequdisté v, ---), where eaclv is the representation of
each element of the list.

e A pair that is not a list is represented with the H-expression sequant® v1, v2), wherevl andv2 are
the representations of the pair elements.

e A vector's representation depends on the value optivg-vector-length parameter (se€7.9.1.9. If it
is true, the vector is represented with the H-expression sequent®N(n, v, ---),wheren isthe length
of the vector and each is the representation of each element of the vector, and multiple instances of the same
value at the end of the vector are represented by a singlé print-vector-length is set to false, the
vector is represented with the H-expression sequeecwr(v, ---), where eaclv is the representation of
each element of the vector.

e The empty list is represented as the H-expresnidh .
e True is represented as the H-expressiae .

e False is represented as the H-expres&idse

194

20. Windows Path Syntax

In general, a Windows pathname consists of an optional drive specifier and a drive-specific path. As §iotegl én
Windows path can bebsolute but still relative to the current drive; such paths start with a forward slash or backslash
separator and are not UNC paths or paths that start\Wih.

A path that starts with a drive specificationdsmplete. Roughly, a drive specification is either a Roman letter
followed by a colon, a UNC path of the fori\machine \volume , or a\\?\ form followed by something other than
REL\element . (Variants of\\?\ paths are described further below.)

MzScheme fails to implement the usual Windows path syntax in one way. Outside of MzScheme, a pathname
Crant.txt can be a drive-specific relative path. That is, it names aditetxt on drive C:, but the complete path

to the file is determined by the current working directory for drive MzScheme does not support drive-specific
working directories (only a working directory across all drives, as reflected bgutttent-directory parame-

ter; seg;7.9.1.9. Consequently, MzScheme implicitly converts a path Gkent.txt into C:\rant.txt . More generally,

e MzScheme-specifit®Vhenever a path starts with a drive specifégter : that is not followed by a forward slash
or backslash, a backslash is inserted as the path is expanded.

Otherwise, MzScheme follows standard Windows path conventions, and MzSchemeé\a@iREL convention plus
conventions to deal with excessive backslashes i, paths. In the followingletter stands for a Roman letter (case

does not matter)pachine stands for any sequence of characters that does not include backslashes or forward slashes
and is not?, volume stands for any sequence of characters that does not include backslashes or forward slashes, and
element stands for any sequence of characters that does not include backslashes.

e Trailing spaces and periods in a path element are ignored when the element is the last one in the path, unless the
path starts with \ ?\ or the element consists of only spaces and periods.

e The following special “files”, which access devices, exist in all directories, case-insensitively, and with all
possible endings after a period or colon, except in pathnames that start\\with NUL, CON, PRN, AUX,
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6,

LPT7, LPT8, LPT9.

e Except for\\?\ paths, forward slashes are equivalent to backslashes. Except¥omaths and the start of
UNC paths, multiple adjacent slashes and backslashes count as a single backslash. In a path that\starts
paths, elements can be separated by either a single or double backslash.

e A directory can be accessed with or without a trailing separator. In the case of '@\ apipath, the trailing
separator can be any number of forward slashes and backslashes; in the casg\giath, a trailing separator
must be a single backslash, except that two backslashes can fg[oyetter :.

e Except for\\?\ paths, a single period)(as a path element means “the current directory”, and a double period
(..) as a path element means “the parent directory.” Up-directory path elements)(iimmediately after a
drive are ignored.

¢ A pathname that startg\machine \volume (where a forward slash can replace any backslash) is a UNC path,
and the starting\ machine \volume counts as the drive specifier.

195

20. Windows Path Syntax

e Normally, a path element cannot contain any of the following characters:
<>: "\

Except for backslash, path elements containing these characters can be accessed\asimmath (assuming
that the underlying filesystem allows the characters).

¢ In a pathname that start§?\letter :\, the\\?\letter :\ prefix counts as the path’s drive, as long as the path does
not both contain non-drive elements and end with two consecutive backslashes, and as long as the path contains
no sequence of three or more backslashes. Forward slashes cannot be used in place of backslashes (but forward
slashes can be used in element names, though the result generally does not name an actual directory or file).

¢ In a pathname that startg ?\UNC\machine \volume , the\\?\UNC\machine \volume prefix counts as the
path’s drive, as long as the path does not end with two consecutive backslashes, and as long as the path contains
no sequence of three or more backslashes. Two backslashes can appear in place of the backsJash after
and/or the backslash afterachine . The UNC part must be exactly the three uppercase letters, and forward
slashes cannot be used in place of backslashes (but forward slashes can be used in element names).

e MzScheme-specificA pathname that starts\?\REL\element or \\?\REL\\element is a relative path, as
long as the path does not end with two consecutive backslashes, and as long as the path contains no sequence
of three or more backslashes. This MzScheme-specific path form supports relative paths with elements that are
not normally expressible in Windows paths (e.g., a final element that ends in a spac®ELTpart must be
exactly the three uppercase letters, and forward slashes cannot be used in place of backslashes. If the path starts
\\?\REL\.. then for as long as the path continues with reptition$.gfeach element counts as an up-directory
element; a single backslash must be used to seperate the up-directory elements. As soon as a second backslash
is used to separate the elements, or as soon as a etement is encountered, the remaining elements are all
literals (never up-directory elements). Whely\@\REL path value is converted to a string (or when the path
value is written or displayed), the string does not contain the staxtjagREL or the immediately following
backslashes; converting a path value to a byte string preservg$akREL prefix.

Three additional MzScheme-specific rules provide meanings to character sequences that are otherwise ill-formed as
Windows paths:

e MzScheme-specifién a pathname of the forrg\?\any \\ whereany is any sequence of characters that does
not startetter :, the entire path counts as the path’s (non-existent) drive.

e MzScheme-specifitn a pathname of the form\?\any \ \ \elements , whereany is any sequence of characters
that does not stargtter : andelements is any sequence that does not start with a backslash, does not end with
two backslashes, and does not contain a sequence of three backslashiem\ahg\ \ \ part counts as the path’s
(non-existent) drive.

e MzScheme-specifitn a pathname that star{§?\ and does not match either of the patterns from the preceding
five bullets,\\?\ counts as the path’s (non-existent) drive.

Outside of MzScheme, except for?\ paths, pathnames are typically limited to 259 characters. MzScheme internally
converts pathnames 13,7\ form as needed to avoid this limit. The operating system cannot access files thi@igh
paths that are longer than 32,000 characters or so.

Where the above descriptions says “character,” substitute “byte” for interpreting byte strings as paths. The encoding
of Windows paths into bytes preserves ASCII characters, and all special characters mentioned above are ASCII, so all
of the rules are the same.

Beware that the backslash path separator is an escape character in MzScheme strings. Thug, \theRmEath .\ \ ..
as a string must be writteh\\\\?\\REL\\.. \\\\.."

196

License

GNU Library General Public License
Version 2, June 1991
Copyright (C) 1991 Free Software Foundation, Inc.
675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]
Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries

197

20. Windows Path Syntax

themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.

¢) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.

d) If afacility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,
other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

198

20. Windows Path Syntax

4.

10.

You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms

of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked

with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work

containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing

the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not

covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt

otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or

distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may notimpose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

199

20. Windows Path Syntax

11.

12.

13.

14.

15.

16.

200

If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,

so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Index

+inf0 ,13

+nan.0 , 13

., 117

,@,117

--,188

--Load , 187
--Load-cd , 187
--Require , 187
--awk , 187
--case-insens , 188
--case-sens , 188
--collects , 187
--eval 187

--help ,188

--load , 187
--load-cd , 187
--main , 187
--mute-banner , 188
--mzlib , 187
--name , 188
--no-argv. , 188
--no-init-file ,188
--no-jit , 188
--no-lib-path , 187
--no-user-path ,187
--persistent , 188
--require 187
--require-script , 187
--script , 187
--script-cd , 187
--search , 187
--set-undef , 188
--version ,188

-A, 188

-C, 187

-D, 187

-F, 187

-G, 188

-L, 187

-M, 187

-N, 188

-S, 187

-T, 187

-U, 187

-X, 187

-d, 187

-e, 187

-f ,187

-g, 188

-h, 188
- ,187
-inf.0 ,13
-j ,188
-k , 187
-l ,187
-m, 188
-nan.0 , 13
-p, 188
-q, 188
-r ,187
-s,188
-t ,187
-u, 187
-v , 188
-w, 187
-x , 187
., 117
,141
.mzschemerc , 133
0,118
=>, 5
[1.69
#!,118 190
#',116
,115
#,,115
#@, 115
#\backspace , 115
#\linefeed ,115
#newline ,115

#\nul , 115
#null 115
#\page , 115

#return 115
#rubout 115
#\space , 115

#\tab , 115

#\vtab , 115
#;,118

#<<,116
#<undefined> ,12
#<void> , 12

#% 118

#%app, 157

#%datum, 157
#%module-begin , 157
#%top, 157
#%variable-reference 11

201

INDEX

#&, 115
#n=,118 120
#n#,118 120
,115

#ci , 117
#cs, 117
#hash , 118
#hasheq , 118
#honu, 118
#hx, 118
#k+,118

#k- , 118
#px, 118
#px#, 118
#reader , 118
#rx ,118
#rx# , 118
#sx, 118
#~,118

\, 117

\'" ,116

\Uh, 116

\U hh, 116

\U hhh, 116
\U hhhh, 116
\U hhhhh, 116
\U hhhhhh , 116
\U hhhhhhh , 116
\U hhhhhhhh , 116
\a, 116

\b, 116

\e , 116

\f ,116

\n, 116
\o,116

\ 000, 116

\ 00,116

\r ,116

\t ,116

\u h, 116

\u hh, 116

\u hhh, 116

\u hhhh, 116
\v,116

\x hh, 116

\x h, 116
_loader.dll , 177
_loader.dylib , 177
_loader.so, 176

{ },69

‘117

abort-continuation-prompt ,53
'aborts , 22

202

absolute-path? , 131
addl, 13

‘addon-dir , 133
alarm-evt , 63

alarms,63
all-defined ,40
all-defined-except , 40

all-except , 39
all-from 40
all-from-except , 40
and, 6

andmap, 12

‘any , 109

‘any-one , 109

"append , 93

append! , 24

argv , 72,188
arithmetic-shift , 14
arity , 26

arity-at-least , 25
arity-at-least-value , 25
arity-at-least? , 25
assoc , 24

assq , 24

assv , 24

AUX, 195

banner , 183

begin , 6,9
begin-for-syntax , 151
begin0 , 6

bignum,13

‘binary , 93

bitwise operatorsl4
bitwise-and |, 14

bitwise-ior ,14
bitwise-not ,14
bitwise-xor ,14

‘block , 95
bound-identifier=? , 150
box, 24

box-immutable , 25
box?, 25

boxes,24, 69, 115
printing, 70, 119
break-enabled ,57
break-thread , 56, 61
breaksseethreads, breaking
Bruggeman, Carll41
build-path , 130
byte codes]177
byte strings;19, 116
as ports94
printing, 120

INDEX

reading to and writing fromQ4
byte-pregexp , 86
byte-pregexp? ,87
byte-regexp , 86
byte-regexp? ,87
byte? ,19
bytes,19
bytes , 19
bytes->immutable-bytes , 19
bytes->list , 19
bytes->path , 129
bytes->path-element , 130
bytes->string/latin-1 , 20
bytes->string/locale , 20
bytes->string/utf-8 , 20
bytes-append , 19
bytes-close-converter , 22
bytes-convert , 22
bytes-convert-end , 22
bytes-converter? , 23
bytes-copy ,19
bytes-copy! , 19
bytes-filll , 19
bytes-length , 19
bytes-open-converter , 21
bytes-ref 19
bytes-set! , 19
bytes-utf-8-index , 21
bytes-utf-8-length ,21
bytes-utf-8-ref , 21
bytes<? , 19
bytes=? , 19
bytes>? , 19
bytes? ,19

call-in-nested-thread ,61
call-with-break-parameterization , 57
call-with-composable-continuation , 54
call-with-continuation-barrier , 51
call-with-continuation-prompt , 53
call-with-current-continuation , 50
call-with-escape-continuation ,51
call-with-input-file , 93
call-with-output-file , 93
call-with-parameterization , 75
call-with-semaphore , 62
call-with-semaphore/enable-break , 62
calllcc ,50
calllec ,51
case sensitivitys9
case-lambda , 10
'cc , 16
certificates

syntax,166

‘certify-mode , 169
'cf ,16

channel-get ,62
channel-put , 63

channel-put-evt , 63
channel-try-get , 62
channel? , 62
char->integer ,15
char-alphabetic? , 16

char-blank? 16

char-ci<=? ,15

char-ci<? ,15

char-ci=? ,15

char-ci>=? ,15

char-ci>? 15

char-downcase , 16

char-foldcase , 17

char-general-category ,16

char-graphic? ,16

char-iso-control? , 16

char-lower-case? , 16

char-numeric? ,16

char-punctuation? , 16

char-symbolic? 16

char-title-case? , 16

char-titlecase , 16

char-upcase ,16

char-upper-case? , 16

char-utf-8-length , 17

char-whitespace? ,16

char<=? , 15

char<? , 15

char=? , 15

char>=? ,15

char>? , 15

characters?, 15
constants]115
printing, 119

Check Syntax]162, 166

check-duplicate-identifier , 150

choice-evt , 65

‘client ,81

‘cn , 16

‘co , 16

code points2

collect-garbage , 175

collection-path , 186

collections,185

‘collects-dir ,133

column numbers]11

COM1, 195

COoMm2, 195

COMS3, 195

203

INDEX

COM4, 195
COMS5, 195
COMS6, 195
COM7, 195
COMS8, 195
COM9, 195
command-line argumentg, 187
comments]118
comments
S-expression
communicationfl, 62
communications] 36
compilation handler71
compile , 71,177
compile-allow-set!-undefined
compile-enforce-module-constants
compile-syntax , 177
compiled codef9
compiled-expression? , 178
compiled-module-expression?
compiling,177
‘complete , 22,23
complete-path?
complex,13
CON, 195
concatenate stringg4
cons-immutable , 24
context,54
continuation-mark-set->context
continuation-mark-set->list
continuation-mark-set->list*
continuation-mark-set-first
continuation-mark-set? , 55
continuation-marks , 55
continuation-prompt-available?
continuations50
barrier crossing$1
barriers 51
escapebl
‘continues 22,23
control flow,50
copy-file , 135
'cs ,16
curly bracesp9
current namespacél
current-break-parameterization

, 118

,131

current-code-inspector , 74
current-command-line-arguments
current-compile , 71

current-continuation-marks
current-custodian , 74,81
current-directory , 69,135
current-drive , 135

204

, 71
, 71

, 172

, 55
, 95
, 55
, 95

, 54

, 97
, 72,188

, 48,55

current-error-port , 69
current-eval , 71
current-evt-pseudo-random-generator , 74
current-exception-handler , 73
current-gc-milliseconds , 180
current-inexact-milliseconds
current-input-port , 69, 92
current-inspector , 74
current-library-collection-paths

187,189
current-load , 71
current-load-extension , 72
current-load-relative-directory

178
current-load/use-compiled , 72
current-locale , 74
current-memory-use , 175
current-milliseconds , 14,179
current-module-name-prefix , 74
current-module-name-resolver , 74
current-namespace , 71
current-output-port , 69,92
current-parameterization , 75
current-preserved-thread-cell-values ,

66
current-print , 71
current-process-milliseconds
current-prompt-read , 70
current-pseudo-random-generator
current-reader-guard , 70
current-readtable , 70
current-seconds , 179
current-security-guard
current-thread ,61
current-thread-group , 74
current-thread-initial-stack-size , 75
current-write-relative-directory , 72
custodian-limit-memory , 82
custodian-managed-list , 82
custodian-require-memory , 82
custodian-shutdown-all ,82
custodian? , 82
custodiansy4, 81
cycles,120

, 179

, 72,176,

, 180

, 14,74

, 74,80

date,179
date , 179
date-day
date-dst?
date-hour
date-minute
date-month , 179

date-second ,179
date-time-zone-offset

, 179
, 179
, 179
, 179

, 179

, 72,185

INDEX

date-week-day ,179
date-year ,179
date-year-day ,179
date? ,179

datum->syntax-object
decimal input13
default-continuation-prompt-tag
define ,7
define
internal,9
define-for-syntax
define-struct , 29
define-syntax , 145
define-syntaxes , 156
define-values 7
define-values-for-syntaxes
'delete ,81
delete-directory
delete-file , 134
'desk-dir , 133
directories
contents,136
creating,135
current,69, 135
dates,136
deleting,135
moving,136

, 148

, 151

, 135

, 151

of currently loading filey/2, 176, 178

paths seepaths

permissions136

renaming,136

root, 136

testing,135
directory-exists? , 135
directory-list , 136
'disappeared-binding
'disappeared-use
'dispatch-macro
display , 121
display extensions]119
division by inexact zeral 3
dil 183
‘doc-dir , 133
dump-memory-stats
Dybvig, Kent,46, 141
dynamic-require , 44
dynamic-require-for-syntax
dynamic-wind ,51

, 162,165
, 122

, 175

else ,5

'empty , 78

'enclosing-module-name

environments
top-level,141, 151

, 157

, 162, 165

.44

, 53

eof ,92
eof-object? ,92
ephemeron-value
ephemeron? , 173
ephemerons]73
eg-hash-code , 27
eq?, 16,37
‘equal , 27
equal-hash-code , 27
equal? , 12 25, 37
eqv?,12 13 37
‘error 22,93
error ,48
error display handlef3
error escape handlers3, 59
error value conversion handlér3
error-display-handler , 73
error-escape-handler , 58,73
error-print-context-length
error-print-source-location
error-print-width , 73
error-value->string-handler
errors, 47,48, 73

arity, 49

mismatch49

syntax,49

type,49
eval ,71,176
eval-jit-enabled , 71
eval-syntax ,176
evaluation handlei71
evaluation order;
even?,13
evt? , 66
‘exact , 180
exception handler§9
exceptions46, 73

primitive hierarchy47
‘exec-file , 133
‘execute 80,135
‘exists ,81
exit , 74,177
exit handler,74
exit-handler , 74
exiting, 74
exn, 47
exn:break

140

, 173

exn:falil
181,182
exn:fail:contract

, 713
, 73

, 73

, 47, 56, 57, 62, 65, 110, 113 137, 139,
, 45, 48, 61, 62, 81, 90, 95, 96, 148 179

, 12, 13, 15, 17, 20, 24, 25,

27, 31, 33, 34, 36, 44, 4749, 55, 60, 61, 63,
79, 82, 93, 95, 97, 99, 105 106, 109-114

205

INDEX

120, 129-132 139, 140 160, 180
exn:fail:contract:arity , 5, 10, 25, 49, 162
exn:fail:contract:continuation , b1, 53,

54
exn:fail:contract:variable , 78
exn:fail:filesystem , 93, 95, 96, 132 134,

135178 186
exn:fail:filesystem:version , 178
exn:fail:network , 136-140
exn:fail:read , 20,48, 115 116,118 121
exn:fail:read:non-char , 119
exn:fail:syntax , 48,49, 78, 144, 146, 159
exn:fail:unsupported , 82,135 181
exn?, 47
expand , 163
expand-once , 163
expand-path , 131
expand-syntax , 163
expand-syntax-once , 163
expand-syntax-to-top-form , 163
expand-to-top-form , 163
expansion-time valu€,60
exponential input13
expressions

shared structure,20

fields,29
file ,42
file-exists? , 134
file-or-directory-modify-seconds
136 179

file-or-directory-permissions
file-position , 95
file-size , 135
file-stream-buffer-mode , 95
file-stream-port? ,92
files, 95

copying,135

deleting,134

loading,176

modification dates] 35

moving,134

paths seepaths

permissions135

renaming,134

sizes, 135

testing,134
filesystem-root-list , 136
finalization,seewill executors
find-executable-path , 134
find-library-collection-paths , 185
find-system-path , 132,188 189
fixnum, 13
floating-point-bytes->real , 15

» 135

, 135 136

206

flonum, 13

fluid-let , 9
flush-output , 95
force ,26
formals,7

format ,114

fprintf ,114
fraction, 13
‘framework , 183
free-identifier=? , 150
Friedman, Dar46

Gasbichler, Martin69

generate-temporaries , 149
gensym, 23

get-output-bytes , 94
get-output-string , 94
getenv , 182

global port print handle69
global-port-print-handler
glyphs,2
graphs,118 120

printing, 120
guard-evt , 65
guardiansseewill executors

handle-evt , 65
handle-evt? ,66
hash tables26
constants]118
printing, 70, 120
hash-table-copy , 27
hash-table-count , 27
hash-table-for-each , 27
hash-table-get , 27
hash-table-map , 27
hash-table-put! , 27
hash-table-remove! , 27
hash-table? 27
Haynes, Chris46
headery
here strings116
Hieb, Rob,141
HOME, 133
'home-dir , 133
HOMEDRIVE, 133
HOMEPATH, 133
Honu,192

iconv , 22

iconv.dll , 22

identifier macro142, 159
identifier-binding , 150
identifier-binding-export-position

, 69,114 122

,151

INDEX

identifier-template-binding , 150
identifier-transformer-binding , 150
identifier-transformer-binding-export-position
151
identifier? , 149
immutable? , 24
'inferred-name , 50
infinity, 13
infix, 116
info.ss , 185
"init-dir ,133
init-file , 133
initial , 78
initial-exception-handler , 73
inode,96
input ports
pattern matching34
inspector? , 34
inspectors33, 74

integer->char , 15
integer->integer-bytes , 15
integer-bytes->integer , 15
integer-sqrt , 14
integer-sqrt/remainder , 14

keyword->string , 23
keyword? , 23
keywords,23, 118
printing, 119
kill-thread , 60

Latin-1,3

let ,8

let x,8

let x-values ,8
let-struct , 30
let-syntaxes , 156
let-values , 8

let/cc ,50,51

lettec ,51

lettec ,51

letrec ,8
letrec-syntaxes , 156
letrec-syntaxes+values , 156
letrec-values , 8,12
'lexical , 150

lib ,42

libiconv.dll , 22
libraries,185

‘line ,95

line numbers111
'linefeed , 109

link , 182
link-exists? ,134

links
creating,135
testing,134
list ,24
list* ,24
list*-immutable , 24
list->bytes , 19
list-immutable , 24
list-ref , 24
list-tail , 24
o, 16
Im , 16
lo ,16

load , 71,72, 118 176
load extension handler2
load handlery1

load-extension , 72,178
load-relative , 71,72, 176
load-relative-extension , 72,178

load/cd , 71,177

load/use-compiled , 71,772,176

load/use-compiled handlef?

load/used-compiled , 72

local-expand , 161

local-expand/capture-lifts , 161

local-transformer-expand , 161

local-transformer-expand/capture-lifts
161

locale-string-encoding , 23

locales,74

logical operatorsseebitwise operators

LOGNAME, 133

LPT1, 195

LPT2, 195

LPT3, 195

LPT4, 195

LPT5, 195

LPT6, 195

LPT7, 195

LPT8, 195

LPTY, 195

t .16

lu , 16

‘machine , 182

‘'macosx , 183

macros seesyntax

make-bytes , 19

make-channel , 62
make-continuation-prompt-tag , 53
make-custodian , 82

make-date , 179

make-directory , 135
make-ephemeron , 173

207

INDEX

make-file-or-directory-link , 135
make-hash-table , 26
make-immutable-hash-table , 27
make-input-port , 96

make-inspector , 34
make-known-char-range-list , 17

make-namespace , 77

make-output-port , 104
make-parameter , 75

make-pipe , 94
make-pseudo-random-generator , 14
make-readtable 122

make-rename-transformer
make-security-guard , 80
make-semaphore , 61
make-set!-transformer
make-special-comment
make-string , 17
make-struct-field-accessor ,31
make-struct-field-mutator , 32
make-struct-type , 31
make-struct-type-property ,32
make-syntax-introducer , 162
make-thread-cell , 66
make-thread-group , 83
make-weak-box , 173
make-will-executor
'mc, 16
'me, 16
member, 24
memgq 24
memy 24
'method-arity-error , 25
'mn, 16
module , 38
module name resolvet?
module path index170
module registry/6
module->namespace , 79
module-compiled-exports
module-compiled-imports , 172
module-compiled-name , 172
'module-direct-for-syntax-requires
'module-direct-for-template-requires
171

, 159

, 159
, 127

, 174

, 172

'module-direct-requires , 171
module-identifier=? , 150
'module-indirect-provides ,171
'module-kernel-reprovide-hint , 171
module-path-index-join , 171
module-path-index-split , 171
module-path-index? ,171
module-provide-protected? , 79

208

, 171

, 171
, 171
, 150
, 150

'module-self-path-index
'module-syntax-provides
module-template-identifier=?
module-transformer-identifier=?
'module-variable-provides
modules38
body, 39
built-in, 44
compiling,43
dynamic imports44
execution38
expansion38
exports,39
for-syntax imports152
imports,39
in files, 42
libraries,42
macros41, 152
paths42
pre-defined44
predefined44
re-declaring44
re-defining 44
redeclaring44
redefining44
syntax,41
msvert.dll , 22
multiple return values;
MzLib library, 186
MzScheme
stand-alone], 187
mzscheme, 38
MzScheme3m]
mzschemerc.ss , 133

, 171

nack-guard-evt , 65
namespace-attach-module ,43,79
namespace-mapped-symbols , 78
namespace-module-registry , 79
namespace-require , 78
namespace-require/copy , 78
namespace-require/expansion-time , 78
namespace-set-variable-value! , 78
namespace-symbol->identifier , 78
namespace-syntax-introduce , 79
namespace-transformer-require , 78
namespace-undefine-variable! , 78
namespace-unprotect-module , 79
namespace-variable-value , 78
namespace? , 78
namespaces6

initial, 77

initial environment,77

initial transformer environment,51

INDEX

'nd , 16
networking,136
'nl ,16
'no , 16
'non-terminating-macro , 122
'none , 95
normal-case-path ,132
not-a-numberl3
NUL, 195
null ,24
null-environment , 76
number->string , 13
numbers,13, 116
big-endian 15
converting,15
floating-point,15
little-endian,15
machine representatiorss

object-name , 50

odd?, 13

only , 39

‘opaque , 169
open-input-bytes , 94
open-input-file ,93
open-input-output-file , 93
open-input-string ,94
open-output-bytes ,94
open-output-file ,93
open-output-string , 94
or,6

‘orig-dir ,133

‘origin , 165

ormap, 12

'os , 182

packages38
parameter proceduré7
parameter-procedure="? , 75
parameter? ,75
parameterizatiorg7
parameterization? , 75
parameterize , 67
parameterize-break , 57
parameters;7

built-in, 69
'paren-shape ,164
parsing,69
PATH, 134
path->bytes , 129
path->complete-path , 131
path->directory-path , 131
path->string , 129
path-element->bytes , 130

path-list-string->path-list , 134
path-replace-suffix , 132
path-string? , 129
path? , 129
pathnamesseepaths
paths,129

expansion129

printing, 120
pattern matching34
‘pc , 16
'pd , 16
pe , 16
peek-byte , 111
peek-byte-or-special , 111
peek-bytes , 110
peek-bytes! , 110
peek-bytes-avail! , 110
peek-bytes-avail'* , 110

peek-bytes-availl/enable-break , 110

peek-char , 111
peek-char-or-special , 111
peek-string ,110
peek-string! , 110

'pf ,16

'pi , 16

pipe-content-length , 94
planet ,42

platform, 132, 182
PLTCOLLECTS, 186
PLTNOMZJIT, 71

'po , 16

poll, seesync
poll-guard-evt , 65
port display handler121
port positions111

port print handler121

port read handlef, 21
port write handler121
port-commit-peeked , 111

port-count-lines! , 112
port-count-lines-enabled , 69
port-display-handler , 121
port-file-identity , 96
port-next-location , 112
port-print-handler , 121
port-progress-evt , 111
port-provides-progress-evts? , 111
port-read-handler , 121
port-write-handler , 121
port-writes-atomic? , 113
port-writes-special? , 113
port? ,92

ports,59, 69, 92

209

INDEX

byte string,94
custom,96
file, 95
flushing,95
string, 94
"pref-dir , 133
"pref-file , 133
prefix ,39
prefix-all-defined , 40

prefix-all-defined-except , 40

pregexp , 86

pregexp? , 86

primitive procedure26
primitive-closure? , 26
primitive-result-arity , 26
primitive? 26

print , 114,121

print handler,71

print-box 70,119

print-graph , 70,120

print-hash-table , 70

print-honu , 70

print-struct , 70,119
print-unreadable , 70
print-vector-length , 70,119
printt ;114

printing sharing,70

PRN, 195

procedure-arity , 25
procedure-arity-includes? ,25

procedure-closure-contents-eq?
procedure? , 10,35
processesl.80

program , 133 188

promise? , 26

promises26

prompt read handler,0
prop:exn:srclocs , 48

protect ,40

'protected , 165

provide ,40

ps , 16
pseudo-random-generator->vector
pseudo-random-generator? , 14
putenv , 182

quasiquote ,6
quasisyntax , 146

guasisyntax/loc , 147
guote-syntax , 143
guotient/remainder , 13
raise ,46

raise-arity-error , 49

210

, 26

, 14

raise-mismatch-error , 49
raise-syntax-error , 49
raise-type-error , 49
raise-user-error , 49

random, 14, 74

random numbers4
random-seed , 14, 74

read , 80, 135

read , 48

read extensionsl15
read-accept-bar-quote
read-accept-box , 69,115
read-accept-compiled , 69,178
read-accept-dot , 70,117
read-accept-graph , 70,120

, 70,117,119

read-accept-quasiquote , 70,117
read-accept-reader , 70
read-byte , 111

read-byte-or-special , 111

read-bytes , 109
read-bytes! , 109
read-bytes-avail! , 109
read-bytes-avail!* , 110
read-bytes-availl/enable-break , 110
read-bytes-line , 109
read-case-sensitive , 69,118 119
read-char-or-special , 111
read-curly-brace-as-paren ,69,115 118
read-decimal-as-inexact , 70,116
read-eval-print loop70

read -eval -print loop

customized177

read -eval -print loop,177
read-eval-print-loop , 177,189
read-honu , 192
read-honu-syntax , 166, 192
read-line , 108

read-square-bracket-as-paren , 69, 115

118
read-string , 109
read-string! , 109
read-syntax , 143 166
read-syntax/recursive , 127
read/recursive , 127
reader macrog,22
readtable-mapping , 123
readtables] 22
real->floating-point-bytes , 15
regexp , 86
regexp-match , 87, 88
regexp-match-peek , 89
regexp-match-peek-immediate , 89
regexp-match-peek-positions , 89

INDEX

regexp-match-peek-positions-immediate
89
regexp-match-positions , 89
regexp-match? , 89
regexp-replace , 89,90
regexp-replace* , 90
regexp? , 86
regexpsseeregular expressions
regular expressions4
constants118
printing, 120
relative , 132
relative-path? ,131
rename, 40
rename-file-or-directory , 134,136
rename-transformer-target , 159
rename-transformer? , 159
repl, seeread-eval-print loop
replace , 93
require , 39,72
require-for-syntax , 152 153
require-for-template , 153
resolve-path 131
return , 109
'return-linefeed , 109
reverse! ,24
run-file , 133
run-time hierarchyl54
running 181

'same , 130, 132

'sc , 16

scheme-report-environment , 76
scripts,190

Scsh,69

seconds->date ,179

security guards74, 80

security-guard? ,81
selectseesync

semaphore-peek-evt 62
semaphore-post , 62
semaphore-try-wait? ,62
semaphore-wait , 62
semaphore-wait/enable-break , 62
semaphore? , 62

semaphoregj1

'server 81

set! ,9

set! ,188
set!-transformer-procedure , 159
set!l-transformer? , 159
setl-values 9
set-arity-at-least-value! , 25
set-box! ,25

set-date-day! , 179
set-date-dst?! ,179
set-date-hour! ,179

set-date-minute! , 179

set-date-month! ,179

set-date-second! , 179

set-date-time-zone-offset!
, 179

set-date-week-day!
set-date-year! , 179
set-date-year-day!
'shared , 183

shell scripts190
shell-execute , 181
ShellExecutel81
simplify-path ,131
'sk , 16

sleep , 61

'sm, 16

'so , 16

sockets,136
special-comment-value

, 179

, 179

, 127

special-comment? 127

Sperber, Michaek9
split-path ,132
square bracket§9
srcloc , 112
stack traceb54

length,73
‘static 183
string converters1
string->bytes/latin-1
string->bytes/locale
string->bytes/utf-8
string->immutable-string
string->keyword , 23
string->number | 13
string->path , 129
string->symbol , 23

, 20
, 20
, 20
, 17

string->uninterned-symbol , 23

string-ci<="? , 17
string-ci<? , 17
string-ci="? , 17
string-ci>=? , 17
string-ci>? , 17
string-copy! , 17
string-downcase , 18
string-foldcase , 18
string-locale-ci<?
string-locale-ci=?
string-locale-ci>?
string-locale-downcase
string-locale-upcase
string-locale<? , 18

, 18
, 18
, 18

, 18
, 18

211

INDEX

string-locale=? ,18
string-locale>? ,18
string-normalize-nfc , 19
string-normalize-nfd ,19
string-normalize-nfkc , 19
string-normalize-nfkd , 19
string-titlecase ,18
string-upcase , 17
string-utf-8-length , 20
string<=? , 17
string<? 17
string=? ,17
string>=? , 17
string>? ,17
strings,116

as ports94

immutable, 17

pattern matching34

printing, 119

reading to and writing fromQ4
struct , 40
struct->vector , 36
struct-accessor-procedure? , 37
struct-constructor-procedure? , 37
struct-info , 34
struct-mutator-procedure? , 37
struct-predicate-procedure? , 37
struct-type-info , 34
struct-type-make-constructor , 34
struct-type-make-predicate , 34
struct-type-property? , 33

struct-type? , 37
struct:date , 179
struct? , 36
structs

printing, 70
structure subtypes§0
structure type descriptorg9
structure type properties2
structure types?9

predicates36
structures29

equality,37

printing, 119
subl, 13
subbytes , 19
subprocess , 180

subprocess-kill ,181
subprocess-pid , 181
subprocess-status ,181
subprocess-wait , 181
subprocess? , 181
subprocesse$30

212

substring , 17
'SW_HIDE, 182
'sw _hide , 182
'SW_MAXIMIZE, 182
'Sw _maximize , 182
'SW_MINIMIZE , 182
'SwW _minimize , 182
'SW_RESTORE182
'sw _restore ,182
'SW_SHOWL182
'sw _show, 182
'SW_SHOWDEFAUI_T82
'sw _showdefault ,182
'SW_SHOWMAXIMIZE[182
'sw _showmaximized , 182
'SW_SHOWMINIMIZED182
'sw _showminimized , 182
'SW_SHOWMINNOACTIVES2
'sw _showminnoactive , 182
'SW_SHOWNA.82
'sw _showna, 182
'SW_SHOWNOACTIVATES2
'sw _shownoactivate , 182
'SW_SHOWNORMAIS2
'sw _shownormal , 182
symbols, 117
case sensitivity] 17
generating23
printing, 119
unique,23
sync , 63,74
sync/enable-break , 65,74
sync/timeout , 63
sync/timeout/enable-break
synchronous channels?
syntax,141
expanding,163
macro calls158
modules, 152
partial expansionl61
syntax , 144
syntax objects]43
comparisons]150
identifier,149
operationsl147
pattern-matchingl44
properties, 164, 178
source location]47, 178
source modulel47
syntax pair,148
syntax->list , 148
syntax-case , 144
syntax-case x*, 145

, 65

INDEX

syntax-column , 147
syntax-e , 147
syntax-graph? , 148

syntax-id-rules , 142
syntax-line , 147
syntax-local-bind-syntaxes , 162
syntax-local-certifier , 161
syntax-local-context , 160
syntax-local-get-shadower , 160
syntax-local-introduce , 162
syntax-local-lift-expression , 160
syntax-local-lift-module-end-declaration
160
syntax-local-make-definition-context
161
syntax-local-name , 160
syntax-local-value , 160
syntax-object->datum , 148
syntax-original? , 147
syntax-position , 147
syntax-property ,164
syntax-property-symbol-keys , 164
syntax-recertify , 169
syntax-rules , 141
syntax-source 147
syntax-source-module , 147
syntax-span , 147
syntax-track-origin , 165
syntax-transforming? , 161

syntax/loc 147
syntax? , 147

'sys-dir , 133
system-big-endian? , 15
system-language+country , 183
system-library-subpath , 183

system-type ,182

tcp-abandon-port , 138
tcp-accept 137

tcp-accept-evt ,138
tcp-accept-ready? , 137
tcp-accept/enable-break , 137
tcp-addresses , 138

tcp-close , 138

tcp-connect |, 136
tcp-connect/enable-break , 137
tcp-listen , 136

tcp-listener? , 138

tcp-port? 138

TCP/IP,136

‘temp-dir , 133

terminal-port? ,92
‘terminating-macro , 122

‘text , 93

thread
groups seethread groups
thread , 59

thread cells66
thread descriptof9
thread groups/4, 83
thread-cell-ref , 66
thread-cell-set! , 66
thread-cell? , 66
thread-dead-evt , 60
thread-dead? ,61
thread-group? ,83
thread-resume , 60
thread-resume-evt , 60
thread-running? ,61
thread-suspend , 59
thread-suspend-evt , 60
thread-wait , 60
thread/suspend-to-kill , 60
thread? ,61
threads59
breaking 56, 61
communicationgl, 62
killing, 60
nesting,61
resuming60
run statepl
stack size75
suspending5>9
synchronization61, 62
time, 179
machine, 179
time , 180
time-apply , 180
TMPDIR, 133
top-level environmensseenamespaces
transformer environment$41
in modules,152
transformers141
application,158
‘transparent , 169
‘transparent-binding , 169
‘truncate , 93
‘truncate/replace , 93

UDP, 138

udp-bind! , 138
udp-bound? , 140
udp-close , 140
udp-connect! 139
udp-connected? , 140
udp-open-socket , 138
udp-receive! , 139
udp-receive!* , 140

213

INDEX

udp-receive!-evt , 140

udp-receive!/enable-break , 140

udp-receive-ready-evt , 140
udp-send , 139

udp-send* , 139

udp-send-evt , 140
udp-send-ready-evt , 140
udp-send-to , 139
udp-send-to* , 139
udp-send-to-evt , 140

udp-send-to/enable-break , 139

udp-send/enable-break , 139
udp?, 140
unbox , 25
uncertified context]1 66
undefined values 12
Unicode,2
uninterned symboR3
'unix , 183
unless , 6
unquote ,7
unquote-splicing 7
unreadable

printing, 70, 120
unsyntax , 146
unsyntax-splicing , 146
'up , 130,132
'update , 93
use-compiled-file-paths , 72
use-user-specific-search-paths
USER, 133
USERPROFILE, 133
UTF-8,3
UTF-8-permissive21

vector->immutable-vector , 24

vector->pseudo-random-generator
vector-immutable , 24
vector-set-performance-stats!
vectors,115

printing, 70, 119
version ,183
vertical bar,69

void , 12
void? , 12
'weak , 27

weak boxes173

weak referenceq,73
weak-box-value ,173
weak-box? ,173
when, 6

will executors,174
will-execute , 174

214

will-executor? ,174
will-register ,174
will-try-execute ,174

‘'windows , 183

Windows pathname syntak95
with-continuation-mark , 54
with-handlers , 46
with-handlers *, 47
with-input-from-file , 93
with-output-to-file , 93
with-syntax , 145

wrap-evt , 65

‘write , 80,135

write , 121

write extensions119

write-byte , 113

write-bytes , 113
write-bytes-avail , 113
write-bytes-avail* ,113
write-bytes-avail-evt , 113
write-bytes-avail/enable-break
write-special , 113
write-special-avail* , 113
write-special-evt , 113
write-string , 112

'zl ,16
zp , 16
'zs , 16

, 113

	1 Introduction
	1.1 MrEd, DrScheme, and mzc
	1.2 Unicode, Locales, Strings, and Ports
	1.2.1 Unicode
	1.2.2 Locale
	1.2.3 Encodings and Ports

	1.3 Notation

	2 Basic Syntax Extensions
	2.1 Evaluation Order
	2.2 Multiple Return Values
	2.3 Cond and Case
	2.4 When and Unless
	2.5 And and Or
	2.6 Sequences
	2.7 Quote and Quasiquote
	2.8 Binding Forms
	2.8.1 Definitions
	2.8.2 Local Bindings
	2.8.3 Assignments
	2.8.4 Fluid-Let
	2.8.5 Syntax Expansion and Internal Definitions

	2.9 Case-Lambda
	2.10 Procedure Application
	2.11 Variable Reference

	3 Basic Data Extensions
	3.1 Void and Undefined
	3.2 Booleans
	3.3 Numbers
	3.4 Characters
	3.5 Strings
	3.6 Byte Strings
	3.7 Symbols
	3.8 Keywords
	3.9 Vectors
	3.10 Lists
	3.11 Boxes
	3.12 Procedures
	3.12.1 Arity
	3.12.2 Primitives
	3.12.3 Procedure Names
	3.12.4 Closure Equality

	3.13 Promises
	3.14 Hash Tables

	4 Structures
	4.1 Defining Structure Types
	4.2 Creating Subtypes
	4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties
	4.4 Structure Type Properties
	4.5 Structure Inspectors
	4.6 Structures as Procedures
	4.7 Structures as Synchronizable Events
	4.8 Structure Utilities

	5 Modules
	5.1 Module Expansion and Execution
	5.2 Module Bodies
	5.3 Modules and Macros
	5.4 Module Paths
	5.4.1 Module Name Resolver
	5.4.2 Module Names and Compilation

	5.5 Dynamic Module Access
	5.6 Re-declaring Modules
	5.7 Built-in Modules
	5.8 Modules and Load Handlers

	6 Exceptions and Control Flow
	6.1 Exceptions
	6.1.1 Primitive Exceptions

	6.2 Errors
	6.2.1 Application Errors
	6.2.2 Syntax Errors
	6.2.3 Inferred Value Names

	6.3 Continuations
	6.4 Dynamic Wind
	6.5 Prompts and Composable Continuations
	6.6 Continuation Marks
	6.7 Breaks
	6.8 Error Escape Handler

	7 Threads
	7.1 Suspending, Resuming, and Killing Threads
	7.2 Synchronizing Thread State
	7.3 Additional Thread Utilities
	7.4 Semaphores
	7.5 Channels
	7.6 Alarms
	7.7 Synchronizing Events
	7.8 Thread-Local Storage Cells
	7.9 Parameters
	7.9.1 Built-in Parameters
	7.9.2 Parameter Utilities

	8 Namespaces
	8.1 Identifier Resolution in Namespaces
	8.2 Initial Namespace
	8.3 Namespace Utilities

	9 Security
	9.1 Security Guards
	9.2 Custodians
	9.3 Thread Groups
	9.4 Inspectors and Modules

	10 Regular Expressions
	11 Input and Output
	11.1 Ports
	11.1.1 End-of-File Constant
	11.1.2 Current Ports
	11.1.3 Opening File Ports
	11.1.4 Pipes
	11.1.5 String Ports
	11.1.6 File-Stream Ports
	11.1.7 Custom Ports

	11.2 Reading and Writing
	11.2.1 Reading Bytes, Characters, and Strings
	11.2.2 Writing Bytes, Characters, and Strings
	11.2.3 Writing Structured Data
	11.2.4 Default Reader
	11.2.5 Default Printer
	11.2.6 Replacing the Reader
	11.2.7 Replacing the Printer
	11.2.8 Customizing the Reader through Readtables
	11.2.9 Reader-Extension Procedures
	11.2.10 Customizing the Printer through Custom-Write Procedures

	11.3 Filesystem Utilities
	11.3.1 Paths
	11.3.2 Locating Paths
	11.3.3 Files
	11.3.4 Directories

	11.4 Networking
	11.4.1 TCP
	11.4.2 UDP

	12 Syntax and Macros
	12.1 syntax-rules Extensions
	12.2 Syntax Objects
	12.2.1 Syntax Patterns
	12.2.2 Syntax Object Content

	12.3 Syntax and Lexical Scope
	12.3.1 Syntax Object Comparisons
	12.3.2 Syntax Object Bindings
	12.3.3 Transformer Environments
	12.3.4 Module Environments
	12.3.5 Macro-Generated Top-Level and Module Definitions

	12.4 Binding Multiple Syntax Identifiers
	12.5 Special Syntax Identifiers
	12.6 Macro Expansion
	12.6.1 Expanding Expressions to Primitive Syntax
	12.6.2 Syntax Object Properties
	12.6.3 Certificates for Protected References
	12.6.4 Information on Structure Types
	12.6.5 Information on Expanded and Compiled Modules

	13 Memory Management
	13.1 Weak Boxes
	13.2 Ephemerons
	13.3 Will Executors
	13.4 Garbage Collection

	14 Support Facilities
	14.1 Eval and Load
	14.2 Exiting
	14.3 Compilation
	14.4 Dynamic Extensions

	15 System Utilities
	15.1 Time
	15.1.1 Real Time and Date
	15.1.2 Machine Time
	15.1.3 Timing Execution

	15.2 Operating System Processes
	15.3 Windows Actions
	15.4 Operating System Environment Variables
	15.5 Runtime Information

	16 Library Collections and MzLib
	17 Running MzScheme
	17.1 Flag Conventions
	17.2 Executable Name
	17.3 Initialization

	18 Writing and Running Scripts
	19 Honu
	19.1 Honu Input Parsing
	19.1.1 Numbers
	19.1.2 Identifiers
	19.1.3 Strings
	19.1.4 Characters
	19.1.5 Parentheses, Brackets, and Braces
	19.1.6 Comments

	19.2 Honu Output Printing

	20 Windows Path Syntax
	License
	Index

