
PLT MzScheme: Language Manual

Matthew Flatt (mflatt@plt-scheme.org)

360
Released November 2006

Copyright notice

Copyright c©1995-2006 Matthew Flatt

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Library General
Public License, Version 2 published by the Free Software Foundation. A copy of the license is included in the appendix
entitled “License.”

libscheme: Copyrightc©1994 Brent Benson. All rights reserved.

Conservative garbage collector: Copyrightc©1988, 1989 Hans-J. Boehm, Alan J. Demers. Copyrightc©1991-1996
by Xerox Corporation. Copyrightc©1996-1999 by Silicon Graphics. Copyrightc©1999-2001 by Hewlett Packard
Company. All rights reserved.

Collector C++ extension by Jesse Hull and John Ellis: Copyrightc©1994 by Xerox Corporation. All rights reserved.

GNU MP Library: Copyrightc©1992, 1993, 1994, 1996 by Free Software Foundation, Inc.

GNU lightning: Copyrightc©1994, 1995, 1996, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.

Send us your Web links

If you use any parts or all of the PLT Scheme package (software, lecture notes) for one of your courses, for your
research, or for your work, we would like to know about it. Furthermore, if you use it and publicize the fact on some
Web page, we would like to link to that page. Please drop us a line atscheme@plt-scheme.org. Evidence of interest
helps the DrScheme Project to maintain the necessary intellectual and financial support. We appreciate your help.

Thanks

Thanks to Brent Benson forlibscheme , and to Hans Boehm for the conservative garbage collector and their help.

This manual was typeset using LATEX, SLATEX, andtex2page . Some typesetting macros were originally taken from
Julian Smart’sReference Manual for wxWindows 1.60: a portable C++ GUI toolkit.

This manual was typeset on November 20, 2006.

Contents

1 Introduction 1

1.1 MrEd, DrScheme, andmzc . 1

1.2 Unicode, Locales, Strings, and Ports. 2

1.2.1 Unicode. 2

1.2.2 Locale. 2

1.2.3 Encodings and Ports. 3

1.3 Notation. 4

2 Basic Syntax Extensions 5

2.1 Evaluation Order . 5

2.2 Multiple Return Values. 5

2.3 Cond and Case. 5

2.4 When and Unless. 6

2.5 And and Or . 6

2.6 Sequences. 6

2.7 Quote and Quasiquote. 6

2.8 Binding Forms . 7

2.8.1 Definitions . 7

2.8.2 Local Bindings. 8

2.8.3 Assignments. 9

2.8.4 Fluid-Let . 9

2.8.5 Syntax Expansion and Internal Definitions. 9

2.9 Case-Lambda. .10

2.10 Procedure Application. .11

2.11 Variable Reference. .11

i

CONTENTS CONTENTS

3 Basic Data Extensions 12

3.1 Void and Undefined. .12

3.2 Booleans .12

3.3 Numbers. .13

3.4 Characters. .15

3.5 Strings. .17

3.6 Byte Strings. .19

3.7 Symbols. .23

3.8 Keywords .23

3.9 Vectors .24

3.10 Lists .24

3.11 Boxes .24

3.12 Procedures. .25

3.12.1 Arity .25

3.12.2 Primitives. .26

3.12.3 Procedure Names. .26

3.12.4 Closure Equality. .26

3.13 Promises. .26

3.14 Hash Tables. .26

4 Structures 29

4.1 Defining Structure Types. .29

4.2 Creating Subtypes. .30

4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties. 30

4.4 Structure Type Properties. .32

4.5 Structure Inspectors. .33

4.6 Structures as Procedures. .35

4.7 Structures as Synchronizable Events. 36

4.8 Structure Utilities. .36

ii

CONTENTS CONTENTS

5 Modules 38

5.1 Module Expansion and Execution. 38

5.2 Module Bodies .39

5.3 Modules and Macros. .41

5.4 Module Paths. .42

5.4.1 Module Name Resolver. 42

5.4.2 Module Names and Compilation. 43

5.5 Dynamic Module Access. .44

5.6 Re-declaring Modules. .44

5.7 Built-in Modules .44

5.8 Modules and Load Handlers. 45

6 Exceptions and Control Flow 46

6.1 Exceptions. .46

6.1.1 Primitive Exceptions. 47

6.2 Errors .48

6.2.1 Application Errors .49

6.2.2 Syntax Errors. .49

6.2.3 Inferred Value Names. 50

6.3 Continuations. .50

6.4 Dynamic Wind .51

6.5 Prompts and Composable Continuations. 53

6.6 Continuation Marks. .54

6.7 Breaks. .56

6.8 Error Escape Handler. .58

7 Threads 59

7.1 Suspending, Resuming, and Killing Threads. 59

7.2 Synchronizing Thread State. .60

7.3 Additional Thread Utilities. .61

iii

CONTENTS CONTENTS

7.4 Semaphores. .61

7.5 Channels .62

7.6 Alarms. .63

7.7 Synchronizing Events. .63

7.8 Thread-Local Storage Cells. .66

7.9 Parameters. .67

7.9.1 Built-in Parameters. .69

7.9.2 Parameter Utilities. .75

8 Namespaces 76

8.1 Identifier Resolution in Namespaces. 77

8.2 Initial Namespace. .77

8.3 Namespace Utilities. .77

9 Security 80

9.1 Security Guards. .80

9.2 Custodians. .81

9.3 Thread Groups. .83

9.4 Inspectors and Modules. .83

10 Regular Expressions 84

11 Input and Output 92

11.1 Ports. .92

11.1.1 End-of-File Constant. 92

11.1.2 Current Ports. .92

11.1.3 Opening File Ports. .93

11.1.4 Pipes .94

11.1.5 String Ports. .94

11.1.6 File-Stream Ports. .95

11.1.7 Custom Ports. .96

iv

CONTENTS CONTENTS

11.2 Reading and Writing. .108

11.2.1 Reading Bytes, Characters, and Strings. .108

11.2.2 Writing Bytes, Characters, and Strings. .112

11.2.3 Writing Structured Data. .114

11.2.4 Default Reader. .115

11.2.5 Default Printer .119

11.2.6 Replacing the Reader. .121

11.2.7 Replacing the Printer. .121

11.2.8 Customizing the Reader through Readtables. .122

11.2.9 Reader-Extension Procedures. .126

11.2.10 Customizing the Printer through Custom-Write Procedures. 128

11.3 Filesystem Utilities. .128

11.3.1 Paths .129

11.3.2 Locating Paths. .132

11.3.3 Files. .134

11.3.4 Directories .135

11.4 Networking .136

11.4.1 TCP. .136

11.4.2 UDP .138

12 Syntax and Macros 141

12.1 syntax-rules Extensions. .141

12.2 Syntax Objects. .143

12.2.1 Syntax Patterns. .144

12.2.2 Syntax Object Content. .147

12.3 Syntax and Lexical Scope. .149

12.3.1 Syntax Object Comparisons. .150

12.3.2 Syntax Object Bindings. .150

12.3.3 Transformer Environments. .151

12.3.4 Module Environments. .152

v

CONTENTS CONTENTS

12.3.5 Macro-Generated Top-Level and Module Definitions. .154

12.4 Binding Multiple Syntax Identifiers. .156

12.5 Special Syntax Identifiers. .157

12.6 Macro Expansion. .158

12.6.1 Expanding Expressions to Primitive Syntax. .163

12.6.2 Syntax Object Properties. .164

12.6.3 Certificates for Protected References. .166

12.6.4 Information on Structure Types. .169

12.6.5 Information on Expanded and Compiled Modules. .170

13 Memory Management 173

13.1 Weak Boxes. .173

13.2 Ephemerons. .173

13.3 Will Executors .174

13.4 Garbage Collection. .175

14 Support Facilities 176

14.1 Eval and Load. .176

14.2 Exiting. .177

14.3 Compilation. .177

14.4 Dynamic Extensions. .178

15 System Utilities 179

15.1 Time. .179

15.1.1 Real Time and Date. .179

15.1.2 Machine Time .179

15.1.3 Timing Execution. .180

15.2 Operating System Processes. .180

15.3 Windows Actions. .181

15.4 Operating System Environment Variables. .182

15.5 Runtime Information. .182

vi

CONTENTS CONTENTS

16 Library Collections and MzLib 185

17 Running MzScheme 187

17.1 Flag Conventions. .188

17.2 Executable Name. .188

17.3 Initialization. .189

18 Writing and Running Scripts 190

19 Honu 192

19.1 Honu Input Parsing. .192

19.1.1 Numbers .193

19.1.2 Identifiers. .193

19.1.3 Strings .193

19.1.4 Characters. .193

19.1.5 Parentheses, Brackets, and Braces. .193

19.1.6 Comments .194

19.2 Honu Output Printing. .194

20 Windows Path Syntax 195

License 197

Index 201

vii

CONTENTS CONTENTS

viii

1. Introduction

The core of the Scheme programming language is described inRevised5 Report on the Algorithmic Language Scheme.
This manual assumes familiarity with Scheme and only contains information specific to MzScheme. (Many sections
near the front of this manual simply clarify MzScheme’s position with respect to the standard report.)

MzScheme (pronounced “miz scheme”, as in “Ms. Scheme”) is mostlyR5RS-compliant. Certain parameters in
MzScheme can change features affectingR5RS-compliance; for example, case-sensitivity is initially enabled (see
§7.9.1.3).

MzScheme provides several notable extensions toR5RSScheme:

• A module system for namespace and compilation management (see Chapter5).

• An exception system that is used for all primitive errors (see Chapter6).

• Pre-emptive threads (see Chapter7).

• A class and object system (see Chapter 4 ofPLT MzLib: Libraries Manual).

• A unit system for defining and linking program components (see Chapter 51 ofPLT MzLib: Libraries Manual).

• Extensive Unicode and character-encoding support (see§1.2).

MzScheme can be run as a stand-alone application, or it can be embedded within other applications. Most of this
manual describes the language that is common to all uses of MzScheme. For information about running the stand-
alone version of MzScheme, see Chapter17.

1.1 MrEd, DrScheme, andmzc

MrEd is an extension of MzScheme for graphical programming. MrEd is described separately inPLT MrEd: Graphi-
cal Toolbox Manual.

DrScheme is a development environment for writing MzScheme- and MrEd-based programs. DrScheme provides
debugging and project-management facilities, which arenot provided by the stand-alone MzScheme application, and
a user-friendly interface with special support for using Scheme as a pedagogical tool. DrScheme is described inPLT
DrScheme: Development Environment Manual.

Themzc compiler takes MzScheme (or MrEd) source code and produces either platform-independent byte code com-
piled files (.zo files) or platform-specific native code libraries (.so , .dll , or .dylib files) to be loaded into MzScheme
(or MrEd). Themzc compiler is described inPLT mzc: MzScheme Compiler Manual.

MzScheme3m is an experimental version of MzScheme that uses more precise memory-management techniques. For
long-running applications, especially, MzScheme3m can provide superior memory performance. See the compilation
information in the MzScheme source distribution for more details.

1

1.2. Unicode, Locales, Strings, and Ports 1. Introduction

1.2 Unicode, Locales, Strings, and Ports

As explained in the following subsections, MzScheme distinguishes characters from bytes and character strings from
byte strings. MzScheme’s notion of “character” corresponds to a Unicode scalar value (i.e., a Unicode code point that
is not a surrogate), and many operations assume the UTF-8 encoding when converting between characters and bytes.
For a handful of conversions, the user’s chosen locale determines an encoding, instead. The chosen locale also affects
string case folding and comparison for operations whose name includeslocale .

1.2.1 Unicode

Unicode defines a standard mapping between sequences of integers and human-readable “characters.” More precisely,
Unicode distinguishes betweenglyphs, which are printed for humans to read, andcharacters, which are abstract entities
that map to glyphs, sometimes in a way that’s sensitive to surrounding characters. Furthermore, different sequences
of integers—orcode points in Unicode terminology—sometimes correspond to the same character. The relationships
among code points, characters, and glyphs are subtle and complex.

Despite this complexity, most things that a literate human would call a “character” can be represented by a single code
point in Unicode (though it may also be represented by other sequences). For example, Roman letters, Cyrillic letters,
Chinese characters, and Hebrew consonants all fall into this category. The “code point” approximation of “character”
thus works well for many purposes, and MzScheme defines thechar datatype to correspond to a Unicode code point.
(More precisely, achar corresponds to a Unicode scalar value, which excludessurrogate code points that are used to
encode other code points in certain contexts.) For the remainder of this manual, we use “character” interchangeably
with “code point” or “MzScheme’schar datatype.”

Besides printing and reading characters, humans also compare characters or character strings, and humans perform
operations such as changing characters to uppercase. To make programs geographically portable, humans must agree to
compare or upcase characters consistently, at least in certain contexts. The Unicode standard provides such a standard
mapping on code points, and this mapping is used to case-normalize symbols in MzScheme. In other contexts, global
agreement is unnecessary, and the user’s culture should determine the operation, such as when displaying a list of file
names. Cultural dependencies are captured by the user’slocale, which is discussed in the next section.

Most computing devices are built around the concept ofbyte (an integer from 0 to 255) instead of character. To
communicate character sequences among devices, then, requires an encoding of characters into bytes.UTF-8 is one
such encoding; due to its nice properties, the UTF-8 encoding is in many ways hard-wired into MzScheme’s primitives,
such asread-char . Encodings are discussed further in the following sections. For byte-based communication,
MzScheme supports byte strings as a separate datatype from character strings (see§3.6).

For official information on the Unicode standard, see http://www.unicode.org/. For a thorough but more accessible
introduction, seeUnicode Demystifiedby Richard Gillam.

1.2.2 Locale

A locale captures information about a user’s culture-specific interpretation of character sequences. In particular, a
locale determines how strings are “alphabetized,” how a lowercase character is converted to an uppercase character,
and how strings are compared without regard to case. String operations such asstring-ci? arenot sensitive to the
current locale, but operations such asstring-locale-ci? (see§3.5) produce results consistent with the current
locale.

Under Unix, a locale also designates a particular encoding of code-point sequences into byte sequences. MzScheme
generally ignores this aspect of the locale, with a few notable exceptions: command-line arguments passed to
MzScheme as byte strings are converted to character strings using the locale’s encoding; command-line strings passed
as byte strings to other processes (throughsubprocess) are converted to byte strings using the locale’s encoding;
environment variables are converted to and from strings using the locale’s encoding; filesystem paths are converted

2

1. Introduction 1.2. Unicode, Locales, Strings, and Ports

to and from strings (for display purposes) using the locale’s encoding; finally, MzScheme provides functions such as
string->bytes/locale to specifically invoke a locale-specific encoding.

A Unix user selects a locale by setting environment variables, such asLC ALL . Under Windows and Mac OS X, the op-
erating system provides other mechanisms for setting the locale. Within MzScheme, the current locale can be changed
by setting thecurrent-locale parameter (see§7.9and§7.9.1.11). The locale name within MzScheme is a string,
and the available locale names depend on the platform and its configuration, but the"" locale means the current user’s
default locale; under Windows and Mac OS X, the encoding for"" is always UTF-8, and locale-sensitive opera-
tions use the operating system’s native interface.1 Setting the current locale to#f makes locale-sensitive operations
locale-insensitive, which means using the Unicode mapping for case operations and using UTF-8 for encoding.

1.2.3 Encodings and Ports

TheUTF-8 encoding of characters to bytes has a number of important properties:

• Each code point from 0 to 127 (i.e., each ASCII character) is encoded by the corresponding byte from 0 to 127.

• Other code points are represented by a sequence of two to six bytes, where each byte is in the range 128 to 253.
Furthermore, the first byte in the sequence is between 192 and 253, and each subsequent byte is between 128
and 191.

• Not every sequence starting with 192-to-253 followed by 128-to-191 encodes a code point. The bytes 254 and
255 are never used to encode any code point.

• Every code-point sequence has a unique encoding in bytes, and every valid encoding in bytes has a unique
decoding into code points.

For a more complete description of UTF-8, seehttp://www.cl.cam.ac.uk/ ∼mgk25/unicode.html .

Another useful encoding isLatin-1, where every code point from 0 to 255 is encoded by the corresponding byte, and
no other code points can be encoded.2 Every byte sequence is therefore a valid encoding with a unique decoding, but
not every character string can be encoded.

MzScheme supports these two encodings through functions such asbytes->string/utf-8 andstring->bytes/latin-1
(see§3.6). These functions accept an extra argument so that an un-encodable character or un-decodeable se-
quence is replaced by a specific character or byte, instead of raising an exception. MzScheme also provides
bytes->string/locale andstring->bytes/locale ; typically, a locale-specific encoding cannot encode
all characters, and not all byte sequences are valid encodings in the encoding.

All ports in MzScheme produce and consume bytes. When a port is provided to character-based operations, such as
read , the port’s bytes are interpreted as a UTF-8 encoding of characters. Moreover, when tracking position, line, and
column information for an input port, position and column are computed in terms of decoded characters, rather than
bytes.

Bytes streams that correspond to other encodings must be transformed to or from a UTF-8 byte stream, possibly using
a converter produced bybytes-convert (see§3.6). When an input port produces a sequence of bytes that is not a
valid UTF-8 encoding in a character-reading context, certain bytes in the sequence are converted to the character “?”
(see§11.1).

1In particular, setting theLC ALL and LC CTYPE environment variables do not affect the locale"" under Mac OS X. Usegetenv and
current-locale to explicitly install the environment-specified locale, if desired.

2Technically, Latin-1 (as defined by ISO standard 8859) doesn’t include control characters in 0 to 31 and 127 to 159. Like much other software,
MzScheme uses an extended definition of Latin-1 that includes those control characters. Beware of encodings that claim to be Latin-1/ISO-8859-1
but that are actually Windows-1252, because Windows-1252 is an extension of Latin-1 that is not a subset of Unicode.

3

1.3. Notation 1. Introduction

1.3 Notation

Throughout this manual, the syntax for new forms is described using a pattern notation with ellipses. Plain, centered
ellipses (· · ·) indicatezeroor more repetitions of the preceding pattern. Ellipses with a “1” superscript (· · ·1) indicate
oneor more repetitions of the preceding pattern.

For example:

(let-values (((variable · · ·) expr) · · ·)
body-expr
· · ·1)

The first set of ellipses indicate that any number ofvariable s, possibly none, can be provided with a singleexpr .
The second set of ellipses indicate that any number of((variable · · ·) expr) combinations, possibly none,
can appear in the parentheses following thelet-values syntax name. The last set of ellipses indicate that a
let-values expression can contain any number ofbody-expr expressions, as long as at least one expression is
provided. In describing parts of thelet-values syntax, the namevariable is used to refer to a single binding
variable in alet-values expression.

Some examples contain simple ellipses (...), which is an identifier, albeit one that has special meaning in syntax
patterns and templates.

Square brackets (“[” and “]”) are normally treated as parentheses by MzScheme, and this manual uses square brackets
as parentheses in example code. However, in describing a MzScheme procedure, this manual uses square brackets to
designate optional arguments. For example,

(regexp-match pattern string [start-k end-k])

describes the calling convention for a procedureregexp-match where thepattern and string arguments
are required, and thestart-k andend-k arguments are optional (butstart-k must be provided ifend-k is
provided).

In grammar specifications for syntactic forms,variable andidentifier are equivalent, butvariable is often
used when the identifier corresponds to a location that holds a value at run time.

4

2. Basic Syntax Extensions

2.1 Evaluation Order

In an application expression, the procedure expression and the argument expressions are always evaluated left-to-right.
Similarly, expressions forlet andletrec bindings are evaluated in sequence from left to right.

2.2 Multiple Return Values

MzScheme supports theR5RSvalues andcall-with-values procedure, and also provides binding forms for
multiple-value expressions, discussed in§2.8.

Multiple return values are legal in MzScheme whenever the return value of an expression is ignored. For example,
all but the last expression in abegin form can legally return multiple values in any context. If a built-in procedure
takes a procedure argument, and the built-in procedure does not inspect the result of the supplied procedure, then the
supplied procedure can return multiple values. For example, the procedure supplied tofor-each can return any
number of values, but the procedure supplied tomapmust return a single value.

When the number of values returned by an expression does not match the number of values expected by the expres-
sion’s context, theexn:fail:contract:arity exception is raised (at run time).

Examples:

(− (values 1)) ; ⇒ −1
(− (values 1 2)) ; ⇒ error: returned 2 values to single-value context
(− (values)) ; ⇒ error: returned 0 values to single-value context
(call-with-values

(lambda () (values 1 2))
(lambda (x y) y)) ; ⇒ 2

(call-with-values
(lambda () (values 1 2))
(lambda z z)) ; ⇒ (1 2)

(call-with-values
(lambda () (let/cc k (k 3 4)))
(lambda (x y) y)) ; ⇒ 4

(call-with-values
(lambda () (values ’hello 1 2 3 4))
(lambda (s . l)

(format "˜s = ˜s" s l))) ; ⇒ "hello = (1 2 3 4)"

2.3 Cond and Case

The else and=> identifiers in acond or case statement are handled specially only when they are not lexically
bound or module-bound:

5

2.4. When and Unless 2. Basic Syntax Extensions

(cond [1 => add1]) ; ⇒ 2
(let ([=> 5]) (cond [1 => add1])) ; ⇒ #<primitive:add1 >

2.4 When and Unless

Thewhen andunless forms conditionally evaluate a single body of expressions:

• (when test-expr expr · · ·1) evaluates theexpr body expressions only whentest-expr returns a
true value.

• (unless test-expr expr · · ·1) evaluates theexpr body expressions only whentest-expr returns
#f .

The result of awhen or unless expression is the result of the last body expression if the body is evaluated, or void
(see§3.1) if the body is not evaluated.

2.5 And and Or

In an and or or expression, the last test expression can return multiple values (see§2.2). If the last expression is
evaluated and it returns multiple values, then the result of the entireand or or expression is the multiple values.
Other sub-expressions in anand or or expression must return a single value.

2.6 Sequences

Thebegin0 form is like begin , but the value of the first expression in the form is returned instead of the value of
the last expression:

(let ([x 4])
(begin0 x (set! x 9) (display x))) ; ⇒ displays 9 then returns 4

The first sub-expression in abegin0 expression is in tail position if and only if it is the only sub-expression.

2.7 Quote and Quasiquote

Thequote form never allocates, so that the result of multiple evaluations of a singlequote expression are always
eq? . Nevertheless, a quoted cons cell, vector, or list is mutable; mutations to the result of aquote application are
visible to future evaluations of thequote expression.

Thequasiquote form allocates only as many fresh cons cells, vectors, and boxes as are needed without analyzing
unquote andunquote-splicing expressions. For example, in

‘(,1 2 3)

a single reader-allocated tail’(2 3) is used for every evaluation of thequasiquote expression.

The standard Schemequasiquote has been extended so thatunquote andunquote-splicing work within
immediate boxes:

‘#&(,(− 2 1) ,@(list 2 3)) ; ⇒ #&(1 2 3)

6

2. Basic Syntax Extensions 2.8. Binding Forms

See§11.2.4for more information about immediate boxes.

MzScheme defines theunquote and unquote-splicing identifiers as top-level syntactic forms that always
report a syntax error. Thequasiquote form recognizes normalunquote andunquote-splicing uses via
module-identifier=? . (See§12.3.1for more information on identifier comparisons.)

2.8 Binding Forms

2.8.1 Definitions

A procedure definition

(define variable (lambda formals expr · · ·1))

can be abbreviated

(define (variable . formals) expr · · ·1)

In addition to this standard Scheme abbreviation, MzScheme supports an MIT-style generalization, so that a definition

(define header (lambda formals expr · · ·1))

can be abbreviated

(define (header . formals) expr · · ·1))

even ifheader is itself a parenthesized procedure abbreviation. The general syntax ofdefine is as follows:

(define variable expr)
(define (header . formals) expr · · ·1)

header is one of
variable
(header . formals)

formals is one of
variable
(variable · · ·)
(variable variable · · · . variable)

Multiple values can be bound to multiple variables at once usingdefine-values :

(define-values (variable · · ·) expr)

The number of values returned byexpr must match the number ofvariable s provided, and thevariable s must
be distinct. No procedure-definition abbreviation is available fordefine-values .

Examples:

(define x 1)
x ; ⇒ 1
(define (f x) (+ x 1))
(f 2) ; ⇒ 3
(define (((g x) y z) . w) (list x y z w))
(let ([h ((g 1) 2 3)])

(list (h 4 5) (h 6))) ; ⇒ ’((1 2 3 (4 5)) (1 2 3 (6)))

7

2.8. Binding Forms 2. Basic Syntax Extensions

(define-values (x) 2)
x ; ⇒ 2
(define-values (x y) (values 3 4))
x ; ⇒ 3
y ; ⇒ 4
(define-values (x y) (values 5 (add1 x)))
y ; ⇒ 4
(define-values () (values)) ; same as (void)
(define x (values 7 8)) ; ⇒ error: 2 values for 1-value context
(define-values (x y) 7) ; ⇒ error: 1 value for 2-value context
(define-values () 7) ; ⇒ error: 1 value for 0-value context

2.8.2 Local Bindings

Local variables are bound with standard Scheme’slet , let ∗, and letrec . MzScheme’sletrec form
guarantees sequential left-to-right evaluation of the binding expressions. (Theletrec bound in the result of
(scheme-report-environment 5) , however, is defined exactly as inR5RS.)

Multiple values are bound to multiple local variables at once withlet-values , let ∗-values , and
letrec-values . The syntax forlet-values is:

(let-values (((variable · · ·) expr) · · ·) body-expr · · ·1)

As in define-values , the number of values returned by eachexpr must match the number ofvariable s
declared in the corresponding clause. Eachexpr remains outside of the scope of all variables bound by the
let-values expression.

The syntax forlet ∗-values andletrec-values is the same as forlet-values , and the binding semantics
for each form corresponds to the single-value binding form:

• In a let ∗-values expression, the scope of the variables of each clause includes all of the remaining binding
clauses. The clause expressions are evaluated and bound to variables sequentially.

• In a letrec-values expression, the scope of the variables of each clause includes all of the binding clauses.
The clause expressions are evaluated and bound to variables sequentially.

When aletrec or letrec-values expression is evaluated, each variable binding is initially assigned the special
undefined value (see§3.1); the undefined value is replaced after the corresponding expression is evaluated.

Examples:

(define x 0)
(let ([x 5] [y x]) y) ; ⇒ 0
(let ∗ ([x 5] [y x]) y) ; ⇒ 5
(letrec ([x 5] [y x]) y) ; ⇒ 5
(letrec ([x y] [y 5]) x) ; ⇒ undefined
(let-values ([(x) 5] [(y) x]) y) ; ⇒ 0
(let-values ([(x y) (values 5 x)]) y) ; ⇒ 0
(let ∗-values ([(x) 5] [(y) x]) y) ; ⇒ 5
(let ∗-values ([(x y) (values 5 x)]) y) ; ⇒ 0
(letrec-values ([(x) 5] [(y) x]) y) ; ⇒ 5
(letrec-values ([(x y) (values 5 x)]) y) ; ⇒ undefined
(letrec-values ([(odd even) (values

(lambda (n) (if (zero? n) #f (even (sub1 n))))

8

2. Basic Syntax Extensions 2.8. Binding Forms

(lambda (n) (if (zero? n) #t (odd (sub1 n)))))])
(odd 17)) ; ⇒ #t

2.8.3 Assignments

The standardset! form assigns a value to a single global, local, or module variable. Multiple variables can be
assigned at once usingset!-values :

(set!-values (variable · · ·) expr)

The number of values returned byexpr must match the number ofvariable s provided.

The variable s, which must be distinct, can be any mixture of global, local, and module variables. Assignments
are performed sequentially from the firstvariable to the last. If an error occurs in one of the assignments (perhaps
because a global variable is not yet bound), then the assignments for the precedingvariable s will have already
completed, but assignments for the remainingvariable s will never complete.

2.8.4 Fluid-Let

The syntax for afluid-let expression is the same as forlet :

(fluid-let ((variable expr) · · ·) body-expr · · ·1)

Eachvariable must be either a local variable or a global or module variable that is bound before thefluid-let
expression is evaluated. Before thebody-expr s are evaluated, the bindings for thevariable s areset! to the
values of the correspondingexpr s. Once thebody-expr s have been evaluated, the values of the variables are
restored. The value of the entirefluid-let expression is the value of the lastbody-expr .

2.8.5 Syntax Expansion and Internal Definitions

All binding forms are syntax-expanded intodefine-values , let-values , letrec-values , define-syntaxes ,
and letrec-syntaxes +values expressions. Theset!-values form is expanded tolet-values with
set! . See§12.6.1for more information.

All define-values expressions that are inside onlybegin expressions are treated as top-level definitions.
Body define-values expressions in amodule expression are handled specially as described in§5.1. Any
other define-values expression is either aninternal definition or syntactically illegal. The same is true of
define-syntaxes expressions.

Internal definitions can appear at the start of a sequence of expressions, such as the start of alambda , case-lambda ,
or let body. At least one non-definition expression must follow a sequence of internal definitions. The first expression
in abegin0 expression cannot be an internal definition; for the purposes of internal definitions, the second expression
is the start of the sequence.

When abegin expression appears within a sequence, its content is inlined into the sequence (recursively, if the
begin expression contains otherbegin expressions). Like top-levelbegin expressions (and unlike otherbegin
expressions), abegin expression within an internal definition sequence can be empty.

An internaldefine-values or define-syntaxes expression is transformed, along with the expressions fol-
lowing it, into aletrec-syntaxes +values expression: the identifiers bound by the internal definitions become
the binding identifiers of the newletrec-syntaxes +values expression, and the expressions that follow the
definitions become the body of the newletrec-syntaxes +values expression.

Multiple adjacent definitions are collected into a singleletrec-syntaxes +values transformation, so that the

9

2.9. Case-Lambda 2. Basic Syntax Extensions

definitions can be mutually recursive, but the definitions expressions must be adjacent. A non-definition marks the
start of a sequence of expressions to be moved into the body of the newly createdletrec-syntaxes +values
form.

Internal definitions are detected after a partial syntax expansion that stops at core forms, and thus exposesbegin ,
define-values , anddefine-syntaxes . Forms are expanded left to right, and whenever a definition is discov-
ered, a binding is introduced immediately for further expansion, so a definition can shadow variables when later forms
are expanded. Furthermore, when adefine-syntaxes form is discovered, the right-hand side is immediately
evaluated, and the result is bound as syntax to the corresponding identifier(s); thus, a locally defined macro can be
used to generate later definitions in the same internal-definition context.

2.9 Case-Lambda

Thecase-lambda form creates a procedure that dispatches to a particular body of expressions based on the number
of arguments that the procedure receives. Thecase-lambda form provides a mechanism for creating variable-arity
procedures with more control and efficiency than using alambda “rest argument,” such as thex in (lambda (a
. x) expr · · ·1) .

A case-lambda expression has the form:

(case-lambda
(formals expr · · ·1)
· · ·)

formals is one of
variable
(variable · · ·)
(variable · · · . variable)

Each(formals expr · · ·1) clause of acase-lambda expression is analogous to alambda expression of the
form (lambda formals expr · · ·1) . The scope of thevariable s in each clause’sformals includes only
the same clause’sexpr s. Theformals variables are bound to actual arguments in an application in the same way
that lambda variables are bound in an application.

When acase-lambda procedure is invoked, one clause is selected and itsexpr s are evaluated for the application;
the result of the lastexpr in the clause is the result of the application. The clause that is selected for an application is
the first one with aformals specification that can accommodate the number of arguments in the application.1

Examples:

(define f
(case-lambda

[(x) x]
[(x y) (+ x y)]
[(a . any) a]))

(f 1) ; ⇒ 1
(f 1 2) ; ⇒ 3
(f 4 5 6 7) ; ⇒ 4
(f) ; ⇒ raises exn:fail:contract:arity

The result of acase-lambda expression is a procedure, just like the result of alambda expression. Thus, the
procedure? predicate returns#t when applied to the result of acase-lambda expression.

1It is possible that a clause in acase-lambda expression can never be evaluated because a preceding clause always matches the arguments.

10

2. Basic Syntax Extensions 2.10. Procedure Application

2.10 Procedure Application

The “empty application” form() expands to the quoted empty list’() .

2.11 Variable Reference

The#%variable-reference form returns a value representing the address of a top-level or module variable:

(#%variable-reference variable)
(#%variable-reference (#%top . variable))

In the non-#%top form, a syntax error is reported ifvariable is not bound to a top-level or module variable.

The result of a#%variable-reference expression is opaque, with no useful operation in MzScheme. SeeInside
PLT MzSchemefor information on its use in low-level extensions to MzScheme.

11

3. Basic Data Extensions

3.1 Void and Undefined

MzScheme returns the uniquevoid value — printed as#<void > — for expressions that have unspecified results in
R5RS. The procedurevoid takes any number of arguments and returns void:

• (void v · · ·) returns void.

• (void? v) returns#t if v is void,#f otherwise.

Variables bound byletrec-values that are accessible but not yet initialized are bound to the uniqueundefined
value, printed as#<undefined >.

3.2 Booleans

Unless otherwise specified, two instances of a particular MzScheme data type areequal? only when they areeq? .
Two values areeqv? only when they are eithereq? , both+nan.0 , or both= and have the same exactness and sign.
(The inexact numbers0.0 and−0.0 are noteqv? , although they are=.)

Theandmap andormap procedures apply a test procedure to the elements of a list, returning immediately when the
result for testing the entire list is determined. The arguments toandmap andormap are the same as formap, but a
single boolean value is returned as the result, rather than a list:

• (andmap proc list · · ·1) appliesproc to elements of thelist s from the first elements to the last,
returning#f as soon as any application returns#f . If no application ofproc returns#f , then the result of
the last application ofproc is returned; more specifically, the application ofproc to the last elements in the
list s is in tail position with respect to theandmap call. If the list s are empty, then#t is returned.

• (ormap proc list · · ·1) appliesproc to elements of thelist s from the first elements to the last. If
any application returns a value other than#f , that value is immediately returned as the result of theormap
application. If all applications ofproc return#f , then the result is#f ; more specifically, ifproc is applied to
the last elements of thelist s, the application is in tail position with respect to theormap call. If the list s
are empty, then#f is returned.

Examples:

(andmap positive? ’(1 2 3)) ; ⇒ #t
(ormap eq? ’(a b c) ’(a b c)) ; ⇒ #t
(andmap positive? ’(1 2 a)) ; ⇒ raises exn:fail:contract
(ormap positive? ’(1 2 a)) ; ⇒ #t
(andmap positive? ’(1 -2 a)) ; ⇒ #f
(andmap + ’(1 2 3) ’(4 5 6)) ; ⇒ 9
(ormap + ’(1 2 3) ’(4 5 6)) ; ⇒ 5

12

3. Basic Data Extensions 3.3. Numbers

3.3 Numbers

A number in MzScheme is one of the following:

• a fixnum exact integer (30 bits1 plus a sign bit)

• a bignum exact integer (cannot be represented in a fixnum)

• a fraction exact rational (represented by two exact integers)

• a flonum inexact rational (double-precision floating-point number)

• acomplex number; either the real and imaginary parts are both exact or inexact, or the number has an exact zero
real part and an inexact imaginary part; a complex number with an inexact zero imaginary part is a real number

MzScheme extends the number syntax ofR5RSin three ways:

• All input radixes (#b , #o , #d , and#x) allow “decimal” numbers that contain a period or exponent marker. For
example,#b1.1 is equivalent to1.5 . In hexadecimal numbers,e andd always stand for a hexadecimal digit,
not an exponent marker.

• The mantissa of a number with an exponent marker can be expressed as a fraction. For example,1/2e3 is
equivalent to500.0 , and1/2e2+1/2e4i is equivalent to50.0+5000.0i .

• The following are inexact numerical constants:+inf.0 (infinity), -inf.0 (negative infinity),+nan.0 (not
a number), and-nan.0 (same as+nan.0). These names can also be used within complex constants, as in
−inf.0 +inf.0i . These names are case-insensitive.

The special inexact numbers+inf.0 , −inf.0 , and+nan.0 have no exact form. Dividing by an inexact zero
returns+inf.0 or −inf.0 , depending on the sign of the dividend. The infinities are integers, and they answer#t
for both even? andodd? . The+nan.0 value is not an integer and is not= to itself, but+nan.0 is eqv? to
itself.2 Similarly, (= 0.0 −0.0) is #t , but (eqv? 0.0 −0.0) is #f .

All multi-argument arithmetic procedures operate pairwise on arguments from left to right.

Thestring->number procedure works on all number representations and exact integer radix values in the range
2 to 16 (inclusive). Thenumber->string procedure accepts all number types and the radix values2, 8, 10 , and
16 ; however, if an inexact number is provided with a radix other than10 , theexn:fail:contract exception is
raised.

Theadd1 andsub1 procedures work on any number:

• (add1 z) returnsz +1.

• (sub1 z) returnsz −1.

The following procedures work on integers:

• (quotient/remainder n1 n2) returns two values:(quotient n1 n2) and (remainder n1
n2) .

130 bits for a 32-bit architecture, 62 bits for a 64-bit architecture.
2This definition ofeqv? technically contradictsR5RS, butR5RSdoes not address strange “numbers” like+nan.0 .

13

3.3. Numbers 3. Basic Data Extensions

• (integer-sqrt n) returns the integer square-root ofn. For positiven, the result is the largest positive
integer bounded by the(sqrt n) . For negativen, the result is(∗ (integer-sqrt (− n)) 0 +i) .

• (integer-sqrt/remainder n) returns two values: (integer-sqrt n) and (− n (expt
(integer-sqrt n) 2)) .

The following procedures work on exact integers in their (semi-infinite) two’s complement representation:

• (bitwise-ior n · · ·) returns the bitwise “inclusive or” of thens. If no arguments are provided, the result
is 0.

• (bitwise-and n · · ·) returns the bitwise “and” of thens. If no arguments are provided, the result is-1 .

• (bitwise-xor n · · ·) returns the bitwise “exclusive or” of thens. If no arguments are provided, the result
is 0.

• (bitwise-not n) returns the bitwise “not” ofn.

• (arithmetic-shift n m) returns the bitwise “shift” ofn. The integern is shifted left bymbits; i.e.,m
new zeros are introduced as rightmost digits. Ifmis negative,n is shifted right by−mbits; i.e., the rightmostm
digits are dropped.

Therandom procedure generates pseudo-random numbers:

• (random k) returns a random exact integer in the range0 to k −1 wherek is an exact integer between 1 and
231−1, inclusive. The number is provided by the current pseudo-random number generator, which maintains
an internal state for generating numbers.3

• (random) returns a random inexact number between0 and1, exclusive, using the current pseudo-random
number generator.

• (random-seed k) seeds the current pseudo-random number generator withk , an exact integer between 0
and 231−1, inclusive. Seeding a generator sets its internal state deterministically; seeding a generator with a
particular number forces it to produce a sequence of pseudo-random numbers that is the same across runs and
across platforms.

• (pseudo-random-generator->vector generator) produces a vector that represents the complete
internal state ofgenerator . The vector is suitable as an argument tovector->pseudo-random-generator
to recreate the generator in its current state (across runs and across platforms).

• (vector->pseudo-random-generator vec) produces a pseudo-random number generator whose in-
ternal state corresponds tovec . The vectorvec must contain six exact integers; the first three integers must
be in the range0 to 4294967086 , inclusive; the last three integers must be in the range0 to 4294944442 ,
inclusive; at least one of the first three integers must be non-zero; and at least one of the last three integers must
be non-zero.

• (current-pseudo-random-generator) returns the current pseudo-random number generator, and
(current-pseudo-random-generator generator) sets the current generator togenerator .
See also§7.9.1.10.

• (make-pseudo-random-generator) returns a new pseudo-random number generator. The new gener-
ator is seeded with a number derived from(current-milliseconds) .

• (pseudo-random-generator? v) returns#t if v is a pseudo-random number generator,#f otherwise.

3The random number generator uses a 54-bit version of L’Ecuyer’s MRG32k3a algorithm.

14

3. Basic Data Extensions 3.4. Characters

The following procedures convert between Scheme numbers and common machine byte representations:

• (integer-bytes->integer bytes signed? [big-endian?]) converts the machine-format num-
ber encoded inbytes to an exact integer. Thebytes must contain either 2, 4, or 8 bytes. Ifsigned? is
true, then the bytes are decoded as a two’s-complement number, otherwise it is decoded as an unsigned integer.
If big-endian? is true, then the first character’s ASCII value provides the most significant eight bits of the
number, otherwise the first character provides the least-significant eight bits, and so on. The default value of
big-endian? is the result ofsystem-big-endian? .

• (integer->integer-bytes n size-n signed? [big-endian? to-bytes]) converts the
exact integern to a machine-format number encoded in a byte string of lengthsize-n , which must be 2,
4, or 8. If signed? is true, then the number is encoded with two’s complement, otherwise it is encoded as an
unsigned bit stream. Ifbig-endian? is true, then the most significant eight bits of the number are encoded
in the first character of the resulting byte string, otherwise the least-significant bits are encoded in the first byte,
and so on. The default value ofbig-endian? is the result ofsystem-big-endian? .

If to-bytes is provided, it must be a mutable byte string of lengthsize-n ; in that case, the encoding ofn is
written intoto-bytes , andto-bytes is returned as the result. Ifto-bytes is not provided, the result is a
newly allocated byte string.

If n cannot be encoded in a string of the requested size and format, theexn:fail:contract exception is
raised. Ifto-bytes is provided and it is not of lengthsize-n , theexn:fail:contract exception is
raised.

• (floating-point-bytes->real bytes [big-endian?]) converts the IEEE floating-point number
encoded inbytes to an inexact real number. Thebytes must contain either 4 or 8 bytes. Ifbig-endian?
is true, then the first byte’s ASCII value provides the most significant eight bits of the IEEE representation,
otherwise the first byte provides the least-significant eight bits, and so on. The default value ofbig-endian?
is the result ofsystem-big-endian? .

• (real->floating-point-bytes x size-n [big-endian? to-bytes]) converts the real
numberx to its IEEE representation in a byte string of lengthsize-n , which must be 4 or 8. Ifbig-endian?
is true, then the most significant eight bits of the number are encoded in the first byte of the resulting byte
string, otherwise the least-significant bits are encoded in the first character, and so on. The default value of
big-endian? is the result ofsystem-big-endian? .

If to-bytes is provided, it must be a mutable byte string of lengthsize-n ; in that case, the encoding ofn is
written intoto-bytes , andto-bytes is returned as the result. Ifto-bytes is not provided, the result is a
newly allocated byte string.

If to-bytes is provided and it is not of lengthsize-n , theexn:fail:contract exception is raised.

• (system-big-endian?) returns#t if the native encoding of numbers is big-endian for the machine run-
ning MzScheme,#f if the native encoding is little-endian.

3.4 Characters

MzScheme characters range over Unicode scalar values (see§1.2.1), which includes characters whose values range
from #x0 to #x10FFFF , but not including#xD800 to #xDFFF. The procedurechar->integer returns a charac-
ter’s code-point number, andinteger->char converts a code-point number to a character. Ifinteger->char
is given an integer that is either outside#x0 to #x10FFFF or in the excluded range#xD800 to #xDFFF, the
exn:fail:contract exception is raised.

Character constants include special named characters, such as#\newline , plus octal representations (e.g.,#\251),
and Unicode-style hexadecimal representations (e.g.,#\u03BB). See§11.2.4for more information on character con-
stants.

15

3.4. Characters 3. Basic Data Extensions

The character comparison procedureschar=? , char<? , char-ci=? , etc. take two or more character arguments
and check the arguments pairwise (like the numerical comparison procedures). Two characters areeq? whenever they
arechar=? . The expression(char<? char1 char2) produces the same result as(< (char->integer
char1) (char->integer char2)) , etc. The case-independent-ci procedures compare characters after case-
folding with char-foldcase (described below).

The character predicates produce results consistent with the Unicode database4 and (usually) SRFI-14. These proce-
dures are fully portable; their results do not depend on the current platform or locale.

• (char-alphabetic? char) — returns#t if char ’s Unicode general category isLu , Ll , Lt , Lm, or Lo ,
#f otherwise.

• (char-lower-case? char) — returns#t if char has the Unicode “Lowercase” property.

• (char-upper-case? char) — returns#t if char has the Unicode “Uppercase” property.

• (char-title-case? char) — returns#t if char ’s Unicode general category isLt , #f otherwise.

• (char-numeric? char) — returns#t if char ’s Unicode general category isNd, #f otherwise.

• (char-symbolic? char) — returns#t if char ’s Unicode general category isSm, Sc, Sk, or So, #f
otherwise.

• (char-punctuation? char) — returns#t if char ’s Unicode general category isPc, Pd, Ps, Pe, Pi ,
Pf , or Po, #f otherwise.

• (char-graphic? char) — returns #t if char ’s Unicode general category isMn, Mc, Me, or if
one of the following produces#t when applied tochar : char-alphabetic? , char-numeric? ,
char-symbolic? , or char-punctuation? .

• (char-whitespace? char) — returns#t if char ’s Unicode general category isZs , Zl , or Zp, or if
char is one of the following:#\tab , #\newline , #\vtab , #\page , or #\return .

• (char-blank? char) — returns#t if char ’s Unicode general category isZs or if char is #\tab .
(These correspond to horizontal whitespace.)

• (char-iso-control? char) — return#t if char is between#\u0000 and#\u001F inclusive or
#\u007F and#\u009F inclusive.

• (char-general-category char) — returns a symbol representing the character’s Unicode general cat-
egory, which is’lu , ’ll , ’lt , ’lm , ’lo , ’mn , ’mc , ’me , ’nd , ’nl , ’no , ’ps , ’pe , ’pi , ’pf , ’pd ,
’pc , ’po , ’sc , ’sm , ’sk , ’so , ’zs , ’zp , ’zl , ’cc , ’cf , ’cs , ’co , or ’cn .

Character conversions are also consistent with the 1-to-1 code point mapping defined by Unicode. String procedures
(see§3.5) handle the case where Unicode defines a locale-independent mapping from the code point to a code-point
sequence (in addition to the 1-1 mapping on scalar values).

• (char-upcase char) produces a character according to the upcase mapping provided by the Unicode
database forchar ; if char has no upcase mapping,char-upcase produceschar .

• (char-downcase char) produces a character according to the downcase mapping provided by the Uni-
code database forchar ; if char has no downcase mapping,char-downcase produceschar .

• (char-titlecase char) produces a character according to the titlecase mapping provided by the Uni-
code database forchar ; if char has no titlecase mapping,char-titlecase produceschar .

4The current version of MzScheme uses Unicode version 4.1.

16

3. Basic Data Extensions 3.5. Strings

• (char-foldcase char) produces a character according to the case-folding mapping provided by the Uni-
code database forchar .

(make-known-char-range-list) produces a list of three-element lists, where each three-element list rep-
resents a set of consecutive code points for which the Unicode standard specifies character properties. Each three-
element list contains two integers and a boolean; the first integer is a starting code-point value (inclusive), the second
integer is an ending code-point value (inclusive), and the boolean is#t when all characters in the code-point range
have identical results for all of the character predicates above. The three-element lists are ordered in the overall result
list such that later lists represent larger code-point values, and all three-element lists are separated from every other by
at least one code-point value that is not specified by Unicode.

(char-utf-8-length char) produces the same result as(bytes-length (string- >bytes/utf-8
(string char))) .

3.5 Strings

Since a string consists of a sequence of characters, a string in MzScheme is a Unicode code-point sequence. MzScheme
also provides byte strings, as well as functions to convert between byte strings and strings with respect to various
encodings, including UTF-8 and the current locale’s encoding. See§1.2 for an overview of Unicode, locales, and
encodings, and see§3.6for more specific information on byte-string conversions.

A string can be mutable or immutable. When an immutable string is provided to a procedure like
string-set! , the exn:fail:contract exception is raised. String constants generated byread are im-
mutable. (string->immutable-string string) returns an immutable string with the same content as
string , and it returnsstring itself if string is immutable. (See alsoimmutable? in §3.10.)

(substring string start-k [end-k]) returns a mutable string, even if thestring argument is im-
mutable. Theend-k argument defaults to(string-length string)

(string-copy! dest-string dest-start-k src-string [src-start-k src-end-k]) changes
the characters ofdest-string from positionsdest-start-k (inclusive) todest-end-k (exclusive) to match
the characters insrc-string from src-start-k (inclusive). If src-start-k is not provided, it defaults to
0. If src-end-k is not provided, it defaults to(string-length src-string) . The stringsdest-string
andsrc-string can be the same string, and in that case the destination region can overlap with the source region;
the destination characters after the copy match the source characters from before the copy. If any ofdest-start-k ,
src-start-k , or src-end-k are out of range (taking into account the sizes of the strings and the source and des-
tination regions), theexn:fail:contract exception is raised.

When a string is created withmake-string without a fill value, it is initialized with the null character (#\nul) in
all positions.

The string comparison proceduresstring=? , string<? , string-ci=? , etc. take two or more string argu-
ments and check the arguments pairwise (like the numerical comparison procedures). String comparisons are per-
formed through pairwise comparison of characters; for the-ci operations, the two strings are first case-folded using
string-foldcase (described below). Comparisons using all of these functions are fully portable; the results do
not depend on the current platform or locale.

The following string-conversion procedures take into account Unicode’s locale-independent conversion rules that map
code-point sequences to code-point sequences (instead of simply mapping a 1-to-1 function on code points over the
string). In each case, the string produced by the conversion can be longer than the input string.

• (string-upcase string) returns a string whose characters are the upcase conversion of the characters
in string .

17

3.5. Strings 3. Basic Data Extensions

• (string-downcase string) returns a string whose characters are the downcase conversion of the char-
acters instring .

• (string-titlecase string) returns a string where the first character in each sequence of cased char-
acters instring (ignoring case-ignorable characters) is converted to titlecase, and all other cased characters
are downcased.

• (string-foldcase string) returns a string whose characters are the case-fold conversion of the char-
acters instring .

Examples:

(string-upcase "abc!") ; ⇒ "ABC!"
(string-upcase "Stra \xDFe") ; ⇒ "STRASSE"

(string-downcase "aBC!") ; ⇒ "abc!"
(string-downcase "Stra \xDFe") ; ⇒ "stra \xDFe"
(string-downcase " \u039A\u0391 \u039F \u03A3") ; ⇒ " \u03BA\u03b1 \u03BF\u03C2"
(string-downcase " \u03A3") ; ⇒ " \u03C3"

(string-titlecase "aBC twO") ; ⇒ "Abc Two"
(string-titlecase "y2k") ; ⇒ "Y2K"
(string-titlecase "main stra \xDFe") ; ⇒ "Main Stra \xDFe"
(string-titlecase "stra \xDFe") ; ⇒ "Stra Sse"

(string-foldcase "aBC!") ; ⇒ "abc!"
(string-foldcase "Stra \xDFe") ; ⇒ "strasse"
(string-foldcase " \u039A\u0391 \u039F \u03A3") ; ⇒ " \u03BA\u03b1 \u03BF\u03C3"

In addition to the character-based string procedures, MzScheme provides the following locale-sensitive procedures
(see also§1.2.2and§7.9.1.11):

• (string-locale=? string1 string2 · · ·1)

• (string-locale<? string1 string2 · · ·1)

• (string-locale>? string1 string2 · · ·1)

• (string-locale-ci=? string1 string2 · · ·1)

• (string-locale-ci<? string1 string2 · · ·1)

• (string-locale-ci>? string1 string2 · · ·1)

• (string-locale-upcase string) — may produce a string that is longer or shorter thanstring if
the current locale has complex case-folding rules.

• (string-locale-downcase string) — like string-locale-upcase , may produce a string that
is longer or shorter thanstring

These procedures depend only on the current locale’s case-conversion and collation rules, and not on its encoding
rules.

MzScheme provides four Unicode-normalization procedures:

18

3. Basic Data Extensions 3.6. Byte Strings

• (string-normalize-nfd string) — returns a string that is the Unicode normalized form D of
string .

• (string-normalize-nfkd string) — returns a string that is the Unicode normalized form KD of
string .

• (string-normalize-nfc string) — returns a string that is the Unicode normalized form C of
string .

• (string-normalize-nfkc string) — returns a string that is the Unicode normalized form KC of
string .

For each of the normalization procedures, if the given string is already in the corresponding Unicode normal form, the
string may be returned directly as the result (instead of a newly allocated string).

3.6 Byte Strings

A byte string is like a string, but it a sequence of bytes instead of characters. Abyte is an exact integer between0 and
255 inclusive;(byte? v) produces#t if v is such an exact integer,#f otherwise. Two bytes strings areequal?
if they are bytewise equal, and two byte strings areeqv? only if they areeq? .

MzScheme provides byte-string operations in parallel to the character-string operations:

• (bytes? v)

• (bytes byte · · ·1)

• (make-bytes k [byte])

• (bytes-length bytes)

• (bytes-ref bytes k)

• (bytes-set! bytes k byte)

• (bytes-fill! bytes byte)

• (subbytes bytes start-k [end-k])

• (bytes-append bytes · · ·1)

• (bytes-copy bytes)

• (bytes-copy! dest-bytes dest-start-k src-bytes [src-start-k src-end-k])

• (bytes->list bytes)

• (list->bytes byte-list)

• (bytes->immutable-bytes bytes)

• (bytes=? bytes1 bytes2 · · ·1)

• (bytes<? bytes1 bytes2 · · ·1)

• (bytes>? bytes1 bytes2 · · ·1)

19

3.6. Byte Strings 3. Basic Data Extensions

A byte-string constant is written like a string, but prefixed with# (with no space between# and the opening double-
quote). A byte-string constant can contain escape sequences, as in#" \n" , just like strings; anexn:fail:read
exception is raised if a “\u” sequence appears within a byte string and the given hexadecimal value is larger than 255.

Like character strings, byte strings generated byread are immutable, and when an immutable string is provided to a
procedure likebytes-set! , theexn:fail:contract exception is raised.

The following procedures convert between byte strings and character strings:

• (bytes->string/utf-8 bytes [err-char start-k end-k]) — produces a string by decoding
the start-k to end-k substring ofbytes as a UTF-8 encoding of Unicode code points. Iferr-char
is provided and not#f , then it is used for bytes that fall in the range#o200 to #o377 but are not part of a
valid encoding sequence. (This is consistent with reading characters from a port; see§11.1for more details.)
If err-char is #f or not provided, and if thestart-k to end-k substring ofbytes is not a valid UTF-
8 encoding overall, then theexn:fail:contract exception is raised. Ifstart-k or end-k are not
provided, they default to0 and(bytes-length bytes) , respectively.

• (bytes->string/locale bytes [err-char start-k end-k]) — produces a string by decod-
ing the start-k to end-k substring ofbytes using the current locale’s encoding (see also§1.2.2). If
err-char is provided and not#f , it is used for each byte inbytes that is not part of a valid encoding; if
err-char is #f or not provided, and if thestart-k to end-k substring ofbytes is not a valid encoding
overall, then theexn:fail:contract exception is raised. Ifstart-k or end-k are not provided, they
default to0 and(bytes-length bytes) , respectively.

• (bytes->string/latin-1 bytes [err-char start-k end-k]) — produces a string by decod-
ing thestart-k to end-k substring ofbytes as a Latin-1 encoding of Unicode code points; i.e., each byte is
translated directly to a character usinginteger->char , so the decoding always succeeds.5 Theerr-char
argument is ignored, but for consistency with the other operations, it must be a character or#f if provided. If
start-k or end-k are not provided, they default to0 and(bytes-length bytes) , respectively.

• (string->bytes/utf-8 string [err-byte start-k end-k]) — produces a byte string by end-
ing thestart-k to end-k substring ofstring via UTF-8 (always succeeding). Theerr-char argument
is ignored, but for consistency with the other operations, it must be a byte or#f if provided. If start-k or
end-k are not provided, they default to0 and(string-length string) , respectively.

• (string->bytes/locale string [err-byte start-k end-k]) — produces a string by encod-
ing thestart-k to end-k substring ofstring using the current locale’s encoding (see also§1.2.2). If
err-byte is provided and not#f , it is used for each character instring that cannot be encoded for the cur-
rent locale; iferr-byte is #f or not provided, and if thestart-k to end-k substring ofstring cannot
be encoded, then theexn:fail:contract exception is raised. Ifstart-k or end-k are not provided,
they default to0 and(string-length string) , respectively.

• (string->bytes/latin-1 string [err-byte start-k end-k]) — produces a string by en-
coding thestart-k to end-k substring ofstring using Latin-1; i.e., each character is translated directly to
a byte usingchar->integer . If err-byte is provided and not#f , it is used for each character instring
whose value is greater than255 ;6 if err-byte is #f or not provided, and if thestart-k to end-k substring
of string has a character with a value greater than255 , then theexn:fail:contract exception is raised.
If start-k or end-k are not provided, they default to0 and(string-length string) , respectively.

• (string-utf-8-length string [start-k end-k]) returns the length in bytes of the UTF-8 en-
coding ofstring ’s substring fromstart-k to end-k , but without actually generating the encoded bytes.
If start-k is not provided, it defaults to0, andend-k defaults to(string-length string) .

5See also the Latin-1 footnote of§1.2.3.
6See also the Latin-1 footnote of§1.2.3.

20

3. Basic Data Extensions 3.6. Byte Strings

• (bytes-utf-8-length bytes [err-char start-k end-k]) returns the length in characters of
the UTF-8 decoding ofbytes ’s substring fromstart-k to end-k , but without actually generating the
decoded characters. Ifstart-k is not provided, it defaults to0, andend-k defaults to(bytes-length
bytes) . If err-char is #f and the substring is not a UTF-8 encoding overall, the result is#f . Otherwise,
err-char is used to resolve decoding errors as inbytes->string/utf-8 .

• (bytes-utf-8-ref bytes [skip-k err-char start-k end-k]) returns theskip-k th char-
acter in the UTF-8 decoding ofbytes ’s substring fromstart-k to end-k , but without actually gener-
ating the other decoded characters. Ifstart-k is not provided, it defaults to0, and end-k defaults to
(bytes-length bytes) . If the substring is not a UTF-8 encoding up to theskip-k th character (when
err-char is #f), or if the substring decoding produces fewer thanskip-k characters, the result is#f . If
err-char is not#f , it is used to resolve decoding errors as inbytes->string/utf-8 .

• (bytes-utf-8-index bytes [skip-k err-char start-k end-k]) returns the offset in bytes
into bytes at which theskip-k th character’s encoding starts in the UTF-8 decoding ofbytes ’s substring
from start-k to end-k (but without actually generating the other decoded characters). Ifstart-k is not
provided, it defaults to0, andend-k defaults to(bytes-length bytes) . The result is relative to the start
of bytes , not tostart-k . If the substring is not a UTF-8 encoding up to theskip-k th character (when
err-char is #f), or if the substring decoding produces fewer thanskip-k characters, the result is#f . If
err-char is not#f , it is used to resolve decoding errors as inbytes->string/utf-8 .

A string converter can be used to convert directly from one byte-string encoding of characters to another byte-string
encoding.

• (bytes-open-converter from-name-string to-name-string) — produces a string converter
to go from the encoding named byfrom-name-string to the encoding named byto-name-string . If
the requested conversion pair is not available,#f is returned instead of a converter.

Certain encoding combinations are always available:

– (bytes-open-converter "UTF-8" "UTF-8") — the identity conversion, except that encoding
errors in the input lead to a decoding failure.

– (bytes-open-converter "UTF-8-permissive" "UTF-8") — the identity conversion, ex-
cept that any input byte that is not part of a valid encoding sequence is effectively replaced by
(char->integer # \?) . (This handling of invalid sequences is consistent with the interpretation of
port bytes streams into characters; see§11.1.)

– (bytes-open-converter "" "UTF-8") — converts from the current locale’s default encoding
(see§1.2.2) to UTF-8.

– (bytes-open-converter "UTF-8" "") — converts from UTF-8 to the current locale’s default
encoding (see§1.2.2).

– (bytes-open-converter "platform-UTF-8" "platform-UTF-16") — converts UTF-8
to UTF-16 under Unix and Mac OS X, where each UTF-16 code unit is a sequence of two bytes ordered
by the current platform’s endianess. Under Windows, the input can include encodings that are not valid
UTF-8, but which naturally extend the UTF-8 encoding to support unpaired surrogate code units, and
the output is a sequence of UTF-16 code units (as little-endian byte pairs), potentially including unpaired
surrogates.

– (bytes-open-converter "platform-UTF-8-permissive" "platform-UTF-16") —
like (bytes-open-converter "platform-UTF-8" "platform-UTF-16") , but an input
byte that is not part of a valid UTF-8 encoding sequence (or valid for the unpaired-surrogate extension
under Windows) is effectively replaced with(char->integer # \?) .

– (bytes-open-converter "platform-UTF-16" "platform-UTF-8") — converts UTF-
16 (bytes orderd by the current platform’s endianness) to UTF-8 under Unix and Mac OS X. Under
Windows, the input can include UTF-16 code units that are unpaired surrogates, and the corresponding
output includes an encoding of each surrogate in a natural extension of UTF-8. Under Unix and Mac OS
X, surrogates are assumed to be paired: a pair of bytes with the bits#xD800 starts a surrogate pair, and

21

3.6. Byte Strings 3. Basic Data Extensions

the#x03FF bits are used from the pair and following pair (independent of the value of the#xDC00 bits).
On all platforms, performance may be poor when decoding from an odd offset within an input byte string.

A newly opened byte converter is registered with the current custodian (see§9.2), so that the converter is closed
when the custodian is shut down. A converter is not registered with a custodian (and does not need to be
closed) if it is one of the guaranteed combinations not involving"" under Unix, or if it is any of the guaranteed
combinations (including"") under Windows and Mac OS X.

The set of available encodings and combinations varies by platform, depending on theiconv library that is
installed. Under Windows,iconv.dll or libiconv.dll must be in the same directory aslibmzsch VERS.dll (where
VERS is a version number),7 in the user’s path, in the system directory, or in the current executable’s directory
at run time, and the DLL must either supplyerrno or link to msvcrt.dll for errno ; otherwise, only the
guaranteed combinations are available.

• (bytes-close-converter bytes-converter) — closes the given converter, so that it can no longer
be used withbytes-convert or bytes-convert-end .

• (bytes-convert bytes-converter src-bytes [src-start-k src-end-k dest-bytes dest-start-k
dest-end-k]) converts the bytes fromsrc-start-k to src-end-k in src-bytes . If dest-bytes
is supplied and not#f , the converted byte are written intodest-bytes from dest-start-k to
dest-end-k . If dest-bytes is not supplied or is#f , then a newly allocated byte string holds the con-
version results, and the size of the result byte string is no more than(− dest-end-k start-start-k) .

If src-start-k or dest-start-k is not provided, it defaults to0. If src-end-k is not provided,
it defaults to(bytes-length src-bytes . If src-end-k is not provided or is#f , then it defaults
to (bytes-length dest-bytes) whendest-bytes is a byte string or to an arbitrarily large integer
otherwise.

The result ofbytes-convert is three values:

– result-bytes or dest-wrote-k — a byte string ifdest-bytes is #f or not provided, or the
number of bytes written intodest-bytes otherwise.

– src-read-k — the number of bytes successfully converted fromsrc-bytes .
– ’complete , ’continues , ’aborts , or ’error — indicates how conversion terminated.

∗ ’complete : The entire input was processed, andsrc-read-k will be equal to(− src-end-k
src-start-k) .

∗ ’continues : Conversion stopped due to the limit on the result size or the space indest-bytes ;
in this case, fewer than(− dest-end-k dest-start-k) bytes may be returned if more space
is needed to process the next complete encoding sequence insrc-bytes .

∗ ’aborts : The input stopped part-way through an encoding sequence, and more input bytes are
necessary to continue. For example, if the last byte of input is#o303 for a"UTF-8-permissive"
decoding, the result is’aborts , because another byte is needed to determine how to use the#o303
byte.

∗ ’error : The bytes starting at(+ src-start-k src-read-k) bytes insrc-bytes do not
form a legal encoding sequence. This result is never produced for some encodings, where all byte
sequences are valid encodings. For example, since"UTF-8-permissive" handles an invalid
UTF-8 sequence by dropping characters or generating “?”, every byte sequence is effectively valid.

Applying a converter accumulates state in the converter (even when the third result ofbytes-convert is
’complete). This state can affect both further processing of input and further generation of output, but only
for conversions that involve “shift sequences” to change modes within a stream. To terminate an input sequence
and reset the converter, usebytes-convert-end .

• (bytes-convert-end bytes-converter [dest-bytes dest-start-k dest-end-k]) —
like bytes-convert , but instead of converting bytes, this procedure generates an ending sequence for the
conversion (sometimes called a “shift sequence”), if any. Few encodings use shift sequences, so this function

7In PLT’s software distributions for Windows, a suitableiconv.dll is included withlibmzsch VERS.dll .

22

3. Basic Data Extensions 3.7. Symbols

will succeed with no output for most encodings. In any case, successful output of a (possibly empty) shift
sequence resets the converter to its initial state.

The result ofbytes-convert-end is two values:

– result-bytes or dest-wrote-k — a byte string ifdest-bytes is #f or not provided, or the
number of bytes written intodest-bytes otherwise.

– ’complete or ’continues — indicates whether conversion completed. If’complete , then an
entire ending sequence was produced. If’continues , then the conversion could not complete due to
the limit on the result size or the space indest-bytes , and the first result is either an empty byte string
or 0.

• (bytes-converter? v) returns#t if v is a byte converter produced bybytes-open-converter ,
#f otherwise.

• (locale-string-encoding) returns a string for the current locale’s encoding (i.e., the encoding normally
identified by""). See alsosystem-language+country in §15.5.

3.7 Symbols

For information about symbol parsing and printing, see§11.2.4and§11.2.5, respectively.

MzScheme provides two ways of generating anuninterned symbol, i.e., a symbol that is noteq? , eqv? , or equal?
to any other symbol, although it may print the same as another symbol:

• (string->uninterned-symbol string) is like (string->symbol string) , but the resulting
symbol is a new uninterned symbol. Callingstring->uninterned-symbol twice with the samestring
returns two distinct symbols.

• (gensym [symbol/string]) creates an uninterned symbol with an automatically-generated name. The
optionalsymbol/string argument is a prefix symbol or string.

Regular (interned) symbols are only weakly held by the internal symbol table. This weakness can never affect the
result of aneq? , eqv? , or equal? test, but a symbol may disappear when placed into a weak box (see§13.1) used
as the key in a weak hash table (see§3.14), or used as an ephemeron key (see§13.2).

3.8 Keywords

A symbol-like datum that starts with a hash and colon (“#:”) is parsed as akeyword constant. Keywords behave like
symbols — two keywords areeq? if and only if they print the same — but they are a distinct set of values.

• (keyword? v) returns#t if v is a keyword,#f otherwise.

• (keyword->string keyword) returns a string for thedisplay ed form ofkeyword , not including the
leading#: .

• (string->keyword string) returns a keyword whosedisplay ed form is the same as that ofstring ,
but with a leading#: .

Like symbols, keywords are only weakly held by the internal keyword table; see§3.7for more information.

23

3.9. Vectors 3. Basic Data Extensions

3.9 Vectors

When a vector is created withmake-vector without a fill value, it is initialized with0 in all positions. A vector
can be immutable, such as a vector returned bysyntax-e , but vectors generated byread are mutable. (See also
immutable? in §3.10.)

(vector->immutable-vector vec) returns an immutable vector with the same content asvec , and it returns
vec itself if vec is immutable. (See alsoimmutable? in §3.10.)

(vector-immutable v · · ·1) is like (vector v · · ·1) except that the resulting vector is immutable. (See
alsoimmutable? in §3.10.)

3.10 Lists

A cons cell can be mutable or immutable. When an immutable cons cell is provided to a procedure likeset-cdr! ,
theexn:fail:contract exception is raised. Cons cells generated byread are always mutable.

The global variablenull is bound to the empty list.

(reverse! list) is the same as(reverse list) , but list is destructively reversed usingset-cdr! (i.e.,
each cons cell inlist is mutated).

(append! list · · ·1) is like (append list) , but it destructively appends thelist s (i.e., except for the last
list , the last cons cell of eachlist is mutated to append the lists; empty lists are essentially dropped).

(list* v · · ·1) is similar to (list v · · ·1) but the last argument is used directly as thecdr of the last pair
constructed for the list:

(list* 1 2 3 4) ; ⇒ ’(1 2 3 . 4)

(cons-immutable v1 v2) returns an immutable pair whosecar is v1 andcdr is v2 .

(list-immutable v · · ·1) is like (list v · · ·1) , but using immutable pairs.

(list*-immutable v · · ·1) is like (list* v · · ·1) , but using immutable pairs.

(immutable? v) returns#t if v is an immutable cons cell, string, vector, box, or hash table,#f otherwise.

The list-ref and list-tail procedures accept an improper list as a first argument. If either procedure
is applied to an improper list and an index that would require taking thecar or cdr of a non-cons-cell, the
exn:fail:contract exception is raised.

Themember, memv, andmemqprocedures accept an improper list as a second argument. If the membership search
reaches the improper tail, theexn:fail:contract exception is raised.

The assoc , assv , andassq procedures accept an improperly formed association list as a second argument. If
the association search reaches an improper list tail or a list element that is not a pair, theexn:fail:contract
exception is raised.

3.11 Boxes

MzScheme providesboxes, which are records that have a single field:

• (box v) returns a new mutable box that containsv .

24

3. Basic Data Extensions 3.12. Procedures

• (box-immutable v) returns a new immutable box that containsv .

• (unbox box) returns the content ofbox . For anyv , (unbox (box v)) returnsv .

• (set-box! mutable-box v) sets the content ofmutable-box to v .

• (box? v) returns#t if v is a box,#f otherwise.

Two boxes areequal? if the contents of the boxes areequal? .

A box returned bysyntax-e (see §12.2.2) is immutable; if set-box! is applied to such a box, the
exn:fail:contract exception is raised. A box produced byread (via #&) is mutable. (See alsoimmutable?
in §3.10.)

3.12 Procedures

See§4.6for information on defining new procedure types.

3.12.1 Arity

MzScheme’sprocedure-arity procedure returns the input arity of a procedure:

• (procedure-arity proc) returns information about the number of arguments accepted by the procedure
proc . The resulta is either:

– an exact non-negative integer⇒ the procedure always takes exactlya arguments;
– anarity-at-least 8 instance ⇒ the procedure takes(arity-at-least-value a) or more

arguments; or
– a list containing integers andarity-at-least instances⇒ the procedure takes any number of argu-

ments that can match one of the arities in the list.

• (procedure-arity-includes? proc k) returns#t if the procedure can acceptn arguments (where
k is an exact, non-negative integer),#f otherwise.

Examples:

(procedure-arity cons) ; ⇒ 2
(procedure-arity list) ; ⇒ #<struct:arity −at −least >
(arity-at-least? (procedure-arity list)) ; ⇒ #t
(arity-at-least-value (procedure-arity list)) ; ⇒ 0
(arity-at-least-value (procedure-arity (lambda (x . y) x))) ; ⇒ 1
(procedure-arity (case-lambda [(x) 0] [(x y) 1])) ; ⇒ ’(1 2)
(procedure-arity-includes? cons 2) ; ⇒ #t
(procedure-arity-includes? display 3) ; ⇒ #f

When compiling alambda or case-lambda expression, MzScheme looks for a’method-arity-error prop-
erty attached to the expression (see§12.6.2). If it is present with a true value, and if no case of the procedure accepts
zero arguments, then the procedure is marked so that anexn:fail:contract:arity exception involving the
procedure will hide the first argument, if one was provided. (Hiding the first argument is useful when the procedure
implements a method, where the first argument is implicit in the original source). The property affects only the format
of exn:fail:contract:arity exceptions, not the result ofprocedure-arity .

8Thearity-at-least structure type is transparent to all inspectors (see§4.5).

25

3.13. Promises 3. Basic Data Extensions

3.12.2 Primitives

A primitive procedure is a built-in procedure that is implemented in low-level language. Not all built-in procedures
are primitives, but almost allR5RSprocedures are primitives, as are most of the procedures described in this manual.

• (primitive? v) returns#t if v is a primitive procedure or#f otherwise.

• (primitive-result-arity prim-proc) returns the arity of the result of the primitive procedure
prim-proc (as opposed to the procedure’s input arity as returned byarity ; see§3.12.1). For most primi-
tives, this procedure returns1, since most primitives return a single value when applied. For information about
arity values, see§3.12.1.

• (primitive-closure? v) returns#t if v is internally implemented as a primitive closure rather than a
simple primitive procedure,#f otherwise. This information is intended for use by themzc compiler.

3.12.3 Procedure Names

See§6.2.3for information about the names of primitives, and the names inferred forlambda andcase-lambda
procedures.

3.12.4 Closure Equality

(procedure-closure-contents-eq? proc1, proc2) return#t if the proceduresproc1 andproc2
refer to the same code closed over the same values, where each value is compared witheq? .

Inlining and other compiler optimizations limit the usefulness of this procedure, because code can be duplicated or
merged. Since the amount of duplication from inlining is limited, however,procedure-closure-contents-eq?
is useful for some caching purposes.

Example:

(let ([f #f])
;; Using set! likely prevents inlining:
(set! f (lambda (x) (lambda () x)))
(procedure-closure-contents-eq? (f ’a) (f ’a)) ; ⇒ #t, probably
(procedure-closure-contents-eq? (f ’a) (f ’b))) ; ⇒ #f, definitely

(let ([f (lambda (x) (lambda () x))])
(procedure-closure-contents-eq? (f ’a) (f ’a)))

;; ⇒ #f, probably, because inling likely duplicates f ’s body

3.13 Promises

Theforce procedure can only be applied to values returned bydelay , and promises are never implicitlyforce d.

(promise? v) returns#t if v is a promise created bydelay , #f otherwise.

3.14 Hash Tables

(make-hash-table [flag-symbol flag-symbol]) creates and returns a new hash table. If provided, each
flag-symbol must one of the following:

26

3. Basic Data Extensions 3.14. Hash Tables

• ’weak — creates a hash table with weakly-held keys (see§13.1).

• ’equal — creates a hash table that compares keys usingequal? instead ofeq? (needed, for example, when
using strings as keys).

By default, key comparisons useeq? . If the secondflag-symbol is redundant, theexn:fail:contract
exception is raised.

Two hash tables areequal? if they are created with the same flags, and if they map the same keys toequal? values
(where “same key” means eithereq? or equal? , depending on the way the hash table compares keys).

(make-immutable-hash-table assoc-list [flag-symbol]) creates an immutable hash table. (See
alsoimmutable? in §3.10.) Theassoc-list must be a list of pairs, where thecar of each pair is a key, and the
cdr is the corresponding value. The mappings are added to the table in the order that they appear inassoc-list , so
later mappings can hide earlier mappings. If the optionalflag-symbol argument is provided, it must be’equal ,
and the created hash table compares keys withequal? ; otherwise, the created table compares keys witheq? .

(hash-table? v [flag-symbol flag-symbol]) returns#t if v was created bymake-hash-table
or make-immutable-hash-table with the givenflag-symbol s (or more),#f otherwise. Each provided
flag-symbol must be a distinct flag supported bymake-hash-table ; if the secondflag-symbol is redun-
dant, theexn:fail:contract exception is raised.

(hash-table-put! hash-table key-v v) mapskey-v to v in hash-table , overwriting any existing
mapping forkey-v . If hash-table is immutable, theexn:fail:contract exception is raised.

(hash-table-get hash-table key-v [failure-thunk-or-value]) returns the value forkey-v
in hash-table . If no value is found forkey-v , then failure-thunk-or-value determines the re-
sult: if failure-thunk-or-value is not provided, theexn:fail:contract exception is raised; if
failure-thunk-or-value is a procedure, it is called (through a tail call) with no arguments to produce the
result; finally, if failure-thunk-or-value is provided and not a procedure, it is used as the result.

(hash-table-remove! hash-table key-v) removes the value mapping forkey-v if it exists in
hash-table . If hash-table is immutable, theexn:fail:contract exception is raised.

(hash-table-map hash-table proc) applies the procedureproc to each element inhash-table , accu-
mulating the results into a list. The procedureproc must take two arguments: a key and its value. See the caveat
below about concurrent modification.

(hash-table-for-each hash-table proc) applies the procedureproc to each element inhash-table
(for the side-effects ofproc) and returns void. The procedureproc must take two arguments: a key and its value.
See the caveat below about concurrent modification.

(hash-table-count hash-table) returns the number of keys mapped byhash-table . If hash-table
is not created with’weak , then the result is computed in constant time and atomically. Ifhash-table is created
with ’weak , see the caveat below about concurrent modification.

(hash-table-copy hash-table) returns a mutable hash table with the same mappings, same key-comparison
mode, and same key-holding strength ashash-table .

(eq-hash-code v) returns an exact integer; for any twoeq? values, the returned integer is the same. Further-
more, for the result integerk and any other exact integerj , (= k j) implies(eq? k j) .

(equal-hash-code v) returns an exact integer; for any twoequal? values, the returned integer is the same.
Furthermore, for the result integerk and any other exact integerj , (= k j) implies (eq? k j) . If v contains a
cycle through pairs, vectors, boxes, and inspectable structure fields, thenequal-hash-code applied tov will loop
indefinitely.

27

3.14. Hash Tables 3. Basic Data Extensions

Caveat concerning concurrent modification: A hash table can be manipulated withhash-table-get ,
hash-table-put! , andhash-table-remove! concurrently by multiple threads, and the operations are pro-
tected by a table-specific semaphore as needed. A few caveats apply, however:

• If a thread is terminated while applyinghash-table-get , hash-table-put! , orhash-table-remove!
to a hash table that usesequal? comparisons, all current and future operations on the hash table block indefi-
nitely.

• Thehash-table-map , hash-table-for-each , andhash-table-count procedures do not use the
table’s semaphore. Consequently, if a hash table is extended with new keys by another thread while a map,
for-each, or count is in process, arbitrary key–value pairs can be dropped or duplicated in the map or for-each.
Similarly, if a map or for-each procedure itself extends the table, arbitrary key–value pairs can be dropped or
duplicated. However, key mappings can be deleted or remapped by any thread with no adverse affects (i.e., the
change does not affect a traversal if the key has been seen already, otherwise the traversal skips a deleted key or
uses the remapped key’s new value).

Caveat concerning mutable keys:If a key into anequal? -based hash table is mutated (e.g., a key string is modified
with string-set!), then the hash table’s behavior for put and get operations becomes unpredictable.

28

4. Structures

A structure type is a record datatype composing a number offields. A structure, an instance of a structure type, is
a first-class value that contains a value for each field of the structure type. A structure instance is created with a
type-specific constructor procedure, and its field values are accessed and changed with type-specific selector and setter
procedures. In addition, each structure type has a predicate procedure that answers#t for instances of the structure
type and#f for any other value.

4.1 Defining Structure Types

A new structure type can be created with one of fourdefine-struct forms:

(define-struct s (field · · ·) [inspector-expr])
(define-struct (s t) (field · · ·) [inspector-expr])

wheres , t , and eachfield are identifiers. The latter form is described in§4.2. The optionalinspector-expr ,
which should produce an inspector or#f , is explained in§4.5.

A define-struct expression withn field s defines 4+2n names:

• struct: s , astructure type descriptor value that represents the new datatype. This value is rarely used directly.

• make- s , a constructor procedure that takesn arguments and returns a new structure value.

• s?, a predicate procedure that returns#t for a value constructed bymake- s (or the constructor for a subtype;
see§4.2) and#f for any other value.

• s - field , for eachfield , an accessor procedure that takes a structure value and extracts the value forfield .

• set- s - field ! , for eachfield , a mutator procedure that takes a structure and a new field value. The field
value in the structure is destructively updated with the new value, and void is returned.

• s , a syntax binding that encapsulates information about the structure type declaration. This binding is used to
define subtypes (see§4.2). It also works with theshared andmatch forms (see Chapter 40 and Chapter 25
of PLT MzLib: Libraries Manual). For detailed information about the expansion-time information stored ins ,
see§12.6.4.

Each time adefine-struct expression is evaluated, a new structure type is created with distinct constructor,
predicate, accessor, and mutator procedures. If the samedefine-struct expression is evaluated twice, instances
created by the constructor returned by the first evaluation will answer#f to the predicate returned by the second
evaluation.

Examples:

(define-struct cons-cell (car cdr))
(define x (make-cons-cell 1 2))

29

4.2. Creating Subtypes 4. Structures

(cons-cell? x) ; ⇒ #t
(cons-cell-car x) ; ⇒ 1
(set-cons-cell-car! x 5)
(cons-cell-car x) ; ⇒ 5

(define orig-cons-cell? cons-cell?)
(define-struct cons-cell (car cdr))
(define y (make-cons-cell 1 2))
(cons-cell? y) ; ⇒ #t
(cons-cell? x) ; ⇒ #f, cons-cell? now checks for a different type
(orig-cons-cell? x) ; ⇒ #t
(orig-cons-cell? y) ; ⇒ #f

The let-struct form binds structure identifiers in a lexical scope; it does not support aninspector-expr .

(let-struct s (field · · ·)
body-expr · · ·1)

(let-struct (s t) (field · · ·)
body-expr · · ·1)

4.2 Creating Subtypes

The latterdefine-struct form shown in§4.1creates a new structure type that is astructure subtype of an existing
base structure type. An instance of a structure subtype can always be used as an instance of the base structure type,
but the subtype gets its own predicate procedure and may have its own fields in addition to the fields of the base type.

The t identifier in a subtypingdefine-struct form must be bound to syntax describing a structure type decla-
ration. Normally, it is the name of a structure type previously declared withdefine-struct . The information
associated witht is used to access the base structure type for the new subtype.

A structure subtype “inherits” the fields of its base type. If the base type hasmfields, and ifn fields are specified in the
subtypingdefine-struct expression, then the resulting structure type hasm+n fields. Consequently,m+n field
values must be provided to the subtype’s constructor procedure. Values for the firstmfields of a subtype instance are
accessed with selector procedures for the original base type, and the lastn are accessed with subtype-specific selectors.
Subtype-specific accessors and mutators for the firstmfields are not created.

Examples:

(define-struct cons-cell (car cdr))
(define x (make-cons-cell 1 2))
(define-struct (tagged-cons-cell cons-cell) (tag))
(define z (make-tagged-cons-cell 3 4 ’t))
(cons-cell? z) ; ⇒ #t
(tagged-cons-cell? z) ; ⇒ #t
(tagged-cons-cell? x) ; ⇒ #f
(cons-cell-car z) ; ⇒ 3
(tagged-cons-cell-tag z) ; ⇒ ’t

4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties

Themake-struct-type procedure creates a new structure type in the same way as thedefine-struct form
of §4.1, but provides a more general interface. In particular, themake-struct-type procedure supports structure
type properties.

30

4. Structures 4.3. Structure Types with Automatic Fields, Immutable Fields, and Properties

• (make-struct-type name-symbol super-struct-type init-field-k auto-field-k [auto-v
prop-value-list inspector-or-false proc-spec immutable-k-list guard-proc]) cre-
ates a new structure type. Thename-symbol argument is used as the type name. Ifsuper-struct-type
is not#f , the new type is a subtype of the corresponding structure type, as described in§4.2.

The new structure type hasinit-field-k + auto-field-k fields (in addition to any fields from
super-struct-type), but only init-field-k constructor arguments (in addition to any constructor
arguments fromsuper-struct-type). The remaining fields are initialized withauto-v , which defaults
to #f .

Theprop-value-list argument is a list of pairs, where thecar of each pair is a structure type property
descriptor, and thecdr is an arbitrary value. The default isnull . See§4.4 for more information about
properties.

Theinspector-or-false argument controls access to debugging information about the structure type and
its instances; see§4.5for more information.

The proc-spec argument can be#f , an exact non-negative integer, or a procedure. The default is#f . If
an integer or procedure is provided, instances of the structure type act as procedures. See§4.6 for further
information.

The immutable-k-list argument provides a list of exact, non-negative integers that identify immutable
field positions. Each element in the list should be unique, otherwiseexn:fail:contract exception is
raised. Each element should also fall in the range0 (inclusive) andinit-field-k (exclusive), otherwise
exn:fail:contract exception is raised.

The guard-proc argument is either a procedure ofn + 1 arguments or#f , wheren is the number of ar-
guments for the new structure type’s constructor (i.e.,init-field-k plus constructor arguments implied
by super-struct-type , if any). If guard-proc is a procedure, then the procedure is called whenever
an instance of the type is constructed, or whenever an instance of a subtype is created. The arguments to
guard-proc are the values provided for the structure’s firstn fields, followed by the name of the instantiated
structure type (which isname-symbol , unless a subtype is instantiated). Theguard-proc result should be
n values, which become the actual value for the structure’s fields. Theguard-proc can raise an exception
to prevent creation of a structure with the given field values. If a structure subtype has its own guard, the sub-
type guard is applied first, and the firstn values produced by the subtype’s guard procedure become the firstn
arguments toguard-proc .

The result of make-struct-type is five values, which are similar to the values produced by
define-struct (see§4.1):

– a structure type descriptor,
– a constructor procedure,
– a predicate procedure,
– an accessor procedure, which consumes a structure and a field index between 0 (inclusive) and

init-field-k +auto-field-k (exclusive), and
– a mutator procedure, which consumes a structure, a field index, and a field value.

Unlike define-struct , make-struct-type returns a single accessor procedure and a single mutator proce-
dure for all fields. Themake-struct-field-accessor andmake-struct-field-mutator procedures
convert a type-specific accessor or mutator returned bymake-struct-type into a field-specific accessor or muta-
tor:

• (make-struct-field-accessor accessor-proc field-pos-k field-name-symbol) re-
turns a field accessor that is equivalent to

(lambda (s) (accessor-proc s field-pos-k))

Theaccessor-proc must be an accessor returned bymake-struct-type . The name of the resulting pro-
cedure for debugging purposes is derived fromfield-name-symbol and the name ofaccessor-proc ’s
structure type.

31

4.4. Structure Type Properties 4. Structures

• (make-struct-field-mutator mutator-proc field-pos-k field-name-symbol) returns
a field mutator that is equivalent to

(lambda (s v) (mutator-proc s field-pos-k v))

Themutator-proc must be a mutator returned bymake-struct-type . The name of the resulting pro-
cedure for debugging purposes is derived fromfield-name-symbol and the name ofmutator-proc ’s
structure type.

Examples:

(define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type ’a #f 2 1 ’uninitialized))

(define an-a (make-a ’x ’y))
(a-ref an-a 1) ; ⇒ ’y
(a-ref an-a 2) ; ⇒ ’uninitialized
(define a-first (make-struct-field-accessor a-ref 0))
(a-first an-a) ; ⇒ ’x

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type ’b struct:a 1 2 ’b-uninitialized))

(define a-b (make-b ’x ’y ’z))
(a-ref a-b 1) ; ⇒ ’y
(a-ref a-b 2) ; ⇒ ’uninitialized
(b-ref a-b 0) ; ⇒ z
(b-ref a-b 1) ; ⇒ ’b-uninitialized
(b-ref a-b 2) ; ⇒ ’b-uninitialized

(define-values (struct:c make-c c? c-ref c-set!)
(make-struct-type ’c struct:b 0 0 #f null (make-inspector) #f null

;; Guard checks for a number, and makes it inexact
(lambda (a1 a2 b1 name)

(unless (number? a2)
(error (string->symbol (format "make-˜a" name))

"second field must be a number"))
(values a1 (exact->inexact a2) b1))))

(make-c ’x ’y ’z) ; ⇒ error: "make-c: second field must be a number"
(define a-c (make-c ’x 2 ’z))
(a-ref a-c 1) ; ⇒ 2.0

4.4 Structure Type Properties

A structure type property allows per-type information to be associated with a structure type (as opposed to per-instance
information associated with a structure value). A property value is associated with a structure type through the
make-struct-type procedure (see§4.3). Subtypes inherit the property values of their parent types, and sub-
types can override an inherited property value with a new value. (See§11.2.10for a built-in property that controls how
struct values are printed.)

(make-struct-type-property name-symbol [guard-proc]) creates a new structure type property and
returns three values:

• a structure property type descriptor, for use withmake-struct-type ;

32

4. Structures 4.5. Structure Inspectors

• a predicate procedure, which takes an arbitrary value and returns#t if the value is a descriptor or instance of a
structure type that has a value for the property,#f otherwise;

• an accessor procedure, which returns the value associated with structure type given its descriptor or one of its
instances; if the structure type does not have a value for the property, or if any other kind of value is provided,
theexn:fail:contract exception is raised.

If the optional guard-proc is supplied, it is called bymake-struct-type before attaching the property
to a new structure type. Theguard-proc must accept two arguments: a value for the property supplied to
make-struct-type , and a list containing information about the new structure type. The list contains the val-
ues thatstruct-type-info would return for the new structure type if it skipped the current-inspector control
check (see§4.5).

The result of callingguard-proc is associated with the property in the target structure type, instead of the
value supplied tomake-struct-type . To reject a property association (e.g., because the value supplied to
make-struct-type is inappropriate for the property), the guard can raise an exception. Such an exception pre-
ventsmake-struct-type from returning a structure type descriptor.

(struct-type-property? v) returns#t if v is a structure type property descriptor value,#f otherwise.

Examples:

(define-values (prop:p p? p-ref) (make-struct-type-property ’p))

(define-values (struct:a make-a a? a-ref a-set!)
(make-struct-type ’a #f 2 1 ’uninitialized (list (cons prop:p 8))))

(p? struct:a) ; ⇒ #t
(p? 13) ; ⇒ #f
(define an-a (make-a ’x ’y))
(p? an-a) ; ⇒ #t
(p-ref an-a) ; ⇒ 8

(define-values (struct:b make-b b? b-ref b-set!)
(make-struct-type ’b #f 0 0 #f))

(p? struct:b) ; ⇒ #f

4.5 Structure Inspectors

An inspector provides access to structure fields and structure type information without the normal field accessors and
mutators. (Inspectors are also used to control access to module bindings; see§9.4.) Inspectors are primarily intended
for use by debuggers.

When a structure type is created, an inspector can be supplied. The given inspector is not the one that will control
the new structure type; instead, the given inspector’s parent will control the type. By using the parent of the given
inspector, the structure type remains opaque to “peer” code that cannot access the parent inspector. Thus, an expression
of the form

(define-struct s (field · · ·))

creates a structure type whose instances are opaque to peer code. In contrast, the following idiom creates a structure
type that is transparent to peer code, because the supplied inspector is a newly created child of the current inspector:

(define-struct s (field · · ·) (make-inspector))

33

4.5. Structure Inspectors 4. Structures

Instead of supplying an inspector,#f can be provided, which makes the structure transparent to all code. Thus,

(define-struct s (field · · ·) #f)

creates a structure type that is transparent to all code.

Thecurrent-inspector parameter determines a default inspector argument for new structure types. An alternate
inspector can be provided though the optionalinspector-expr expression of thedefine-struct form (see
§4.1), as shown above, or through an optionalinspector argument tomake-struct-type (see§4.3).

(make-inspector [inspector]) returns a new inspector that is a subinspector ofinspector . If
inspector is not provided, the new inspector is a subinspector of the current inspector. Any structure type con-
trolled by the new inspector is also controlled by its ancestor inspectors, but no other inspectors.

(inspector? v) returns#t if v is an inspector,#f otherwise.

Thestruct-info andstruct-type-info procedures provide inspector-based access to structure and structure
type information:

• (struct-info v) returns two values:

– struct-type : a structure type descriptor or#f ; the result is a structure type descriptor of the most
specific type for whichv is an instance, and for which the current inspector has control, or the result is#f
if the current inspector does not control any structure type for which thestruct is an instance.

– skipped? : #f if the first result corresponds to the most specific structure type ofv , #t otherwise.

• (struct-type-info struct-type) returns eight values that provide information about the structure
type descriptorstruct-type , assuming that the type is controlled by the current inspector:

– name-symbol : the structure type’s name as a symbol;
– init-field-k : the number of fields defined by the structure type provided to the constructor procedure

(not counting fields created by its ancestor types);
– auto-field-k : the number of fields defined by the structure type without a counterpart in the construc-

tor procedure (not counting fields created by its ancestor types);
– accessor-proc : an accessor procedure for the structure type, like the one returned by

make-struct-type ;
– mutator-proc : a mutator procedure for the structure type, like the one returned by

make-struct-type ;
– immutable-k-list : an immutable list of exact non-negative integers that correspond to immutable

fields for the structure type;
– super-struct-type : a structure type descriptor for the most specific ancestor of the type that is

controlled by the current inspector, or#f if no ancestor is controlled by the current inspector;
– skipped? : #f if the seventh result is the most specific ancestor type or if the type has no supertype,#t

otherwise.

If the type forstruct-type is not controlled by the current inspector, theexn:fail:contract exception
is raised.

• (struct-type-make-constructor struct-type) returns a constructor procedure to create in-
stances of the type forstruct-type . If the type forstruct-type is not controlled by the current inspector,
theexn:fail:contract exception is raised.

• (struct-type-make-predicate struct-type) returns a predicate procedure to recognize in-
stances of the type forstruct-type . If the type forstruct-type is not controlled by the current inspector,
theexn:fail:contract exception is raised.

34

4. Structures 4.6. Structures as Procedures

4.6 Structures as Procedures

If an integer or procedure is provided as theproc-spec argument tomake-struct-type (see§4.3), instances
of the new structure type are procedures. In particular, whenprocedure? is applied to the instance, the result will
be#t . When an instance is used in the function position of an application expression, a procedure is extracted from
the instance and used to complete the procedure call.

If proc-spec is an integer, it designates a field within the structure that should contain a procedure. The
proc-spec integer must be between 0 (inclusive) andinit-field-k (exclusive). The designated field becomes
immutable, so that after an instance of the structure is created, its procedure cannot be changed. (Otherwise, the arity
and name of the instance could change, and such mutations are generally not allowed for procedures.) When the
instance is used as the procedure in an application expression, the value of the designated field in the instance is used
to complete the procedure call.1 That procedure receives all of the arguments from the application expression. The
procedure’s name (see§6.2.3) and arity (see§3.12.1) are also used for the name and arity of the structure. If the value
in the designated field is not a procedure, then the instance behaves like(case-lambda) (i.e., a procedure which
does not accept any number of arguments).

Example:

(define-values (struct:ap make-annotated-proc annotated-proc? ap-ref ap-set!)
(make-struct-type ’annotated-proc #f 2 0 #f null #f 0))

(define (proc-annotation p) (ap-ref p 1))
(define plus1 (make-annotated-proc

(lambda (x) (+ x 1))
"adds 1 to its argument"))

(procedure? plus1) ; ⇒ #t
(annotated-proc? plus1) ; ⇒ #t
(plus1 10) ; ⇒ 11
(proc-annotation plus1) ; ⇒ "adds 1 to its argument"

If proc-spec is a procedure, it should accept at least one argument. When an instance of the structure is used in
an application expression, theproc-spec procedure is called with the instance as the first argument. The remaining
arguments to theproc-spec procedure are the arguments from the application expression. Thus, if the applica-
tion expression contained five arguments,proc-spec is called with six arguments. The name of the instance (see
§6.2.3) is unaffected byproc-spec , but the instance’s arity is determined by subtracting one from every possible
argument count ofproc-spec . If proc-spec cannot accept at least one argument, then the instance behaves like
(case-lambda) .

(define-values (struct:fish make-fish fish? fish-ref fish-set!)
(make-struct-type ’fish #f 2 0 #f null #f

(lambda (f n) (fish-set! f 0 (+ n (fish-ref f 0))))))
(define (fish-weight f) (fish-ref f 0))
(define (fish-color f) (fish-ref f 1))
(define wanda (make-fish 12 ’red))
(fish? wanda) ; ⇒ #t
(procedure? wanda) ; ⇒ #t
(fish-weight wanda) ; ⇒ 12
(for-each wanda ’(1 2 3))
(fish-weight wanda) ; ⇒ 18

If a structure type generates procedure instances, then subtypes of the type also generate procedure instances. The
instances behave the same as instances of the original type. When aproc-spec is supplied with a supertype that

1This procedure can be another structure that acts as a procedure. The immutability of procedure fields disallows cycles in the procedure graph,
so that the procedure call will eventually continue with a non-structure procedure.

35

4.7. Structures as Synchronizable Events 4. Structures

already behaves as a procedure, theexn:fail:contract exception is raised.

4.7 Structures as Synchronizable Events

The built-inprop:evt structure type property identifies structure types whose instances can serve as synchronizable
events; see§7.7for information on synchronization and events.

The property value can be any of the following:

• An eventevt : In this case, using the structure as an event is equivalent to usingevt .

• A procedureproc of one argument: In this case, the structure is similar to an event generated byguard-evt ,
except that the would-be guard procedureproc receives the structure as an argument, instead of no arguments.

• An exact, non-negative integer between0 (inclusive) andinit-field-k (exclusive): The integer identifies a
field in the structure. If the field contains an object or an event-generating procedure of one argument, the event
or procedure is used as above. Otherwise, the structure acts as an event that is never ready.

Examples:

(define-values (struct:wt make-wt wt? wt-ref wt-set!)
(make-struct-type ’wt #f 2 0 #f (list (cons prop:evt 0)) #f #f ’(0)))

(define sema (make-semaphore))
(sync/timeout 0 (make-wt sema #f)) ; ⇒ #f
(semaphore-post sema)
(sync/timeout 0 (make-wt sema #f)) ; ⇒ sema
(semaphore-post sema)
(sync/timeout 0 (make-wt (lambda (self) (wt-ref self 1)) sema)) ; ⇒ sema
(semaphore-post sema)
(define my-wt (make-wt (lambda (self) (wrap-evt

(wt-ref self 1)
(lambda (x) self)))

sema))
(sync/timeout 0 my-wt) ; ⇒ my-wt
(sync/timeout 0 my-wt) ; ⇒ #f

4.8 Structure Utilities

The following utility procedures work on all structure instances:

• (struct->vector v [opaque-v]) creates a vector representingv . The first slot of the result vector
contains a symbol of the formstruct: s . The each remaining slot contains either the value of a field inv if
it is accessible via the current inspector, oropaque-v for a field that is not accessible. A singleopaque-v
value is used in the vector for contiguous inaccessible fields. (Consequently, the size of the vector does not
match the size of thestruct if more than one field is inaccessible.) The symbol’... is the default value for
opaque-v .

• (struct? v) returns#t if struct->vector exposes any fields ofv with the current inspector,#f
otherwise.

36

4. Structures 4.8. Structure Utilities

Two structure values areeqv? if and only if they areeq? . Two structure values areequal? if and only if they
are instances of the same structure type, no fields are opaque, and the results of applyingstruct->vector to the
structs areequal? . (Consequently,equal? testing for structures depends on the current inspector.)

Each kind of value returned bydefine-struct andmake-struct-type has a recognizing predicate:

• (struct-type? v) returns#t if v is a structure type descriptor value,#f otherwise.

• (struct-constructor-procedure? v) returns #t if v is a constructor procedure generated by
define-struct or make-struct-type , #f otherwise.

• (struct-predicate-procedure? v) returns #t if v is a predicate procedure generated by
define-struct or make-struct-type , #f otherwise.

• (struct-accessor-procedure? v) returns #t if v is an accessor procedure generated by
define-struct , make-struct-type , or make-struct-field-accessor , #f otherwise.

• (struct-mutator-procedure? v) returns #t if v is a mutator procedure generated by
define-struct , make-struct-type , or make-struct-field-mutator , #f otherwise.

37

5. Modules

MzScheme provides a module system for managing the scope of variable and syntax definitions, and for directing
compilation. Module declarations can appear only at the top level. The space of module names is separate from the
space of top-level variable and syntax names.

A module declaration consists of the name for the module, the name of a module to supply an initial set of syntax
and variable bindings, and a module body:

(module module-identifier initial-required-module-name body-datum · · ·)

A module encapsulates syntax definitions to be used in expanding the body of the module, as well as expressions and
definitions to be evaluated when the module is executed. When a syntax identifier is exported withprovide (as
described in§5.2), its transformer can be used during the expansion of an importing module; when a variable identifier
is exported, its value can be used (but not assigned withset!) during the execution of an importing module.

A module namedmzscheme is built in, and it exports the procedures and syntactic forms described inR5RSand this
manual. Themzscheme module supplies the initial syntax and variable bindings for a typical module.

Example:

(module hello-world ; the module name
mzscheme ; initial syntax and variable bindings

; for the module body
; the module body
(display "Hello world!")
(newline))

In general, the initial import serves as a kind of ”language” declaration. By initially importing a module other than
mzscheme, a module can be defined in terms of a commonly-used variant of Scheme that contains more than the
MzScheme built-in syntax and procedures, or a variant of Scheme that contains fewer constructs. The initial import
might even omit syntax for declaring additional imports. For example,§12.5shows an example module that defines a
lambda-calculus language.

5.1 Module Expansion and Execution

When a module declaration is evaluated, the module’s body is syntax-expanded and compiled, but not executed. The
body is executed only when the module is explicitly invoked, via arequire or require-for-syntax expression
at the top level, or a call todynamic-require .

When a module is invoked, its body definitions and expressions are evaluated. First, however, the definitions and
expressions are evaluated for each module imported (viarequire) by the invoked module. The import-initialization
rule applies up the chain of modules, so that every module used (directly or indirectly) by the invoked module is
executed before any module that uses its exports. A module can only import from previously declared modules, so the
module-import relationship is acyclic.

38

5. Modules 5.2. Module Bodies

Every module is executed at most once in response to an invocation, regardless of the number of times it is imported
into other modules. Every top-level invocation executes only the modules needed by the invocation that have not been
executed by previous invocations.

Example:

(module never-used ; unused module
mzscheme

(display "This is never printed")
(newline))

(module hello-world-printer ; module used by hello-world2
mzscheme

(define (print-hello-world)
(display "Hello world!")
(newline))

(display "printer ready")
(newline)
(provide print-hello-world)) ; export

(module hello-world2
mzscheme ; initial import

(require hello-world-printer) ; additional import
(print-hello-world))

(require hello-world2) ; ⇒ prints "printer ready", then "Hello world!"

Separating module declarations from module executions benefits compilation in the presence of expressive syntax
transformers, as explained in§12.3.4.

5.2 Module Bodies

In general, the format of a module body depends on the initial import. Since themzscheme module defines the
procedures and syntactic forms described inR5RSand this manual, thebody-datum s of a module usingmzscheme
as its initial import must conform to the usual MzScheme top-level grammar.

Therequire form is used both to invoke a module at the top level, and to import syntax and variables into a module.

(require require-spec · · ·)

require-spec is one of
module-name
(only module-name identifier · · ·)
(prefix prefix-identifier module-name)
(all-except module-name identifier · · ·)
(prefix-all-except prefix-identifier module-name identifier · · ·)
(rename module-name local-identifier exported-identifier)

The module-name form imports all exported identifiers from the named module. The(only module-name
identifier · · ·) form imports only the listed identifiers from the named module. The(prefix
prefix-identifier module-name) form imports all identifiers from the named module, but locally pre-
fixes each identifier withprefix-identifier . The (all-except module-name identifier · · ·)
form imports all identifiers from the named module, except for the listed identifiers. The(prefix-all-except

39

5.2. Module Bodies 5. Modules

prefix-identifier module-name identifier · · ·) form combines theprefix and all-except
forms. Finally, the(rename module-name local-identifier exported-identifier) imports
exported-identifier from module-name , binding it locally toidentifier .

Theprovide form (legal only within a module declaration) exports syntax and variable bindings from the current
module for use by other modules. The exported identifiers must be either defined or imported in the module, but the
export of an identifier may precede its definition or import.

(provide provide-spec · · ·)

provide-spec is one of
identifier
(rename local-identifier export-identifier)
(struct struct-identifier (field-identifier · · ·))
(all-from module-name)
(all-from-except module-name identifier · · ·)
(all-defined)
(all-defined-except identifier · · ·)
(prefix-all-defined prefix-identifier)
(prefix-all-defined-except prefix-identifier identifier · · ·)
(protect provide-spec · · ·)

The identifier form exports the (imported or defined) identifier from the module. The(rename
local-identifier export-identifier) form exportslocal-identifier from the module with the
external nameexport-identifier ; other modules importing from this one will seeexport-identifier
instead of local-identifier . The (struct struct-identifier (field-identifier · · ·))
form exports the names that(define-struct struct-identifier (field-identifier · · ·)) gen-
erates. The(all-from module-name) form exports all of the identifiers imported from the named mod-
ule, using their local names. The(all-from-except module-name identifier · · ·) form is sim-
ilar, except that the listed imported identifiers are not exported. The(all-defined) form exports all
of the identifiers defined (not imported) in the module. The(all-defined-except identifier · · ·)
form is similar, except that the listed defined identifiers are not exported. The(prefix-all-defined
prefix-identifier) and(prefix-all-defined-except prefix-identifier identifier · ·
·) forms are likeall-defined andall-defined-except , butprefix-identifier is prefixed onto each
defined identifier for its external name.

The(protect provide-spec · · ·) form is like the sequence of individualprovide-spec s, but the provided
identifiers are protected (see§9.4); theprovide-spec s must not contain anotherprotect form, anall-from
form, or anall-from-except form, and they must not name any identifier that is imported into the providing
module, instead of defined within the module.

The scope of all imported identifiers covers the entire module body, as does the scope of any identifier defined within
the module body. See§12.3.5for additional information concerning macro-generated definitions,require declara-
tions, andprovide declarations. Anidentifier can be defined by a definition or import at most once, except
than anidentifier can be imported multiple times if each import is from the same module. All exports must
be unique. A module body cannot contain free variables. A module is not permitted to mutate an imported variable
with set! . However, mutations to an exported variable performed by its defining module are visible to modules that
import the variable.

At syntax-expansion time, expressions and definitions within a module are partially expanded, just enough to de-
termine whether the expression is a definition, syntax definition, import, export, or a non-definition. If a partially
expanded expression is a syntax definition, the syntax transformer is immediately evaluated and the syntax name is
available for expanding successive expressions. Import expressions are treated similarly, so that imported syntax is
available for expansion following its import. (The ordering of syntax definitions does not affect the scope of the syntax
names; a transformer forA can produce expressions containingB, while the transformer forB produces expressions

40

5. Modules 5.3. Modules and Macros

containingA, regardless of the order of declarations forA andB. However, a syntactic form that produces syntax
definitions must be defined before it is used.) Thebegin form at the top level for a module body works likebegin
at the top level, so that the sub-expressions are flattened out into the module’s body.

At run time, expressions and definitions are evaluated in order as they appear within the module. Accessing a (non-
syntax) identifier before it is initialized signals a run-time error, just like accessing an undefined global variable.

Example:

(module a mzscheme
(provide x)
(define x 1))

(module b mzscheme
(provide f (rename x y))
(define x 2)
(define (f) (set! x 7)))

(module c mzscheme
(require (prefix a. a) (prefix b. b))
(b.f)
(display (+ a.x b.y))
(newline))

(require c) ; ⇒ executes c , prints 8

5.3 Modules and Macros

Macros defined withsyntax-rules follow the rules specified inR5RSregarding the binding and free references in
the macro template. In particular, the template of an exported macro may refer to an identifier defined in the module
or imported into the module; uses of the macro in other modules expand to references of the identifier defined or
imported at the macro-definition site, as opposed to the use site. Uses of a macro in a module must not expand to a
set! assignment of an identifier from any other module (including the module that defines the macro).

Example:

(module a mzscheme
(provide xm)
(define y 2)
(define-syntax xm ; a macro that expands to y

(syntax-rules ()
[(xm) y])))

(module b mzscheme
(require a)
(printf "˜a˜n" (xm)))

(require b) ; ⇒ prints 2

For further information about syntax definitions, see§12.3.4. See§12.6.5for information on extracting details about
an expanded or compiled module declaration. See§9.4for information on how unexported and protected identifiers in
a macro expansion are constrained to their macro-introduced contexts.

41

5.4. Module Paths 5. Modules

5.4 Module Paths

In practice, the modules composing a program are rarely declared together in a single file. Multiple module-declaring
files can be loaded in sequence withload , but modules that are intended as libraries have complex interdependencies;
constructing an appropriate sequence ofload expressions — one that loads each module declaration exactly once and
before all of its uses — can be difficult and tedious. Worse, even though module declarations prevent collisions among
syntax and variable names, module names themselves can collide.

To solve these problems, amodule-name can describe a path to a module source file, which is resolved by the
currentmodule name resolver. The default module name resolver loads the source for a given module path the first
time that the source is referenced. To avoid module name collisions, the module in the referenced file is assigned a
name that identifies its source file.

A module path resolved by the standard resolver can take any of four forms:

unix-relative-path-string
(file path-string)
(lib filename-string collection-string · · ·)
(planet . datum)
path

• When a module name is a string,unix-relative-path-string , it is interpreted as a path relative
to the source of the containing module (as determined bycurrent-load-relative-directory or
current-directory). Regardless of the platform running MzScheme, the path is always parsed as a Unix-
format path:/ is the path delimiter (multiple adjacent/ are treated as a single delimiter),.. accesses the parent
directory, and. accesses the current directory. To avoid portability problems, the path elements are further
constrained to contain only alpha-numeric characters plus-, , ., and space, and the path may not be empty or
contain a leading or trailing slash.

• When a module name has the form(file path-string) , thenpath-string is interpreted as a file
path using the current platform’s path conventions. Ifpath-string is a relative path, it is resolved rela-
tive to the source of the containing module (as determined bycurrent-load-relative-directory or
current-directory).

• When a module name has the form(lib filename-string collection-string · · ·) , it specifies
a collection-based library; see Chapter16 for more information about libraries and collections.

• When a module name has the form(planet . datum) , it is passed to the PLaneT resolver as described
in §5.4.1.

• Since path values (see§11.3.1) cannot be written as literal syntax, apath never appears inrequire forms.
However, an absolute path value may be passed todynamic-require , and it is treated in the same way as a
file form.

A source file that is referenced by a module path must contain a single module declaration. The name of the declared
module must match the source’s filename, minus its suffix.

Different module paths can access the same module, but for the purposes ofprovide declarations usingall-from
andall-from-except , source module paths are compared syntactically (instead of comparing resolved module
names).

5.4.1 Module Name Resolver

In general, the module name resolver is invoked by MzScheme when amodule-name is not an identifier. The
grammar of non-symbolic module names is determined by the module name resolver. The module name resolver, in

42

5. Modules 5.4. Module Paths

turn, is determined by thecurrent-module-name-resolver parameter (see also§7.9.1.12). The resolver is a
function that takes one, three, and four arguments:

• When given one argument, it is a symbol for a module that is already loaded. Such a call to the module name
resolver is a notification that the corresponding module does not need to be loaded (for the current namespace,
or any other namespace that shared the module registry). The procedure result is ignored.

• When given three argument, the first is an arbitrary value for the module path, a symbol for the source module’s
name, and a syntax object or#f . The procedure result must be a symbol for the resolved name.

• The four-argument case is the same as the three-argument case, but with a boolean argument that can be#f to
request resolving a name without loading the module (if it is not already loaded).

Except for(planet . datum) paths (which are handled as described below), the standard module name resolver
creates a module identifier as the expanded, simplified, case-normalized, and de-suffixed path of the file designated by
the module path. (See§11.3for details on platform-specific path handling.) To better supportdynamic-require ,
the standard module name resolver accepts a path object (see§11.3.1) and treats it like afile module path.

The standard module name resolver keeps a per-registry table of loaded module identifiers (where the registry is
obtained from a namespace; see Chapter8). If the resolved identifier is not in the table, and#f is not provided as the
module name resolver’s fourth argument, then the identifier is put into the table and the corresponding file is loaded
with a variant ofload/use-compiled that passes the expected module name to the load handler.

While loading a file, the standard resolver sets thecurrent-module-name-prefix parameter, so that the name
of any module declared in the loaded file is given a prefix. This mechanism enables the resolver to avoid module name
collisions. The resolver sets the prefix to the resolved module name, minus the de-suffixed file name. It also loads the
file by calling the load handler or load extension handler with the name of the expected module (see§5.8).

Module loading is supressed (i.e.,#f is supplied as a fourth argument to the module name resolver) when resolving
module paths in syntax objects (see§12.2). When a syntax object is manipulated, the current namespace might not
match the original namespace for the syntax object, and the module should not necessarily be loaded in the current
namespace.

The current module name resolver is called with a single argument bynamespace-attach-module to notify
the resolver that a module was attached to the current namespace (and should not be loaded in the future for the
namespace’s registry). No other MzScheme operation invokes the module name resolver with a single argument, but
other tools (such as DrScheme) might call this resolver in this mode to avoid redundant module loads.

When the default module name resolver is given a module path of the form(planet . datum) as its first
argument, it provides all of the resolver arguments to the PLaneT resolver. If the PLaneT resolver has not yet
been loaded, it is loaded in the initial namespace by requiringplanet-module-name-resolver from (lib
"resolver.ss" "planet") . Thereafter, the PLaneT resolver is called for every one-argument call to the de-
fault module name resolver, in addition to calls for handle(planet . datum) paths.

5.4.2 Module Names and Compilation

When syntax-expanding or compiling amodule declaration, MzScheme resolves module names for imports (since
some imported identifier may have syntax bindings), but it also preserves the module path name. Consequently, a
compiled module can be moved to another filesystem, where the module name resolver can resolve inter-module
references among compiled code.

43

5.5. Dynamic Module Access 5. Modules

5.5 Dynamic Module Access

(dynamic-require module-path-v provided-symbol) dynamically invokes the module specified by
module-path-v in the current namespace’s registry if it is not yet invoked. Ifmodule-path-v is not a symbol,
the current module name resolver may load a module declaration to resolve it. For example, the default module-name
resolver accepts a path value asmodule-path-v . The path is not resolved with respect to any other module, even
if the current namespace corresponds to a module body.

If provided-symbol is #f , then the result is void. Otherwise, whenprovided-symbol is a symbol, the value
of the module’s export with the given name is returned. If the module has no such exported variable or if the variable
is protected (see§9.4), theexn:fail:contract exception is raised. The expansion-time portion of the module is
not executed.

If provided-symbol is void, then the module is partially invoked, where its expansion-time expressions are evalu-
ated, but not its normal expressions (though the module may have been invoked previously in the current namespace’s
registry). The result is void.

(dynamic-require-for-syntax module-path-v provided-symbol-or-#f) is similar todynamic-require ,
except that it accesses a value from an expansion-time module instance (the one that could be used by transformers in
expanding top-level expressions in the current namespace). As withdynamic-require , the module name resolver
may load a module declaration to resolvemodule-path-v if it is not a symbol.

5.6 Re-declaring Modules

When a module is re-declared in a namespace whose registry already contains a declaration of the module (see Chap-
ter 8),, the new declaration’s syntax and variable definitions replace and extend the old declarations. If a variable in
the old declaration has no counterpart in the new declaration, it continues to exist, but becomes inaccessible to newly
compiled code. In other words, a module name in a particular registry maps to a namespace containing the module
body’s definitions; see alsomodule->namespace in §8.3.

If a module is invoked before it is re-declared, each re-declaration of the module is immediately invoked. The imme-
diate invocation is necessary to keep the module-specific namespace consistent with the module declaration.

When a module re-declaration implies invocation, the invocation can fail at the definition of a binding that was
constant in the original module (where any definition without aset! within the module counts as a constant def-
inition); preventing re-definition protects potential optimizations (for the original declaration) that rely on constant
bindings. Set thecompile-enforce-module-constants parameter (see§7.9) to #f to disable optimizations
that rely on constant bindings and to allow unrestrcted re-definition of module bindings. To enable re-definition, the
compile-enforce-module-constants parameter must be set before the original declaration of the module.

In addition to the constraint on constant definitions, a module can be redeclared only when the current code inspector
— as determined by thecurrent-code-inspector parameter (see§7.9.1.8) — controls the invocation of the
module in the current namespace’s registry. If the current code inspector does not control the invocation at the time of
a re-declaration attempt, theexn:fail:contract exception is raised.

5.7 Built-in Modules

The built-inmzscheme module is implemented by several primitive modules whose names start with#%. In general,
module names starting with#%are reserved for use by MzScheme and embedding applications. The built-in modules
are declared in the initial namespace’s registry vianamespace-attach-module , so they cannot be re-declared
and their private namespaces are not available viamodule->namespace .

44

5. Modules 5.8. Modules and Load Handlers

5.8 Modules and Load Handlers

The second argument to a load handler or load extension handler indicates whether the load is expected (and required)
to produce a module declaration. If the second argument is#f , the file is loaded normally, otherwise the argument
will be a symbol and the file must be checked specially before it is loaded.

When the second argument to the local handler is a symbol, the handler is responsible for ensuring that the file-to-load
actually contains amodule declaration (possibly compiled); if not, it must raise an exception without evaluating the
declaration. The handler must also raise anexn:fail exception if the name in the module declaration is not the
same as the symbol argument to the handler (before applying any prefix incurrent-module-name-prefix).

Furthermore, while reading the file and expanding the module declaration, the load handler must set reader parameter
values (see§7.9.1.3) to the following states:

(read-case-sensitive #t)
(read-square-bracket-as-paren #t)
(read-curly-brace-as-paren #t)
(read-accept-box #t)
(read-accept-compiled #t)
(read-accept-bar-quote #t)
(read-accept-graph #t)
(read-decimal-as-inexact #t)
(read-accept-dot #t)
(read-accept-quasiquote #t)
(read-accept-reader #t)

These states are the same as the normal defaults, except that compiled-code reading is enabled. Note that a module
body can be made case sensitive by prefixing the module with#cs (see§11.2.4).

Finally, before compiling or evaluating a module declaration from source, the handler must replace a leadingmodule
identifier with an identifier that is bound to themodule export of MzScheme. Evaluating the expression will then
produce a module declaration, regardless of the binding ofmodule in the current namespace.

Separate compilation ofmodule declarations introduces the possibility of import cycles when the module declarations
are executed. Theexn:fail exception is raised when such a cycle is detected.

45

6. Exceptions and Control Flow

6.1 Exceptions

MzScheme supports the exception system proposed by Friedman, Haynes, and Dybvig.1 MzScheme’s implementation
extends that proposal by defining the specific exception values that are raised by each primitive error.

• (raise v) raises an exception, wherev represents the exception being raised. Thev argument can be
anything; it is passed to the currentexception handler. Breaks are disabled from the time the exception is raised
until the exception handler obtains control, and the handler itself isparameterize-break ed to disable
breaks initially; see§6.7for more information on breaks.

• (current-exception-handler) returns the current exception handler that is used byraise , and
(current-exception-handler f) installs the proceduref as the current exception handler. The
current-exception-handler procedure is a parameter (see§7.9).

Any procedure that takes one argument can be an exception handler, but it is an error if the exception handler
returns to its caller when invoked byraise . If an exception handler returns, the current error display handler
and current error escape handler are called directly to report the handler’s mistake. Furthermore, the call to
an exception handler isparameterize d to setcurrent-exception-handler to the default exception
handler, and it isparameterize-break ed to disable breaks.

The default exception handler prints an error message using the current error display handler (see
error-display-handler in §7.9.1.7) and then escapes by calling the current error escape handler
(see error-escape-handler in §7.9.1.7). The call to each handler isparameterize d to set
error-display-handler to the default error display handler,2 and it isparameterize-break ed to
disable breaks. The call to the error escape handler is further parameterized to seterror-escape-handler
to the default error escape handler.

• (with-handlers ((pred handler) · · ·) expr · · ·1) is a syntactic form that evaluates theexpr
body, installing a new exception handler before evaluating theexpr s and restoring the handler when a value
is returned (or when control escapes from the expression). Thepred andhandler expressions are evaluated
in the order that they are specified, before the firstexpr and before the exception handler is changed. The
exception handler is installed and restored withparameterize (see§7.9.2).

The new exception handler processes an exception only if one of thepred procedures returns a true value when
applied to the exception, otherwise the original exception handler is invoked (by raising the exception again).
If an exception is handled by one of thehandler procedures, the result of the entirewith-handlers
expression is the return value of the handler.

When an exception is raised during the evaluation ofexpr s, each predicate procedurepred is applied to the
exception value; if a predicate returns a true value, the correspondinghandler procedure is invoked with the
exception as an argument. The predicates are tried in the order that they are specified.

Before any predicate or handler procedure is invoked, the continuation of the entirewith-handlers expres-
sion is restored, but alsoparameterize-break ed to disable breaks. Thus, breaks are disabled by default

1See http://www.cs.indiana.edu/scheme-repository/doc.proposals.exceptions.html
2If the current error display handler is the default handler, then the error-display call is parameterized to install an emergency error display

handler that attempts to print directly to a console and never fails.

46

6. Exceptions and Control Flow 6.1. Exceptions

during the predicate and handler procedures (see§6.7), and the “original” exception handler is active (i.e., the
one present before thewith-handlers expression was evaluated).

Theexn:fail? procedure is useful as a handler predicate to catch all error exceptions. Avoid using(lambda
(x) #t) as a predicate, because theexn:break exception typically should not be caught (unless it will be
re-raised to cooperatively break). Beware, also, of catching and discarding exceptions, because discarding an
error message can make debugging unnecessarily difficult.

• (with-handlers ∗ ((pred handler) · · ·) expr · · ·1) is the same aswith-handlers , but if a
handler procedure is called, breaks are not explicitly disabled, and the call is in tail position with respect to
thewith-handlers ∗ form.

The following example defines a divide procedure that returns+inf.0 when dividing by zero instead of signaling an
exception (other exceptions raised by/ are signaled):

(define div-w-inf
(lambda (n d)

(with-handlers ([exn:fail:contract:divide-by-zero?
(lambda (exn) +inf.0)])

(/ n d))))

The following example catches and ignores file exceptions, but lets the enclosing context handle breaks:

(define (file-date-if-there filename)
(with-handlers ([exn:fail:filesystem? (lambda (exn) #f)])

(file-or-directory-modify-seconds filename)))

6.1.1 Primitive Exceptions

Whenever a primitive error occurs in MzScheme, an exception is raised. The value that is passed to the current
exception handler is always an instance of theexn structure type. Everyexn structure value has amessage field
that is a string, the primitive error message. The default exception handler recognizes exception values with theexn?
predicate and passes the error message to the current error display handler (seeerror-display-handler in
§7.9.1.7).

Primitive errors do not create immediate instances of theexn structure type. Instead, an instance from a hierarchy
of subtypes ofexn is instantiated. The subtype more precisely identifies the error that occurred and may contain
additional information about the error. The table below defines the type hierarchy that is used by primitive errors and
matches each subtype with the primitive errors that instantiate it. In the table, each bulleted line is a separate structure
type. A type is nested under another when it is a subtype. The full name of the structure type (as used by predicates
and selectors in the global environment) is built by combining the full name of the immediate supertype with “:” and
the subtype name.

For example, reading an ill-formed expression raises an exception as an instance ofexn:fail:read . An exception
handler can test for this kind of exception using the globalexn:fail:read? predicate. Given such an exception,
an error string can be extracted usingexn-message , while exn:fail:read-source accesses a list of source
locations for the error.

Fields of the built-inexn structure types are immutable, so field mutators are not provided. Field-type contracts are
enforced through guards; for example,(make-exn "Hello" #f) raisesexn:fail:contract because the
second argument is not a continuation mark set. All built-inexn structure types are transparent to all inspectors (see
§4.5).

• exn : not instantiated directly by any primitive
fields: message — error message (type:immutable string)

47

6.2. Errors 6. Exceptions and Control Flow

continuation-marks — value returned bycurrent-continuation-marks immediately
before the exception is raised (type:mark set)

• fail : exceptions that represent errors
• contract : inappropriate run-time use of a function or syntactic form

• arity : application with the wrong number of arguments
• divide-by-zero : divide by zero
• continuation : attempt to cross a continuation barrier
• variable : unbound/not-yet-defined global or module variable

fields: id — the variable’s identifier (type:symbol)
• syntax : syntax error, but not aread error

fields: exprs — illegal expression(s) (type:immutable list of syntax objects)
• read : read parsing error

fields: srclocs — source location(s) of error (type:immutable list ofsrcloc s (see§11.2.1.1))
• eof : unexpected end-of-file
• non-char : unexpected non-character

• filesystem : error manipulating a filesystem object
• exists : attempt to create a file that exists already
• version : version mismatch loading an extension

• network : TCP and UDP errors
• out-of-memory : out of memory
• unsupported : unsupported feature
• user : for end users

• break : asynchronous break signal
fields: continuation — resumes from the break (type:escape continuation)

In addition to the built-in structure types for exceptions, MzScheme provides one built-in structure-type property (see
§4.4):

• Theprop:exn:srclocs property identifies exceptions that have a list of source locations, which includes
exn:fail:read and exn:fail:syntax . The exn:srclocs? predicate recognizes structures and
structure types that have theprop:exn:srclocs property. Theexn:srclocs-accessor procedure
takes a structure or structure type with theexn:srclocs property and returns a procedure; when the proce-
dure is applied to a structure of the same type, it returns a list ofsrcloc s (see§11.2.1.1).

Primitive procedures that accept a procedure argument with a particular required arity (e.g.,call-with-input-file ,
call/cc) check the argument’s arity immediately, raisingexn:fail:contract if the arity is incorrect.

6.2 Errors

The procedureerror raises the exceptionexn:fail (which contains an error string). Theerror procedure has
three forms:

• (error symbol) creates a message string by concatenating"error: " with the string form ofsymbol .

• (error msg-string v · · ·) creates a message string by concatenatingmsg-string with string versions
of thev s (as produced by the current error value conversion handler; see§7.9.1.7). A space is inserted before
eachv .

• (error src-symbol format-string v · · ·) creates a message string equivalent to the string created
by:

48

6. Exceptions and Control Flow 6.2. Errors

(format (string-append "˜s: " format-string)
src-symbol v · · ·)

In all cases, the constructed message string is passed tomake-exn:fail and the resulting exception is raised.

The raise-user-error procedure is the same aserror , except that it constructs an exception with
make-exn:fail:user instead ofmake-exn:fail . The default error display handler does not show a “stack
trace” for exn:fail:user exceptions (see§6.6), so raise-user-error should be used for errors that are
intended for end users. Likeerror , raise-user-error has three forms:

• (raise-user-error symbol)

• (raise-user-error msg-string v · · ·)

• (raise-user-error src-symbol format-string v · · ·)

6.2.1 Application Errors

(raise-type-error name-symbol expected-string v) creates anexn:fail:contract value
and raise s it as an exception. Thename-symbol argument is used as the source procedure’s name in the er-
ror message. Theexpected-string argument is used as a description of the expected type, andv is the value
received by the procedure that does not have the expected type.

(raise-type-error name-symbol expected-string bad-k v) is similar, except that the bad argu-
ment is indicated by an index (from 0), and all of the original argumentsv are provided (in order). The resulting error
message names the bad argument and also lists the other arguments. Ifbad-k is not less than the number ofv s, the
exn:fail:contract exception is raised.

(raise-mismatch-error name-symbol message-string v) creates anexn:fail:contract
value andraise s it as an exception. Thename-symbol is used as the source procedure’s name in the error
message. Themessage-string is the error message. Thev argument is the improper argument received by the
procedure. The printed form ofv is appended tomessage-string (using the error value conversion handler; see
§7.9.1.7).

(raise-arity-error name-symbol-or-procedure arity-v [arg-v ···]) creates anexn:fail:contract:arity
value andraise s it as an exception. Thename-symbol-or-procedure is used for the source procedure’s name
in the error message. Thearity-v value must be a possible result fromprocedure-arity (see§3.12.1), and it
is used for the procedure’s arity in the error message; ifname-symbol-or-procedure is a procedure, its actual
arity is ignored. Thearg-v arguments are the actual supplied arguments, which are shown in the error message
(using the error value conversion handler; see§7.9.1.7); also, the number of suppliedarg-v s is explicitly mentioned
in the message.

6.2.2 Syntax Errors

(raise-syntax-error name message-string [expr sub-expr]) creates anexn:fail:syntax
value andraise s it as an exception. Macros use this procedure to report syntax errors. Thename argument is
usually#f whenexpr is provided; it is described in more detail below. Themessage-string is used as the
main body of the error message. The optionalexpr argument is the erroneous source syntax object or S-expression.
The optionalsub-expr argument is a syntax object or S-expression withinexpr that more precisely locates the
error. If sub-expr is provided, it is used (in syntax form) for theexprs field of the generated exception record,
else theexpr is used if provided, otherwise theexprs field is the empty list. Source location information in the
error-message text is similarly extracted fromsub-expr or expr , when at least one is a syntax object.

49

6.3. Continuations 6. Exceptions and Control Flow

The form name used in the generated error message is determined through a combination of thename, expr , and
sub-expr arguments. Thename argument can#f or a symbol:

• #f : Whenname is #f , and whenexpr is either an identifier or a syntax pair containing an identifier as its first
element, then the form name from the error message is the identifier’s symbol.

If expr is not provided, or if it is not an identifier or a syntax pair containing and identifier as its first element,
then the form name in the error message is"?" .

• symbol : Whenname is a symbol, then the symbol is used as the form name in the generated error message.

See also§7.9.1.7.

6.2.3 Inferred Value Names

To improve error reporting, names are inferred at compile-time for certain kinds of values, such as procedures. For
example, evaluating the following expression:

(let ([f (lambda () 0)]) (f 1 2 3))

produces an error message because too many arguments are provided to the procedure. The error message is able to
report “f” as the name of the procedure. In this case, MzScheme decides, at compile-time, to name asf all procedures
created by thelet -boundlambda .

Names are inferred whenever possible for procedures. Names closer to an expression take precedence. For example,
in

(define my-f
(let ([f (lambda () 0)]) f))

the procedure bound tomy-f will have the inferred name “f”.

When an’inferred-name property is attached to a syntax object for an expression (see§12.6.2), the property
value is used for naming the expression, and it overrides any name that was inferred from the expression’s context.

When an inferred name is not available, but a source location is available, a name is constructed using the
source location information. Inferred and property-assigned names are also available to syntax transformers, via
syntax-local-name ; see§12.6for more information.

(object-name v) returns a value for the name ofv if v has a name,#f otherwise. The argumentv can be any
value, but only (some) procedures, structs, struct types, struct type properties, regexp values, and ports have names.
The name of a procedure, struct, struct type, or struct type property is always a symbol. The name of a regexp value
is a string, and a byte-regexp value’s name is a byte string. The name of a port is typically a path or a string, but it can
be arbitrary. All primitive procedures have names (see§3.12.2).

6.3 Continuations

MzScheme supports delimited continuations, and even continuations captured bycall-with-current-continuation
(or call/cc) are delimited by a prompt. Prompt instances are tagged, and continuations are cap-
tured with respect to a particular prompt. Thus, MzScheme’scall-with-current-continuation ac-
cepts an optional prompt-tag argument:(call-with-current-continuation proc [prompt-tag]) ,
whereprompt-tag must be a result from eitherdefault-continuation-prompt-tag (the default) or
make-continuation-prompt-tag . Prompts, prompt tags, and composable continuations are described fur-
ther in§6.5.

50

6. Exceptions and Control Flow 6.4. Dynamic Wind

The macrolet/cc binds a variable to the continuation in an immediate body of expressions:

(let/cc k expr · · ·1)
=expands=>
(call/cc (lambda (k) expr · · ·1))

Capturing a continuation also captures the current continuation marks (see§6.6) up to the relevant prompt.
The current parameterization (see§7.9) is captured if it was extended viaparamaterize or installed via
call-with-parameterization since the prompt.

A continuation can be invoked from the thread (see Chapter7) other than the one where it was captured. Multiple
return values can be passed to a continuation (see§2.2).

MzScheme installs acontinuation barrier around evaluation in the following contexts, preventing full-continuation
jumps across the barrier:

• applying an exception handler, an error escape handler, or an error display handler (see§6.1);

• applying a macro transformer (see§12.6), evaluating a compile-time expression, or applying a module name
resolver (see§5.4.1);

• applying a custom-port procedure (see§11.1.7), an event guard procedure (see§7.7), or a parameter guard
procedure (see§7.9);

• applying a security-guard procedure (see§9.1);

• applying a will procedure (see§13.3); or

• evaluating or loading code from the stand-alone MzScheme command line (see§17).

In addition, extensions of MzScheme may install barriers in additional contexts. In particular, MrEd installs a contin-
uation barrier around most every callback. Finally,(call-with-continuation-barrier thunk) applies
thunk with a barrier between the application and the current continuation.

In addition to regularcall/cc , MzScheme providescall-with-escape-continuation (or call/ec) and
let/ec . A continuation obtained fromcall/ec is actually a kind of prompt: applying an escape continuation
can onlyescapeback to the continuation (possibly past a continuation barrier); that is, an escape continuation is only
valid when the current continuation is an extension of the escape continuation. Further, the application ofcall/ec ’s
argument is not a tail call. Escape continuations are provided mainly for backward compatibility, since they pre-date
general prompts in MzScheme.

The exn:fail:contract:continuation exception is raised when a continuation application would cross a
continuation barrier, or when an escape continuation is applied outside of its dynamic scope.

6.4 Dynamic Wind

(dynamic-wind pre-thunk value-thunk post-thunk) applies its three thunk arguments in order. The
value of adynamic-wind expression is the value returned byvalue-thunk . The pre-thunk procedure is
invoked before callingvalue-thunk and post-thunk is invoked aftervalue-thunk returns. The special
properties ofdynamic-wind are manifest when control jumps into or out of thevalue-thunk application (either
due to a prompt abort or a continuation invocation): every time control jumps into thevalue-thunk application,
pre-thunk is invoked, and every time control jumps out ofvalue-thunk , post-thunk is invoked. (No special
handling is performed for jumps into or out of thepre-thunk andpost-thunk applications.)

51

6.4. Dynamic Wind 6. Exceptions and Control Flow

When dynamic-wind calls pre-thunk for normal evaluation ofvalue-thunk , the continuation of
the pre-thunk application callsvalue-thunk (with dynamic-wind ’s special jump handling) and then
post-thunk . Similarly, the continuation of thepost-thunk application returns the value of the preceding
value-thunk application to the continuation of the entiredynamic-wind application.

Whenpre-thunk is called due to a continuation jump, the continuation ofpre-thunk

1. jumps to a more deeply nestedpre-thunk , if any, or jumps to the destination continuation; then

2. continues with the context of thepre-thunk ’s dynamic-wind call.

Normally, the second part of this continuation is never reached, due to a jump in the first part. However, the second part
is relevant because it enables jumps to escape continuations that are contained in the context of thedynamic-wind
call. Furthermore, it means that the continuation marks (see§6.6) and parameterization (see§7.9) for pre-thunk
correspond to those of thedynamic-wind call that installedpre-thunk . The pre-thunk call, however, is
parameterize-break ed to disable breaks (see also§6.7).

Similarly, whenpost-thunk is called due to a continuation jump, the continuation ofpost-thunk jumps to
a less deeply nestedpost-thunk , if any, or jumps to apre-thunk protecting the destination, if any, or jumps
to the destination continuation, then continues from thepost-thunk ’s dynamic-wind application. As for
pre-thunk , the parameterization of the originaldynamic-wind call is restored for the call, and the call is
parameterize-break ed to disable breaks.

Example:

(let ([v (let/ec out
(dynamic-wind
(lambda () (display "in "))
(lambda ()

(display "pre ")
(display (call/cc out))
#f)

(lambda () (display "out "))))])
(when v (v "post ")))

; ⇒ displays in pre out in post out

(let/ec k0
(let/ec k1

(dynamic-wind
void
(lambda () (k0 ’cancel))
(lambda () (k1 ’cancel-canceled)))))

; ⇒ ’cancel-canceled

(let ∗ ([x (make-parameter 0)]
[l null]
[add (lambda (a b)

(set! l (append l (list (cons a b)))))])
(let ([k (parameterize ([x 5])

(dynamic-wind
(lambda () (add 1 (x)))
(lambda () (parameterize ([x 6])

(let ([k+e (let/cc k (cons k void))])
(add 2 (x))

52

6. Exceptions and Control Flow 6.5. Prompts and Composable Continuations

((cdr k+e))
(car k+e))))

(lambda () (add 3 (x)))))])
(parameterize ([x 7])

(let/cc esc
(k (cons void esc)))))

l) ; ⇒ ’((1 . 5) (2 . 6) (3 . 5) (1 . 5) (2 . 6) (3 . 5))

6.5 Prompts and Composable Continuations

For an introduction to composable continuations, see Sitaram and Felleisen, “Control Delimiters and Their Hierar-
chies,”Lisp and Symbolic Computation, 1990.

MzScheme’s support for prompts and composable continuations most closely resembles Dorai Sitaram’s% and
fcontrol operators (see “Handling Control,”Proc. Conference on Programming Language Design and Implemen-
tation, 1993). Since composable continuations capture and invokedynamic-wind thunks, however, thefcontrol
operator is split into separate capture and abort operations, giving programmers more flexibility with respect to es-
capes. Composable continuations also capture continuation marks (see§6.6).

See also Chapter 13 ofPLT MzLib: Libraries Manualfor wrappers of MzScheme’s primitives. The wrapper are
generally simpler to use and have more standard names.

(call-with-continuation-prompt thunk [prompt-tag handler-proc-or-false]) callsthunk
with the current continuation extended by a prompt. The prompt is tagged byprompt-tag , which must be a result
from eitherdefault-continuation-prompt-tag (the default) ormake-continuation-prompt-tag .
The handler-proc-or-false argument specifies a handler procedure; the handler is called in tail po-
sition with repsect to thecall-with-continuation-prompt call when the installed prompt is the
target of a abort-current-continuation call with prompt-tag , and the remaining arguments of
abort-current-continuation are supplied to the handler procedure. Ifhandler-proc-or-false is #f
or not supplied, the default handler accepts a singleabort-thunk argument and calls(call-with-continuation-prompt
abort-thunk prompt-tag #f) ; that is, the default handler re-installs the prompt and continues with a given
thunk.

(abort-continuation-prompt prompt-tag obj · · ·1) resets the current continuation to that of
the nearest prompt tagged byprompt-tag in the current continuation; if no such prompt exists, the
exn:fail:contract:continuation exception is raised. Theobj s are delivered as arguments to the target
prompt’s handler procedure.

(make-continuation-prompt-tag [symbol]) creates a prompt tag that is notequal? to the result of any
other value (including prior or future results frommake-continuation-prompt-tag). The optionalsymbol
argument, if supplied, is used when printing the prompt tag.

(default-continuation-prompt-tag) returns a constant prompt tag for a which a prompt is installed at
the start of every thread’s continuation; the handler for each thread’s initial prompt accepts any number of values and
returns. The result ofdefault-continuation-prompt-tag is the default tag for more any procedure that
accepts a prompt tag.

A continuation captured by(call-with-current-continuation ... promt-tag) is truncated at
the nearest prompt tagged byprompt-tag in the current continuation; if no such prompt exists, the
exn:fail:contract:continuation exception is raised. The truncated continuation includes only
dynamic-wind thunks (see§6.4) installed since the prompt.

When a continuation procedure is applied, it removes the portion of the current continuation up to the
nearest prompt tagged byprompt-tag (not including the prompt; if not such prompt it exists, the

53

6.6. Continuation Marks 6. Exceptions and Control Flow

exn:fail:contract:continuation exception is raised), or up to the nearest continuation frame (if any)
shared by the current and captured continuations — whichever is first. While removing continuation frames,
dynamic-wind post-thunk s are executed. Finally, the (unshared portion of the) captured continuation is ap-
pended to the remaining continuation, applyingdynamic-wind pre-thunk s.

(call-with-composable-continuation proc [prompt-tag]) is similar tocall-with-current-continuation ,
but applying the resulting continuation procedure does not remove any portion of the current continuation. In-
stead, application always extends the current continuation with the captured continuation (without installing any
prompts other than those be captured in the continuation). Whencall-with-composable-continuation
is called, if a continuation barrier appears in the continuation before the closest prompt tagged byprompt-tag , the
exn:fail:contract:continuation exception is raised.

(continuation-prompt-available? prompt-tag [cont]) returns #t if cont includes a prompt
tagged byprompt-tag , #f otherwise. Thecont argument defaults to the current continuation.

Examples:

6.6 Continuation Marks

To evaluate a sub-expression, MzScheme creates a continuation for the sub-expression that extends the current contin-
uation. For example, to evaluateexpr 1 in the expression

(begin
expr 1

expr 2)

MzScheme extends the continuation of thebegin expression with onecontinuation frame to create the continuation
for expr 1. In contrast,expr 2 is in tail position for the begin expression, so its continuation is the same as the
continuation of thebegin expression.

A continuation mark is a keyed mark in a continuation frame. A program can install a mark in the first frame of its
current continuation, and it can extract the marks from all of the frames in any continuation (up to the nearest prompt
for a specified prompt tag).

Continuation marks support debuggers and other program-tracing facilities; in particular, continuation frames roughly
correspond to stack frames in traditional languages. For example, when a procedure is called, MzScheme automatically
installs a continuation mark with the procedure’s name and source location; when an exception occurs, the marks can
be extracted from the current continuation to produce a “stack trace” for the exception.3 A more sophisticated debugger
can annotate a source program to store continuation marks that relate individual expressions to source locations.

The list of continuation marks for a keyk and a continuationC that extendsC0 is defined as follows:

• If C is an empty continuation, then the mark list isnull .

• If C’s first frame contains a markmfor k , then the mark list forC is (cons m l 0) , wherel 0 is the mark list
for k in C0.

• If C’s first frame does not contain a mark keyed byk , then the mark list forC is the mark list forC0.

Thewith-continuation-mark form installs a mark on the first frame of the current continuation:

3Since stack-trace marks are applied dynamically, they do not necessarily correspond to uses ofwith-continuation-mark on the source,
and stack-trace marks can be affected by optimization or just-in-time compilation of the code. A stack traces is therefore useful as a debugging hint
only.

54

6. Exceptions and Control Flow 6.6. Continuation Marks

(with-continuation-mark key-expr mark-expr
body-expr)

Thekey-expr , mark-expr , andbody-expr expressions are evaluated in order. Afterkey-expr is evaluated to
obtain a key andmark-expr is evaluated to obtain a mark, the key is mapped to the mark in the current continuation’s
initial frame. If the frame already has a mark for the key, it is replaced. Finally, thebody-expr is evaluated; the
continuation for evaluatingbody-expr is the continuation of thewith-continuation-mark expression (so
the result of thebody-expr is the result of thewith-continuation-mark expression, andbody-expr is in
tail position for thewith-continuation-mark expression).

Thecontinuation-marks procedure extracts the complete set of continuation marks from a continuation (up to
a prompt), and thecontinuation-mark-set->list procedure extracts mark values for a particular key from
a continuation mark set. The complete set of continuation-mark procedures follows:

• (continuation-marks cont [prompt-tag]) returns an opaque value containing the set of continu-
ation marks for all keys in the continuationcont up to the prompt tagged byprompt-tag . If cont is an
escape continuation (see§6.3), then the current continuation must extendcont , or theexn:fail:contract
exception is raised. Ifcont was not captured with respect toprompt-tag and does not include a prompt
for prompt-tag , theexn:fail:contract exception is raised. Theprompt-tag argument defaults to
(default-continuation-prompt-tag)

• (current-continuation-marks [prompt-tag]) returns an opaque value containing the set
of continuation marks for all keys in the current continuation up toprompt-tag . In other
words, it produces the same value as(call-with-current-continuation (lambda (k)
(continuation-marks k prompt-tag)) prompt-tag) . As usual, prompt-tag defaults to
(default-continuation-prompt-tag) .

• (continuation-mark-set->list mark-set key-v [prompt-tag]) returns a newly-created
list containing the marks forkey-v in mark-set , which is a set of marks returned by
current-continuation-marks . The result list is truncated at the first point, if any, where continuation
frames were originally separated by a prompt tagged withprompt-tag . As usual,prompt-tag defaults to
(default-continuation-prompt-tag) .

• (continuation-mark-set->list* mark-set key-list [none-v prompt-tag]) returns a
newly-created list containing vectors of marks inmark-set for the keys inkey-list , up toprompt-tag .
The length of each vector in the result list is the same as the length ofkey-list , and a value in a particular
vector position is the value for the corresponding key inkey-list . Values for multiple keys appear in a single
vector only when the marks are for the same continuation frame inmark-set . If none-v is supplied, it is
used for vector elements to indicate the lack of a value; the default is#f .

• (continuation-mark-set-first optional-mark-set key-v [prompt-tag]) returns the
first element of the list that would be returned by(continuation-mark-set->list (or
optional-mark-set (current-continuation-marks prompt-tag)) key-v prompt-tag) ,
or #f if the result would be the empty list. Typically, this result can be computed more quickly using
continuation-mark-set-first .

• (continuation-mark-set? v) returns#t if v is a mark set created bycontinuation-marks or
current-continuation-marks , #f otherwise.

• (continuation-mark-set->context mark-set) returns a list representing a “stack trace” for
mark-set ’s continuation. The list contains pairs, where thecar of each pair contains either#f or a symbol
for a procedure name, and thecdr of each pair contains either#f or asrcloc value for the procedure’s source
location (see§11.2.1.1); thecar andcdr are never both#f .

The stack-trace list is the result ofcontinuation-mark-set->list with mark-set and MzScheme’s
private key for procedure-call marks. A stack trace is extracted from an exception and displayed by the default
error display handler (see§6) for exceptions other thanexn:fail:user (seeraise-user-error in §6.2).

55

6.7. Breaks 6. Exceptions and Control Flow

Examples:

(define (extract-current-continuation-marks key)
(continuation-mark-set->list
(current-continuation-marks)
key))

(with-continuation-mark ’key ’mark
(extract-current-continuation-marks ’key)) ; ⇒ ’(mark)

(with-continuation-mark ’key1 ’mark1
(with-continuation-mark ’key2 ’mark2

(list
(extract-current-continuation-marks ’key1)
(extract-current-continuation-marks ’key2)))) ; ⇒ ’((mark1) (mark2))

(with-continuation-mark ’key ’mark1
(with-continuation-mark ’key ’mark2 ; replaces the previous mark

(extract-current-continuation-marks ’key)))) ; ⇒ ’(mark2)

(with-continuation-mark ’key ’mark1
(list ; continuation extended to evaluate the argument
(with-continuation-mark ’key ’mark2

(extract-current-continuation-marks ’key)))) ; ⇒ ’((mark1 mark2))

(let loop ([n 1000])
(if (zero? n)

(extract-current-continuation-marks ’key)
(with-continuation-mark ’key n

(loop (sub1 n))))) ; ⇒ ’(1)

In the final example, the continuation mark is set 1000 times, butextract-current-continuation-marks
returns only one mark value. Becauseloop is called tail-recursively, the continuation of each call toloop is always
the continuation of the entire expression. Therefore, thewith-continuation-mark expression replaces the
existing mark each time rather than adding a new one.

Whenever MzScheme creates an exception record, it fills thecontinuation-marks field with the value of
(current-continuation-marks) , thus providing a snapshot of the continuation marks at the time of the
exception.

When a continuation procedure returned bycall-with-current-continuation orcall-with-composable-continuation
is invoked, it restores the captured continuation, and also restores the marks in the continuation’s frames to the marks
that were present whencall-with-current-continuation orcall-with-composable-continuation
was invoked.

6.7 Breaks

A break is an asynchronous exception, usually triggered through an external source controlled by the user, or through
thebreak-thread procedure (see§7.3). A break exception can only occur in a thread while breaks are enabled.
When a break is detected and enabled, theexn:break exception is raised in the thread sometime afterward; if
breaking is disabled whenbreak-thread is called, the break is suspended until breaking is again enabled for the
thread. While a thread has a suspended break, additional breaks are ignored.

56

6. Exceptions and Control Flow 6.7. Breaks

Breaks are enabled through thebreak-enabled parameter-like procedure, and through theparameterize-break
form, which is analogous toparameterize (see§7.9). Thebreak-enabled procedure does not represent a pa-
rameter to be used withparameterize , because changing the break-enabled state of a thread requires an explicit
check for breaks, and this check is incompatible with the tail evaluation of aparameterize expression’s body.

• (break-enabled [on?]) — gets or sets the break enabled state of the current thread. Ifon? is not supplied,
the result is#t if break are currently enabled,#f otherwise. Ifon? is supplied as#f , breaks are disabled, and
if on? is a true value, breaks are enabled.

• (parameterize-break boolean-expr expr · · ·1) evaluates boolean-expr to determine
whether breaks are initially enabled in while evaluatingexpr s in sequence. The result of the
parameter-break expression is the result of the lastexpr .

Like parameterize (see§7.9), a fresh thread cell (see§7.8) is allocated to hold the break-enabled state of
the continuation, and calls tobreak-enabled within the continuation access or modify the new cell.

• (current-break-parameterization) is analogous to(current-parameterization) (see
§7.9); it returns a break-parameterization (effectively a thread cell) that holds the current continuation’s break-
enable state.

• (call-with-break-parameterization break-param thunk) is analogous to(call-with-parameterization
parameterization thunk) (see §7.9); it calls thunk in a continuation whose break-enabled
state is in break-param . The thunk is not called in tail position with respect to the
call-with-break-parameterization call.

Certain procedures, such assemaphore-wait/enable-break , enable breaks temporarily while performing a
blocking action. If breaks are enabled for a thread, and if a break is triggered for the thread but not yet delivered as an
exn:break exception, then the break is guaranteed to be delivered before breaks can be disabled in the thread. The
timing of exn:break exceptions is not guaranteed in any other way.

Before calling awith-handlers predicate or handler, an exception handler, an error display handler, an error
escape handler, an error value conversion handler, or apre-thunk or post-thunk for a dynamic-wind (see
§6.4), the call isparameterize-break ed to disable breaks. Furthermore, breaks are disabled during the tran-
sitions among handlers related to exceptions, during the transitions betweenpre-thunk s andpost-thunk s for
dynamic-wind , and during other transitions for a continuation jump. For example, if breaks are disabled when a
continuation is invoked, and if breaks are also disabled in the target continuation, then breaks will remain disabled until
from the time of the invocation until the target continuation executes unless a relevantdynamic-wind pre-thunk
or post-thunk explicitly enables breaks.

If a break is triggered for a thread that is blocked on a nested thread (seecall-in-nested-thread), and if breaks
are enabled in the blocked thread, the break is implicitly handled by transferring it to the nested thread.

When breaks are enabled, they can occur at any point within execution, which makes certain implementation tasks
subtle. For example, assuming breaks are enabled when the following code is executed,

(with-handlers ([exn:break? (lambda (x) (void))])
(semaphore-wait s))

then it isnot the case that a void result means the semaphore was decremented or a break was received,exclusively.
It is possible thatbothoccur: the break may occur after the semaphore is successfully decremented but before a void
result is returned bysemaphore-wait . A break exception will never damage a semaphore, or any other built-in
construct, but many built-in procedures (includingsemaphore-wait) contain internal sub-expressions that can be
interrupted by a break.

In general, it is impossible using onlysemaphore-wait to implement the guarantee that either the
semaphore is decremented or an exception is raised, but not both. MzScheme therefore supplies

57

6.8. Error Escape Handler 6. Exceptions and Control Flow

semaphore-wait/enable-break (see§7.4), which does permit the implementation of such an exclusive guar-
antee:

(parameterize ([break-enabled #f])
(with-handlers ([exn:break? (lambda (x) (void))])

(semaphore-wait/enable-break s)))

In the above expression, a break can occur at any point until breaks are disabled, in which case a break
exception is propagated to the enclosing exception handler. Otherwise, the break can only occur within
semaphore-wait/enable-break , which guarantees that if a break exception is raised, the semaphore will
not have been decremented.

To allow similar implementation patterns over blocking port operations, MzScheme providesread-bytes-avail!/enable-break
(see§11.2.1), write-bytes-avail/enable-break (see§11.2.2), and other procedures.

6.8 Error Escape Handler

Special control flow for exceptions is performed by anerror escape handler that is called by the default exception
handler. An error escape handler takes no arguments and must escape from the expression that raised the exception.
The error escape handler is obtained or set using theerror-escape-handler parameter (see§7.9.1.7).

An error escape handler cannot invoke a full continuation that was created prior to the exception, but itcan invoke an
escape continuation (see§6.3).

The error escape handler is normally called directly by an exception handler, in a parameterization that sets the error
display and escape handlers to the default handlers, andparameterize-break ed to disable breaks. To escape
from a run-time error, useraise (see§6.1) or error (see§6.2) instead.

If an exception is raised while the error escape handler is executing, an error message is printed using a primitive error
printer and a primitive error escape handler is invoked.

In the following example, the error escape handler is set so that errors do not escape from a customread -eval -
print loop:

(let ([orig (error-escape-handler)])
(let/ec exit

(let retry-loop ()
(let/ec escape

(error-escape-handler
(lambda () (escape #f)))

(let loop ()
(let ([e (my-read)])

(if (eof-object? e)
(exit ’done)
(let ([v (my-eval e)])

(my-print v)
(loop))))))

(retry-loop)))
(error-escape-handler orig))

See alsoread-eval-print-loop in §14.1for a simpler implementation of this example.

58

7. Threads

MzScheme supports multiple threads of control within a program. Threads are implemented for all operating systems,
even when the operating system does not provide primitive thread support.

(thread thunk) invokes the procedurethunk with no arguments in a new thread of control. Thethread
procedure returns immediately with athread descriptor value. When the invocation ofthunk returns, the thread
created to invokethunk terminates.

Example:

(thread (lambda () (sleep 2) (display 7) (newline))) ; ⇒ a thread descriptor

display s 7 after two seconds pass

Each thread has its own parameter settings (see§7.9), such as the current directory or current exception handler. A
newly-created thread inherits the parameter settings of the creating thread, except

• theerror-escape-handler parameter, which is initialized to the default error escape handler; and

• thecurrent-exception-handler parameter, which is initialized to the value ofinitial-exception-handler .

When a thread is created, it is placed into the management of the current custodian (see§9.2) and added to the current
thread group (see§9.3). A thread can have any number of custodian managers added throughthread-resume .

A thread that has not terminated can be “garbage collected” if it is unreachable and suspended, or if it is unreachable
and blocked on a set of unreachable events throughsemaphore-wait or semaphore-wait/enable-break
(see §7.4), channel-put or channel-get (see §7.5), sync or sync/enable-break (see §7.7), or
thread-wait .1

All constant-time procedures and operations provided by MzScheme are thread-safe because they areatomic. For
example,set! assigns to a variable as an atomic action with respect to all threads, so that no thread can see a “half-
assigned” variable. Similarly,vector-set! assigns to a vector atomically. Thehash-table-put! procedure
is not atomic, but the table is protected by a lock; see§3.14for more information. Port operations are generally not
atomic, but they are thread-safe in the sense that a byte consumed by one thread from an input port will not be returned
also to another thread, and procedures likeport-commit-peeked (see§11.2.1) andwrite-bytes-avail (see
§11.2.2) offer specific concurrency guarantees.

7.1 Suspending, Resuming, and Killing Threads

(thread-suspend thread) immediately suspends the execution ofthread if it is running. If the thread has
terminated or is already suspended,thread-suspend has no effect. The thread remains suspended (i.e., it does
not execute) until it is resumed withthread-resume . If the current custodian (see§9.2) does not managethread

1In MrEd, a handler thread for an eventspace is blocked on an internal semaphore when its event queue is empty. Thus, the handler thread is
collectible when the eventspace is unreachable and contains no visible windows or running timers.

59

7.2. Synchronizing Thread State 7. Threads

(and none of its subordinates managesthread), theexn:fail:contract exception is raised, and the thread is
not suspended.

(thread-resume thread [thread-or-custodian]) resumes the execution ofthread if it is suspended
and has at least one custodian (possibly added throughthread-or-custodian , as described below). If the thread
has terminated, or if the thread is already running andthread-or-custodian is not supplied, or if the thread has
no custodian andthread-or-custodian is not supplied, thenthread-resume has no effect. Otherwise, if
thread-or-custodian is supplied, it triggers up to three additional actions:

• If thread-or-custodian is a thread, whenever it is resumed from a suspended state in the future, then
thread is also resumed. (Resumingthread may trigger the resumption of other threads that were previously
attached tothread throughthread-resume .)

• New custodians may be added tothread ’s set of managers. Ifthread-or-custodian is a thread, then
all of the thread’s custodians are added tothread . Otherwise,thread-or-custodian is a custodian,
and it is added tothread (unless the custodian is already shut down). Ifthread becomes managed by both
a custodian and one or more of its subordinates, the redundant subordinates are removed fromthread . If
thread is suspended and a custodian is added, thenthread is resumed only after the addition.

• If thread-or-custodian is a thread, whenever it receives a new managing custodian in the future, then
thread also receives the custodian. (Adding custodians tothread may trigger adding the custodians to other
threads that were previously attached tothread throughthread-resume .)

(kill-thread thread) terminates the specified thread immediately, or suspends the thread ifthread was
created withthread/suspend-to-kill . Terminating the main thread exits the application. Ifthread has
already terminated,kill-thread does nothing. If the current custodian (see§9.2) does not managethread (and
none of its subordinates managesthread), theexn:fail:contract exception is raised, and the thread is not
killed or suspended.

Unless otherwise noted, procedures provided by MzScheme (and MrEd) are kill-safe and suspend-safe; that is, killing
or suspending a thread never interferes with the application of procedures in other threads. For example, if a thread is
killed while extracting a character from an input port, the character is either completely consumed or not consumed,
and other threads can safely use the port.

(thread/suspend-to-kill thunk) is like (thread thunk) , except that “killing” the current thread
throughkill-thread or custodian-shutdown-all (see§9.2) merely suspends the thread instead of ter-
minating it.

7.2 Synchronizing Thread State

(thread-wait thread) blocks execution of the current thread untilthread has terminated. Note that
(thread-wait (current-thread)) deadlocks the current thread, but a break can end the deadlock (if break-
ing is enabled; see§6.7).

(thread-dead-evt thread) returns a synchronizable event (see§7.7) that is ready if and only ifthread has
terminated. Unlike usingthread directly, however, a reference to the event does not preventthread from being
“garbage collected.”

(thread-resume-evt thread) returns a synchronizable event (see§7.7) that becomes ready whenthread
is running. (Ifthread has terminated, the event never becomes ready.) Ifthread runs and is then suspended after
a call to thread-resume-evt , the result event remains ready; after each suspend ofthread a fresh event is
generated to be returned bythread-resume-evt . The result of the event isthread , but if thread is never
resumed, then reference to the event does not preventthread from being “garbage collected.”

60

7. Threads 7.3. Additional Thread Utilities

(thread-suspend-evt thread) returns a synchronizable event (see§7.7) that becomes ready whenthread
is suspended. (Ifthread has terminated, the event will never unblock.) Ifthread is suspended and then resumes
after a call tothread-suspend-evt , the result event remains ready; after each resume ofthread created a fresh
event to be returned bythread-suspend-evt .

7.3 Additional Thread Utilities

(current-thread) returns the thread descriptor for the currently executing thread.

(thread? v) returns#t if v is a thread descriptor,#f otherwise.

(sleep [x]) causes the current thread to sleep for at leastx seconds, wherex is a non-negative real number. Thex
argument defaults to 0 (allowing other threads to execute when operating system threads are not used). The value ofx
can be non-integral to request a sleep duration to any precision, but the precision of the actual sleep time is unspecified.

(thread-running? thread) returns#t if thread has not terminated and is not suspended,#f otherwise.

(thread-dead? thread) returns#t if thread has terminated,#f otherwise.

(break-thread thread) registers a break with the specified thread. If breaking is disabled inthread , the
break will be ignored until breaks are re-enabled (see§6.7).

(call-in-nested-thread thunk [custodian]) creates a nested thread managed bycustodian to ex-
ecutethunk .2 The current thread blocks untilthunk returns, and the result of thecall-in-nested-thread
call is the result returned bythunk . The default value ofcustodian is the current custodian (see§9.2).

The nested thread’s exception handler is initialized to a procedure that jumps to the beginning of the thread and
transfers the exception to the original thread. The handler thus terminates the nested thread and re-raises the exception
in the original thread.

If the thread created bycall-in-nested-thread dies beforethunk returns, theexn:fail exception is raised
in the original thread. If the original thread is killed beforethunk returns, a break is queued for the nested thread.

If a break is queued for the original thread (withbreak-thread) while the nested thread is running, the break is
redirected to the nested thread. If a break is already queued on the original thread when the nested thread is created,
the break is moved to the nested thread. If a break remains queued on the nested thread when it completes, the break
is moved to the original thread.

7.4 Semaphores

A semaphore is a value that is used to synchronize MzScheme threads. Each semaphore has an internal counter;
when this counter is zero, the semaphore can block a thread’s execution (throughsemaphore-wait) until another
thread increments the counter (usingsemaphore-post). The maximum value for a semaphore’s internal counter is
platform-specific, but always at least 10000.

A semaphore’s counter is updated in a single-threaded manner, so that semaphores can be used for reliable synchro-
nization. Semaphore waiting isfair: if a thread is blocked on a semaphore and the semaphore’s internal value is
non-zero infinitely often, then the thread is eventually unblocked.

• (make-semaphore [init-k]) creates and returns a new semaphore with the counter initially set to
init-k , which defaults to0. If init-k is larger than a semaphore’s maximum internal counter value, the
exn:fail:contract exception is raised.

2The nested thread’s current custodian is inherited from the creating thread, independent of thecustodian argument.

61

7.5. Channels 7. Threads

• (semaphore? v) returns#t if v is a semaphore created bymake-semaphore , #f otherwise.

• (semaphore-post sema) increments the semaphore’s internal counter and returns void. If the
semaphore’s internal counter has already reached its maximum value, theexn:fail exception is raised.

• (semaphore-wait sema) blocks until the internal counter for semaphoresema is non-zero. When the
counter is non-zero, it is decremented andsemaphore-wait returns void.

• (semaphore-try-wait? sema) is like semaphore-wait , but semaphore-try-wait? never
blocks execution. Ifsema’s internal counter is zero,semaphore-try-wait? returns#f immediately with-
out decrementing the counter. Ifsema’s counter is positive, it is decremented and#t is returned.

• (semaphore-wait/enable-break sema) is like semaphore-wait , but breaking is enabled (see
§6.7) while waiting onsema. If breaking is disabled whensemaphore-wait/enable-break is called,
then either the semaphore’s counter is decremented or theexn:break exception is raised, but not both.

• (semaphore-peek-evt sema) creates and returns a new synchronizable event (for use withsync , for
example) that is ready whensema is ready, but synchronizing the event does not decrementsema’s internal
count.

• (call-with-semaphore sema proc [try-fail-thunk arg ···]) waits onsema usingsemaphore-wait ,
callsproc with all arg s, and then posts tosema. A continuation barrier blocks full continuation jumps into
or out ofproc (see§6.3), but escape jumps are allowed, andsema is posted on escape. Iftry-fail-thunk
is provided and is not#f , thensemaphore-try-wait? is called onsema instead ofsemaphore-wait ,
andtry-fail-thunk is called if the wait fails.

• (call-with-semaphore/enable-break sema proc [try-fail-thunk arg · · ·]) is like
call-with-semaphore , except thatsemaphore-wait/enable-break is used withsema in non-
try mode. Whentry-fail-thunk is provided and not#f , then breaks are enabled around the use of
semaphore-try-wait? onsema.

See alsosync in §7.7.

7.5 Channels

A synchronous channel is a value that is used to synchronize MzScheme threads: one thread sends a value to another
thread, and both the sender and the receiver block until the (atomic) transaction is complete. Multiple senders and
receivers can access a channel at once, but a single sender and receiver is selected for each transaction.

Channel synchronization isfair: if a thread is blocked on a channel and transaction opportunities for the channel occur
infinitely often, then the thread eventually participates in a transaction.

For buffered asynchronous channels, see Chapter 2 ofPLT MzLib: Libraries Manual.

• (make-channel) creates and returns a new channel. The channel can be used withchannel-get , with
channel-try-get , or as a synchronizable event (see§7.7) to receive a value through the channel. The
channel can be used withchannel-put or through the result ofchannel-put-evt to send a value through
the channel.

• (channel? v) returns#t if v is a channel created bymake-channel , #f otherwise.

• (channel-get channel) blocks until a sender is ready to provide a value throughchannel . The result
is the sent value.

• (channel-try-get channel) receives and returns a value fromchannel if a sender is immediately
ready, otherwise returns#f .

62

7. Threads 7.6. Alarms

• (channel-put channel v) blocks until a receiver is ready to accept the valuev throughchannel . The
result is void.

• (channel-put-evt channel v) returns a fresh synchronizable event for use withsync (see§7.7). The
event is ready when(channel-put channel v) would not block, and the event’s synchronization result
is the event itself.

7.6 Alarms

An alarm is a synchronizable event (see§7.7) that is ready only after particular date and time. The time is specified as
a real number that is consistent withcurrent-inexact-milliseconds (see§15.1.2).

(alarm-evt msecs-n) returns a synchronizable event for use withsync . The event is not ready when
(current-inexact-milliseconds) would return a value that is less thanmsecs-n , and it is ready when
(current-inexact-milliseconds) would return a value that is more thanmsecs-n .

Thesync function accepts a timeout argument in addition to alarm events. Unlike the timeout, however, the result of
alarm-evt can be combined withwrap-evt and other event operations.

7.7 Synchronizing Events

(sync evt · · ·1) blocks as long as none of the synchronizable eventsevt s are ready, as defined below. Certain
kinds of objects double as events, including ports and threads, and other kinds of objects exist only for their use as
events.

(sync/timeout timeout evt · · ·1) is like sync , but with a timeout. If noevt is ready beforetimeout
seconds have passed, the result is#f . Thetimeout argument can be a real number or#f ; if timeout is #f , then
sync/timeout behaves likesync . If timeout is 0, eachevt is checked at least once, so atimeout value of
0 can be used for polling. (Seealarm-evt in §7.6for an alternative timeout mechanism.)

For either sync or sync/timeout , when at least oneevt is ready, its result (oftenevt itself) is re-
turned. If multiple evt s are ready, one of theevt s is chosen pseudo-randomly for the result. (The
current-evt-pseudo-random-generator parameter sets the random-number generator that controls this
choice; see§7.9.1.10.)

Choosing a readyevt may affect the state ofevt . For example, if the chosen readyevt is a semaphore, then the
semaphore’s internal count is decremented, just as withsemaphore-wait . For most kinds of events, however (such
as a port),evt ’s state is not modified.

Only certain kinds of built-in values, listed below, act as events in stand-alone MzScheme. If any other kind of value
is provided tosync , theexn:fail:contract exception is raised. An extension or embedding application can
extend the set of primitive events — in particular, an eventspace in MrEd is an event — and new structure types can
generate events (see§4.7).

• semaphore — a semaphore is ready only whensemaphore-wait (see§7.4) would not block. The syn-
chronization result ofsemaphore is semaphore itself.

• semaphore-peek — a semaphore returned bysemaphore-peek-evt applied tosemaphore (see
§7.4) is ready exactly whensemaphore is ready. The synchronization result ofsemaphore-peek is
semaphore-peek itself.

• channel — a channel returned bymake-channel is ready whenchannel-get would not block (see
§7.5). The channel’s result as an event is the same as thechannel-get result.

63

7.7. Synchronizing Events 7. Threads

• channel-put — an event returned bychannel-put-evt applied to channel is ready when
channel-put would not block onchannel (see§7.5). The synchronization result ofchannel-put is
channel-put itself.

• input-port — an input port is ready as an event whenread-byte would not block. The synchronization
result ofinput-port is input-port itself.

• output-port — an output port is ready whenwrite-bytes-avail would not block (see§11.2.2) or
when the port contains buffered characters andwrite-bytes-avail ∗ can flush part of the buffer (although
write-bytes-avail might block). The synchronization result ofoutput-port isoutput-port itself.

• progress — an event produced byport-progress-evt applied toinput-port is ready after any
subsequent read frominput-port . The synchronization result ofprogress is progress itself.

• tcp-listener — a TCP listener is ready whentcp-accept (see§11.4.1) would not block. The synchro-
nization result oflistener is listener itself.

• thread — a thread is ready whenthread-wait (see§7.2) would not block. The synchronization result of
thread is thread itself.

• thread-dead — an event returned bythread-dead-evt (see§7.2) applied tothread is ready when
thread has terminated. The synchronization result ofthread-dead is thread-dead itself.

• thread-resume — an event returned bythread-resume-evt (see§7.2) applied tothread is ready
whenthread subsequently resumes execution (if it was not already running). The event’s result isthread .

• thread-suspend — an event returned bythread-suspend-evt (see§7.2) applied to thread is
ready whenthread subsequently suspends execution (if it was not already suspended). The event’s result
is thread .

• alarm — an event returned byalarm-evt (see§7.6) is ready after a particular date and time. The synchro-
nization result ofalarm is alarm itself.

• subprocess — a subprocess is ready whensubprocess-wait (see§15.2) would not block. The synchro-
nization result ofsubprocess is subprocess itself.

• will-executor — a will executor is ready whenwill-execute (see§13.3) would not block. The syn-
chronization result ofwill-executor is will-executor itself.

• udp — an event returned byudp-send-evt or udp-receive!-evt (see§11.4.2) is ready when a send
or receive on the original socket would block, respectively. The synchronization result ofudp is udp itself.

• choice — an event returned bychoice-evt (see below) is ready when one or more of theevt s supplied to
chocie-evt are ready. If the choice event is chosen, one of its readyevt s is chosen pseudo-randomly, and
the result is the chosenevt ’s result.

• wrap — an event returned bywrap-evt applied toevt andproc is ready whenevt is ready. The event’s
result is obtained by a call toproc (with breaks disabled) on the result ofevt .

• handle — an event returned byhandle-evt applied toevt andproc is ready whenevt is ready. The
event’s result is obtained by a tail call toproc on the result ofevt .

• guard — an event returned byguard-evt applied tothunk generates a new event every time thatguard
is used withsync (or whenever it is part of a choice event used withsync , etc.); the generated event is the
result of callingthunk when the synchronization begins; ifthunk returns a non-event, thenthunk ’s result
is replaced with an event that is ready and whose result isguard .

64

7. Threads 7.7. Synchronizing Events

• nack-guard — an event returned bynack-guard-evt applied toproc generates a new event every
time thatnack-guard is used withsync (or whenever it is part of a choice event used withsync , etc.);
the generated event is the result of callingproc with a NACK (“negative acknowledgment”) event when the
synchronization begins; ifproc returns a non-event, thenproc ’s result is replaced with an event that is ready
and whose result isnack-guard-evt .

If the event fromproc is not ultimately chosen as the unblocked event, then the NACK event supplied toproc
becomes ready with a void value. This NACK event becomes ready when the event is abandoned because some
other event is chosen, because the synchronizing thread is dead, or because control escaped from the call to
sync (even ifnack-guard ’s proc has not yet returned a value). If the event returned byproc is chosen,
then the NACK event never becomes ready.

• poll-guard — an event returned bypoll-guard-evt applied toproc generates a new event every time
that poll-guard is used withsync (or whenever it is part of a choice event used withsync , etc.); the
generated event is the result of callingproc with a boolean:#t if the event will be used for a poll,#f for a
blocking synchronization.

If #t is supplied toproc , if breaks are disabled, if the polling thread is not terminated, and if polling the
resulting event produces a result, the event will certainly be chosen for its result.

• struct — a structure whose type has theprop:evt property identifies/generates an event through the prop-
erty; see§4.7for further information.

• always-evt — a constant event that is always ready. The synchronization result ofalways-evt is
always-evt itself.

• never-evt — a constant event that is never ready.

(sync/enable-break evt · · ·1) is like sync , but breaking is enabled (see§6.7) while waiting on theevt s.
If breaking is disabled whensync/enable-break is called, then either allevt s remain unchosen or the
exn:break exception is raised, but not both.

(sync/timeout/enable-break timeout evt · · ·1) is like sync/enable-break , but with a timeout
in seconds (or#f , as forsync/timeout).

(choice-evt evt · · ·) creates and returns a single event that combines theevt s. Supplying the result tosync
is the same as supplying eachevt to the same call.

(wrap-evt evt wrap-proc) creates an event that is in a ready whenevt is ready, but whose result is deter-
mined by applyingwrap-proc to the result ofevt . The call towrap-proc is parameterize-break ed to
disable breaks initially. Theevt cannot be an event created byhandle-evt or any combination ofchoice-evt
involving an event fromhandle-evt .

(handle-evt evt handle-proc) is like wrap-evt , except thathandle-proc is called in tail position
with respect to the synchronization request, and without breaks explicitly disabled.

(guard-evt generator-thunk) creates a value that behaves as an event, but that is actually an event generator.
For details, seesync , above.

(nack-guard-evt generator-proc) creates a value that behaves as an event, but that is actually an event
generator; the generator procedure receives an event that becomes ready with a void value if the generated event was
not ultimately chosen. For details, seesync , above.

(poll-guard-evt generator-proc) creates a value that behaves as an event, but that is actually an event
generator; the generator procedure receives a boolean indicating whether the event is used for polling. For details, see
sync , above.

65

7.8. Thread-Local Storage Cells 7. Threads

always-evt is a global constant event that is always ready, with itself as its result.

never-evt is a global constant event that is never ready.

(evt? v) returns#t if v is a synchronizable event,#f otherwise. Seesync , above, for the list of built-in types
that act as synchronizable events.

(handle-evt? evt) returns#t if evt was created byhandle-evt or by choice-evt applied to an-
other event for whichhandle-evt? produces#t . Such events are illegal as an argument tohandle-evt or
wrap-evt , because they cannot be wrapped further. For any other event,handle-evt? produces#f , and the
event is a legal argument tohandle-evt or wrap-evt for further wrapping.

7.8 Thread-Local Storage Cells

A thread cell contains a thread-specific value; that is, it contains a specific value for each thread, but it may contain
different values for different threads. A thread cell is created with a default value that is used for all existing threads.
When the cell’s content is changed withthread-cell-set! , the cell’s value changes only for the current thread.
Similarly, thread-cell-ref obtains the value of the cell that is specific to the current thread.

A thread cell’s value can bepreserved, which means that when a new thread is created, the cell’s initial value for the
new thread is the same as the creating thread’s current value. If a thread cell is non-preserved, then the cell’s initial
value for a newly created thread is the default value (which was supplied when the cell was created).

Within the current thread, the current values of all preserved threads cells can be captured through
current-preserved-thread-cell-values . The captured set of values can be imperatively installed into
the current thread through another call tocurrent-preserved-thread-cell-values . The capturing and
restoring threads can be different.

• (make-thread-cell v [preserved?]) creates and returns a new thread cell. Initially,v is the cell’s
value for all threads. Ifpreserved? is true, then the cell’s initial value for a newly created threads is the
creating thread’s value for the cell, otherwise the cell’s value is initiallyv in all future threads. The default value
of preserved? is #f .

• (thread-cell? v) returns#t if v is a thread cell created bymake-thread-cell , #f otherwise.

• (thread-cell-ref cell) returns the current value ofcell for the current thread.

• (thread-cell-set! cell v) sets the value incell to v for the current thread.

• (current-preserved-thread-cell-values [thread-cell-vals]) when called with no ar-
guments produces athread-cell-vals that represents the current values (in the current thread) for
all preserved thread cells. When called with athread-cell-vals generated by a previous call to
current-preserved-thread-cell-values , the values of all preserved thread cells (in the current
thread) are set to the values captured inthread-cell-vals ; if a preserved thread cell was created after
thread-cell-vals was generated, then the thread cell’s value for the current thread reverts to its initial
value.

Examples:

(define cnp (make-thread-cell ’(nerve) #f))
(define cp (make-thread-cell ’(cancer) #t))

(thread-cell-ref cnp) ; ⇒ ’(nerve)
(thread-cell-ref cp) ; ⇒ ’(cancer)

66

7. Threads 7.9. Parameters

(thread-cell-set! cnp ’(nerve nerve))
(thread-cell-set! cp ’(cancer cancer))

(thread-cell-ref cnp) ; ⇒ ’(nerve nerve)
(thread-cell-ref cp) ; ⇒ ’(cancer cancer)

(define ch (make-channel))
(thread (lambda ()

(channel-put ch (thread-cell-ref cnp))
(channel-put ch (thread-cell-ref cp))
(channel-get ch) ; to wait
(channel-put ch (thread-cell-ref cp))))

(channel-get ch) ; ⇒ ’(nerve)
(channel-get ch) ; ⇒ ’(cancer cancer)

(thread-cell-set! cp ’(cancer cancer cancer))

(thread-cell-ref cp) ; ⇒ ’(cancer cancer cancer)
(channel-put ch ’ok)
(channel-get ch) ; ⇒ ’(cancer cancer)

7.9 Parameters

A parameter is a setting that is both thread-specific and continuation-specific, such as the current output port or the
current directory for resolving relative file paths. Aparameter procedure retrieves and sets the value of a specific
parameter. For example, thecurrent-output-port parameter procedure sets and retrieves a port value that is
used bydisplay when a specific output port is not provided. Applying a parameter procedure without an argument
obtains the current value of a parameter in the current thread and continuation, and applying a parameter procedure
to a single argument sets the parameter’s value in the current thread and continuation (returning void). For example,
(current-output-port) returns the current default output port, while(current-output-port p) sets
the default output port top.

In the empty continuation, each parameter corresponds to a preserved thread cell (see§7.8); the parameter procedure
accesses and sets the thread cell’s value (for the current thread). To parameterize code in a continuation-friendly
manner, useparameterize . Theparameterize form introduces a fresh thread cell for the dynamic extent of
its body expressions. The syntax ofparameterize is:

(parameterize ((parameter-expr value-expr) · · ·) body-expr · · ·1)

The result of aparameterize expression is the result of the lastbody-expr . The parameter-expr s de-
termine the parameters to set, and thevalue-expr s determine the corresponding values to install while evaluat-
ing thebody-expr s. All of the parameter-expr s are evaluated first (and checked withparameter?), then
all value-expr s are evaluated, and then the parameters are bound in the continuation to preserved thread cells
that contain the values of thevalue-expr s. The lastbody-expr is in tail position with respect to the entire
parameterize form.

Outside the dynamic extent of aparameterize expression, parameters remain bound to other thread cells. Effec-
tively, therefore, old parameters settings are restored as control exits theparameterize expression.

If a continuation is captured during the evaluation ofparameterize , invoking the continuation effectively re-
introduces the parameterization. More generally, a continuation’s parameter-to-thread-cell mapping is called apa-
rameterization, and a parameterization is associated to a continuation via a continuation mark (see§6.6) using a

67

7.9. Parameters 7. Threads

private key. Thecurrent-parameterization procedure returns the current continuation’s parameterization.
Thecall-with-parameterization procedure takes a parameterization and a thunk; it sets the current contin-
uation’s parameterization to the given one, and calls the thunk through a tail call.

When a new thread is created, the parameterization for the new thread’s initial continuation is the parameterization of
the creator thread. Since each parameter’s thread cell is preserved, the new thread “inherits” the parameter values of its
creating thread. When a continuation is moved from one thread to another, settings introduced withparameterize
effectively move with the continuation. In contrast, direct assignment to a parameter (by calling the parameter pro-
cedure with a value) changes the value in a thread cell, and therefore changes the setting only for the current thread.
(Consequently, as far as the memory manager is concerned, the value originally associated with a parameter through
parameterize remains reachable as long the continuaton is reachable, even if the parameter is mutated.)

Examples:

(parameterize ([exit-handler (lambda (x) ’no-exit)])
(exit)) ; ⇒ void

(define p1 (make-parameter 1))
(define p2 (make-parameter 2))
(parameterize ([p1 3]

[p2 (p1)])
(cons (p1) (p2))) ; ⇒ ’(3 . 1)

(let ([k (let/cc out
(parameterize ([p1 2])

(p1 3)
(cons (let/cc k

(out k))
(p1))))])

(if (procedure? k)
(k (p1))
k)) ; ⇒ ’(1 . 3)

(define ch (make-channel))
(parameterize ([p1 0])

(thread (lambda ()
(channel-put ch (cons (p1) (p2))))))

(channel-get ch) ; ⇒ ’(0 . 2)

(define k-ch (make-channel))
(define (send-k)

(parameterize ([p1 0])
(thread (lambda ()

(let/ec esc
(channel-put ch

((let/cc k
(channel-put k-ch k)
(esc)))))))))

(send-k)
(thread (lambda () ((channel-get k-ch) (let ([v (p1)]) (lambda () v)))))
(channel-get ch) ; ⇒ 1
(send-k)
(thread (lambda () ((channel-get k-ch) p1)))
(channel-get ch) ; ⇒ 0

68

7. Threads 7.9. Parameters

MzScheme parameters correspond topreserved thread fluids in Scsh. See also “Processes vs. User-Level Threads in
Scsh” by Gasbichler and Sperber (proceedings of the 2002 Scheme Workshop).

7.9.1 Built-in Parameters

MzScheme’s built-in parameter procedures are listed in the following sections. Themake-parameter procedure,
described in§7.9.2, creates a new parameter and returns a corresponding parameter procedure.

7.9.1.1 CURRENT DIRECTORY

• (current-directory [path]) gets or sets a path that determines the current directory. When the param-
eter procedure is called to set the current directory, the path argument is expanded and then simplified using
simplify-path (see§11.3.1); expansion and simplification raise an exception if the path is ill-formed. The
path is not checked for existence when the parameter is set.

7.9.1.2 PORTS

• (current-input-port [input-port]) gets or sets an input port used byread , read-byte ,
read-char , etc. when a specific input port is not provided.

• (current-output-port [output-port]) gets or sets an output port used bydisplay , write ,
print , write-char , etc. when a specific output port is not provided.

• (current-error-port [output-port]) gets or sets an output port used by the default error display
handler.

• (global-port-print-handler [proc]) gets or sets a procedure that takes an arbitrary value and an
output port. Thisglobal port print handler is called by the default port print handler (see§11.2.7) to print
values into a port.

• (port-count-lines-enabled [on?]) gets or sets a boolean value that determines whether line counting
is enabled automatically for newly created ports; see also§11.2.1.1. The default value is#f .

7.9.1.3 PARSING

• (read-case-sensitive [on?]) gets or sets a boolean value that controls parsing input symbols. When
this parameter’s value is#f , the reader case-folds symbols (e.g.,hi when the input is any one ofhi , Hi , HI ,
or hI). The parameter also affects the way thatwrite prints symbols containing uppercase characters; if the
parameter’s value is#f , then symbols are printed with uppercase characters quoted by a backslash (\) or vertical
bar (|). The parameter’s value is overridden by backslash and vertical-bar quotes and the#cs and#ci prefixes;
see§11.2.4for more information. While a module is loaded, the parameter is set to#t (see§5.8).

• (read-square-bracket-as-paren [on?]) gets or sets a boolean value that controls whether square
brackets (“[” and “]”) are treated as parentheses. See§11.2.4for more information.

• (read-curly-brace-as-paren [on?]) gets or sets a boolean value that controls whether curly braces
(“{” and “}”) are treated as parentheses. See§11.2.4for more information.

• (read-accept-box [on?]) gets or sets a boolean value that controls parsing#\& input. See§11.2.4for
more information.

• (read-accept-compiled [on?]) gets or sets a boolean value that controls parsing pre-compiled input.
See§11.2.4for more information.

69

7.9. Parameters 7. Threads

• (read-accept-bar-quote [on?]) gets or sets a boolean value that controls parsing and printing a verti-
cal bar (|) in symbols. See§11.2.4and§11.2.5for more information.

• (read-accept-graph [on?]) gets or sets a boolean value that controls parsing input with sharing. See
§11.2.5.1for more information.

• (read-decimal-as-inexact [on?]) gets or sets a boolean value that controls parsing input numbers
with a decimal point or exponent (but no explicit exactness tag). See§11.2.5.1for more information.

• (read-accept-dot [on?]) gets or sets a boolean value that controls parsing input with a dot, which is
normally used for literal cons cells. See§11.2.4for more information.

• (read-accept-quasiquote [on?]) gets or sets a boolean value that controls parsing input with a back-
quote or comma, which is normally used forquasiquote , unquote , andunquote-splicing abbrevia-
tions. See§11.2.4for more information.

• (read-accept-reader [on?]) gets or sets a boolean value that controls whether#reader is allowed
for selecting a parser. See§11.2.4for more information.

• (current-reader-guard [proc]) gets or sets a procedure of one argument that converts or rejects (by
raising an exception) a module-path datum following#reader . See§11.2.4for more information.

• (current-readtable [readtable-or-false]) gets or sets a readtable that adjust the parsing of S-
expression input, or#f for the default behavior. See§11.2.8for more information.

7.9.1.4 PRINTING

• (print-unreadable [on?]) gets or sets a boolean value that controls printing values that have no
read able form (using the default reader), including structures that have a custom-write procedure (see
§11.2.10); defaults to#t . See§11.2.5for more information.

• (print-graph [on?]) gets or sets a boolean value that controls printing data with sharing; defaults to#f .
See§11.2.5.1for more information.

• (print-struct [on?]) gets or sets a boolean value that controls printing structure values in vector form;
defaults to#f . See§11.2.5for more information. This parameter has no effect on the printing of structures that
have a custom-write procedure (see§11.2.10).

• (print-box [on?]) gets or sets a boolean value that controls printing box values; defaults to#t . See§11.2.5
for more information.

• (print-vector-length [on?]) gets or sets a boolean value that controls printing vectors; defaults to#t .
See§11.2.5for more information.

• (print-hash-table [on?]) gets or sets a boolean value that controls printing hash tables; defaults to#f .
See§11.2.5for more information.

• (print-honu [on?]) gets or sets a boolean value that controls printing values in an alternate syntax. See
§19 for more information.

7.9.1.5 READ-EVAL -PRINT

• (current-prompt-read [proc]) gets or sets a procedure that takes no arguments, displays a prompt
string, and returns an expression to evaluate. Thisprompt read handler is called by the read phase of
read-eval-print-loop (see§14.1). The default prompt read handler prints “> ” and returns the result of

(parameterize ((read-accept-reader #t))
(read-syntax name-string))

70

7. Threads 7.9. Parameters

wherename-string corresponds to the current input source.

• (current-eval [proc]) gets or sets a procedure that takes an expression—in the form of syntax object,
S-expression, compiled expression, or compiled expression wrapped in a syntax object—and returns the expres-
sion’s value (or values; see§2.2). Thisevaluation handler is called byeval , eval-syntax , the default load
handler, andread-eval-print-loop to evaluate an expression (see§14.1). The handler should evaluate
its argument in tail position, likeeval . The default evaluation handler compiles and executes the expression
in the current namespace (determined by thecurrent-namespace parameter); if the argument is a syntax
object, it is treated like an argument toeval-syntax and not given additional context. The default evaluation
handler also partly expands expressions to splice the body of top-levelbegin forms into the top level (the
compiler is called only on the individual spliced forms, and not the top-levelbegin form), and each spliced
top-level form is evaluated before the next one is compiled.

• (current-compile [proc]) gets or sets a procedure that takes two arguments—a syntax object and
a boolean—and returns the compiled form of its first argument. Thiscompilation handler is called
by compile (see §14.3), and indirectly by eval , eval-syntax , the default load handler, and
read-eval-print-loop (see§14.1). The compilation handler’s first argument has the lexical content
needed for expansion and compilation. The compilation handler’s second argument is#t if the compiled ex-
pression will be used only for immediate evaluation, or#f if the compiled form may be saved for later use; the
default compilation handler is optimized for the special case of immediate evaluation. The result of a compila-
tion handler must be a compiled expression (see§14.3).

• (current-namespace [namespace]) gets or sets a namespace value (see§8) that determines the name-
space used to resolve module and identifier references. Thecurrent namespace is used by the default evaluation
handler, thecompile procedure, and other built-in procedures that operate on “global” bindings.

• (current-print [proc]) gets or sets a procedure that takes a value to print. Thisprint handler is called by
read-eval-print-loop (see§14.1) to print the result of an evaluation (and the result is ignored). The de-
fault print handlerprint s the value to the current output port (determined by thecurrent-output-port
parameter) and then outputs a newline, except that it does nothing when the value is void.

• (compile-allow-set!-undefined [on?]) gets or sets a boolean value indicating how to compile a
set! expression that mutates a global variable. If the value of this parameter is a true value,set! expressions
for global variables are compiled so that the global variable is set even if it was not previously defined. Oth-
erwise,set! expressions for global variables are compiled to raise theexn:fail:contract:variable
exception if the global variable is not defined at the time theset! is performed. Note that this parameter is
used when an expression iscompiled, not when it isevaluated.

• (compile-enforce-module-constants [on?]) gets or sets a boolean value indicating how a
module form should be compiled. When constants are enforced, and when the macro-expanded body of a
module contains noset! assignment to a particular variable defined within the module, then the variable is
marked as constant when the definition is evaluated. Afterward, the variable’s value cannot be assigned or
undefined throughmodule->namespace , and it cannot be defined by redeclaring the module. Enforcing
constants allows the compiler to inline some variable values, and it allows the native-code just-in-time compiler
to generate code that skips certain run-time checks.

• (eval-jit-enabled [on?]) gets or sets a boolean value that determines whether the native-code just-
in-time compiler (JIT) is enabled for code (compiled or not) that is passed to the default evaluation handler.
The default is#t , unless the JIT is disabled through the--no-jit or -j command-line flag to stand-alone
MzScheme (or MrEd), or through thePLTNOMZJIT environment variable (set to any value).

7.9.1.6 LOADING

• (current-load [proc]) gets or sets a procedure that loads a file and returns the value (or values; see
§2.2) of the last expression read from the file. Thisload handler is called by load , load-relative ,
load/use-compiled , andload/cd .

71

7.9. Parameters 7. Threads

A load handler procedure takes two arguments: a path (see§11.3.1) and an expected module name. The expected
module name is either a symbol or#f ; see§5.8for further information.

The default load handler reads expressions from the file (with compiled expressions enabled and line-counting
enabled) and passes each expression to the current evaluation handler. The default load handler also treats a
hash mark on the first line of the file as a comment (see§11.2.4). The current load directory for loading the file
is set before the load handler is called (see§14.1).

• (current-load-extension [proc]) gets or sets a procedure that loads a dynamic extension (see
§14.4) and returns the extension’s value(s). Thisload extension handler is called byload-extension ,
load-relative , andload/use-compiled .

A load extension handler procedure takes two arguments: a path (see§11.3.1) and an expected module name.
The expected module name is either a symbol or#f ; see§5.8for further information.

The default load extension handler loads an extension using operating system primitives.

• (current-load/use-compiled [proc]) gets or sets a procedure that loads a file or a compiled version
of the file; see§14.1for more information. Aload/use-compiled handler procedure takes the same arguments
as a load handler. The handler is expected to call the load handler or the load-extension handler. Unlike a load
handler or load-extension handler, a load/use-compiled handler is expected to set the currentload-relative
directory.

• (current-load-relative-directory [path]) gets or sets a complete directory path (see
§11.3.1) or #f . This current load-relative directory is set by load , load-relative ,
load/use-compiled , load/cd , load-extension , and load-relative-extension to the di-
rectory of the file being loaded. This parameter is used byload-relative , load/use-compiled and
load-relative-extension (see§14.1). When a new path or string is provided to the parameter proce-
durecurrent-load-relative-directory , it is immediately expanded (see§11.3.1) and converted to
a path. (The directory need not exist.)

• (current-write-relative-directory [path]) gets or sets a complete directory path (see§11.3.1)
or #f . This path is used when writing compiled code that contains source-location pathnames for procedures;
paths within this directory (syntactically) are converted to relative paths. When compiled code is read, relative
paths are converted back to complete paths using the current load-relative directory (if it is not#f).

• (use-compiled-file-paths [path-list]) gets or sets a list of paths, which defaults to(list
(string- >path "compiled")) . It is used byload/used-compiled (and thusrequire) as a
search path for compiled versions of files. See§14.1for more information. When a new list of paths and strings
is provided to the parameter procedure, it is converted to an immutable list of paths.

• (current-library-collection-paths [path-list]) gets or sets a list of complete directory
paths (see§11.3.1) for library collections used byrequire . See Chapter16 for more information. When
a new list of paths and strings is provided to the parameter procedure, it is converted to an immutable list of
paths.

• (use-user-specific-search-paths [on?]) gets or sets a boolean value that determines whether
user-specific paths, which are in the directory produced by(find-system-path ’addon-dir) , are in-
cluded in search paths for collections, C libraries, etc. For example,find-library-collection-paths
(see§16) omits the user-specific collection directory when this parameter’s value is#f .

• (current-command-line-arguments [string-vector]) gets or sets a vector of strings represent-
ing command-line arguments. When a new vector of strings is provided to the parameter procedure, it is con-
verted to an immutable vector of immutable strings. The stand-alone version of MzScheme (and MrEd) initial-
izes the parameter to contain command-line arguments that are not processed directly by MzScheme and MrEd.
(The same vector is also installed as the value of theargv global.) If command-line arguments are provided to
MzScheme/MrEd as a byte strings, they are converted to strings using the current locale’s encoding (see§1.2.2).

72

7. Threads 7.9. Parameters

7.9.1.7 EXCEPTIONS

• (current-exception-handler [proc]) gets or sets a procedure that is invoked to handle an exception.
See§6.1for more information about exceptions.

• (initial-exception-handler [proc]) gets or sets a procedure that is used as the initial current ex-
ception handler for a new thread.

• (error-escape-handler [proc]) gets or sets a procedure that takes no arguments and escapes from the
dynamic context of an exception. See§6.8 for further information about the error escape handler. The default
error escape handler escapes to the start of the current thread, butread-eval-print-loop (see§14.1) also
sets the escape handler. To report a run-time error, useraise (see§6.1) or error (see§6.2) instead of calling
the error escape procedure directly. Unlike all other parameters, the value of theerror-escape-handler
parameter in a new thread is not inherited from the creating thread; instead, the parameter is always initialized
to the default error escape handler.

• (error-display-handler [proc]) gets or sets a procedure that takes two arguments: a string to print
as an error message, and a value representing a raised exception. Thiserror display handler is called by the
default exception handler with an error message and the exception value (see§6.1). The default error display
handlerdisplay s its first argument to the current error port (determined by thecurrent-error-port
parameter) and extracts a stack trace (see§6.6) to display from the second argument if it is anexn value but not
anexn:fail:user value.3 To report a run-time error, useraise (see§6.1) or procedures likeerror (see
§6.2) instead of calling the error display procedure directly.

• (error-print-width [k]) gets or sets an exact integer greater than3. This value is used as the maximum
number of characters used to print a Scheme value that is embedded in a primitive error message.

• (error-print-context-length [k]) gets or sets a non-negative, exact integer. This value is used by
the default error display handler as the maximum number of lines of context (or “stack trace”) to print; a single
“...” line is printed if more lines are available after the firstk lines. A 0 value fork disables context printing
entirely.

• (error-value->string-handler [proc]) gets or sets a procedure that takes an arbitrary Scheme
value and an integer and returns a string. Thiserror value conversion handler is used to print a Scheme value that
is embedded in a primitive error message. The integer argument to the handler specifies the maximum number
of characters that should be used to represent the value in the resulting string. The default error value conversion
handlerprint s the value into a string;4 if the printed form is too long, the printed form is truncated and the
last three characters of the return string are set to “...”.

If the string returned by an error value conversion handler is longer than requested, the string is destructively
“truncated” by setting the first extra position in the string to the null character. If a non-string is returned, then
the string"..." is used. If a primitive error string needs to be generated before the handler has returned, the
default error value conversion handler is used.

Call to an error value conversion handler areparameterized to re-install the default error value conversion
handler, and to enable printing of unreadable values (see§7.9.1.4).

• (error-print-source-location [include?]) gets or sets a boolean that controls whether read and
syntax error messages include source information, such as the source line and column or the expression. This
parameter also controls the error message when a module-defined variable is accessed before its definition is
executed; the parameter determines whether the message includes a module name. Only the message field of an
exn:fail:read , exn:fail:syntax , or exn:fail:contract:variable structure is affected by
the parameter. The default is#t .

3The default error display handler in DrScheme also uses the second argument to highlight source locations.
4Using the current global port print handler; see§7.9.1.2.

73

7.9. Parameters 7. Threads

7.9.1.8 SECURITY

• (current-security-guard [security-guard]) gets or sets a security guard (see§9.1) that controls
access to the filesystem and network.

• (current-custodian [custodian]) gets or sets a custodian (see§9.2) that assumes responsibility for
newly created threads, ports, TCP listeners, UDP sockets, and byte converters.

• (current-thread-group [thread-group]) gets or sets a thread group (see§9.3) that determines CPU
allocation for newly created threads.

• (current-inspector [inspector]) gets or sets an inspector (see§4.5) that controls debugging access
to newly created structure types.

• (current-code-inspector [inspector]) gets or sets an inspector (see§9.4) that controls debugging
access to module bindings and redefinitions.

7.9.1.9 EXITING

• (exit-handler [proc]) gets or sets a procedure that takes a single argument. Thisexit handler is called
by exit . The default exit handler takes any argument and shuts down MzScheme; see§14.2for information
about exit codes.

7.9.1.10 RANDOM NUMBERS

• (current-pseudo-random-generator [generator]) gets or sets a pseudo-random number gener-
ator (see§3.3) used byrandom andrandom-seed .

• (current-evt-pseudo-random-generator [generator]) gets or sets a pseudo-random number
generator (see§3.3) used bysync andsync/enable-break (see§7.7).

7.9.1.11 LOCALE

• (current-locale [string-or-#f]) gets or sets a string/boolean value that controls the interpretation
of characters for functions such asstring-locale<? , andstring-locale-upcase (see§1.2.2and
§3.5). When locale sensitivity is disabled by setting the parameter to#f , strings are compared in a fully portable
manner, which is the same as the standard procedures; otherwise, they are interpreted according to a locale
setting (in the sense of the C library’ssetlocale). The "" locale is always a synonym for the current
machine’s default locale; other locale names are platform-specific.5 String or character printing withwrite is
not affected by the parameter, and neither are symbol case or regular expressions (see§10). The parameter’s
default value is"" .

7.9.1.12 MODULES

• (current-module-name-resolver [proc]) gets or sets a procedure used to resolve module paths.
See§5.4for more information.

• (current-module-name-prefix [symbol-or-false]) gets or sets a symbol to be prefixed onto a
module declaration when it is evaluated, where#f means no prefix. This parameter is intended for use by a
module name resolver; see§5.4for more information.

5The"C" locale is also always available; setting the locale to"C" is the same as disabling locale sensitivity with#f only when string operations
are restricted to the first 128 characters.

74

7. Threads 7.9. Parameters

7.9.1.13 PERFORMANCETUNING

• (current-thread-initial-stack-size [k]) gets or sets a positive exact integer; the integer pro-
vides a hint about how much space to reserve for a thread’s local variables. The actual space used by a compu-
tation is affected by just-in-time (JIT) compilation, but it is otherwise platform-independent.

7.9.2 Parameter Utilities

(make-parameter v [guard-proc]) returns a new parameter procedure. The value of the parameter is initial-
ized tov in all threads. Ifguard-proc is supplied, it is used as the parameter’s guard procedure. A guard procedure
takes one argument. Whenever the parameter procedure is applied to an argument, the argument is passed on to the
guard procedure. The result returned by the guard procedure is used as the new parameter value. A guard procedure
can raise an exception to reject a change to the parameter’s value.

(parameter? v) returns#t if v is a parameter procedure,#f otherwise.

(parameter-procedure=? a b) returns#t if the parameter proceduresa and b always modify the same
parameter,#f otherwise.

(current-parameterization) returns the current continuation’s parameterization.

(call-with-parameterization parameterization thunk) calls thunk (via a tail call) with
parameterization as the current parameterization.

(parameterization? v) returns#t if v is a parameterization returned bycurrent-parameterization ,
#f otherwise.

75

8. Namespaces

MzScheme supports multiplenamespaces for top-level variable bindings, syntax bindings, module imports, and mod-
ule declarations.

A new namespace is created with themake-namespace procedure, which returns a first-class namespace value.
A namespace is used by setting thecurrent-namespace parameter value (see§7.9.1.5), by providing the
namespace to procedures such aseval and eval-syntax . The MzScheme versions of the R5RS procedures
scheme-report-environment andnull-environment produce namespaces.1

The current namespace is used by many procedures, includingeval , load , compile , andexpand .2 After an
expression iseval ed, the global variable references in the expression are permanently attached to a particular name-
space, so the current namespace at the time that the code is executed isnot used as the namespace for referencing
global variables in the expression.

Example:

(define x ’orig) ; define in the original namespace
;; The following let expression is compiled in the original
;; namespace, so direct references to x see ’orig.
(let ([n (make-namespace)]) ; make new namespace

(parameterize ([current-namespace n])
(eval ’(define x ’new)) ; evals in the new namespace
(display x) ; displays ’orig
(display (eval ’x)))) ; displays ’new

A namespace actually encapsulates three top-level environments: one for normal expressions, one for macro trans-
former expressions, and one for macro templates; see§12 for more information about the transformer environment,
and see§12.3.4for more information about the template environment. Module declarations are shared by the envi-
ronments, but module instances, variable bindings, syntax bindings, and module imports are distinct. More precisely,
the transformer environment never contains any syntax bindings, and its variables, module instances, and module im-
ports are distinct from the variables, module instances, and module imports of the normal top-level environment. The
template environment contains module imports, only.

Each namespace has amodule registry that maps module names to module declarations (see Chapter5). The
module->namespace procedure returns a namespace with the same module registry as the current namespace,
but whose environment and bindings correspond to the body of an instantiated module. (This facility is primarily
useful for debugging, and its use is limited by the current code inspector; see also§9.4.)

1The resulting namespace contains syntax imports for#%app, #%datum, and#%top , because syntax expansion requires them (see§12.5), but
those names are not legalR5RSidentifiers.

2More precisely, the current namespace is used by the evaluation and load handlers, rather than directly byeval andload .

76

8. Namespaces 8.1. Identifier Resolution in Namespaces

8.1 Identifier Resolution in Namespaces

Identifier resolution in a namespace’s top-level environment, for compilation or expansion, proceeds in two steps.
First, the environment determines whether the identifier is mapped to a top-level variable, to syntax, or to a module
import (which can be either syntax or a variable). Second, if the identifier is mapped to a top-level variable, then the
variable’s location is found; if the identifier is mapped to syntax, then the expansion-time binding is found; and if the
identifier is mapped to an import, then the source module is consulted.

Importing a variable from a module withrequire is not the same as defining the variable; the import does not create
a new top-level variable in the environment, but instead maps an identifier to the module’s variable, in the same way
that a syntax definition maps an identifier to a transformer.

Redefining a previously-defined variable is the same as mutating the variable withset! . Rebinding a syntax-bound
or import-bound identifier (to syntax or an import) replaces the old binding with the new one for future uses of the
environment.

If an identifier is bound to syntax or to an import, then defining the identifier as a variable shadows the syntax or import
in future uses of the environment. Similarly, if an identifier is bound to a top-level variable, then binding the identifier
to syntax or an import shadows the variable; the variable’s value remains unchanged, however, and may be accessible
through previously evaluated expressions.

Example:

(define x 5)
(define (f) x)
x ; ⇒ 5
(f) ; ⇒ 5
(define-syntax x (syntax-rules ()))
x ; ⇒ bad syntax
(f) ; ⇒ 5
(define x 7)
x ; ⇒ 7
(f) ; ⇒ 7
(module m mzscheme (define x 8) (provide x))
(require m)
x ; ⇒ 8
(f) ; ⇒ 7

8.2 Initial Namespace

In the stand-alone MzScheme application, the initial namespace’s module registry contains declarations for
mzscheme and the primitive#%-named modules (see§5.7). The normal top-level environment of the initial name-
space contains imports for all MzScheme syntax, and it contains variable bindings (as opposed to imports) for every
built-in procedure and constant. The transformer top-level environment of the initial namespace imports all MzScheme
syntax, procedures, and constants.

Applications embedding MzScheme may extend or modify the set of initial bindings, but they will usually only add
primitive modules with#%-prefixed names. (MrEd adds#%mred-kernel for its graphical toolbox.)

8.3 Namespace Utilities

(make-namespace [flag-symbol]) creates a new namespace with a new module registry; theflag-symbol
is an option that determines the initial bindings in the namespace. The allowed values forflag-symbol are:

77

8.3. Namespace Utilities 8. Namespaces

• ’initial (the default) — the new namespace contains the module declarations of the initial namespace (see
§8.2), and the new namespace’s normal top-level environment contains bindings and imports as in the initial
namespace. However, the namespace’s transformer top-level environment is empty.

• ’empty — creates a namespace with no initial bindings or module declarations.

(namespace? v) returns#t if v is a namespace value,#f otherwise.

(namespace-symbol->identifier symbol) is similar to datum->syntax-object (see§12.2.2) re-
stricted to symbols. The lexical context of the resulting identifier corresponds to the top-level environment of the
current namespace; the identifier has no source location or properties.

(namespace-variable-value symbol [use-mapping? failure-thunk namespace]) returns a
value forsymbol in namespace , wherenamespace defaults to the current namespace. The returned value de-
pends onuse-mapping? :

• If use-mapping? is true (the default), and ifsymbol maps to a top-level variable or an imported variable (see
§8.1), then the result is the same as evaluatingsymbol as an expression. Ifsymbol maps to syntax or imported
syntax, theexn:fail:syntax exception is raised (orfailure-thunk is called; see below). Ifsymbol is
mapped to an undefined variable or an uninitialized module variable, theexn:fail:contract:variable
exception is raised (orfailure-thunk is called).

• If use-mapping? is false, the namespace’s syntax and import mappings are ignored. Instead, the
value of the top-level variable namedsymbol in namespace is returned. If the variable is undefined, the
exn:fail:contract:variable exception is raised (orfailure-thunk is called).

If failure-thunk is provided,namespace-variable-value callsfailure-thunk to produce the return
value in place of raising anexn:fail:contract:variable or exn:fail:syntax exception.

(namespace-set-variable-value! symbol v [map? namespace]) sets the value ofsymbol in the
top-level environment ofnamespace (wherenamespace defaults to the current namespace) definingsymbol if it
is not already defined. Ifmap? is supplied as true, then the namespace’s identifier mapping is also adjusted (see§8.1)
so thatsymbol maps to the variable. The default value formap? is #f .

(namespace-undefine-variable! symbol namespace) removes thesymbol variable, if any, in the
top-level environment of thenamespace , wherenamespace defaults to the current namespace. The namespace’s
identifier mapping is unaffected.

(namespace-mapped-symbols [namespace]) returns a list of all symbols that are mapped to variables, syn-
tax, and imports innamespace , wherenamespace defaults to the current namespace.

(namespace-require quoted-require-spec) performs the import corresponding toquoted-require-spec
in the top-level environment of the current namespace (like a top-levelrequire expression). See also Chapter5.
Module paths inquoted-require-spec are not resolved with respect to any other module, even if the current
namespace corresponds to a module body.

(namespace-transformer-require quoted-require-spec) performs the import corresponding to
quoted-require-spec in the top-level transformer environment (like a top-levelrequire-for-syntax ex-
pression). See also Chapter5. Module paths inquoted-require-spec are not resolved with respect to any other
module, even if the current namespace corresponds to a module body.

(namespace-require/copy quoted-require-spec) is like namespace-require for syntax ex-
ported from the module, but exported variables are treated differently: the export’s current value is copied to a top-level
variable in the current namespace.

78

8. Namespaces 8.3. Namespace Utilities

(namespace-require/expansion-time quoted-require-spec) is like namespace-require ,
but only the transformer part of the module is executed. If the required module has not been invoked before, the
module’s variables remain undefined.

(namespace-attach-module src-namespace module-path-v [dest-namespace]) attaches the
instantiated module named bymodule-path-v in src-namespace to the registry ofdest-namespace
(which is the current namespace ifdest-namespace is not supplied). Ifmodule-path-v is not a sym-
bol, the current module name resolver is called to resolve the path, but no module is loaded; the resolved form
of module-path-v is used as the module name indest-namespace . In addition tomodule-path-v ,
every module that it imports (directly or indirectly) is also recorded in the current namespace’s registry. If
module-path-v does not refer to an instantiated module insrc-namespace , or if the name of any module to
be attached already has a different declaration or instance indest-namespace , then theexn:fail:contract
exception is raised. The inspector of the module invocation indest-namespace is the same as inspector of the
invocation insrc-namespace .

(namespace-unprotect-module inspector module-path-v) namespace changes the inspector for
the instance of the module referenced bymodule-path-v in namespace ’s registry so that it is controlled by
the current code inspector. Ifnamespace is not supplied, it is the current namespace. The giveninspector must
currently control the invocation of the module innamespace ’s registry, otherwise theexn:fail:contract ex-
ception is raised. See also§9.4.

(namespace-module-registry namespace) returns the registry of the given namespace. This value is
useful only for identification viaeq? .

(module->namespace module-path-v) returns a namespace that corresponds to the body of an instantiated
module in the current namespace’s registry. The returned namespace has the same module registry as the current
namespace. Modifying a binding in the namespace changes the binding seen in modules that require the namespace’s
module. Module paths in a top-levelrequire expression are resolved with respect to the namespace’s module. New
provide declarations are not allowed. If the current code inspector does not control the invocation of the module
in the current namespace’s registry, theexn:fail:contract exception is raised; see also§9.4. Bindings in the
namespace cannot be modified if thecompile-enforce-module-constants parameter was true when the
module was declared, unless the module declaration itself included assignments to the binding viaset! .

(namespace-syntax-introduce stx) returns a syntax object likestx , except that the current namespace’s
bindings are included in the syntax object’s context (see§12.3). The additional context is overridden by any existing
top-level context in the syntax object, or by any existing or future module context. See§12.2 for more information
about syntax objects.

(module-provide-protected? module-path-index symbol) returns#f if the module declaration for
module-path-index definessymbol and exports it unprotected,#t otherwise (which may mean that the sym-
bol corresponds to an unexported definition, a protected export, or an identifier that is not defined at all within the
module). Themodule-path-index argument can be a symbol; see§12.6.5for more information on module path
indices. Typically, the arguments tomodule-provide-protected? correspond to the first two elements of a list
produced byidentifier-binding (see§12.3).

79

9. Security

MzScheme offers several mechanisms for managing security:

• Custodians (§9.2) manage resource allocation.

• Security guards (§9.1) control access to the filesystem and network.

• Inspectors (§4.5) control access to the content of otherwise opaque structures and modules (see§9.4).

• Namespaces (§8) control access to Scheme bindings.

• Thread groups (§9.3) control CPU allocation.

All security mechanisms rely on thread-specific parameters (see§7.9).

9.1 Security Guards

A security guard provides a set of access-checking procedures to be called when a thread initiates access of a file, direc-
tory, or network connection through a primitive procedure. For example, when a thread callsopen-input-file ,
the thread’s current security guard is consulted to check whether the thread is allowed read access to the file. If access
is granted, the thread receives a port that it may use indefinitely, regardless of changes to the security guard (although
the port’s custodian could shut down the port; see§9.2).

A thread’s current security guard is determined by thecurrent-security-guard parameter (see§7.9.1.8). Ev-
ery security guard has a parent, and a parent’s access procedures are called whenever a child’s access procedures are
called. Thus, a thread cannot increase its own access arbitrarily by installing a new guard. The initial security guard
enforces no access restrictions other than those enforced by the host platform.

(make-security-guard parent-security-guard file-proc network-proc [link-proc]) cre-
ates a new security guard whose parent isparent-security-guard .

Thefile-proc procedure must accept three arguments:

• a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to
deny access.

• a path (see§11.3.1) or#f for pathless queries, such as(current-directory) , (filesystem-root-list) ,
and(find-system-path symbol) . A path provided tofile-proc is not expanded or otherwise nor-
malized before checking access; it may be a relative path, for example.

• an immutable list containing one or more of the following symbols:

– ’read — read a file or directory
– ’write — modify or create a file or directory
– ’execute — execute a file

80

9. Security 9.2. Custodians

– ’delete — delete a file or directory
– ’exists — determine whether a file or directory exists, or that a path string is well-formed

The’exists symbol is never combined with other symbols in the last argument tofile-proc , but any other
combination is possible. When the second argument tofile-proc is #f , the last argument always contains
only ’exists .

Thenetwork-proc procedure must accept four arguments:

• a symbol for the primitive operation that triggered the access check, which is useful for raising an exception to
deny access.

• an immutable string representing the target hostname for a client connection or the accepting hostname for a
listening server;#f for a listening server or UDP socket that accepts connections at all of the host’s address; or
#f an unbound UDP socket.

• an exact integer between1 and65535 (inclusive) representing the port number, or#f for an unbound UDP
socket. In the case of a client connection, the port number is the target port on the server. For a listening server,
the port number is the local port number.

• a symbol, either’client or ’server , indicating whether the check is for the creation of a client connection
or a listening server. The opening of an unbound UDP socket is identified as a’client connection; explicitly
binding the socket is identified as a’server action.

The link-proc argument can be#f (the default) or a procedure of three arguments:

• a symbol for the primitive procedure that triggered the access check, which is useful for raising an exception to
deny access.

• a complete path (see§11.3.1) representing the file to create as link.

• a path representing the content of the link, which may be relative the second-argument path; this path is not
expanded or otherwise normalized before checking access.

If link-proc is #f or unprovided, then a default procedure is used that always raisesexn:fail .

The return value offile-proc , network-proc , or link-proc is ignored. To deny access, the procedure must
raise an exception or otherwise escape from the context of the primitive call. If the procedure returns, the parent’s
corresponding procedure is called on the same inputs, and so on up the chain of security guards.

The file-proc , network-proc , andlink-proc procedures are invoked in the thread that called the access-
checked primitive. Breaks may or may not be enabled (see§6.7). Full continuation jumps are blocked going into or
out of thefile-proc or network-proc call (see§6.3).

(security-guard? v) returns#t if v is a security guard value,#f otherwise.

9.2 Custodians

A custodian manages a collection of threads, file-stream ports, TCP ports, TCP listeners, UDP sockets, and byte
converters.1 Whenever a thread, file-stream port, TCP port, TCP listener, or UDP socket is created, it is placed under
the management of the current custodian (as determined by thecurrent-custodian parameter; see§7.9.1.8).

1In MrEd, custodians also manage eventspaces.

81

9.2. Custodians 9. Security

The main operation on a custodian is to shut down its managed values viacustodian-shutdown-all . In other
words,custodian-shutdown-all generalizeskill-thread to forcibly and immediately close a set of ports,
TCP connections, etc., as well as terminate (or suspend) a set of threads. For example, a web server might use a
custodian to manage all of the resources of a particular session so that the session can be cleanly terminated if it
exceeds its allowed lifetime.

A custodian that has been shut down cannot manage new objects. If the current custodian is shut down before a
procedure is called to create a managed resource (e.g.,open-input-port , thread), theexn:fail:contract
exception is raised.

A thread can have multiple managing custodians, and a suspended thread created withthread/suspend-to-kill
can have zero custodians. Extra custodians become associated with a thread throughthread-resume (see§7.1).
When a thread has multiple custodians, it is not necessarily killed by acustodian-shutdown-all , but shut-
down custodians are removed from the thread’s managing set, and the thread is killed when its managing set becomes
empty.

The values managed by a custodian are only weakly held by the custodian. As a result, a will (see§13.3) can be
executed for a value that is managed by a custodian. In addition, a custodian only weakly references its subordi-
nate custodians; if a subordinate custodian is unreferenced but has its own subordinates, then the custodian may be
collected, at which point its subordinates become immediately subordinate to the collected custodian’s superordinate
custodian.

(make-custodian [custodian]) creates a new custodian that is subordinate tocustodian . When
custodian is directed (viacustodian-shutdown-all) to shut down all of its managed values, the new subor-
dinate custodian is automatically directed to shut down its managed values as well. The default value forcustodian
is the current custodian.

(custodian-shutdown-all custodian) closes all open ports and closes all active TCP listeners and UDP
sockets that are managed bycustodian . It also removescustodian (and its subordinates) as managers of all
threads; when a thread has no managers, it is killed.2 If the current thread is to be killed, all other shut-down actions
take place before killing the thread.

(custodian? v) returns#t if v is a custodian value,#f otherwise.

(custodian-managed-list custodian super-custodian) returns a list of immediately man-
aged objects and subordinate custodians forcustodian , where custodian is itself subordinate to
super-custodian (directly or indirectly). Ifcustodian is not strictly subordinate tosuper-custodian ,
theexn:fail:contract exception is raised.

(custodian-require-memory need-k custodian) registers a require check if MzScheme is compiled
with support for memory accounting, otherwise theexn:fail:unsupported exception is raised. If a check is
registered, and if MzScheme later reaches a state after garbage collection (see§13.4) whereneed-k bytes are not
available to the current custodian,custodian is shut down.

(custodian-limit-memory limit-custodian limit-k stop-custodian) registers a limit check
if MzScheme is compiled with support for memory accounting (a.k.a. “3m”), otherwise theexn:fail:unsupported
exception is raised. If a check is registered, and if MzScheme later reaches a state after garbage collection (see§13.4)
wherelimit-custodian owns more thanlimit-k bytes, thenstop-custodian is shut down.

2“Killing” a thread created withthread/suspend-to-kill merely suspends the thread.

82

9. Security 9.3. Thread Groups

9.3 Thread Groups

A thread group is a collection of threads and other thread groups that have equal claim to the CPU. By nesting thread
groups and by creating certain threads within certain groups, a programmer can control the amount of CPU allocated
to a set of threads. Every thread belongs to a thread group, which is determined by thecurrent-thread-group
parameter (see§7.9.1.8) when the thread is created. Thread groups and custodians (see§9.2) are independent.

The root thread group receives all of the CPU that the operating system gives MzScheme. Every thread or nested
group in a particular thread group receives equal allocation of the CPU (a portion of the group’s access), although a
thread may relinquish part of its allocation by sleeping or synchronizing with other processes.

(make-thread-group [thread-group]) creates a new thread group that belongs tothread-group . The
default value forthread-group is the current thread group, as determined by thecurrent-thread-group
parameter.

(thread-group? v) returns#t if v is a thread group value,#f otherwise.

9.4 Inspectors and Modules

In the same way that inspectors control access to structure fields (see§4.5), inspectors also control access to module
bindings (see§5). The default inspector for module bindings is determined by thecurrent-code-inspector
parameter, instead of thecurrent-inspector parameter.

When amodule declaration is evaluated, the value of thecurrent-code-inspector parameter is associated
with the module declaration. When the module is invoked viarequire or dynamic-require , a sub-inspector
of the module’s declaration-time inspector is created, and this sub-inspector is associated with the module invocation.
Any inspector that controls the sub-inspector (i.e., the declaration-time inspector and its superior) controls the module
invocation.

Control over a module invocation enables

• the use ofmodule->namespace on the module;

• access to the module’s protected identifiers, i.e. those identifiers exported from the module withprotect ; and

• access to the module’s protected and unexported variables within compiled code fromread (see§14.3).

If the value ofcurrent-code-inspector never changes, then no control is lost for any module invocation, since
the module’s invocation is associated with a sub-inspector ofcurrent-code-inspector .

The inspector for a module invocation is specific to a particular module registry, in case a module is attached to a new
registry vianamespace-attach-module . The invocation inspector in a particular registry can be changed via
namespace-unprotect-module (but changing the inspector requires control over the old one).

Control over a module declaration (as opposed to a mere invocation) enables the reconstruction of syntax objects that
contain references to the module’s unexported identifiers. Otherwise, the compiler and macro expander prevent any
reference to an unexported identifier, unless the reference appears within an expression that was generated by the
module’s macros (or, more precisely, a macro from a module whose declaration inspector controls the invocation of
the identifier’s module). See§12.6.3for further information.

83

10. Regular Expressions

MzScheme provides built-in support for regular expression pattern matching on strings, byte strings, and input ports.1

Regular expressions are specified as strings or byte strings, using the same pattern language as the Unix utilityegrep
or Perl. A string-specified pattern produces a character regexp matcher, and a byte-string pattern produces a byte
regexp matcher. If a character regexp is used with a byte string or input port, it matches UTF-8 encodings (see§1.2.3)
of matching character streams; if a byte regexp is used with a character string, it matches bytes in the UTF-8 encoding
of the string.

Regular expressions can be compiled into aregexp value for repeated matches. Theregexp andbyte-regexp
procedures convert a string or byte string (respectively) into a regexp value using one syntax of regular expressions
that is most compatible toegrep . Thepregexp andbyte-pregexp procedures produce a regexp value using
a slightly different syntax of regular expressions that is more compatible with Perl. In addition, Scheme constants
written with#rx or #px (see§11.2.4) produce compiled regexp values.2

For a gentle introduction to regular expression using thepregexp syntax, see Chapter 34 ofPLT MzLib: Libraries
Manual.

The two supported regular expression syntaxes share a common core that is shown in Figures10.1 and10.2. Fig-
ure10.3completes the grammar forregexp , which treats curly braces (“{” and “}”) as literals, backslash (“\”) as a
literal within ranges, and backslash (“\”) as a literal producer outside of ranges. Figures10.4and10.5complete the
grammar forpregexp , which uses curly braces (“{” and “}”) for bounded repetition and uses backslash (“\”) for
meta-characters both inside and outside of ranges.

In addition to matching a grammars, regular expressions must meet two syntactic restrictions:

• In aRepeat other thanAtom?, thenAtom must not match an empty sequence.

• In a (?<=Regexp) or (?<!Regexp), theRegexp must match a bounded sequence, only.

These contraints are checked syntactically by the type system in Figure10.6at the end of this chapter. A type〈n,m〉
corresponds to an expression that matches betweenn and m characters. In the rule for (Regexp), N means the
number such that the opening parenthesis is theNth opening parenthesis for collecting match reports. Non-emptiness
is inferred for a backreference pattern,\N, so that a backreference can be used for repetition patterns; in the case
of mutual dependencies among backreferences, the inference chooses the fixpoint that maximizes non-emptiness.
Finiteness is not inferred for backreferences (i.e., a backreference is assumed to match an arbitrarily large sequence).

If a byte string is used to express a grammar, its bytes are interpreted as Latin-1 encodings of characters (see§1.2.3),
and the resulting regexp “matches a character” by matching a byte whose Latin-1 decoding is the character. The
exception is that\p{Property } and\P{Property } match UTF-8 encoded characters with the corresponding
Property .

By default, a regular expression matches characters case-sensitively, and newlines are not treated specially. TheMode

1The implementation is based on Henry Spencer’s package.
2The internal size of a regexp value is limited to 32 kilobytes; this limit roughly corresponds to a source string with 32,000 literal characters or

5,000 operators.

84

10. Regular Expressions

Regexp ::= Pieces MatchPieces
| Regexp |Regexp Match eitherRegexp , try left first

Pieces ::= Piece MatchPiece
| PiecePieces Match firstPiece followed by secondPieces

Piece ::= Repeat MatchRepeat , longest possible
| Repeat ? MatchRepeat , shortest possible
| Atom MatchAtom exactly once

Repeat ::= Atom* Match Atom 0 or more times
| Atom+ MatchAtom 1 or more times
| Atom? MatchAtom 0 or 1 times

Atom ::= (Regexp) Match sub-expressionRegexp and report match
| [Range] Match any character inRange
| [ˆRange] Match any character not inRange
| . Match any character (except newline in multi mode)
| ˆ Match start of input (or after newline in multi mode)
| $ Match end of input (or before newline in multi mode)
| Literal Match a single literal character
| (?Mode:Regexp) Match sub-expressionRegexp usingMode
| (?>Regexp) Match sub-expressionRegexp , only first possible
| Look Match empty ifLook matches
| (?PredPieces |Pieces) Match firstPieces if Pred , secondPieces if not Pred
| (?PredPieces) MatchPieces if Pred , empty if notPred

Range ::=] Range contains] only
| - Range contains - only
| Mrange Range contains everything inMrange
| Mrange - Range contains - and everything inMrange

Mrange ::=] Lrange Mrange contains] and everything inLrange
| -Lrange Mrange contains - and everything inLrange
| Lrange Mrange contains everything inLrange

Lrange ::= Rliteral Lrange contains a literal character
| Rliteral -Rliteral Lrange contains Unicode range inclusive
| LrangeLrange Lrange contains everything in both

Figure 10.1: Common grammar for regular expressions

portion of an (?Mode:Regexp) form changes the matching mode forRegexp :

• If the new mode is case-insensitive, thenRegexp is generalized so that where it matches a particular character,
then it also matches lowercase, uppercase, titlecase, and case-folded variants of the same character. For byte-
string regular expressions, matching is case-insensitive on ASCII characters, only.

• If the new mode is multi, then a dot (“.”) inRegexp never matches a newline character, but a caret (“ˆ”) matches
after a newline (in addition to the beginning of the input), and a dollar sign (“$”) matches before a newline (in
addition to the end of the input).

A few subtle points about the regexp language are worth noting:

• When an opening square bracket (“[”) that starts a range is immediately followed by a closing square bracket
(“]”), then the closing square bracket is part of the range, instead of ending an empty range. For example,
"[]a]" matches any string that contains a lowercase “a” or a closing square bracket. A dash (“-”) at the start
or end of a range is treated specially in the same way.

• When a caret (“ˆ”) or dollar sign (“$”) appears in the middle of a regular expression (not in a range) and outside
of “multi” mode, the resulting regexp is legal even though it is usually not matchable. For example,"a$b"

85

10. Regular Expressions

Look ::= (?=Regexp) Match if Regexp matches
| (?!Regexp) Match if Regexp doesn’t match
| (?<=Regexp) Match if Regexp matches immediately preceeding
| (?<!Regexp) Match if Regexp doesn’t match immediately preceeding

Pred ::= (N) True if Nth (has a match
| Look True if Look matches

Mode ::= Like the enclosing mode
| Modei Like Mode, but case-insensitive
| Mode-i Like Mode, but sensitive
| Modes LikeMode, but not in multi mode
| Mode-s LikeMode, but in multi mode
| Modem Like Mode, but in multi mode
| Mode-m Like Mode, but not in multi mode

Figure 10.2: Common predicate, lookahead/lookbehind, and mode grammar

Literal ::= Any character except (,), *, +, ?, [, ., ˆ,\, or |
| \Aliteral MatchAliteral

Aliteral ::= Any character
Rliteral ::= Any character except] or -

Figure 10.3: Specific grammar forregexp , byte-regexp , and#rx

is unmatchable, because no string can contain the letter “b” after the end of the string. In contrast,"a$b ∗"
matches any string that ends with a lowercase “a”, since zero “b”s will match the part of the regexp after “$”.

• A backslash (“\”) in a regexp pattern specified with a Scheme string literal must be protected with an additional
backslash. For example, the string" \\." describes a pattern that matches any string containing a period. In this
case, the first backslash protects the second to generate a Scheme string containing two characters; the second
backslash (which is the first slash in the actual string value) protects the period in the regexp pattern.

The regular expression procedures are as follows:

• (regexp string) takes a string representation of a regular expression (using the syntax of Figure10.3) and
compiles it into a regexp value. Other regular expression procedures accept either a string or a regexp value as
the matching pattern. If a regular expression string is used multiple times, it is faster to compile the string once
to a regexp value and use it for repeated matches instead of using the string each time.

Theobject-name procedure (see§6.2.3) returns the source string for a regexp value.

• (pregexp string) is like regexp , except that it uses the syntax of Figure10.4. The result can be used
with regexp-match , etc., just like the result fromregexp .

• (regexp? v) returns#t if v is a regexp value created byregexp or pregexp , #f otherwise.

• (pregexp? v) returns#t if v is a regexp value created bypregexp (not regexp), #f otherwise.

• (byte-regexp bytes) takes a byte-string representation of a regular expression (using the syntax of Fig-
ure 10.3) and compiles it into a byte-regexp value. Theobject-name procedure (see§6.2.3) returns the
source byte string for a regexp value.

• (byte-pregexp string) is like byte-regexp , except that it uses the syntax of Figure10.4. The result
can be used withregexp-match , etc., just like the result frombyte-regexp .

86

10. Regular Expressions

Repeat ::= ... see Figure10.1
| Atom{N} MatchAtom exactlyN times
| Atom{N,} MatchAtom N or more times
| Atom{,M} MatchAtom between 0 andM times
| Atom{N,M} MatchAtom betweenN andM times

Atom ::= ... see Figure10.1
| \N Match latest reported match forNth (
| Class Match any character inClass
| \b Match between\w and\W, start, or end
| \B Match between\w and\w or \W and\W, start, or end
| \p{Property } Match a (UTF-8 encoded) character inProperty
| \P{Property } Match a (UTF-8 encoded) character not inProperty

Literal ::= Any character except (,), *, +, ?, [,],{, }, ., ˆ,\, or |
| \Aliteral MatchAliteral

Aliteral ::= Any character except a-z, A-Z, 0-9
Lrange ::= ... see Figure10.1

| Class Lrange contains all characters inClass
| Posix Lrange contains all characters inPosix

Rliteral ::= Any character except],\, or -

Figure 10.4: Specific grammar forpregexp , byte-pregexp , and#px

• (byte-regexp? v) returns#t if v is a regexp value created bybyte-regexp or byte-pregexp , #f
otherwise.

• (byte-pregexp? v) returns#t if v is a regexp value created bybyte-pregexp (notbyte-regexp),
#f otherwise.

• (regexp-match pattern string [start-k end-k output-port]) attempts to matchpattern
(a string, byte string, regexp value, or byte-regexp value) once to a portion ofstring ; see below for informa-
tion on using a byte string or input port in place ofstring .

The optionalstart-k andend-k arguments select a substring ofstring for matching, and the default is
the entire string. Theend-k argument can be#f , which is the same as not supplyingend-k . The matcher
finds a portion ofstring that matchespattern and is closest to the start of the selected substring.

If the match fails,#f is returned. If the match succeeds, a list containing strings, and possibly#f , is returned.
The list contains byte strings (substrings of the UTF-8 encoding ofstring) if pattern is a byte string or a
byte regexp value.

The first [byte] string in a result list is the portion ofstring that matchedpattern . If two portions of
string can matchpattern , then the match that starts earliest is found.

Additional [byte] strings are returned in the list ifpattern contains parenthesized sub-expressions (but not
when the open parenthesis is followed by “?:”). Matches for the sub-expressions are provided in the order of
the opening parentheses inpattern . When sub-expressions occur in branches of an “or” (“|”), in a “zero or
more” pattern (“*”), or in a “zero or one” pattern (“?”), a#f is returned for the expression if it did not contribute
to the final match. When a single sub-expression occurs in a “zero or more” pattern (“*”) or a “one or more”
pattern (“+”) and is used multiple times in a match, then the rightmost match associated with the sub-expression
is returned in the list.

If the optionaloutput-port is provided, the part ofstring that precedes the match is written to the port.
All of string up to end-k is written to the port if no match is found. This functionality is not especially
useful, but it is provided for consistency withregexp-match on input ports. Theoutput-port argument
can be#f , which is the same as not supplying it.

• (regexp-match pattern bytes [start-k end-k output-port]) is analogous toregexp-match
with a string (see above). The result is always a list of byte strings and#f , even ifpattern is a character
string or a character regexp value.

87

10. Regular Expressions

Class ::= \d Class contains 0-9
| \D Class contains ASCII other than those in\d
| \w Class contains a-z, A-Z, 0-9,
| \W Class contains ASCII other than those in\w
| \s Class contains space, tab, newline, formfeed, return
| \S Class contains ASCII other than those in\s

Posix ::= [:alpha:] Posix contains a-z, A-Z
| [:alnum:] Posix contains a-z, A-Z, 0-9
| [:ascii:] Posix contains all ASCII characters
| [:blank:] Posix contains space and tab
| [:cntrl:] Posix contains all characters with scalar value ¡ 32
| [:digit:] Posix contains 0-9
| [:graph:] Posix contains all ASCII characters that use ink
| [:lower:] Posix contains space, tab, and ASCII ink users
| [:print:] Posix contains A-Z
| [:space:] Posix contains space, tab, newline, formfeed, return
| [:upper:] Posix contains A-Z
| [:word:] Posix contains a-z, A-Z, 0-9,
| [:xdigit:] Posix contains 0-9, a-f, A-F

Property ::= Category Property includes all characters inCategory
| ˆCategory Property includes all characters not inCategory

Category ::= Ll | Lu | Lt | Lm Unicode general category
| L& Union of Ll, Lu, Lt, and Lm
| Lo Unicode general category
| L Union of L& and Lo
| Nd | Nl | No Unicode general category
| N Union of Nd, Nl, and No
| Ps| Pe| Pi | Pf Unicode general category
| Pc| Pd| Po Unicode general category
| P Union of Ps, Pe, Pi, Pf, Pc, Pd, and Po
| Mn | Mc | Me Unicode general category
| M Union of Mn, Mc, and Me
| Sc| Sk | Sm | So Unicode general category
| S Union of Sc, Sk, Sm, and So
| Zl | Zp | Zs Unicode general category
| Z Union of Zl, Zp, and Zs
| . Union of all general categories

Figure 10.5: Properties and classes forpregexp (Figure10.4)

• (regexp-match pattern input-port [start-k end-k output-port]) is similar toregexp-match
with a byte string (see above), except that the match is found in the stream of bytes produced byinput-port .
The optionalstart-k argument indicates the number of bytes to skip before matchingpattern , andend-k
indicates the maximum number of bytes to consider (including skipped bytes). Theend-k argument can be
#f , which is the same as not supplyingend-k . The default is to skip no bytes and read until the end-of-file if
necessary. If the end-of-file is reached beforestart-k bytes are skipped, the match fails.

In pattern , a start-of-string caret (“ˆ”) refers to the first read position after skipping, and the end-of-string
dollar sign (“$”) refers to theend-k th read byte or the end of file, whichever comes first.

The optionaloutput-port receives all bytes that precede a match in the input port, or up toend-k bytes
(by default the entire stream) if no match is found. Theoutput-port argument can be#f , which is the same
as not supplying it.

When matching an input port stream, a match failure reads up toend-k bytes (or end-of-file), even ifpattern
begins with a start-of-string caret (“ˆ”); see alsoregexp-match/fail-without-reading in Chapter 41
of PLT MzLib: Libraries Manual. On success, all bytes up to and including the match are eventually read

88

10. Regular Expressions

from the port, but matching proceeds by first peeking bytes from the port (usingpeek-bytes-avail! ;
see§11.2.1), and then (re-)reading matching bytes to discard them after the match result is determined. Non-
matching bytes may be read and discarded before the match is determined. The matcher peeks in blocking
mode only as far as necessary to determine a match, but it may peek extra bytes to fill an internal buffer if
immediately available (i.e., without blocking). Greedy repeat operators inpattern , such as “*” or “+”, tend
to force reading the entire content of the port (up toend-k) to determine a match.

If the port is read simultaneously by another thread, or if the port is a custom port with inconsistent reading
and peeking procedures (see§11.1.7), then the bytes that are peeked and used for matching may be differ-
ent than the bytes read and discarded after the match completes; the matcher inspects only the peeked bytes.
To avoid such interleaving, useregexp-match-peek (with a progress-evt argument) followed by
port-commit-peeked .

• (regexp-match-positions pattern string/bytes/input-port [start-k end-k output-port])
is like regexp-match , but returns a list of number pairs (and#f) instead of a list of strings. Each pair of
numbers refers to a range of characters or bytes instring/bytes/input-port . If the result for the same
arguments withregexp-match would be a list of byte strings, the resulting ranges correspond to byte ranges;
in that case, ifstring/bytes/input-port is a character string, the byte ranges correspond to bytes in the
UTF-8 encoding of the string.

Range results are returned in asubstring - andsubbytpe -compatible manner, independent ofstart-k .
In the case of an input port, the returned positions indicate the number of bytes that were read, including
start-k , before the first matching byte.

• (regexp-match? pattern string/bytes/input-port [start-k end-k output-port]) is
like regexp-match , but returns merely#t when the match succeeds,#f otherwise.

• (regexp-match-peek pattern input-port [start-k end-k progress-evt]) is like regexp-match
on input ports, but only peeks bytes frominput-port instead of reading them. Furthermore, instead of an
output port, the last optional argument is a progress event forinput-port (see§11.2.1). If progress-evt
becomes ready, then the match stops peeking frominput-port and returns#f . The progress-evt
argument can be#f , in which case the peek may continue with inconsistent information if another process
meanwhile reads frominput-port .

• (regexp-match-peek-positions pattern input-port [start-k end-k progress-evt])
is like regexp-match-positions on input ports, but only peeks bytes frominput-port instead of
reading them.

• (regexp-match-peek-immediate pattern input-port [start-k end-k progress-evt])
is like regexp-match-peek , but it attempts to match only bytes that are available frominput-port with-
out blocking. The match fails if not-yet-available characters might be used to matchpattern .

• (regexp-match-peek-positions-immediate pattern input-port [start-k end-k progress-evt])
is like regexp-match-peek-positions , but it attempts to match only bytes that are available from
input-port without blocking. The match fails if not-yet-available characters might be used to match
pattern .

• (regexp-replace char-pattern string insert-string) performs a match usingchar-pattern
on string and then returns a string in which the matching portion ofstring is replaced with
insert-string . If char-pattern matches no part ofstring , thenstring is returned unmodified.

Thechar-pattern must be a string or a character regexp value (not a byte string or a byte regexp value).

If insert-string contains “&”, then “&” is replaced with the matching portion ofstring before it is
substituted intostring . If insert-string contains “\n” (for some integern), then it is replaced with the
nth matching sub-expression fromstring .3 “&” and “ \0” are synonymous. If thenth sub-expression was not

3The backslash is a character in the string, so an extra backslash is required to specify the string as a Scheme constant. For example, the Scheme
constant" \\1" is “\1”.

89

10. Regular Expressions

used in the match or ifn is greater than the number of sub-expressions inpattern , then “\n” is replaced with
the empty string.

A literal “&” or “ \” is specified as “\&” or “ \\”, respectively. Ifinsert-string contains “\$”, then “\$”
is replaced with the empty string. (This can be used to terminate a numbern following a backslash.) If a “\” is
followed by anything other than a digit, “&”, “\”, or “$”, then it is treated as “\0”.

• (regexp-replace byte-pattern string-or-bytes insert-string-or-bytes) is analo-
gous toregexp-replace on strings, wherebyte-pattern is a byte string or a byte regexp value. The
result is always a byte string.

• (regexp-replace char-pattern string proc) is like regexp-replace , but instead of an
insert-string third argument, the third argument is a procedure that accepts match strings and produces
a string to replace the match. Theproc must accept the same number of arguments asregexp-match
produces list elements for a successful match withchar-pattern .

• (regexp-replace byte-pattern string-or-bytes proc) is analogous toregexp-replace
on strings and a procedure argument, but the procedure accepts byte strings to produce a byte string, instead of
character strings.

• (regexp-replace* pattern string insert-string) is the same asregexp-replace , ex-
cept that every instance ofpattern in string is replaced withinsert-string . Only non-overlapping
instances ofpattern in the originalstring are replaced, so instances ofpattern within inserted strings
arenot replaced recursively. If, in the process of repeating matches,pattern matches an empty string, the
exn:fail exception is raised.

• (regexp-replace* byte-pattern bytes insert-bytes) is analogous toregexp-replace*
on strings.

• (regexp-replace* char-pattern string proc) is like regexp-replace with a procedure ar-
gument, but with multiple instances replaced. The givenproc is called once for each match.

• (regexp-replace* byte-pattern bytes proc) is like regexp-replace* with a string and
procedure argument, but the procedure accepts and produces byte strings.

Examples:

(define r (regexp "(-[0-9] ∗) +"))
(regexp-match r "a-12--345b") ; ⇒ ’("-12--345" "-345")
(regexp-match-positions r "a-12--345b") ; ⇒ ’((1 . 10) (5 . 10))
(regexp-match "x +" "12345") ; ⇒ #f
(regexp-replace "mi" "mi casa" "su") ; ⇒ "su casa"
(regexp-replace "mi" "mi casa" string-upcase) ; ⇒ "MI casa"

(define r2 (regexp "([Mm])i ([a-zA-Z] ∗)"))
(define insert " \\1y \\2")
(regexp-replace r2 "Mi Casa" insert) ; ⇒ "My Casa"
(regexp-replace r2 "mi cerveza Mi Mi Mi" insert) ; ⇒ "my cerveza Mi Mi Mi"
(regexp-replace* r2 "mi cerveza Mi Mi Mi" insert) ; ⇒ "my cerveza My Mi Mi"
(regexp-replace* r2 "mi cerveza Mi Mi Mi"

(lambda (all one two)
(string-append (string-downcase one) "y"

(string-upcase two)))) ; ⇒ "myCERVEZA myMI Mi"

(define p (open-input-string "a abcd"))
(regexp-match-peek ". ∗bc" p) ; ⇒ ’("a abc")
(regexp-match-peek ". ∗bc" p 2) ; ⇒ ’("abc")

90

10. Regular Expressions

(regexp-match ". ∗bc" p 2) ; ⇒ ’("abc")
(peek-char p) ; ⇒ #\d
(regexp-match ". ∗bc" p) ; ⇒ #f
(peek-char p) ; ⇒ #<eof >

(define p (open-input-string "aaaaaaaaaaa abcd"))
(define o (open-output-string))
(regexp-match "abc" p 0 #f o) ; ⇒ ’("abc")
(get-output-string o) ; ⇒ "aaaaaaaaaaa "

(define r (byte-regexp #"(-[0-9] ∗) +"))
(regexp-match r #"a-12--345b") ; ⇒ ’(#"-12--345" "-345")
(regexp-match #".." #" \uC8x") ; ⇒ ’(#" \310x")
;; The UTF-8 encoding of # \uC8 is two bytes: 195 followed by 136
(regexp-match #".." " \uC8x") ; ⇒ ’(#" \303\210")

Regexp 1 : 〈n1,m1〉 Regexp 2 : 〈n2,m2〉
Regexp 1|Regexp 2 : < (n1,n2),(m1,m2) >

Piece : 〈n1,m1〉 Pieces : 〈n2,m2〉
PiecePieces : 〈n1 +n2,m1 +m2〉

Repeat : 〈n,m〉
Repeat ? : 〈n,m〉

Atom : 〈n,m〉 n > 0
Atom* : 〈0,∞〉

Atom : 〈n,m〉 n > 0
Atom+ : 〈1,∞〉

Atom : 〈n,m〉
Atom? : 〈0,m〉

Atom : 〈n,m〉 n > 0
Atom{N} : 〈n·N,m·N〉

Atom : 〈n,m〉 n > 0
Atom{N,} : 〈n·N,∞〉

Atom : 〈n,m〉 n > 0
Atom{,M} : 〈0,m·M〉

Atom : 〈n,m〉 n > 0
Atom{N,M} : 〈n·N,m·M〉

Regexp : 〈n,m〉
(Regexp) : 〈n,m〉 αN = n

Regexp : 〈n,m〉
(?Mode:Regexp) : 〈n,m〉

Regexp : 〈n,m〉
(?=Regexp) : 〈0,0〉

Regexp : 〈n,m〉
(?!Regexp) : 〈0,0〉

Regexp : 〈n,m〉 m< ∞
(?<=Regexp) : 〈0,0〉

Regexp : 〈n,m〉 m< ∞
(?<!Regexp) : 〈0,0〉

Regexp : 〈n,m〉
(?>Regexp) : 〈n,m〉

Pred : 〈n0,m0〉 Pieces 1 : 〈n1,m1〉 Pieces 2 : 〈n2,m2〉
(?PredPieces 1|Pieces 2) : < (n1,n2),(m1,m2) >

Pred : 〈n0,m0〉 Pieces : 〈n1,m1〉
(?PredPieces) : 〈0,m1〉 (N) : 〈αN,∞〉

[Range] : 〈1,1〉 [ˆRange] : 〈1,1〉 . : 〈1,1〉 ˆ : 〈0,0〉

$: 〈0,0〉 Literal : 〈1,1〉 \N : 〈αN,∞〉 Class : 〈1,1〉

\b : 〈0,0〉 \B : 〈0,0〉 \p{Property } : 〈1,6〉 \P{Property } : 〈1,6〉

Figure 10.6: Type rules for regular expressions

91

11. Input and Output

11.1 Ports

By definition, ports in MzScheme produce and consume bytes. When a port is provided to a character-based operation,
such asread , the port’s bytes are read and interpreted as a UTF-8 encoding of characters (see also§1.2.3). Thus,
reading a single character may require reading multiple bytes, and a procedure likechar-ready? may need to peek
several bytes into the stream to determine whether a character is available. In the case of a byte stream that does not
correspond to a valid UTF-8 encoding, functions such asread-char may need to peek one byte ahead in the stream
to discover that the stream is not a valid encoding.

When an input port produces a sequence of bytes that is not a valid UTF-8 encoding in a character-reading context,
then bytes that constitute an invalid sequence are converted to the character “?”. Specifically, bytes 255 and 254 are
always converted to “?”, bytes in the range 192 to 253 produce “?” when they are not followed by bytes that form
a valid UTF-8 encoding, and bytes in the range 128 to 191 are converted to “?” when they are not part of a valid
encoding that was started by a preceding byte in the range 192 to 253. To put it another way, when reading a sequence
of bytes as characters, a minimal set of bytes are changed to 631 so that the entire sequence of bytes is a valid UTF-8
encoding.

See§3.6for procedures that facilitate conversions using UTF-8 or other encodings. See alsoreencode-input-port
andreencode-output-port in Chapter 33 ofPLT MzLib: Libraries Manualfor obtaining a UTF-8-based port
from one that uses a different encoding of characters.

(port? v) returns#t if either (input-port? v) or (output-port? v) is #t , #f otherwise.

(file-stream-port? port) returns#t if the given port is a file-stream port (see§11.1.6, #f otherwise.

(terminal-port? port) returns#t if the given port is attached to an interactive terminal,#f otherwise.

11.1.1 End-of-File Constant

The global variableeof is bound to the end-of-file value. The standard Scheme predicateeof-object? returns#t
only when applied to this value.

Reading from a port produces an end-of-file result when the port has no more data, but some ports may also return
end-of-file mid-stream. For example, a port connected to a Unix terminal returns an end-of-file when the user types
control-d; if the user provides more input, the port returns additional bytes after the end-of-file.

11.1.2 Current Ports

The standard Scheme procedurescurrent-input-port and current-output-port are implemented as
parameters in MzScheme. See§7.9.1.2for more information.

163 is the same as(char->integer # \?) .

92

11. Input and Output 11.1. Ports

11.1.3 Opening File Ports

Theopen-input-file andopen-output-file procedures accept an optional flag argument after the filename
that specifies a mode for the file:

• ’binary — bytes are returned from the port exactly as they are read from the file. Binary mode is the default
mode.

• ’text — return and linefeed bytes (10 and 13) are written to and read from the file are filtered by the port in a
platform specific manner:

– Unix and Mac OS X: no filtering occurs.
– Windows reading: a return-linefeed combination from a file is returned by the port as a single linefeed;

no filtering occurs for return bytes that are not followed by a linefeed, or for a linefeed that is not preceded
by a return.

– Windows writing : a linefeed written to the port is translated into a return-linefeed combination in the file;
no filtering occurs for returns.

In Windows, ’text mode works only with regular files; attempting to use’text with other kinds of files
triggers anexn:fail:filesystem exception.

Theopen-output-file procedure can also take a flag argument that specifies how to proceed when a file with
the specified name already exists:

• ’error — raiseexn:fail:filesystem (this is the default)
• ’replace — remove the old file and write a new one
• ’truncate — overwrite the old data
• ’truncate/replace — try ’truncate ; if it fails, try ’replace
• ’append — append to the end of the file under Unix and Mac OS X; under Windows,’append is equivalent

to ’update , except that the file position is immediately set to the end of the file after opening it
• ’update — open an existing file without truncating it; if the file does not exist, theexn:fail:filesystem

exception is raised

Theopen-input-output-file procedure takes the same arguments asopen-output-file , but it produces
two values: an input port and an output port. The two ports are connected in that they share the underlying file
device. This procedure is intended for use with special devices that can be opened by only one process, such as
COM1 in Windows. For regular files, sharing the device can be confusing. For example, using one port does not
automatically flush the other port’s buffer (see§11.1.6for more information about buffers), and reading or writing in
one port moves the file position (if any) for the other port. For regular files, use separateopen-input-file and
open-output-file calls to avoid confusion.

Extra flag arguments are passed toopen-output-file in any order. Appropriate flag arguments
can also be passed as the last argument(s) tocall-with-input-file , with-input-from-file ,
call-with-output-file , and with-output-to-file . When conflicting flag arguments (e.g.,
both ’error and ’replace) are provided to open-output-file , with-output-to-file , or
call-with-output-file , theexn:fail:contract exception is raised.

Bothwith-input-from-file andwith-output-to-file close the port they create if control jumps out of
the supplied thunk (either through a continuation or an exception), and the port remains closed if control jumps back
into the thunk. The current input or output port is installed and restored withparameterize (see§7.9.2).

See§11.1.6for more information on file ports. When an input or output file-stream port is created, it is placed into the
management of the current custodian (see§9.2).

93

11.1. Ports 11. Input and Output

11.1.4 Pipes

(make-pipe [limit-k input-name-v output-name-v]) returns two port values (see§2.2): the first port
is an input port and the second is an output port. Data written to the output port is read from the input port. The ports
do not need to be explicitly closed.

The optionallimit-k argument can be#f or a positive exact integer. Iflimit-k is omitted or#f , the new pipe
holds an unlimited number of unread bytes (i.e., limited only by the available memory). Iflimit-k is a positive
number, then the pipe will hold at mostlimit-k unread/unpeeked bytes; writing to the pipe’s output port thereafter
will block until a read or peek from the input port makes more space available. (Peeks effectively extend the port’s
capacity until the peeked bytes are read.)

The optionalinput-name-v andoutput-name-v are used as the names for the returned input and out ports,
respectively, if they are supplied. Otherwise, the name of each port is’pipe .

(pipe-content-length pipe-port) returns the number of bytes contained in a pipe, wherepipe-port is
either of the pipe’s ports produced bymake-pipe . The pipe’s content length counts all bytes that have been written
to the pipe and not yet read (though possibly peeked).

11.1.5 String Ports

Scheme input and output can be read from or collected into a string or byte string:

• (open-input-bytes bytes [name-v]) creates an input port that reads characters frombytes (see
§3.6). Modifying bytes afterward does not affect the byte stream produced by the port. The optionalname-v
argument is used as the name for the returned port; the default is’string .

• (open-input-string string [name-v]) creates an input port that reads bytes from the UTF-8 en-
coding (see§1.2.3) of string . The optionalname-v argument is used as the name for the returned port; the
default is’string .

• (open-output-bytes [name-v]) creates an output port that accumulates the output into a byte string.
The optionalname-v argument is used as the name for the returned port; the default is’string .

• (open-output-string [name-v]) creates an output port that accumulates the output into a byte string.
This procedure is the same asopen-output-bytes .

• (get-output-bytes string-output-port) returns the bytes accumulated instring-output-port
so far in a freshly-allocated byte string. The bytes also remain in the port for further accumulation or for later
calls toget-output-bytes or get-output-string .

• (get-output-string string-output-port) returns(bytes->string/utf-8 (get-output-bytes
string-output-port) # \?) ; see also§3.6.

String input and output ports do not need to be explicitly closed. Thefile-position procedure, described in
§11.1.6, works for string ports in position-setting mode.

Example:

(define i (open-input-string "hello world"))
(define o (open-output-string))
(write (read i) o)
(get-output-string o) ; ⇒ "hello"

94

11. Input and Output 11.1. Ports

11.1.6 File-Stream Ports

A port created byopen-input-file , open-output-file , subprocess , and related functions is afile-
stream port. The initial input, output, and error ports in stand-alone MzScheme are also file-stream ports. The
file-stream-port? predicate recognizes file-stream ports.

An input port is block buffered by default, which means that on any read, the buffer is filled with immediately-available
bytes to speed up future reads. Thus, if a file is modified between a pair of reads to the file, the second read can produce
stale data. Callingfile-position to set an input port’s file position flushes its buffer.

Most output ports are block buffered by default, but a terminal output port is line buffered, and the error output port
is unbuffered. An output buffer is filled with a sequence of written bytes to be committed as a group, either when the
buffer is full (in block mode) or when a newline is written (in line mode).

A port’s buffering can be changed viafile-stream-buffer-mode (described below). The two ports produced
by open-input-output-file have independent buffers.

The following procedures work primarily on file-stream ports:

• (flush-output [output-port]) forces all buffered data in the given output port to be physically written.
If output-port is omitted, then the current output port is flushed. Only file-stream ports and custom ports
(see§11.1.7) use buffers; when called on a port without a buffer,flush-output has no effect.

By default, a file-stream port is block-buffered, but this behavior can be modified withfile-stream-buffer-mode .
In addition, the initial current output and error ports are automatically flushed whenread 2, read-line ,
read-bytes , read-string , etc. are performed on the initial standard input port.

• (file-stream-buffer-mode port [mode-symbol]) gets or sets the buffer mode forport , if pos-
sible. All file-stream ports support setting the buffer mode, TCP ports (see§11.4) support setting and getting the
buffer mode, and custom ports (see§11.1.7) may support getting and setting buffer modes.

If mode-symbol is provided, it must be one of’none , ’line (output only), or’block , and the port’s
buffering is set accordingly. If the port does not support setting the mode, theexn:fail exception is raised.

If mode-symbol is not provided, the current mode is returned, or#f is returned if the mode cannot be deter-
mined. If file-stream-port is an input port andmode-symbol is ’line , theexn:fail:contract
exception is raised.

For an input port, peeking always places peeked bytes into the port’s buffer, even when the port’s
buffer mode is’none ; furthermore, on some platforms, testing the port for input (viachar-ready?
or sync) may be implemented with a peek. If an input port’s buffer mode is’none , then at most
one byte is read forread-bytes-avail!* , read-bytes-avail! , peek-bytes-avail!* , or
peek-bytes-avail! ; if any bytes are buffered in the port (e.g., to satisfy a previous peek), the procedures
may access multiple buffered bytes, but no further bytes are read.

• (file-position port) returns the current read/write position ofport . For file-stream and string ports,
(file-position port k-or-eof) sets the read/write position tok-or-eof relative to the beginning
of the file/string ifk-or-eof is a number, or to the current end of the file/string ifk-or-eof is eof . In
position-setting mode,file-position raises theexn:fail:contract exception for port kinds other
than file-stream and string ports. Callingfile-position without a position on a non-file/non-string input
port returns the number of bytes that have been read from that port if the position is known (see§11.2.1.1),
otherwise theexn:fail:filesystem exception is raised.

When(file-position port k) sets the positionk beyond the current size of an output file or string,
the file/string is enlarged to sizek and the new region is filled with#\nul . If k is beyond the end of an input
file or string, then reading thereafter returnseof without changing the port’s position.

2Flushing is performed by the default port read handler (see§11.2.6) rather than byread itself.

95

11.1. Ports 11. Input and Output

Not all file-stream ports support setting the position. Iffile-position is called with a position argument
on such a file-stream port, theexn:fail:filesystem exception is raised.

When changing the file position for an output port, the port is first flushed if its buffer is not empty. Similarly,
setting the position for an input port clears the port’s buffer (even if the new position is the same as the old
position). However, although input and output ports produced byopen-input-output-file share the file
position, setting the position via one port does not flush the other port’s buffer.

• (port-file-identity file-stream-port) returns an exact positive integer that represents the iden-
tity of the device and file read or written byfile-stream-port . For two ports whose open times overlap,
the result ofport-file-identity is the same for both ports if and only if the ports access the same de-
vice and file. For ports whose open times do not overlap, no guarantee is provided for the port identities (even
if the ports actually access the same file) — except as can be inferred through relationships with other ports.
If file-stream-port is closed, theexn:fail exception is raised. Under Windows 95, 98, and Me, if
file-stream-port is connected to a pipe instead of a file, theexn:fail:filesystem exception is
raised.

11.1.7 Custom Ports

The make-input-port andmake-output-port procedures create custom ports with arbitrary control pro-
cedures. Correctly implementing a custom port can be tricky, because it amounts to implementing a device driver.
Custom ports are mainly useful to obtain fine control over the action of committing bytes as read or written.

Many simple port variations can be implemented using threads and pipes. For example, ifget-next-char is a
function that produces either a character oreof , it can be turned into an input port as follows

(let-values ([(r w) (make-pipe 4096)])
;; Create a thread to move chars from get-next-char to the pipe
(thread (lambda () (let loop ()

(let ([v (get-next-char)])
(if (eof-object? v)

(close-output-port w)
(begin

(write-char v w)
(loop)))))))

;; Return the read end of the pipe
r)

Theport.ss in MzLib provides several other port constructors; see Chapter 33 ofPLT MzLib: Libraries Manual.

11.1.7.1 CUSTOM INPUT

(make-input-port name-v read-proc optional-peek-proc close-proc [optional-progress-evt-proc
optional-commit-proc optional-location-proc count-lines!-proc init-position optional-buffer-mode-proc])
creates an input port. The port is immediately open for reading. Ifclose-proc procedure has no side effects, then
the port need not be explicitly closed.

• name-v — the name for the input port, which is reported byobject-name (see§6.2.3).

• read-proc — a procedure that takes a single argument: a mutable byte string to receive read bytes. The
procedure’s result is one of the following:

– the number of bytes read, as an exact, non-negative integer;
– eof ;

96

11. Input and Output 11.1. Ports

– a procedure of arity four (representing a “special” result, as discussed further below) and optionally of
arity two, but a procedure result is allowed only whenoptional-peek-proc is not#f ; or

– a synchronizable event (see§7.7) that becomes ready when the read is complete (roughly): the event’s
value can one of the above three results or another event like itself; in the last case, a reading process loops
with sync until it gets a non-event result.

The read-proc procedure must not block indefinitely. If no bytes are immediately available for reading, the
read-proc must return0 or an event, and preferably an event (to avoid busy waits). Theread-proc should
not return0 (or an event whose value is0) when data is available in the port, otherwise polling the port will
behave incorrectly. An event result from an event can also break polling.

If the result of aread-proc call is not one of the above values, theexn:fail:contract exception
is raised. If a returned integer is larger than the supplied byte string’s length, theexn:fail:contract
exception is raised. Ifoptional-peek-proc is #f and a procedure for a special result is returned, the
exn:fail:contract exception is raised.

Theread-proc procedure can report an error by raising an exception, but only if no bytes are read. Similarly,
no bytes should be read ifeof , an event, or a procedure is returned. In other words, no bytes should be lost due
to spurious exceptions or non-byte data.

A port’s reading procedure may be called in multiple threads simultaneously (if the port is accessible in multiple
threads), and the port is responsible for its own internal synchronization. Note that improper implementation of
such synchronization mechanisms might cause a non-blocking read procedure to block indefinitely.

If optional-peek-proc , optional-progress-evt-proc , andoptional-commit-proc are all
provided and non-#f , then the following is an acceptable implementation ofread-proc :

(lambda (bstr)
(let ∗ ([progress-evt (progress-evt-proc)]

[v (peek-proc bstr 0 progress-evt)])
(cond
[(sync/timeout 0 progress-evt) 0] ; try again
[(evt? v) (wrap-evt v (lambda (x) 0))] ; sync, then try again
[(and (number? v) (zero? v)) 0] ; try again
[else
(if (optional-commit-proc (if (number? v) v 1)

progress-evt
always-evt)

v ; got a result
0)]))) ; try again

An implementor may choose not to implement theoptional- procedures, however, and even an implementor
who does supplyoptional- procedures may provide a differentread-proc that uses a fast path for non-
blocking reads.

• optional-peek-proc — either#f or a procedure that takes three arguments:

– a mutable byte string to receive peeked bytes;
– a non-negative number of bytes (or specials) to skip before peeking; and
– either#f or a progress event produced byoptional-progress-evt-proc .

The results and conventions foroptional-peek-proc are mostly the same as forread-proc . The
main difference is in the handling of the progress event, if it is not#f . If the given progress event becomes
ready, theoptional-peek-proc must abort any skip attempts and not peek any values. In particular,
optional-peek-proc must not peek any values if the progress event is initially ready.

Unlike read-proc , optional-peek-proc should produce#f (or an event whose value is#f) if no bytes
were peeked because the progress event became ready. Likeread-proc , a 0 result indicates that another
attempt is likely to succeed, so0 is inappropriate when the progress event is ready. Also likeread-proc ,
optional-peek-proc must not block indefinitely.

97

11.1. Ports 11. Input and Output

The skip count provided tooptional-peek-proc is a number of bytes (or specials) that must remain
present in the port—in addition to the peek results—when the peek results are reported. If a progress event is
supplied, then the peek is effectively canceled when another process reads data before the given number can
be skipped. If a progress event is not supplied and data is read, then the peek must effectively restart with the
original skip count.

The system does not check that multiple peeks return consistent results, or that peeking and reading produce
consistent results.

If optional-peek-proc is #f , then peeking for the port is implemented automatically in terms of reads,
but with several limitations. First, the automatic implementation is not thread-safe. Second, the automatic
implementation cannot handle special results (non-byte and non-eof), soread-proc cannot return a pro-
cedure for a special whenoptional-peek-proc is #f . Finally, the automatic peek implementation is
incompatible with progress events, so ifoptional-peek-proc is #f , thenprogress-evt-proc and
optional-commit-proc must be#f . See alsomake-input-port/peek-to-read in Chapter 33 of
PLT MzLib: Libraries Manual.

• close-proc — a procedure of zero arguments that is called to close the port. The port is not considered
closed until the closing procedure returns. The port’s procedures will never be used again via the port after it is
closed. However, the closing procedure can be called simultaneously in multiple threads (if the port is accessible
in multiple threads), and it may be called during a call to the other procedures in another thread; in the latter
case, any outstanding reads and peeks should be terminated with an error.

• optional-progress-evt-proc — either#f (the default), or a procedure that takes no arguments and
returns an event. The event must become ready only after data is next read from the port or the port is closed.
After the event becomes ready, it must remain so. (See alsosemaphore-peek-evt in §7.4.)

If optional-progress-evt-proc is #f , thenport-provides-progress-evts? applied to the
port will produce#f , and the port will not be a valid argument toport-progress-evt .

• optional-commit-proc — either#f (the default), or a procedure that takes three arguments:

– an exact, positive integerkr ;
– a progress event produced byoptional-progress-evt-proc ;
– an event,done-evt , that is either a channel-put event, channel, semaphore, semaphore-peek event, al-

ways event, or never event.

A commit corresponds to removing data from the stream that was previously peeked, but only if no other process
removed data first. (The removed data does not need to be reported, because it has been peeked already.) More
precisely, assuming thatkp bytes, specials, and mid-streameof s have been previously peeked or skipped at the
start of the port’s stream,optional-commit-proc must satisfy the following constraints:

– It must return only when the commit is complete or when the given progress event becomes ready.
– It must commit only ifkp is positive.
– If it commits, then it must do so with eitherkr items orkp items, whichever is smaller, and only ifkp is

positive.
– It must never choosedone-evt in a synchronization after the given progress event is ready, or after

done-evt has been synchronized once.
– It must not treat any data as read from the port unlessdone-evt is chosen in a synchronization.
– It must not block indefinitely ifdone-evt is ready; it must return soon after the read completes or soon

after the given progress event is ready, whichever is first.
– It can report an error by raising an exception, but only if no data is committed. In other words, no data

should be lost due to an exception, including a break exception.
– It must return a true value if data is committed,#f otherwise. When it returns a value, the given progress

event must be ready (perhaps because data was just committed).
– It must raise an exception if no data (includingeof) has been peeked from the beginning of the port’s

stream, or if it would have to block indefinitely to wait for the given progress event to become ready.

A call to optional-commit-proc is parameterize-break ed to disable breaks.

98

11. Input and Output 11.1. Ports

• optional-location-proc — either#f (the default), or a procedure that takes no arguments and returns
three values: the line number for the next item in the port’s stream (a positive number or#f), the column number
for the next item in the port’s stream (a non-negative number or#f), and the position for the next item in the
port’s stream (a positive number or#f). See also§11.2.1.1.

This procedure is only called if line counting is enabled for the port viaport-count-lines! (in which case
count-lines!-proc is called). Theread , read-syntax , read-honu , andread-honu-syntax
procedures assume that reading a non-whitespace character increments the column and position by one.

• count-lines!-proc — a procedure of no arguments that is called if and when line counting is enabled for
the port. The default procedure isvoid .

• init-position — an exact, positive integer that determines the position of the port’s first item, used when
line counting isnot enabled for the port. The default is1.

• optional-buffer-mode-proc — either#f (the default) or a procedure that accepts zero or one argu-
ments. Ifoptional-buffer-mode-proc is #f , then the resulting port does not support a buffer-mode
setting. Otherwise, the procedure is called with one symbol argument (’block or ’none) to set the buffer
mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result must be
’block , ’none , or #f (unknown). See§11.1.6for more information on buffer modes.

When read-proc or optional-peek-proc (or an event produced by one of these) returns a procedure, and
the procedure is used to obtain a non-byte result.3 The procedure is called byread ,4 read-syntax , read-honu ,
read-honu-syntax , read-byte-or-special , read-char-or-special , peek-byte-or-special ,
or peek-char-or-special . The special-value procedure can return an arbitrary value, and it will be called zero
or one times (not necessarily before further reads or peeks from the port). See§11.2.9for more details on the proce-
dure’s arguments and result.

If read-proc or optional-peek-proc returns a special procedure when called by any reading proce-
dure other thanread , read-syntax , read-honu , read-honu-syntax , read-char-or-special ,
peek-char-or-special , read-byte-or-special , orpeek-byte-or-special , then theexn:fail:contract
exception is raised.

Examples:

;; A port with no input...
;; Easy: (open-input-bytes #"")
;; Hard:
(define /dev/null-in

(make-input-port ’null
(lambda (s) eof)
(lambda (skip s progress-evt) eof)
void
(lambda () never-evt)
(lambda (k progress-evt done-evt)

(error "no successful peeks!"))))
(read-char /dev/null-in) ; ⇒ eof
(peek-char /dev/null-in) ; ⇒ eof
(read-byte-or-special /dev/null-in) ; ⇒ eof
(peek-byte-or-special /dev/null-in 100) ; ⇒ eof

;; A port that produces a stream of 1s:
(define infinite-ones

3This non-byte result isnot intended to return a character oreof ; in particular,read-char raises an exception if it encounters a non-byte
from a port.

4More precisely, the procedure is used by the default port read handler; see also§11.2.6.

99

11.1. Ports 11. Input and Output

(make-input-port
’ones
(lambda (s)

(bytes-set! s 0 (char->integer # \1)) 1)
#f
void))

(read-string 5 infinite-ones) ; ⇒ "11111"

;; But we can’t peek ahead arbitrarily far, because the
;; automatic peek must record the skipped bytes:
(peek-string 5 (expt 2 5000) infinite-ones) ; ⇒ error: out of memory

;; An infinite stream of 1s with a specific peek procedure:
(define infinite-ones

(let ([one! (lambda (s)
(bytes-set! s 0 (char->integer # \1)) 1)])

(make-input-port
’ones
one!
(lambda (s skip progress-evt) (one! s))
void)))

(read-string 5 infinite-ones) ; ⇒ "11111"

;; Now we can peek ahead arbitrarily far:
(peek-string 5 (expt 2 5000) infinite-ones) ; ⇒ "11111"

;; The port doesn’t supply procedures to implement progress events:
(port-provides-progress-evts? infinite-ones) ; ⇒ #f
(port-progress-evt infinite-ones) ; error: no progress events

;; Non-byte port results:
(define infinite-voids

(make-input-port
’voids
(lambda (s) (lambda args ’void))
(lambda (skip s) (lambda args ’void))
void))

(read-char infinite-voids) ; ⇒ error: non-char in an unsupported context
(read-char-or-special infinite-voids) ; ⇒ ’void

;; This port produces 0, 1, 2, 0, 1, 2, etc., but it is not
;; thread-safe, because multiple threads might read and change n.
(define mod3-cycle/one-thread

(let ∗ ([n 2]
[mod! (lambda (s delta)

(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
1)])

(make-input-port
’mod3-cycle/not-thread-safe
(lambda (s)

(set! n (modulo (add1 n) 3))
(mod! s 0))

(lambda (s skip)
(mod! s skip))

100

11. Input and Output 11.1. Ports

void)))
(read-string 5 mod3-cycle/one-thread) ; ⇒ "01201"
(peek-string 5 (expt 2 5000) mod3-cycle/one-thread) ; ⇒ "20120"

;; Same thing, but thread-safe and kill-safe, and with progress
;; events. Only the server thread touches the stateful part
;; directly. (See the output port examples for a simpler thread-safe
;; example, but this one is more general.)
(define (make-mod3-cycle)

(define read-req-ch (make-channel))
(define peek-req-ch (make-channel))
(define progress-req-ch (make-channel))
(define commit-req-ch (make-channel))
(define close-req-ch (make-channel))
(define closed? #f)
(define n 0)
(define progress-sema #f)
(define (mod! s delta)

(bytes-set! s 0 (+ 48 (modulo (+ n delta) 3)))
1)

;; --
;; The server has a list of outstanding commit requests,
;; and it also must service each port operation (read,
;; progress-evt, etc.)
(define (serve commit-reqs response-evts)

(apply
sync
(handle-evt read-req-ch (handle-read commit-reqs response-evts))
(handle-evt progress-req-ch (handle-progress commit-reqs response-evts))
(handle-evt commit-req-ch (add-commit commit-reqs response-evts))
(handle-evt close-req-ch (handle-close commit-reqs response-evts))
(append
(map (make-handle-response commit-reqs response-evts) response-evts)
(map (make-handle-commit commit-reqs response-evts) commit-reqs))))

;; Read/peek request: fill in the string and commit
(define ((handle-read commit-reqs response-evts) r)

(let ([s (car r)]
[skip (cadr r)]
[ch (caddr r)]
[nack (cadddr r)]
[peek? (cddddr r)])

(unless closed?
(mod! s skip)
(unless peek?

(commit! 1)))
;; Add an event to respond:
(serve commit-reqs

(cons (choice-evt nack
(channel-put-evt ch (if closed? 0 1)))

response-evts))))
;; Progress request: send a peek evt for the current
;; progress-sema
(define ((handle-progress commit-reqs response-evts) r)

(let ([ch (car r)]

101

11.1. Ports 11. Input and Output

[nack (cdr r)])
(unless progress-sema

(set! progress-sema (make-semaphore (if closed? 1 0))))
;; Add an event to respond:
(serve commit-reqs

(cons (choice-evt nack
(channel-put-evt
ch
(semaphore-peek-evt progress-sema)))

response-evts))))
;; Commit request: add the request to the list
(define ((add-commit commit-reqs response-evts) r)

(serve (cons r commit-reqs) response-evts))
;; Commit handling: watch out for progress, in which case
;; the response is a commit failure; otherwise, try
;; to sync for a commit. In either event, remove the
;; request from the list
(define ((make-handle-commit commit-reqs response-evts) r)

(let ([k (car r)]
[progress-evt (cadr r)]
[done-evt (caddr r)]
[ch (cadddr r)]
[nack (cddddr r)])

;; Note: we don’t check that k is ≤ the sum of
;; previous peeks, because the entire stream is actually
;; known, but we could send an exception in that case.
(choice-evt
(handle-evt progress-evt

(lambda (x)
(sync nack (channel-put-evt ch #f))
(serve (remq r commit-reqs) response-evts)))

;; Only create an event to satisfy done-evt if progress-evt
;; isn’t already ready.
;; Afterward, if progress-evt becomes ready, then this
;; event-making function will be called again, because
;; the server controls all posts to progress-evt.
(if (sync/timeout 0 progress-evt)

never-evt
(handle-evt done-evt

(lambda (v)
(commit! k)
(sync nack (channel-put-evt ch #t))
(serve (remq r commit-reqs) response-evts)))))))

;; Response handling: as soon as the respondee listens,
;; remove the response
(define ((make-handle-response commit-reqs response-evts) evt)

(handle-evt evt
(lambda (x)

(serve commit-reqs
(remq evt response-evts)))))

;; Close handling: post the progress sema, if any, and set
;; the closed? flag
(define ((handle-close commit-reqs response-evts) r)

102

11. Input and Output 11.1. Ports

(let ([ch (car r)]
[nack (cdr r)])

(set! closed? #t)
(when progress-sema

(semaphore-post progress-sema))
(serve commit-reqs

(cons (choice-evt nack
(channel-put-evt ch (void)))

response-evts))))
;; Helper for reads and post-peek commits:
(define (commit! k)

(when progress-sema
(semaphore-post progress-sema)
(set! progress-sema #f))

(set! n (+ n k)))
;; Start the server thread:
(define server-thread (thread (lambda () (serve null null))))
;; --
;; Client-side helpers:
(define (req-evt f)

(nack-guard-evt
(lambda (nack)

;; Be sure that the server thread is running:
(thread-resume server-thread (current-thread))
;; Create a channel to hold the reply:
(let ([ch (make-channel)])

(f ch nack)
ch))))

(define (read-or-peek-evt s skip peek?)
(req-evt (lambda (ch nack)

(channel-put read-req-ch (list* s skip ch nack peek?)))))
;; Make the port:
(make-input-port ’mod3-cycle

;; Each handler for the port just sends
;; a request to the server
(lambda (s) (read-or-peek-evt s 0 #f))
(lambda (s skip) (read-or-peek-evt s skip #t))
(lambda () ; close

(sync (req-evt
(lambda (ch nack)

(channel-put progress-req-ch (list* ch nack))))))
(lambda () ; progress-evt

(sync (req-evt
(lambda (ch nack)

(channel-put progress-req-ch (list* ch nack))))))
(lambda (k progress-evt done-evt) ; commit

(sync (req-evt
(lambda (ch nack)

(channel-put commit-req-ch
(list* k progress-evt done-evt ch nack))))))))

(let ([mod3-cycle (make-mod3-cycle)])
(let ([result1 #f]

[result2 #f])

103

11.1. Ports 11. Input and Output

(let ([t1 (thread (lambda ()
(set! result1 (read-string 5 mod3-cycle))))]

[t2 (thread (lambda ()
(set! result2 (read-string 5 mod3-cycle))))])

(thread-wait t1)
(thread-wait t2)
(string-append result1 "," result2))) ; ⇒ "02120,10201", maybe

(let ([s (make-bytes 1)]
[progress-evt (port-progress-evt mod3-cycle)])

(peek-bytes-avail! s 0 progress-evt mod3-cycle) ; ⇒ 1
s ; ⇒ #"1"
(port-commit-peeked 1 progress-evt (make-semaphore 1)

mod3-cycle) ; ⇒ #t
(sync/timeout 0 progress-evt) ; ⇒ progress-evt
(peek-bytes-avail! s 0 progress-evt mod3-cycle) ; ⇒ 0
(port-commit-peeked 1 progress-evt (make-semaphore 1)

mod3-cycle)) ; ⇒ #f
(close-input-port mod3-cycle))

11.1.7.2 CUSTOM OUTPUT

(make-output-port name-v evt write-proc close-proc [optional-write-special-proc
optional-write-evt-proc optional-special-evt-proc optional-location-proc count-lines!-proc
init-position optional-buffer-mode-proc]) creates an output port. The port is immediately open for
writing. If close-proc procedure has no side effects, then the port need not be explicitly closed. The port can
buffer data within itswrite-proc andoptional-write-special-proc procedures.

• name-v — the name for the output port, which is reported byobject-name (see§6.2.3).

• evt — a synchronization event (see§7.7; e.g., a semaphore or another port). The event is used in place of
the output port when the port is supplied to synchronization procedures likesync . Thus, the event should be
unblocked when the port is ready for writing at least one byte without blocking, or ready to make progress in
flushing an internal buffer without blocking. The event must not unblock unless the port is ready for writing;
otherwise, the guarantees ofsync will be broken for the output port. Usealways-evt if writes to the port
always succeed without blocking.

• write-proc — a procedure of five arguments:

– an immutable byte string containing bytes to write;
– a non-negative exact integer for a starting offset (inclusive) into the byte string;
– a non-negative exact integer for an ending offset (exclusive) into the byte string;
– a boolean;#f indicates that the port is allowed to keep the written bytes in a buffer, and that it is allowed

to block indefinitely;#t indicates that the write should not block, and that the port should attempt to flush
its buffer and completely write new bytes instead of buffering them;

– a boolean;#t indicates that if the port blocks for a write, then it should enable breaks while blocking (e.g.,
usingsync/enable-break ; this argument is always#f if the fourth argument is#t .

The procedure returns one of the following:

– a non-negative exact integer representing the number of bytes written or buffered;
– #f if no bytes could be written, perhaps because the internal buffer could not be completely flushed;
– a synchronizable event (see§7.7) that acts like the result ofwrite-bytes-avail-evt to complete

the write.

Sincewrite-proc can produce an event, an acceptable implementation ofwrite-proc is to pass its first
three arguments to the port’soptional-write-evt-proc . Some port implementors, however, may choose

104

11. Input and Output 11.1. Ports

not to provideoptional-write-evt-proc (perhaps because writes cannot be made atomic), or may im-
plementwrite-proc to enable a fast path for non-blocking writes or to enable buffering.

From a user’s perspective, the difference between buffered and completely written data is (1) buffered data can
be lost in the future due to a failed write, and (2)flush-output forces all buffered data to be completely
written. Under no circumstances is buffering required.

If the start and end indices are the same, then the fourth argument towrite-proc will be #f , and the write
request is actually a flush request for the port’s buffer (if any), and the result should be0 for a successful flush
(or if there is no buffer).

The result should never be0 if the start and end indices are different, otherwise theexn:fail:contract ex-
ception is raised. If a returned integer is larger than the supplied byte-string range, theexn:fail:contract
exception is raised.

The#f result should be avoided, unless the next write attempt is likely to work. Otherwise, if data cannot be
written, return an event instead.

An event returned bywrite-proc can return#f or another event like itself, in contrast to events produced by
write-bytes-avail-evt or optional-write-evt-proc . A writing process loops withsync until
it obtains a non-event result.

The write-proc procedure is always called with breaks disabled, independent of whether breaks were en-
abled when the write was requested by a client of the port. If breaks were enabled for a blocking operation, then
the fifth argument towrite-proc will be #t , which indicates thatwrite-proc should re-enable breaks
while blocking.

If the writing procedure raises an exception, due either to write or commit operations, it must not have committed
any bytes (though it may have committed previously buffered bytes).

A port’s writing procedure may be called in multiple threads simultaneously (if the port is accessible in multiple
threads). The port is responsible for its own internal synchronization. Note that improper implementation of
such synchronization mechanisms might cause a non-blocking write procedure to block.

• close-proc — a procedure of zero arguments that is called to close the port. The port is not considered
closed until the closing procedure returns. The port’s procedures will never be used again via the port after it is
closed. However, the closing procedure can be called simultaneously in multiple threads (if the port is accessible
in multiple threads), and it may be called during a call to the other procedures in another thread; in the latter
case, any outstanding writes or flushes should be terminated immediately with an error.

• optional-write-special-proc — either#f (the default), or a procedure to handlewrite-special
calls for the port. If#f , then the port does not support special output, andport-writes-special? will
return#f when applied to the port.

If a procedure is supplied, it takes three arguments: the special value to write, a boolean that is#f if the
procedure can buffer the special value and block indefinitely, and a boolean that is#t if the procedure should
enable breaks while blocking. The result is one of the following:

– a non-event true value, which indicates that the special is written;
– #f if the special could not be written, perhaps because an internal buffer could not be completely flushed;
– a synchronizable event (see§7.7) that acts like the result ofwrite-special-evt to complete the write.

Sinceoptional-write-special-proc can return an event, passing the first argument to an implementa-
tion of option-write-special-evt-proc is acceptable as anoptional-write-special-proc .

As for write-proc , the#f result is discouraged, since it can lead to busy waiting. Also as forwrite-proc ,
an event produced byoptional-write-special-proc is allowed to produce#f or another event like it-
self. Theoptional-write-special-proc procedure is always called with breaks disabled, independent
of whether breaks were enabled when the write was requested by a client of the port.

• optional-write-evt-proc — either#f (the default) or a procedure of three arguments:

– an immutable byte string containing bytes to write;

105

11.1. Ports 11. Input and Output

– a non-negative exact integer for a starting offset (inclusive) into the byte string, and
– a non-negative exact integer for an ending offset (exclusive) into the byte string.

The result is a synchronizable event (see§7.7) to act as the result ofwrite-bytes-avail-evt for the port
(i.e., to complete a write or flush), which becomes available only as data is committed to the port’s underlying
device, and whose result is the number of bytes written.

If optional-write-evt-proc is #f , thenport-writes-atomic? will produce#f with applied to
the port, and the port will not be a valid argument to procedures such aswrite-bytes-avail-evt .

Otherwise, an event returned byoptional-write-evt-proc must not cause data to be written to the port
unless the event is chosen in a synchronization, and it must write to the port if the event is chosen (i.e., the write
must appear atomic with respect to the synchronization).

If the event’s result integer is larger than the supplied byte-string range, theexn:fail:contract exception
is raised by a wrapper on the event. If the start and end indices are the same (i.e., no bytes are to be written), then
the event should produce0 when the buffer is completely flushed. (If the port has no buffer, then it is effectively
always flushed.)

If the event raises an exception, due either to write or commit operations, it must not have committed any new
bytes (though it may have committed previously buffered bytes).

Naturally, a port’s events may be used in multiple threads simultaneously (if the port is accessible in multiple
threads). The port is responsible for its own internal synchronization.

• optional-write-special-evt-proc — either #f (the default), or a procedure to handle
write-special-evt calls for the port. This argument must be#f if eitheroptional-write-special-proc
or optional-write-evt-proc is #f , and it must be a procedure if both of those arguments are proce-
dures.

If it is a procedure, it takes one argument: the special value to write. The resulting event (with its constraints) is
analogous to the result ofoptional-write-evt-proc .

If the event raises an exception, due either to write or commit operations, it must not have committed the special
value (though it may have committed previously buffered bytes and values).

• optional-location-proc — either#f (the default), or a procedure that takes no arguments and returns
three values: the line number for the next item written to the port’s stream (a positive number or#f), the column
number for the next item written to port’s stream (a non-negative number or#f), and the position for the next
item written to port’s stream (a positive number or#f). See also§11.2.1.1.

This procedure is only called if line counting is enabled for the port viaport-count-lines! (in which
casecount-lines!-proc is called).

• count-lines!-proc — a procedure of no arguments that is called if and when line counting is enabled for
the port. The default procedure isvoid .

• init-position — an exact, positive integer that determines the position of the port’s first output item, used
when line counting isnot enabled for the port. The default is1.

• optional-buffer-mode-proc — either#f (the default) or a procedure that accepts zero or one argu-
ments. Ifoptional-buffer-mode-proc is #f , then the resulting port does not support a buffer-mode
setting. Otherwise, the procedure is called with one symbol argument (’block , ’line , or ’none) to set the
buffer mode, and it is called with zero arguments to get the current buffer mode. In the latter case, the result
must be’block , ’line , ’none , or #f (unknown). See§11.1.6for more information on buffer modes.

Examples:

;; A port that writes anything to nowhere:
(define /dev/null-out

(make-output-port

106

11. Input and Output 11.1. Ports

’null
always-evt
(lambda (s start end non-block? breakable?) (− end start))
void
(lambda (special non-block? breakable?) #t)
(lambda (s start end) (wrap-evt

always-evt
(lambda (x)

(− end start))))
(lambda (special) always-evt)))

(display "hello" /dev/null-out) ; ⇒void
(write-bytes-avail #"hello" /dev/null-out) ; ⇒5
(write-special ’hello /dev/null-out) ; ⇒#t
(sync (write-bytes-avail-evt #"hello" /dev/null-out)) ; ⇒5

;; A part that accumulates bytes as characters in a list,
;; but not in a thread-safe way:
(define accum-list null)
(define accumulator/not-thread-safe

(make-output-port
’accum/not-thread-safe
always-evt
(lambda (s start end non-block? breakable?)

(set! accum-list
(append accum-list

(map integer->char
(bytes- >list (subbytes s start end)))))

(− end start))
void))

(display "hello" accumulator/not-thread-safe)
accum-list ; ⇒ ’(# \h #\e #\l # \l # \o)

;; Same as before, but with simple thread-safety:
(define accum-list null)
(define accumulator

(let ∗ ([lock (make-semaphore 1)]
[lock-peek-evt (semaphore-peek-evt lock)])

(make-output-port
’accum
lock-peek-evt
(lambda (s start end non-block? breakable?)

(if (semaphore-try-wait? lock)
(begin

(set! accum-list
(append accum-list

(map integer->char
(bytes- >list (subbytes s start end)))))

(semaphore-post lock)
(− end start))

;; Cheap strategy: block until the list is unlocked,
;; then return 0, so we get called again
(wrap-evt
lock-peek
(lambda (x) 0))))

107

11.2. Reading and Writing 11. Input and Output

void)))
(display "hello" accumulator)
accum-list ; ⇒ ’(# \h #\e #\l # \l # \o)

;; A port that transforms data before sending it on
;; to another port. Atomic writes exploit the
;; underlying port’s ability for atomic writes.
(define (make-latin-1-capitalize port)

(define (byte-upcase s start end)
(list- >bytes
(map (lambda (b) (char->integer

(char-upcase
(integer->char b))))

(bytes- >list (subbytes s start end)))))
(make-output-port
’byte-upcase
;; This port is ready when the original is ready:
port
;; Writing procedure:
(lambda (s start end non-block? breakable?)

(let ([s (byte-upcase s start end)])
(if non-block?

(write-bytes-avail ∗ s port)
(begin

(display s port)
(bytes-length s)))))

;; Close procedure --- close original port:
(lambda () (close-output-port port))
#f
;; Write event:
(and (port-writes-atomic? port)

(lambda (s start end)
(write-bytes-avail-evt (byte-upcase s start end) port)))))

(define orig-port (open-output-string))
(define cap-port (make-latin-1-capitalize orig-port))
(display "Hello" cap-port)
(get-output-string orig-port) ; ⇒ "HELLO"
(sync (write-bytes-avail-evt #"Bye" cap-port)) ; ⇒ 3
(get-output-string orig-port) ; ⇒ "HELLOBYE"

11.2 Reading and Writing

MzScheme’s support for reading and writing includes many extensions compared toR5RS, both at the level of indi-
vidual bytes and characters and at the level of S-expressions.

11.2.1 Reading Bytes, Characters, and Strings

In addition to the standard reading procedures, MzScheme provides byte-reading procedure, block-reading procedures
such asread-line , and more.

• (read-line [input-port mode-symbol]) returns a string containing the next line of bytes from
input-port . If input-port is omitted, the current input port is used.

108

11. Input and Output 11.2. Reading and Writing

Characters are read frominput-port until a line separator or an end-of-file is read. The line separator is
not included in the result string (but it is removed from the port’s stream). If no characters are read before an
end-of-file is encountered,eof is returned.

Themode-symbol argument determines the line separator(s). It must be one of the following symbols:

– ’linefeed breaks lines on linefeed characters; this is the default.
– ’return breaks lines on return characters.
– ’return-linefeed breaks lines on return-linefeed combinations. If a return character is not followed

by a linefeed character, it is included in the result string; similarly, a linefeed that is not preceded by a
return is included in the result string.

– ’any breaks lines on any of a return character, linefeed character, or return-linefeed combination. If a
return character is followed by a linefeed character, the two are treated as a combination.

– ’any-one breaks lines on either a return or linefeed character, without recognizing return-linefeed com-
binations.

Return and linefeed characters are detected after the conversions that are automatically performed when reading
a file in text mode. For example, reading a file in text mode under Windows automatically changes return-
linefeed combinations to a linefeed. Thus, when a file is opened in text mode,’linefeed is usually the
appropriateread-line mode.

• (read-bytes-line [input-port mode-symbol]) is analogous toread-line , but it reads bytes
and produces a byte string.

• (read-string k [input-port]) returns a string containing the nextk characters frominput-port .
The default value ofinput-port is the current input port.

If k is 0, then the empty string is returned. Otherwise, if fewer thank characters are available before an end-
of-file is encountered, then the returned string will contain only those characters before the end-of-file (i.e., the
returned string’s length will be less thank). 5 If no characters are available before an end-of-file, theneof is
returned.

If an error occurs during reading, some characters may be lost (i.e., ifread-string successfully reads some
characters before encountering an error, the characters are dropped.)

• (read-bytes k [input-port]) is analogous toread-string , but it reads bytes and produces a byte
string.

• (read-string! string [input-port start-k end-k]) reads characters frominput-port
like read-string , but puts them intostring starting from indexstart-k (inclusive) up toend-k
(exclusive). The default value ofinput-port is the current input port. The default value ofstart-k is
0. The default value ofend-k is the length of thestring . Like substring , theexn:fail:contract
exception is raised ifstart-k or end-k is out-of-range forstring .

If the difference betweenstart-k andend-k is 0, then0 is returned andbytes is not modified. If no bytes
are available before an end-of-file, theneof is returned. Otherwise, the return value is the number of bytes
read. Ifmbytes are read andm< end-k − start-k , thenbytes is not modified at indicesstart-k + m
thoughend-k .

• (read-bytes! string [input-port start-k end-k]) is analogous toread-string! , but it
reads bytes and puts them into a byte string.

• (read-bytes-avail! bytes [input-port start-k end-k]) is like read-bytes! , but re-
turns without blocking after reading immediately-available bytes, and it may return a procedure for a “special”
result. Theread-bytes-avail! procedure blocks only if no bytes (or specials) are yet available. Also
unlike read-bytes! , read-bytes-avail! never drops bytes; ifread-bytes-avail! successfully
reads some bytes and then encounters an error, it suppresses the error (treating it roughly like an end-of-file) and

5A temporary string of sizek is allocated while reading the input, even if the size of the result is less thank characters.

109

11.2. Reading and Writing 11. Input and Output

returns the read bytes. (The error will be triggered by future reads.) If an error is encountered before any bytes
have been read, an exception is raised.

When input-port produces a special value, as described in§11.1.7, the result is a procedure of four ar-
guments. The four arguments correspond to the location of the special value within the port, as described in
§11.1.7. If the procedure is called more than once with valid arguments, theexn:fail:contract exception
is raised. Ifread-bytes-avail returns a special-producing procedure, then it does not place characters
in bytes . Similarly, read-bytes-avail places only as many bytes intobytes as are available before a
special value in the port’s stream.

• (read-bytes-avail!* bytes [input-port start-k end-k]) is like read-bytes-avail! ,
except that it returns0 immediately if no bytes (or specials) are available for reading and the end-of-file is not
reached.

• (read-bytes-avail!/enable-break bytes [input-port start-k end-k]) is like read-bytes-avail! ,
except that breaks are enabled during the read (see also§6.7). If breaking is disabled when
read-bytes-avail!/enable-break is called, and if theexn:break exception is raised as a result
of the call, then no bytes will have been read frominput-port .

• (peek-string k skip-k [input-port]) is similar toread-string , except that the returned char-
acters are preserved in the port for future reads. (More precisely, undecoded bytes are left for future reads.) The
skip-k argument indicates a number of bytes (not characters) in the input stream to skip before collecting
characters to return; thus, in total, the nextskip-k bytes plusk characters are inspected.

For most kinds of ports, inspectingskip-k bytes andk characters requires at leastskip-k +k bytes of
memory overhead associated with the port, at least until the bytes/characters are read. No such overhead is
required when peeking into a string port (see§11.1.5), a pipe port (see§11.1.4), or a custom port with a specific
peek procedure (depending on how the peek procedure is implemented; see§11.1.7).

If a port produceseof mid-stream, peek skips beyond theeof always produceeof until theeof is read.

• (peek-bytes k skip-k [input-port]) is analogous topeek-string , but it peeks bytes and pro-
duces a byte string.

• (peek-string! string skip-k [input-port start-k end-k]) is like read-string! , but
for peeking, and with askip-k argument likepeek-string .

• (peek-bytes! bytes skip-k [input-port start-k end-k]) is analogous topeek-string! ,
but it peeks bytes and puts them into a byte string.

• (peek-bytes-avail! bytes skip-k [progress-evt input-port start-k end-k]) is like
read-bytes-avail! , but for peeking, and with two extra arguments. Theskip-k argument is as in
peek-bytes . The progress-evt argument must be either#f (the default) or an event produced by
port-progress-evt for input-port .

To peek,peek-bytes-avail! blocks until finding an end-of-file, at least one byte (or special) past the
skipped bytes, or until a non-#f progress-evt becomes ready. Furthermore, ifprogress-evt is ready
before bytes are peeked, no bytes are peeked or skipped, andprogress-evt may cut short the skipping
process if it becomes available during the peek attempt.

The result ofpeek-bytes-avail! is 0 only in the case thatprogress-evt becomes ready before bytes
are peeked.

• (peek-bytes-avail!* bytes skip-k [progress-evt input-port start-k end-k]) is
like read-bytes-avail!* , but for peeking, and withskip-k and progress-evt arguments like
peek-bytes-avail! . Since this procedure never blocks, it may return before evenskip-k bytes are
available from the port.

• (peek-bytes-avail!/enable-break bytes skip-k [progress-evt input-port start-k
end-k]) is the peeking version ofread-bytes-avail!/enable-break , with skip-k and
progress-evt arguments likepeek-bytes-avail! .

110

11. Input and Output 11.2. Reading and Writing

• (read-byte [input-port]) is analogous toread-char , but it reads and returns a byte (oreof) instead
of a character.

• (read-char-or-special [input-port]) is the same asread-char , except that if the input port
returns a non-byte value (through a value-generating procedure in a custom port; see§11.1.7and§11.2.9.1for
details), the non-byte value is returned.

• (read-byte-or-special [input-port]) is analogous toread-char-or-special , but it reads
and returns a byte instead of a character.

• (peek-char [input-port skip-k]) extends the standardpeek-char with an optional argument (de-
faulting to0) that represents the number of bytes (not characters) to skip.

• (peek-byte [input-port skip-k]) is analogous topeek-char , but it reads and returns a byte in-
stead of a character.

• (peek-char-or-special [input-port skip-k]) is the same aspeek-char , except that if the
input port returns a non-byte value afterskip-k byte positions, it is returned.

• (peek-byte-or-special [input-port skip-k progress-evt]) is analogous topeek-char-or-special ,
but it reads and returns a byte instead of a character, and it supports aprogress-evt argument (which is#f
by default) likepeek-bytes-avail! .

• (port-progress-evt [input-port]) returns an event that becomes ready after any subsequent read
from input-port , or after input-port is closed. After the event becomes ready, it remains ready. If
progress events are unavailable forinput-port (as reported byport-provides-progress-evts?)
theexn:fail:contract exception is raised.

• (port-provides-progress-evts? input-port) returns#t if port-progress-evt can re-
turn an event forinput-port . All built-in kinds of ports support progress events, but ports created with
make-input-port (see§11.1.7) may not.

• (port-commit-peeked k progress-evt evt [input-port]) attempts to commit as read the first
k previously peeked bytes, non-byte specials, andeof s from input-port , or the firsteof or special
value peeked frominput-port .6 The read commits only ifprogress-evt does not become ready
first (i.e., if no other process reads frominput-port first), and only ifevt is chosen by async within
port-commit-peeked (in which case the event result is ignored); theevt must be either a channel-
put event, channel, semaphore, semaphore-peek event, always event, or never event. Suspending the thread
that callsport-commit-peeked may or may not prevent the commit from proceeding. The result from
port-commit-peeked is #t if data is committed, and#f otherwise.

If no data has been peeked frominput-port andprogress-evt is not ready, thenexn:fail:contract
exception is raised. If fewer thank items have been peeked at the current start ofinput-port ’s stream, then
only the peeked items are committed as read. Ifinput-port ’s stream currently starts at aneof or a non-byte
special value, then only theeof or special value is committed as read.

If progress-evt is not a result of port-progress-evt applied to input-port , then
exn:fail:contract exception is raised.

11.2.1.1 COUNTING POSITIONS, L INES, AND COLUMNS

By default, MzScheme keeps track of theposition in a port as the number of bytes that have been read from or
written to any port (independent of the read/write position, which is accessed or changed withfile-position).
Optionally, however, MzScheme can track the position in terms of characters (after UTF-8 decoding), instead of bytes,
and it can trackline locations andcolumn locations; this optional tracking must be specifically enabled for a port
via port-count-lines! or theport-count-lines-enabled parameter (see§7.9.1.2). Position, line, and

6Only mid-streameof s can be committed. Aeof when the port is exhausted does not correspond to data in the stream.

111

11.2. Reading and Writing 11. Input and Output

column locations for a port are used byread-syntax (see§12.2for more information) andread-honu-syntax .
Position and line locations are numbered from 1; column locations are numbered from 0.

• (port-count-lines! port) turns on line and column counting for a port. Counting can be turned on
at any time, though generally it is turned on before any data is read from or written to a port. When a port
is created, if the value of theport-count-lines-enabled parameter is true (see§7.9.1.2), then line
counting is automatically enabled for the port. Line counting cannot be disabled for a port after it is enabled.

When counting lines, MzScheme treats linefeed, return, and return-linefeed combinations as a line terminator and
as a single position (on all platforms). Each tab advances the column count to one before the next multiple of 8.
When a sequence of bytes in the range 128 to 253 forms a UTF-8 encoding of a character, the position/column
is incremented is incremented once for each byte, and then decremented appropriately when a complete encoding
sequence is discovered. See also§11.1for more information on UTF-8 decoding for ports.

A position is known for any port as long as its value can be expressed as a fixnum (which is more than enough tracking
for realistic applications in, say, syntax-error reporting). If the position for a port exceeds the value of the largest
fixnum, then the position for the port becomes unknown, and line and column tacking is disabled. Return-linefeed
combinations are treated as a single character position only when line and column counting is enabled.

• (port-next-location port) returns three values: a positive exact integer or#f for the line number of
the next read/written item, a non-negative exact integer or#f for the next item’s column, and a positive exact
integer or#f for the next item’s position. The next column and position normally increases as bytes are read
from or written to the port, but if line/character counting is enabled forport , the column and position results
can decrease after reading or writing a byte that ends a UTF-8 encoding sequence.

Certain kinds of exceptions (see§6.1) encapsulate source-location information using asrcloc structure, which has
five fields:

• source — An arbitrary value identifying the source, often a path (see§11.3.1).

• line — The line number, a positive exact integer (counts from 1) or#f (unknown).

• column — The column number, a non-negative exact integer (counts from 0) or#f (unknown).

• position — The starting position, a positive exact integer (counts from 1) or#f (unknown).

• span — The number of covered positions, a non-negative exact integer (counts from 0) or#f (unknown).

The fields of asrcloc structure are immutable, so no field-mutator procedures are defined forsrcloc . The
srcloc structure type is transparent to all inspectors (see§4.5).

11.2.2 Writing Bytes, Characters, and Strings

In addition to the standard printing procedures, MzScheme provides byte-writing procedures, block-writing procedures
such aswrite-string , and more.

• (write-string string [output-port start-k end-k]) write characters tooutput-port
from string starting from indexstart-k (inclusive) up toend-k (exclusive). The default value of
output-port is the current output port. The default value ofstart-k is 0. The default value ofend-k
is the length of thestring . Like substring , theexn:fail:contract exception is raised ifstart-k
or end-k is out-of-range forstring .

The result is the number of characters written tooutput-port , which is always(− end-k start-k) .

112

11. Input and Output 11.2. Reading and Writing

• (write-bytes bytes [output-port start-k end-k]) is analogous towrite-string , but it
writes a byte string.

• (write-bytes-avail bytes [output-port start-k end-k]) is like write-bytes , but it re-
turns without blocking after writing as many bytes as it can immediately flush. It blocks only if no bytes can be
flushed immediately. The result is the number of bytes written and flushed tooutput-port ; if start-k is
the same asend-k , then the result can be0 (indicating a successful flush of any buffered data), otherwise the
result is at least1 but possibly less than(− end-k start-k) .

The write-bytes-avail procedure never drops bytes; ifwrite-bytes-avail successfully writes
some bytes and then encounters an error, it suppresses the error and returns the number of written bytes. (The
error will be triggered by future writes.) If an error is encountered before any bytes have been written, an
exception is raised.

• (write-bytes-avail* bytes [output-port start-k end-k]) is likewrite-bytes-avail ,
except that it never blocks, it returns#f if the port contains buffered data that cannot be written immediately,
and it returns0 if the port’s internal buffer (if any) is flushed but no additional bytes can be written immediately.

• (write-bytes-avail/enable-break bytes [input-port start-k end-k]) is likewrite-bytes-avail ,
except that breaks are enabled during the write. The procedure provides a guarantee about the interaction of writ-
ing and breaks: if breaking is disabled whenwrite-bytes-avail/enable-break is called, and if the
exn:break exception is raised as a result of the call, then no bytes will have been written tooutput-port .
See also§6.7.

• (write-byte byte [output-port]) is analogous towrite-char , but for writing a byte instead of a
character.

• (write-special v [output-port]) writesv directly tooutput-port if it supports special writes,
or raisesexn:fail:contract if the port does not support special write. The result is always#t , indicating
that the write succeeded.

• (write-special-avail* v [output-port]) is like write-special , but without blocking. Ifv
cannot be written immediately, the result is#f without writingv , otherwise the result is#t andv is written.

• (write-bytes-avail-evt bytes [output-port start-k end-k]) is similar towrite-bytes-avail ,
but instead of writing bytes immediately, it returns a synchronizable event (see§7.7). Theoutput-port must
support atomic writes, as indicated byport-writes-atomic? .

Synchronizing on the object starts a write frombytes , and the event becomes ready when bytes are written
(unbuffered) to the port. Ifstart-k andend-k are the same, then the synchronization result is0 when the
port’s internal buffer (if any) is flushed, otherwise the result is a positive exact integer. If the event is not selected
in a synchronization, then no bytes will have been written tooutput-port .

• (write-special-evt v [output-port]) is similar towrite-special , but instead of writing the
special value immediately, it returns a synchronizable event (see§7.7). The output-port must support
atomic writes, as indicated byport-writes-atomic? .

Synchronizing on the object starts a write of the special value, and the event becomes ready when the value is
written (unbuffered) to the port. If the event is not selected in a synchronization, then no value will have been
written tooutput-port .

• (port-writes-atomic? output-port) returns #t if write-bytes-avail/enable-break
can provide an exclusive-or guarantee (break or write, but not both) foroutput-port , and if the port can
be used with procedures likewrite-bytes-avail-evt . MzScheme’s file-stream ports, pipes, string ports,
and TCP ports all support atomic writes; ports created withmake-output-port (see§11.1.7) may support
atomic writes.

• (port-writes-special? output-port) returns#t if procedures likewrite-special can write
arbitrary values to the port. MzScheme’s file-stream ports, pipes, string ports, and TCP ports all reject special
values, but ports created withmake-output-port (see§11.1.7) may support them.

113

11.2. Reading and Writing 11. Input and Output

11.2.3 Writing Structured Data

Theprint procedure is used to print Scheme values in a context where a programmer expects to see a value:

• (print v [output-port]) outputsv to output-port . The default value ofoutput-port is the
current output port.

The rationale for providingprint is thatdisplay andwrite both have standard output conventions, and this
standardization restricts the ways that an environment can change the behavior of these procedures. No output con-
ventions should be assumed forprint so that environments are free to modify the actual output generated byprint
in any way. Unlike the port display and write handlers, a global port print handler can be installed through the
global-port-print-handler parameter (see§7.9.1.2).

Thefprintf , printf , andformat procedures create formatted output:

• (fprintf output-port format-string v · · ·) prints formatted output tooutput-port , where
format-string is a string that is printed;format-string can contain special formatting tags:

– ∼n or∼% prints a newline
– ∼a or∼A display s the next argument among thev s
– ∼s or∼S write s the next argument among thev s
– ∼v or∼V print s the next argument among thev s
– ∼e or∼E outputs the next argument among thev s using the current error value conversion handler (see
§7.9.1.7) and current error printing width

– ∼c or ∼C write-char s the next argument inv s; if the next argument is not a character, the
exn:fail:contract exception is raised

– ∼b or∼B prints the next argument among thev s in binary; if the next argument is not an exact number,
theexn:fail:contract exception is raised

– ∼o or∼O prints the next argument among thev s in octal; if the next argument is not an exact number, the
exn:fail:contract exception is raised

– ∼x or ∼X prints the next argument among thev s in hexadecimal; if the next argument is not an exact
number, theexn:fail:contract exception is raised

– ∼∼ prints a tilde (∼)
– ∼w, wherew is a whitespace character, skips characters informat-string until a non-whitespace

character is encountered or until a second end-of-line is encountered (whichever happens first). An end-
of-line is either#\return , #\newline , or #\return followed immediately by#\newline (on all
platforms).

The return value is void.

• (printf format-string v · · ·) same asfprintf with the current output port.

• (format format-string v · · ·) same asfprintf with a string output port where the final string is
returned as the result.

When an illegal format string is supplied to one of these procedures, theexn:fail:contract exception is
raised. When the format string requires more additional arguments than are supplied, theexn:fail:contract
exception is raised. When more additional arguments are supplied than are used by the format string, the
exn:fail:contract exception is raised.

For example,

(fprintf port "˜a as a string is ˜s.˜n" ’(3 4) "(3 4)")

114

11. Input and Output 11.2. Reading and Writing

prints this message toport :7

(3 4) as a string is "(3 4)".

followed by a newline.

11.2.4 Default Reader

MzScheme’s input parser obeys the following non-standard rules. See also§11.2.8for information on configuring the
input parser through a readtable.

• Square brackets (“[” and “]”) and curly braces (“{” and “}”) can be used in place of parentheses.
An open square bracket must be closed by a closing square bracket and an open curly brace must be
closed by a closing curly brace. Whether square brackets are treated as parentheses is controlled by the
read-square-bracket-as-paren parameter (see§7.9.1.3). Similarly, the parsing of curly braces is
controlled with theread-curly-brace-as-paren parameter. When square brackets and curly braces are
not treated as parentheses, they are disallowed as input. By default, square brackets and curly braces are treated
as parentheses.

• Vector constants can be unquoted, and a vector size can be specified with a decimal integer between the# and
opening parenthesis. If the specified size is larger than the number of vector elements that are provided, the last
specified element is used to fill the remaining vector slots. For example,#4(1 2) is equivalent to#(1 2 2
2) . If no vector elements are specified, the vector is filled with0. If a vector size is provided and it is smaller
than the number of elements provided, theexn:fail:read exception is raised.

• Boxed constants can be created using#&. The datum following#& is treated as a quoted constant and put
into the new box. (Space and comments following the#& are ignored.) Box reading is controlled with the
read-accept-box boolean parameter (see§7.9.1.3). Box reading is enabled by default. When box reading
is disabled and#& is provided as input, theexn:fail:read exception is raised.

• Expressions beginning with#’ are wrapped withsyntax in the same way that expressions starting with’ are
wrapped withquote . Similarly, #‘ generatesquasisyntax , #, generatesunsyntax , and#,@ generates
unsyntax-splicing . See also§12.2.1.2.

• The following character constants are recognized:

– #\nul or #\null (ASCII 0)
– #\backspace (ASCII 8)
– #\tab (ASCII 9)
– #\newline or #\linefeed (ASCII 10)
– #\vtab (ASCII 11)
– #\page (ASCII 12)
– #\return (ASCII 13)
– #\space (ASCII 32)
– #\rubout (ASCII 127)

Whenever#\ is followed by at least two alphabetic characters, characters are read from the input port until
the next non-alphabetic character is returned. If the resulting string of letters does not match one of the above
constants (case-insensitively), theexn:fail:read exception is raised.

Character constants can also be specified through direct Unicode values in octal notation (up to 255):#\ n1n2n3

wheren1 is in the range [0, 3] andn2 andn3 are in the range [0, 7]. Whenever#\ is followed by at least two
characters in the range [0, 7], the next character must also be in this range, and the resulting octal number must
be in the range 0008 to 3778.

7Assuming that the current port display and write handlers are the default ones; see§11.2.7for more information.

115

11.2. Reading and Writing 11. Input and Output

Finally, character constants can be specified through direct Unicode values in hexadecimal notation:
#\u n1... nk or #\U n1... nk, where eachni is a hexadecimal digit (0-9, a-f, or A-F), andk is no more than 4
for #\u or 6 for#\U . Whenever#\ is followed by au or U and one hexadecimal digit, the character constant
is terminated by either the first non-hexadecimal character in the stream, or the fourth/sixth hexadecimal charac-
ter, whichever comes first. The resulting hexadecimal number must be a valid argument tointeger->char ,
otherwise theexn:fail:read exception is raised.

Unless otherwise specified above, character-constants are terminated after the character following#\ . For
example, if#\ is followed by an alphabetic character other thanu and then a non-alphabetic character, then
the character constant is terminated. If#\ is followed by a8 or 9, then the constant is terminated. If#\ is
followed by a non-alphabetic, non-decimal-digit character then the constant is terminated.

• Within string constants, the following escape sequences are recognized in addition to\" and\\ :

– \a : alarm (ASCII 7)
– \b : backspace (ASCII 8)
– \t : tab (ASCII 9)
– \n : linefeed (ASCII 10)
– \v : vertical tab (ASCII 11)
– \f : formfeed (ASCII 12)
– \r : return (ASCII 13)
– \e : escape (ASCII 27)
– \’ : quote (i.e., the backslash has no effect)
– \ o, \ oo , or \ ooo : Unicode for octalo, oo , or ooo , where eacho is 0, 1, 2, 3, 4, 5, 6, or 7. The\ ooo

form takes precedence over the\ oo form, and\ oo takes precedence over\ o.
– \x h or \x hh : Unicode for hexadecimalh or hh , where eachh is 0, 1, 2, 3, 4, 5, 6, 7, a, A, b, B, c , C,

d, D, e, E, f , or F. The\x hh form takes precedence over the\x h form.
– \u h, \u hh , \u hhh , or \u hhhh : like \x , but with up to four hexadecimal digits (longer sequences

take precedence). The resulting hexadecimal number must be a valid argument tointeger->char ,
otherwise theexn:fail:read exception is raised.

– \U h, \U hh , \U hhh , \U hhhh , \U hhhhh , \U hhhhhh , \U hhhhhhh , or \U hhhhhhhh : like \x , but
with up to eight hexadecimal digits (longer sequences take precedence). The resulting hexadecimal number
must be a valid argument tointeger->char , otherwise theexn:fail:read exception is raised.

Furthermore, a backslash followed by a linefeed, carriage return or return-linefeed combination is elided, allow-
ing string constants to span lines. Any other use of backslash within a string constant is an error.

• A string constant preceded by# is a byte-string constant. Byte string constants support the same escape se-
quences as character strings except\u and\U .

• The sequence#<< starts ahere string. The characters following#<< until a newline character define a
terminator for the string. The content of the string includes all characters between the#<< line and a line
whose only content is the specified terminator. More precisely, the content of the string starts after a newline
following #<<, and it ends before a newline that is followed by the terminator, where the terminator is itself
followed by either a newline or end-of-file. No escape sequences are recognized between the starting and
terminating lines; all characters are included in the string (and terminator) literally. A return character is not
treated as a line separator in this context. If no characters appear between#<< and a newline or end-of-file, or
if an end-of-file is encountered before a terminating line, theexn:fail:read exception is raised.

• The syntax for numbers is extended as described in§3.3. Numbers containing a decimal point or exponent (e.g.,
1.3 , 2e78) are normally read as inexact. If theread-decimal-as-inexact parameter is set to#f , then
such numbers are instead read as exact. The parameter does not affect the parsing of numbers with an explicit
exactness tag (#e or #i).

• A parenthesized sequence containing two delimited dots (“. ”) triggers infix parsing. A singledatum must
appear between the dots, and one or moredatum s must appear before the first dot and after the last dot:

(left-datum · · ·1 . first-datum . right-datum · · ·1)

116

11. Input and Output 11.2. Reading and Writing

The resulting list consists of thedatum between the dots, followed by the remainingdatum s in order:

(first-datum left-datum · · ·1 right-datum · · ·1)

Consequently, the input expression(1 . < . 2) produces#t , and(1 2 . + . 3 4 5) produces15 .

• When theread-accept-dot parameter is set to#f , then a delimited dot (“. ”) is disallowed in input. When
theread-accept-quasiquote parameter is set to#f , then a backquote or comma is disallowed in input.
These modes simplify Scheme’s input model for students.

• MzScheme’s identifier and symbol syntax is considerably more liberal than the syntax specified byR5RS. When
input is scanned for tokens, the following characters delimit an identifier in addition to whitespace:

" , ’ ‘ ; () [] { }

In addition, an identifier cannot start with a hash mark (“#”) unless the hash mark is immediately followed by
a percent sign (“%”). The only other special characters are backslash (“\”) and quoting vertical bars (“|”); any
other character is used as part of an identifier.

Symbols containing special characters (including delimiters) are expressed using an escaping backslash (“\”) or
quoting vertical bars (“|”):

– A backslash preceding any character includes that character in the symbol literally; double backslashes
produce a single backslash in the symbol.

– Characters between a pair of vertical bars are included in the symbol literally. Quoting bars can be used
for any part of a symbol, or the whole symbol can be quoted. Backslashes and quoting bars can be mixed
within a symbol, but a backslash isnot a special character within a pair of quoting bars.

Characters quoted with a backslash or a vertical bar always preserve their case, even when identifiers are read
case-insensitively.

An input token constructed in this way is an identifier when it is not a numerical constant (following the extended
number syntax described in§3.3). A token containing a backslash or vertical bars is never treated as a numerical
constant.

Examples:

– (quote a\(b) produces the same symbol as(string->symbol "a(b") .
– (quote A\B) produces the same symbol as(string->symbol "aB") when identifiers are read

without case-sensitivity.
– (quote a\ b) , (quote |a b |) , and (quote a | |b) all produce the same symbol as

(string->symbol "a b") .
– (quote |a||b|) is the same as(quote |ab |) , which produces the same symbol as(string->symbol

"ab") .
– (quote 10) is the number 10, but(quote |10 |) produces the same symbol as(string->symbol

"10") .

Whether a vertical bar is used as a special or normal symbol character is controlled with the
read-accept-bar-quote boolean parameter (see§7.9.1.3). Vertical bar quotes are enabled by default.
Quoting backslashes cannot be disabled.

• By default, symbols are read case-sensitively. Case sensitivity for reading can be controlled in three ways:

– Quoting part of a symbol with an escaping backslash (“\”) or quoting vertical bar (“|”) always preserves
the case of the quoted portion, as described above.

– The sequence#cs can be used as a prefix for any expression to make reading symbols within the ex-
pression case-sensitive. A#ci prefix similarly makes reading symbols in an expression case-insensitive.
Whitespace can appear between a#cs or #ci prefix and its expression, and prefixes can be nested. Back-
slash and vertical-bar quotes override a#ci prefix.

117

11.2. Reading and Writing 11. Input and Output

– When theread-case-sensitive parameter (see§7.9.1.3) is set to#t , then case is preserved when
reading symbols. The default is#t , and it is set to#t while loading a module (see§5.8). A #cs or #ci
prefix overrides the parameter setting, as does backslash or vertical-bar quoting.

Symbol case conversions arenot sensitive to the current locale (see§1.2.2).

• A symbol-like expression that starts with an unquoted hash and colon (“#:”) is parsed as a keyword constant.
After the leading colon, backslashes, vertical bars, and case sensitivity are handled as for symbols, except that a
keyword expression can never be interpreted as a number.

• Expressions of the form#rx string are literal regexp values (see§10) wherestring is a string constant.
The regexp produced by#rx string is the same as produced by(regexp string) . If string is not a
valid pattern, theexn:fail:read exception is raised.

Expressions of the form#rx# string are similarly literal byte-regexp values. The regexp produced by
#rx# string is the same as produced by(byte-regexp # string) .

• Expressions of the form#px string and#px# string are like the#rx variants, except that the regexp is as
produced bypregexp andbyte-pregexp (see§10) instead ofregexp andbyte-regexp .

• Expressions of the form#hash((key-datum . val-datum) · · ·) are literal immutable hash tables.
The hash table maps eachkey-datum to its val-datum , comparing keys withequal? . The table
is constructed by adding eachkey-datum mapping from left to right, so later mappings can hide ear-
lier mappings if thekey-datum s areequal? . An expression of the form#hasheq((key-datum .
val-datum) · · ·) produces an immutable hash table with keys compared usingeq? . If the value of
read-square-bracket-as-paren parameter (see§7.9.1.3) is true, matching parentheses in a#hash
or #hasheq constant can be replaced by matching square brackets. Similarly, matching curly braces can be
used ifread-curly-brace-as-paren is true.

• Values with shared structure are expressed using#n= and#n#, wheren is a decimal integer. See§11.2.5.1.

• Expressions of the form#%x are symbols, wherex can be a symbol or a number.

• Expressions beginning with#˜ are interpreted as compiled MzScheme code. See§14.3.

• Multi-line comments are started with#| and terminated with|# . Comments of this form can be nested arbi-
trarily.

• A #; comments out the next datum. Whitespace and comments (including#; comments) may appear between
the#; and the commented-out datum. Graph-structure annotations with#n= and#n# work within the comment
as if the datum were not commented out (e.g., bindings can be introduced with#n= for use in parts of the datum
that are not commented out). When#; appears at the beginning of a top-level datum, however, graph-structure
bindings are discarded (along with the first following datum) before reading the second following datum.

• If the first line of aload ed file begins with#! , it is ignored by the default load handler. If an ignored line ends
with a backslash (“\”), then the next line is also ignored. (The#! convention is for shell scripts; see Chapter18
for details.)

• A #hx shifts the reader into H-expression mode (see§19) for one H-expression. A#sx has no effect in normal
mode, but in H-expression mode, it shifts the reader back to (normal) S-expression mode. Theread-honu
andread-honu-syntax procedures read as if the stream starts with#hx .

• A #honu shifts the reader into H-expression mode (see§19) and reads repeatedly until an end-of-file is encoun-
tered. The H-expression results are wrapped in a module-formed S-expression, as described in§19.

• A #reader must be followed by a datum. The datum is passed to the procedure that is the value of the
current-reader-guard parameter (see§7.9.1.3), and the result is used as a module path. The mod-
ule path is passed todynamic-require (see§5.5) with either ’read or ’read-syntax (depending on
whether parsing started withread or read-syntax). The resulting procedure should accept the same ar-
guments asread or read-syntax (with all optional arguments as required). The procedure is given the

118

11. Input and Output 11.2. Reading and Writing

port whose stream contained#reader , and it should produce a datum result. If the result is a syntax object
in read mode it is converted to a datum usingsyntax-object->datum ; if the result is not a syntax ob-
ject in read-syntax mode, it is converted to one usingdatum->syntax-object . See also§11.2.9.1
and§11.2.9.2for information on special-comment results and recursive reads. If theread-accept-reader
parameter is set to#f , then#reader is disallowed as input.

Reading from a custom port can produce arbitrary values generated by the port; see§11.1.7 for details. If
the port generates a non-character value in a position where a character is required (e.g., within a string), the
exn:fail:read:non-char exception is raised.

11.2.5 Default Printer

MzScheme’s printer obeys the following non-standard rules (though the rules forprint do not apply when the
print-honu parameter is set to#t ; see§7.9.1.4).

• A vector can be printed bywrite andprint using the shorthand described in§11.2.4, where the vector’s
length is printed between the leading# and the opening parenthesis and repeated tail elements are omitted. For
example,#(1 2 2 2) is printed as#4(1 2) . Thedisplay procedure does not output vectors using this
shorthand. Shorthand vector printing is controlled with theprint-vector-length boolean parameter (see
§7.9.1.4). Shorthand vector printing is enabled by default.

• Boxes (see§3.11) can be printed with the#& notation (see§11.2.4). When box printing is disabled, all boxes
are printed unread ably as#<box >. Box printing is controlled with theprint-box boolean parameter (see
§7.9.1.4). Box printing is enabled by default.

• Structures (see Chapter4) can be printed using either a custom-write procedure or vector notation. See§11.2.10
for information on custom-write procedures; the following information applies only when no custom-write
procedure is specified. In the vector form of output, the first item is a symbol of the formstruct: s — where
s is the name of the structure — and the remaining elements are the elements of the structure, but the vector
exposes only as much information about the structure as the current inspector can access (see§4.5). When
structure printing is disabled, or when no part of the structure is accessible to the current inspector, a structure
is printed unread ably as#<struct: s>. Structure printing is controlled with theprint-struct boolean
parameter (see§7.9.1.4). Structure printing is disabled by default.

• Symbols containing spaces or special characterswrite using escaping backslashes and quoting vertical bars.
When theread-case-sensitive parameter is set to#f , then symbols containing uppercase characters
also use escaping backslashes or quoting vertical bars. In addition, symbols are quoted with vertical bars or
a leading backslash when they would otherwise print the same as a numerical constant. If the value of the
read-accept-bar-quote boolean parameter is#f (see§7.9.1.3), then backslashes are always used to
escape special characters instead of quoting them with vertical bars, and a vertical bar is not treated as a special
character. Otherwise, quoting bars are used in printing when bar at the beginning and one at the end suffices to
correctly print the symbol. See§11.2.4for more information about symbol parsing. Symbolsdisplay without
escaping or quoting special characters.

• Keywordswrite and display the same as symbols, except with a leading hash and colon, and without
special handing when the printed form matches a number (since the leading#: distinguishes the keyword).

• Characters with the special names described in§11.2.4write using the same name. (Some characters have
multiple names; the#\newline and#\nul names are used instead of#\linefeed and#\null). Other
graphic characters (according tochar-graphic? ; see§3.4) write as#\ followed by the single character,
and all others characters are written in#\u notation with four digits or#\Unotation with eight digits (using the
latter only if the character value it does not fit in four digits). All charactersdisplay as a single character.

• Strings containing non-graphic, non-blank characters (according tochar-graphic? andchar-blank? ;
see§3.4) write using the escape sequences described in§11.2.4, using\a , \b , \t , \n , \v , \f , \r , or \e if

119

11.2. Reading and Writing 11. Input and Output

possible, otherwise using\u with four hexadecimal digits or\U with eight hexadecimal digits (using the latter
only if the character value does not fit into four digits). All stringsdisplay as their literal character sequences.

• Byte stringswrite using#" , where each byte in the string content is written using the corresponding ASCII
decoding if the byte is between 0 and 127 and the character is graphic or blank (according tochar-graphic?
andchar-blank? ; see§3.4). Otherwise, the byte is written using\a , \b , \t , \n , \v , \f , \r , or \e if
possible, otherwise using\o with one to three octal digits (only as many as necessary). All stringsdisplay
as their literal byte sequence; this byte sequence may not be a valid UTF-8 encoding, so it may not correspond
to a sequence of characters.

• Paths (see§11.3.1) by write like other unread able values using#<path:... >. A pathdisplay s in the
same way as the result ofpath->string applied to the path.

• Regexp values print using the form#rx string , wherestring is thewrite form of the regexp’s source
character string or byte string. Similarly, byte-regexp values print starting with#rx# .

• Hash tables by default print unread ably as#<hash −table >. When theprint-hash-table pa-
rameter is set to true (see§7.9.1.4), hash tables print using the form#hash((key . val) · · ·) or
#hasheq((key . val) · · ·) for tables usingequal? or eq? key comparisons, respectively. Hash
tables with weakly held keys always print unread ably as#<hash −table >.

• Values with shared structure can be printed using#n= and#n#, wheren is a decimal integer. See§11.2.5.1.

• A value with noread able format prints as#<... >, but only when theprint-unreadable parameter is
set to#t (the default; see also§7.9.1.4). When the parameter’s value is#f , attempting to print an unread able
value raisesexn:fail:contract .

11.2.5.1 SHARING STRUCTURE IN INPUT AND OUTPUT

MzScheme can read and print Common LISP-stylegraphs, values with shared structure (including cycles). Graphs
are described by tagging the shared structure once with#n= (using some decimal integern with no more than eight
digits) and then referencing it later with#n# (using the same numbern). For example, the following datum represents
the infinite list of ones:

#0=(1 . #0#)

If this graph is entered into MzScheme’sread -eval -print loop, MzScheme’s compiler will loop forever, trying
to compile an infinite expression. In contrast, the following expression definesones to the infinite list of ones, using
quote to hide the infinite list from the compiler:

(define ones (quote #0 =(1 . #0#)))

A tagged structure can be referenced multiple times. Here,v is defined to be a vector containing the samecons cell
in all three slots:

(define v #(#1 =(cons 1 2) #1# #1#))

A tag#n= must appear to the left of all references#n#, and all references must appear in the same top-level datum as
the tag. By default, MzScheme’s printer will display a value without showing the shared structure:

#((1 . 2) (1 . 2) (1 . 2))

Graph reading and printing are controlled with theread-accept-graph andprint-graph boolean parameters
(see§7.9.1.4). Graph reading is enabled by default, and graph printing is disabled by default. However, when the
printer encounters a graph containing a cycle, graph printing is automatically enabled, temporarily. (For this reason,

120

11. Input and Output 11.2. Reading and Writing

thedisplay , write , andprint procedures require memory proportional to the depth of the value being printed.)
When graph reading is disabled and a graph is provided as input, theexn:fail:read exception is raised.

If the n in a #n= form or a#n# form contains more than eight digits, theexn:fail:read exception is raised. If
a #n# form is not preceded by a#n= form using the samen, theexn:fail:read exception is raised. If two#n=
forms are in the same expression for the samen, theexn:fail:read exception is raised.

11.2.6 Replacing the Reader

Each input port has its ownport read handler. This handler is invoked to read from the port when the built-inread
or read-syntax procedure is applied to the port.8 A port read handler is applied to either one argument or two
arguments:

• A single argument is supplied when the port is used withread ; the argument is the port being read. The return
value is the value that was read from the port (or end-of-file).

• Two arguments are supplied when the port is used withread-syntax ; the first argument is the port being
read, and the second argument is a value indicating the source. The return value is a syntax object that was read
from the port (or end-of-file).

A port’s read handler is configured withport-read-handler :

• (port-read-handler input-port) returns the current port read handler forinput-port .

• (port-read-handler input-port proc) sets the handler forinput-port to proc .

The default port read handler reads standard Scheme expressions with MzScheme’s built-in parser (see§11.2.4). It
handles a special result from a custom input port (see§11.1.7.1) by treating it as a single expression, except that
special-comment values (see§11.2.9.1) are treated as whitespace.

The read andread-syntax procedures themselves can be customized through a readtable; see§11.2.8for more
information.

11.2.7 Replacing the Printer

Each output port has its ownport display handler, port write handler, andport print handler. These handlers are
invoked to output to the port when the standarddisplay , write or print procedure is applied to the port. A
port display/write/print handler takes a two arguments: the value to be printed and the destination port. The handler’s
return value is ignored.

• (port-display-handler output-port) returns the current port display handler foroutput-port .

• (port-display-handler output-port proc) sets the display handler foroutput-port to
proc .

• (port-write-handler output-port) returns the current port write handler foroutput-port .

• (port-write-handler output-port proc) sets the write handler foroutput-port to proc .

• (port-print-handler output-port) returns the current port print handler foroutput-port .

• (port-print-handler output-port proc) sets the print handler foroutput-port to proc .

8The port read handler is not used forread/recursive or read-syntax/recursive .

121

11.2. Reading and Writing 11. Input and Output

The default port display and write handlers print Scheme expressions with MzScheme’s built-in printer (see§11.2.5).
The default print handler calls the global port print handler (the value of theglobal-port-print-handler
parameter; see§7.9.1.2); the default global port print handler is the same as the default write handler.

11.2.8 Customizing the Reader through Readtables

A readtable configures MzScheme’s built-in reader by adjusting the way that individual characters are parsed.
MzScheme readtables are just like readtables in Common LISP, except that an individual readtable is immutable,
and the procedures for creating and inspecting readtables are somewhat different than the Common LISP procedures.

The readtable is consulted at specific times by the reader:

• when looking for the start of an S-expression;

• when determining how to parse an S-expression that starts with hash (“#”);

• when looking for a delimiter to terminate a symbol or number;

• when looking for an opener (such as “(”), closer (such as “)”), or dot (“.”) after the first character parsed as a
sequence for a list, vector, or hash table; or

• when looking for an opener after#n in a vector of specified lengthn.

In particular, after parsing a character that is mapped to the default behavior of semi-colon (“;”), the readtable is ignored
until the comment’s terminating newline is discovered. Similarly, the readtable does not affect string parsing until a
closing double-quote is found. Meanwhile, if a character is mapped to the default behavior of an open parenthesis
(“(”), then it starts sequence that is closed by any character that is mapped to a close parenthesis (“)”). An apparent
exception is that the default parsing of a vertical bar (“|”) quotes a symbol until a matching character is found, but the
parser is simply using the character that started the quote; it does not consult the readtable.

For many contexts,#f identifies the default readtable for MzScheme. In particular,#f is the initial value for
the current-readtable parameter (see§7.9.1.3), which causes the reader to behave as described in§11.2.4.
Adjust MzScheme’s default reader by setting thecurrent-readtable parameter to a readtable created with
make-readtable .

(make-readtable readtable [char-or-false symbol-or-char readtable-or-proc ···1]) cre-
ates a new readtable that is likereadtable (which can be#f), except that the reader’s behavior is modified for each
char according to the givensymbol-or-char andreadtable-or-proc . The · · ·1 for make-readtable
applies to all three ofchar , symbol-or-char , andreadtable-or-proc ; in other words, the total number of
arguments tomake-readtable must be one modulo three.

The possible combinations forchar-or-false , symbol-or-char , and readtable-or-proc are as fol-
lows:

• char ’terminating-macro proc — causeschar to be parsed as a delimiter, and an un-
quoted/uncommentedchar in the input string triggers a call to thereader macro proc ; the activity ofproc
is described further below. Conceptually, characters like semi-colon (“;”) and parentheses are mapped to termi-
nating reader macros in the default readtable.

• char ’non-terminating-macro proc — like the’terminating-macro variant, butchar is not
treated as a delimiter, so it can be used in the middle of an identifier or number. Conceptually, hash (“#”) is
mapped to a non-terminating macro in the default readtable.

• char ’dispatch-macro proc — like the’non-terminating-macro variant, butchar only when
it follows a hash (“#”) — or, more precisely, when the character follows one that has been mapped to the behavior
of hash in the default readtable.

122

11. Input and Output 11.2. Reading and Writing

• char like-char readtable — causeschar to be parsed in the same way thatlike-char is parsed
in readtable , wherereadtable can be#f to indicate the default readtable. Mapping a character to the
same actions as vertical bar (“|”) in the default reader means that the character starts quoting for symbols, and the
same character terminates the quote; in contrast, mapping a character to the same action as a double quote means
that the character starts a string, but the string is still terminated with a closing double quote. Finally, mapping
a character to an action in the default readtable means that the character’s behavior is sensitive to parameters
that affect the original character; for example, mapping a character to the same action is a curly brace (“{”)
in the default readtable means that the character is disallowed when theread-curly-brace-as-paren
parameter is set to#f .

• #f ’non-terminating-macro proc — replaces the macro used to parse characters with no specific
mapping: i.e., characters (other than hash or vertical bar) that can start a symbol or number with the default
readtable.

If multiple ’dispatch-macro mappings are provided for a singlechar-or-false , all but the last one are
ignored. Similarly, if multiple non-’dispatch-macro mappings are provided for a singlechar-or-false , all
but the last one are ignored.

A reader macroproc must accept six arguments, and it can optionally accept two arguments. See§11.2.9for infor-
mation on the procedure’s arguments and results.

A reader macro normally reads characters from the given input port to produce a value to be used as the “reader macro-
expansion” of the consumed characters. The reader macro might produce a special-comment value to cause the con-
sumed character to be treated as whitespace, and it might useread/recursive or read-syntax/recursive ;
see§11.2.9.1and§11.2.9.2for more information on these topics.

(readtable-mapping readtable char) , wherereadtable is not #f , produces information about the
mappings inreadtable for char . The result is three values:

• either a character (mapping is to same behavior as the character in the default readtable),’terminating-macro ,
or ’non-terminating-macro ; this result reports the main (i.e., non-’dispatch-macro) mapping for
char . When the result is a character, thenchar is mapped to the same behavior as the returned character in
the default readtable.

• either#f or a reader-macro procedure; the result is a procedure when the first result is’terminating-macro
or ’non-terminating-macro .

• either#f or a reader-macro procedure; the result is a procedure when the character has a’dispatch-macro
mapping inreadtable to override the default dispatch behavior.

Note that reader-macro procedures for the default readtable are not directly accessible. To invoke default behaviors,
useread/recursive or read-syntax/recursive (see§11.2.9.2) with a character and the#f readtable.

Extended example:

;; Provides raise-read-error and raise-read-eof-error
(require (lib "readerr.ss" "syntax"))

(define (skip-whitespace port)
;; Skips whitespace characters, sensitive to the current
;; readtable’s definition of whitespace
(let ([ch (peek-char port)])

(unless (eof-object? ch)
;; Consult current readtable:

123

11.2. Reading and Writing 11. Input and Output

(let-values ([(like-ch/sym proc dispatch-proc)
(readtable-mapping (current-readtable) ch)])

;; If like-ch/sym is whitespace, then ch is whitespace
(when (and (char? like-ch/sym)

(char-whitespace? like-ch/sym))
(read-char port)
(skip-whitespace port))))))

(define (skip-comments read-one port src)
;; Recursive read, but skip comments and detect EOF
(let loop ()

(let ([v (read-one)])
(cond
[(special-comment? v) (loop)]
[(eof-object? v)

(let-values ([(l c p) (port-next-location port)])
(raise-read-eof-error "unexpected EOF in tuple" src l c p 1))]

[else v]))))

(define (parse port read-one src)
;; First, check for empty tuple
(skip-whitespace port)
(if (eq? # \> (peek-char port))

null
(let ([elem (read-one)])

(if (special-comment? elem)
;; Found a comment, so look for > again
(parse port read-one src)
;; Non-empty tuple:
(cons elem

(parse-nonempty port read-one src))))))

(define (parse-nonempty port read-one src)
;; Need a comma or closer
(skip-whitespace port)
(case (peek-char port)

[(# \>) (read-char port)
;; Done
null]

[(# \,) (read-char port)
;; Read next element and recur
(cons (skip-comments read-one port src)

(parse-nonempty port read-one src))]
[else
;; Either a comment or an error; grab location (in case
;; of error) and read recursively to detect comments
(let-values ([(l c p) (port-next-location port)]

[(v) (read-one)])
(cond
[(special-comment? v)

;; It was a comment, so try again
(parse-nonempty port read-one src)]

[else
;; Wasn’t a comment, comma, or closer; error

124

11. Input and Output 11.2. Reading and Writing

((if (eof-object? v) raise-read-eof-error raise-read-error)
"expected ‘,’ or ‘ >’" src l c p 1)]))]))

(define (make-delims-table)
;; Table to use for recursive reads to disallow delimiters
;; (except those in sub-expressions)
(letrec ([misplaced-delimiter

(case-lambda
[(ch port) (unexpected-delimiter ch port #f #f #f #f)]
[(ch port src line col pos)

(raise-read-error
(format "misplaced ‘˜a’ in tuple" ch) src line col pos 1)])])

(make-readtable (current-readtable)
#\, ’terminating-macro misplaced-delimiter
#\> ’terminating-macro misplaced-delimiter)))

(define (wrap l)
‘(make-tuple (list ,@ l)))

(define parse-open-tuple
(case-lambda
[(ch port)

;; ‘read’ mode
(wrap (parse port

(lambda () (read/recursive port #f
(make-delims-table)))

(object-name port)))]
[(ch port src line col pos)

;; ‘read-syntax’ mode
(datum->syntax-object
#f
(wrap (parse port

(lambda () (read-syntax/recursive src port #f
(make-delims-table)))

src))
(let-values ([(l c p) (port-next-location port)])

(list src line col pos (and pos (− p pos)))))]))

(define tuple-readtable
(make-readtable #f # \< ’terminating-macro parse-open-tuple))

(parameterize ([current-readtable tuple-readtable])
(read (open-input-string " <1 , 2 , \"a \" >")))

;; ⇒ ’(make-tuple (list 1 2 "a"))

(parameterize ([current-readtable tuple-readtable])
(read (open-input-string " < #||# 1 # ||# , # ||# 2 # ||# , # ||# \"a \" # ||# >")))

;; ⇒ ’(make-tuple (list 1 2 "a"))

(define tuple-readtable +
(make-readtable tuple-readtable

#\∗ ’terminating-macro (lambda a (make-special-comment #f))
#\ #\space #f))

(parameterize ([current-readtable tuple-readtable +])

125

11.2. Reading and Writing 11. Input and Output

(read (open-input-string " < ∗ 1 , 2 , ∗ \"a \" ∗ >")))
;; ⇒ ’(make-tuple (list 1 2 "a"))

11.2.9 Reader-Extension Procedures

MzScheme’s reader can be extended in three ways: through a reader-macro procedure in a readtable (see§11.2.8),
through a#reader form (see§11.2.4), or through a custom-port byte reader that returns a “special” result procedure
(see§11.1.7.1). All three kinds of procedures accept similar arguments, and their results are treated in the same way
by read andread-syntax (or, more precisely, by the default read handler; see§11.2.6).

Calls to these reader-extension procedures can be triggered throughread , read/recursive , read-syntax ,
or read-honu-syntax . In addition, a special-read procedure can be triggered by calls toread-honu ,
read-honu/recursive , read-honu-syntax , read-honu-syntax/recursive , read-char-or-special ,
or by the context of read-bytes-avail! , read-bytes-avail!* , read-bytes-avail! , and
peek-bytes-avail!* .

Optional arities for reader-macro and special-result procedures allow them to distinguish reads viaread , etc. from
reads viaread-syntax , etc. in the case that the source value is#f and no other location information is available.

Procedure arguments

A reader-macro procedure must accept six arguments, and it can optionally accept two arguments. The first two
arguments are always the character that triggered the reader macro and the input port for reading. When the reader
macro is triggered byread-syntax (or read-syntax/recursive), the procedure is passed four additional
arguments that represent a source location. When the reader macro is triggered byread (or read/recursive),
the procedure is passed only two arguments if it accepts two arguments, otherwise it is passed six arguments where
the last four are all#f .

A #reader -loaded procedure accepts the same arguments as eitherread or read-syntax , depending on whether
the procedure was loaded throughread , etc. or throughread-syntax , etc.

A special-result procedure must accept four arguments, and it can optionally accept zero arguments. When the special
read is triggered byread-syntax (or read-honu-syntax , read-syntax/recursive , etc.), the proce-
dure is passed four arguments that represent a source location. When the special read is triggered byread (or
read-char-or-special , read-honu , read/syntax , etc.), the procedure is passed no arguments if it ac-
cepts zero arguments, otherwise it is passed four arguments that are all#f .

Procedure result

When a reader-extension procedure is called in syntax-reading mode (viaread-syntax , etc.), it should generally
return a syntax object that has no lexical context (e.g., a syntax object created usingdatum->syntax-object
with #f as the first argument and with the given location information as the third argument). Another possible result
is a special-comment value (see§11.2.9.1). If the procedure’s result is not a syntax object and not a special-comment
value, it is converted to one usingdatum->syntax-object .

When a reader-extension procedure is called in non-syntax-reading modes, it should generally not return a syntax
object. If a syntax object is returned, it is converted to a plain value usingsyntax-object->datum .

In either context, when the result from a reader-extension procedure is a special-comment value (see§11.2.9.1), then
read , read-syntax , etc. treat the value as a delimiting comment and otherwise ignore it.

Also in either context, the result may be copied to prevent mutation to pairs, vectors, or boxes before the read result is
completed, and to support the construction of graphs with cycles. Mutable pairs, boxes, and vectors are copied, along
with any pairs, boxes, or vectors that lead to such mutable values, to placeholders produced by a recursive read (see
§11.2.9.2), or to references of a shared value. Graph structure (including cycles) is preserved in the copy.

126

11. Input and Output 11.2. Reading and Writing

11.2.9.1 SPECIAL COMMENTS

(make-special-comment v) creates a special-comment value that encapsulatesv . The read ,
read-syntax , etc. procedures treat values constructed withmake-special-comment as delimiting whitespace
when returned by a reader-extension procedure (see§11.2.9).

(special-comment? v) returns#t if v is the result ofmake-special-comment , #f otherwise.

(special-comment-value sc) returns the value encapsulated by the special-comment valuesc . This value
is never used directly by a reader, but it might be used by the context of aread-char-or-special , etc. call that
detects a special comment.

11.2.9.2 RECURSIVEREADS

(read/recursive [input-port char-or-false readtable]) is similar to callingread , but it is nor-
mally used during the dynamic extent ofread within a reader-extension procedure (see§11.2.9). The main effect of
usingread/recursive instead ofread is that graph-structure annotations (see§11.2.5.1) in the nested read are
considered part of the overall read. Since the result is wrapped in a placeholder, however, it is not directly inspectable.

If char-or-false is provided and not#f , it is effectively prefixed to the beginning ofinput-port ’s stream for
the read. (To prefix multiple characters, useinput-port-append from MzLib’s port library; see Chapter 33 of
PLT MzLib: Libraries Manual.)

Thereadtable argument, which defaults to(current-readtable) , is used for top-level parsing to satisfy the
read request; recursive parsing within the read (e.g., to read the elements of a list) instead uses the current readtable
as determined by thecurrent-readtable parameter. A reader macro might callread/recursive with a
character and readtable to effectively invoke the readtable’s behavior for the character. Ifreadtable is #f , the
default readtable is used for top-level parsing.

When called within the dynamic extent ofread , theread/recursive procedure produces either an opaque place-
holder value, a special-comment value, or an end-of-file. The result is a special-comment value (see§11.2.9.1)
when the input stream’s first non-whitespace content parses as a comment. The result is end-of-file when
read/recursive encounters an end-of-file. Otherwise, the result is a placeholder that protects graph references
that are not yet resolved. When this placeholder is returned within an S-expression that is produced by any reader-
extension procedure (see§11.2.9) for the same outermostread , it will be replaced with the actual read value before
the outermostread returns.

(read-syntax/recursive [source-name-v input-port char-or-false readtable]) is anal-
ogous to callingread/recursive , but the resulting value encapsulates S-expression structure with source-location
information. As withread/recursive , whenread-syntax/recursive is used within the dynamic extent
of read-syntax , the result of fromread-syntax/recursive is either a special-comment value, end-of-file,
or opaque graph-structure placeholder (not a syntax object). The placeholder can be embedded in an S-expression or
syntax object returned by a reader macro, etc., and it will be replaced with the actual syntax object before the outermost
read-syntax returns.

Using read/recursive within the dynamic extent ofread-syntax does not allow graph structure for reading
to be included in the outerread-syntax parsing, and neither does usingread-syntax/recursive within the
dynamic extent ofread . In those cases,read/recursive and read-syntax/recursive produce results
like read andread-syntax .

See§11.2.8for an extended example that usesread/recursive andread-syntax/recursive .

127

11.3. Filesystem Utilities 11. Input and Output

11.2.10 Customizing the Printer through Custom-Write Procedures

The built-inprop:custom-write structure type property associates a procedures to a structure type. The proce-
dure is used by the default printer todisplay or write (or print) instances of the structure type.

See§4.4for general information on structure type properties.

The procedure for aprop:custom-write value takes three arguments: the structure to be printed, the target port,
and a boolean that is#t for write mode and#f for display mode. The procedure should print the value to the
given port usingwrite , display , fprintf , write-special , etc.

The write handler, display handler, and print handler are specially configured for a port given to a custom-write proce-
dure. Printing to the port throughdisplay , write , or print prints a value recursively with sharing annotations.
To avoid a recursive print (i.e., to print without regard to sharing with a value currently being printed), print instead to a
string or pipe and transfer the result to the target port usingwrite-string andwrite-special . To recursively
print but to a port other than the one given to the custom-write procedure, copy the given port’s write handler, display
handler, and print handler to the other port.

The port given to a custom-write handler is not necessarily the actual target port. In particular, to detect cycles and
sharing, the printer invokes a custom-write procedure with a port that records recursive prints, and does not retain any
other output.

Recursive print operations may trigger an escape from the call to the custom-write procedure (e.g., for pretty-printing
where a tentative print attempt overflows the line, or for printing error output of a limited width).

The following example definition of atuple type includes custom-write procedures that print the tuple’s list content
using angle brackets inwrite mode and no brackets indisplay mode. Elements of the tuple are printed recursively,
so that graph and cycle structure can be represented.

(define (tuple-print tuple port write?)
(when write? (write-string " <" port))
(let ([l (tuple-ref tuple 0)])

(unless (null? l)
((if write? write display) (car l) port)
(for-each (lambda (e)

(write-string ", " port)
((if write? write display) e port))

(cdr l))))
(when write? (write-string " >" port)))

(define-values (s:tuple make-tuple tuple? tuple-ref tuple-set!)
(make-struct-type ’tuple #f 1 0 #f

(list (cons prop:custom-write tuple-print))))

(display (make-tuple ’(1 2 "a"))) ; prints 1, 2, a

(let ([t (make-tuple (list 1 2 "a"))])
(set-car! (tuple-ref t 0) t)
(write t)) ; prints #0 =<#0#, 2, "a" >

11.3 Filesystem Utilities

MzScheme provides many operations for accessing and modifying filesystems in a (mostly) platform-independent
manner. Additional filesystem utilities are in MzLib; see also Chapter 18 ofPLT MzLib: Libraries Manual.

128

11. Input and Output 11.3. Filesystem Utilities

11.3.1 Paths

The format of a filesystem path varies across platforms. For example, under Unix, directories are separated by “/”
while Windows uses both “/” and “\”. (See§20for more information on Windows paths in MzScheme.) Furthermore,
for most Unix filesystems, the true name of a file is a byte string, but users prefer to see the bytes decoded in a locale-
specific way when the filename is printed. MzScheme therefore provides apath datatype for managing filesystem
paths, and procedures such asbuild-path , path->string , andbytes->path for manipulating paths. Two
paths areequal? when their byte-string representations areequal? .

When a MzScheme procedure takes a filesystem path as an argument, the path can be provided either as a string or
as an instance of thepath datatype. If a string is provided, it is converted to a path usingstring->path . A
MzScheme procedure that generates a filesystem path always generates apath value.

Most MzScheme primitives that take path perform an expansion on the path before using it. (Procedures that build
paths or merely check the form of a path do not perform this expansion.) Under Unix and Mac OS X, a user directory
specification using “∼” is expanded and multiple adjacent slashes are replaced with a single slash.9 Under Windows,
paths that start\\?\, redundant backslashes are removed, and an extra backslash is added in a\\?\REL if an extra
one is not already present to separate up-directory indicators from literal path elements; see§20 for more information.
Under Windows for other paths, multiple slashes are converted to single slashes (except at the beginning of a shared
folder name), a slash is inserted after the colon in a drive specification if it is missing.

A path string (or byte string) cannot be empty, and it cannot contain a nul character or byte. When an empty string
or a string containing nul is provided as a path to any procedure exceptabsolute-path? , relative-path? , or
complete-path? theexn:fail:contract exception is raised.

The basic path utilities are as follows:

• (path? v) returns#t if v is a path value (not a string),#f otherwise.

• (path-string? v) returns#t if v is either a path value or a non-empty string without nul characters,#f
otherwise.

• (string->path string) produces a path whose byte-string name is(string->bytes/locale
string (char->integer # \?)) ; see§3.6 for more information onstring->bytes/locale . Be-
ware that the current locale might not encode every string, in which casestring- >path can produce the
same path for differentstring s.

• (bytes->path bytes) produces a path whose byte-string name isbytes . For converting relative path
elements from literals, use insteadbytes->path-element (described below), which applies a suitable
encoding for individual elements.

• (path->string path) produces a string that representspath by decodingpath ’s byte-string name using
the current locale’s encoding; “?” is used in the result string where encoding fails, and if the encoding result is
the empty string, then the result is"?" . In addition, under Windows, if the path is relative and the byte-string
version of the path starts with\\?\REL, this prefix and the immediately following backslashes (one or two)
are removed from the resulting string. The resulting string is suitable for displaying to a user, string-ordering
comparisons, etc., but it is not suitable for re-creating the path throughstring->path , since decoding and
re-encoding the path’s byte string may lose information.

• (path->bytes path) producespath ’s byte string representation. No information is lost in this trans-
lation, so that(bytes->path (path->bytes path)) always produces a path is that isequal? to
path . Conversion to and from byte values is useful for marshaling and unmarshaling paths, but manipulating
the byte form of a path is generally a mistake. In particular, the byte string may start with a\\?\REL encoding
for Windows for a./∼ encoding for Unix and Mac OS X. Instead ofpath->bytes , usesplit-path and
path-element->bytes (described below) to manipulate individual path elements.

9Under Mac OS X, Finder aliases are zero-length files.

129

11.3. Filesystem Utilities 11. Input and Output

• (bytes->path-element bytes) is like bytes->path , except thatbytes corresponds to a single
relative element in a path. Thus, under Unix,bytes can start with a tilde (“∼”), and it is encoded as a literal
part of the path element using a period–slash (“./”) prefix. Similarly, under Windows, forward slashes, colons,
trailing dots, trailing whitespace, and special device names (e.g., “aux”) are encoded as a literal part of the path
element by using a\\?\REL prefix. Under Unix and Mac OS X, thebytes argument must not contain a slash
(“/”), otherwise theexn:fail:contract exception is raised. Under Windows,bytes must not contain a
backslash (“\”), otherwise theexn:fail:contract exception is raised.

• (path-element->bytes path) is like path->bytes , except that any encoding prefix is removed:
./∼ for Unix and Mac OS X, or\\?\REL for Windows. In addition, trailing path separators are removed,
as bysplit-path . The path argument must be such thatsplit-path applied topath would return
’relative as its first result, otherwise theexn:fail:contract exception is raised. For any reasonable
locale, consecutive ASCII characters in the printed form ofpath are mapped to consecutive byte values that
match each character’s code-point value, and a leading or trailing ASCII character is mapped to a leading or
trailing byte, respectively.

• (build-path base-path sub-path · · ·) creates a path given a base path and any number of sub-path
extensions. Ifbase-path is an absolute path, the result is an absolute path; ifbase is a relative path, the
result is a relative path. Eachsub-path must be either a relative path, a directory name, the symbol’up
(indicating the relative parent directory), or the symbol’same (indicating the relative current directory). Under
Windows, ifbase-path is a drive specification (with or without a trailing slash) the firstsub-path can be
an absolute (driveless) path. The lastsub-path can be a filename.

Under Windows, trailing spaces and periods are removed from the last element ofbase-path and all but
the lastsub-path (unless the element consists of only spaces and peroids), except for those that start with
\\?\. If base-path starts\\?\, then after each non-\\?\REL\ sub-path is added, all slashes in the
addition are converted to backslashes, multiple consecutive backslashes are converted to a single backslash,
added. elements are removed, and added.. elements are removed along with the preceding element; these
conversions are not performed on the originalbase-path part of the result or on any\\?\REL\ sub-path .
If a \\?\REL\ sub-path is added to a non-\\?\ base-path , the thebase-path (with any additions up
to the\\?\REL\ sub-path) is simplified and converted to a\\?\ path. In other cases under Windows, a
backslash may be added or removed before combining paths to avoid changing the root meaning of the path
(e.g., combining//x andy produces/x/y , because//x/y would be a UNC path instead of a drive-relative path).

Under Unix and Mac OS X, when asub-path starts with a period, slash, and tilde (“./∼”) the period and slash
are removed before adding the path. This conversion is performed because an initial sequence period–slash–
tilde (“./∼”) is the canonical way of representing relative paths whose first element’s name starts with a tilde.
(See alsosplit-path , below.)

Eachsub-path andbase-path can optionally end in a directory separator. If the lastsub-path ends in a
separator, it is included in the resulting path.

If base-path or sub-path is an illegal path string (because it is empty or contains a nul character), the
exn:fail:contract exception is raised.

Thebuild-path procedure builds a pathwithoutchecking the validity of the path or accessing the filesystem.

The following examples assume that the current directory is/home/joeuser for Unix examples andC:\Joe’s
Files for Windows examples.

130

11. Input and Output 11.3. Filesystem Utilities

(define p1 (build-path (current-directory) "src" "scheme"))
; Unix: p1 ⇒ "/home/joeuser/src/scheme"
; Windows: p1 ⇒ "C: \Joe’s Files \src \scheme"

(define p2 (build-path ’up ’up "docs" "MzScheme"))
; Unix: p2 ⇒ "../../docs/MzScheme"
; Windows: p2 ⇒ ".. \.. \docs \MzScheme"

(build-path p2 p1)
; Unix and Windows: raises exn:fail:contract because p1 is absolute

(build-path p1 p2)
; Unix: ⇒ "/home/joeuser/src/scheme/../../docs/MzScheme"
; Windows: ⇒ "C: \Joe’s Files \src \scheme\.. \.. \docs \MzScheme"

• (absolute-path? path) returns#t if path is an absolute path,#f otherwise. Ifpath is not a legal
path string (e.g., it contains a nul character),#f is returned. This procedure does not access the filesystem.

• (relative-path? path) returns#t if path is a relative path,#f otherwise. Ifpath is not a legal path
string (e.g., it contains a nul character),#f is returned. This procedure does not access the filesystem.

• (complete-path? path) returns#t if path is a completely determined path (not relative to a directory
or drive),#f otherwise. Note that under Windows, an absolute path can omit the drive specification, in which
case the path is neither relative nor complete. Ifpath is not a legal path string (e.g., it contains a nul character),
#f is returned. This procedure does not access the filesystem.

• (path->complete-path path [base-path]) returnspath as a complete path. Ifpath is already
a complete path, it is returned as the result. Otherwise,path is resolved with respect to the complete
path base-path . If base-path is omitted,path is resolved with respect to the current directory. If
base-path is provided and it is not a complete path, theexn:fail:contract exception is raised. This
procedure does not access the filesystem.

• (path->directory-path path) returnspath if path syntactically refers to a directory, otherwise it
returns an extended version ofpath that specifies a directory. For example, under Unix and Mac OS X, the
pathx/y/ syntactically refers to a directory, butx/y would be extended tox/y/ . This procedure does not access
the filesystem.

• (resolve-path path) expandspath and returns a path that references the same file or directory aspath .
Under Unix and Mac OS X, ifpath is a soft link to another path, then the referenced path is returned (this may
be a relative path with respect to the directory owningpath) otherwisepath is returned (after expansion).

• (expand-path path) returns the expanded version ofpath (as described at the beginning of this section).
The filesystem might be accessed, but the source or expanded path might be a non-existent path.

• (simplify-path path [use-filesystem?]) eliminates redundant path separators, up-directory
(“..”), same-directory (“.”) indicators inpath , such that the result accesses the same file or directory (if it
exists) aspath . Under Windows,path is expanded (see the beginning of this section), and ifpath does not
start with\\?\, trailing spaces and periods are removed, a slash is inserted after the colon in a drive specification
if it is missing. Otherwise, if no indicators or redundant separators are inpath , thenpath is returned. Under
Unix and Mac OS X, ifpath starts period–slash–tilde (“./∼”), the leading period is the only indicator, and
there are no redundant slashes, thenpath is returned.

Whenpath is simplified anduse-filesystem? is true (the default), a complete path is returned; ifpath
is relative, it is resolved with respect to the current directory, and up-directory indicators are removed taking
into account soft links (so that the resulting path refers to the same directory as before).

Whenuse-filesystem? is #f , up-directory indicators are removed by deleting a preceding path element,
and the result can be a relative path with up-directory indicators remaining at the beginning of the path or, under
Unix and Mac OS X, after an initial path element that starts with tilde (“∼”). Similarly, the result can be the
same as(build-path ’same) if eliminating up-directory indicators leaves only same-directory indicators,
and the result can start with a same-directory indicator under Unix and Mac OS X if eliminating it would make

131

11.3. Filesystem Utilities 11. Input and Output

the result start with a tilde (“∼”). For a complete path, up-directory indicators are dropped when they refer to
the parent of a root directory.

The filesystem might be accessed whenuse-filesystem? is true, but the source or expanded path might
be a non-existent path. Ifpath cannot be simplified due to a cycle of links, theexn:fail:filesystem
exception is raised (but a successfully simplified path may still involve a cycle of links if the cycle did not inhibit
the simplification).

• (normal-case-path path) returnspath with “normalized” case letters. Under Unix and Mac OS X,
this procedure always returns the input path, because filesystems for these platforms can be case-sensitive. Under
Windows, if the path does not start\\?\, the resulting string uses only lowercase letters, based on the current
locale. In addition, under Windows when the path does not start\\?\, all forward slashes (“/”) are converted
to backward slashes (“\”), and trailing spaces and periods are removed. This procedure does not access the
filesystem.

• (split-path path) deconstructspath into a smaller path and an immediate directory or file name. Three
values are returned (see§2.2):

– base is either
∗ a path,
∗ ’relative if path is an immediate relative directory or filename, or
∗ #f if path is a root directory or, under Unix and Mac OS X, specifies a user directory through an

initial tilde (“∼”).
– name is either

∗ a directory-name path,
∗ a filename,
∗ ’up if the last part ofpath specifies the parent directory of the preceding path (e.g., “..” under Unix),

or
∗ ’same if the last part ofpath specifies the same directory as the preceding path (e.g., “.” under

Unix).
– must-be-dir? is #t if path explicitly specifies a directory (e.g., with a trailing separator),#f oth-

erwise. Note thatmust-be-dir? does not specify whethername is actually a directory or not, but
whetherpath syntactically specified a directory.

If base is #f , thenname cannot be’up or ’same . This procedure does not access the filesystem.

Compared topath , redundant separators (if any) are removed in the resultbase andname.

Under Unix and Mac OS X, the resultname can start with period–slash–tilde (“./∼”) if the result would other-
wise start with tilde (“∼”) and it is not the start ofpath . Furthermore, ifpath starts with period–slashes–tilde
(“./∼”, with any non-zero number of “/”), then the period and slash are kept with the following element (i.e.,
they are not split separately).

Under Windows, splitting a path that does not start with\\?\ can produce parts that start with\\?\. For
example, splittingC:/x /aux/ produces\\?\C:\x \ and\\?\REL\\aux ; the\\?\ is needed in these cases to
preserve a trailing space afterx and to avoid referring to the AUX devide instead of anaux file.

(path-replace-suffix path string-or-bytes) returns a path that is the same aspath , except
that the suffix is changed tostring-or-bytes . If path as no suffix, thenstring-or-bytes is added
to the path. A suffix is defined as a period followed by any number of non-period characters/bytes at the end of
the pathname. Ifpath represents a root, theexn:fail:contract exception is raised.

11.3.2 Locating Paths

Thefind-system-path andfind-executable-path procedures locate useful files and directories:

• (find-system-path kind-symbol) returns a machine-specific path for a standard type of path speci-
fied bykind-symbol , which must be one of the following:

132

11. Input and Output 11.3. Filesystem Utilities

– ’home-dir — the current user’s home directory.
Under Unix and Mac OS X, this directory is determined by expanding the path∼, which is expanded by
first checking for aHOME environment variable. If none is defined, theUSER andLOGNAME environment
variables are consulted (in that order) to find a user name, and then system files are consulted to locate the
user’s home directory.
Under Windows, the user’s home directory is the user-specific profile directory as determined by the Win-
dows registry. If the registry cannot provide a directory for some reason, the value of theUSERPROFILE
environment variable is used instead, as long as it refers to a directory that exists. IfUSERPROFILE also
fails, the directory is the one specified by theHOMEDRIVE andHOMEPATH environment variables. If
those environment variables are not defined, or if the indicated directory still does not exist, the directory
containing the MzScheme executable is used as the home directory.

– ’pref-dir — the standard directory for storing the current user’s preferences. Under Unix, the directory
is .plt-scheme in the user’s home directory. Under Windows, it isPLT Scheme in the user’s application-
data folder as specified by the Windows registry; the application-data folder is usuallyApplication Data
in the user’s profile directory. Under Mac OS X, it isLibrary/Preferences in the user’s home directory.
This directory might not exist.

– ’pref-file — a file that contains a symbol-keyed association list of preference values. The file’s
directory path always matches the result returned for’pref-dir . The file name isplt-prefs.ss under
Unix and Windows, and it isorg.plt-scheme.prefs.ss under Mac OS X. The file’s directory might not
exist. See alsoget-preference in Chapter 18 ofPLT MzLib: Libraries Manual.

– ’temp-dir — the standard directory for storing temporary files. Under Unix and Mac OS X, this is the
directory specified by theTMPDIR environment variable, if it is defined.

– ’init-dir — the directory containing the initialization file used by stand-alone MzScheme application.
It is the same as the current user’s home directory.

– ’init-file — the file loaded at start-up by the stand-alone MzScheme application. The directory part
of the path is the same path as returned for’init-dir . The file name is platform-specific:
∗ Unix and Mac OS X:.mzschemerc
∗ Windows:mzschemerc.ss

– ’addon-dir — a directory for installing PLT Scheme extensions. It’s the same as’pref-dir , except
under Mac OS X, where it’sLibrary/PLT Scheme in the user’s home directory. This directory might not
exist.

– ’doc-dir — the standard directory for storing the current user’s documents. It’s the same as
’home-dir under Unix and Mac OS X. Under Windows, it is the user’s documents folder as specified
by the Windows registry; the documents folder is usuallyMy Documents in the user’s home directory.

– ’desk-dir — the directory for the current user’s desktop. Under Unix, it’s the same as’home-dir .
Under Windows, it is the user’s desktop folder as specified by the Windows registry; the documents folder
is usuallyDesktop in the user’s home directory. Under Mac OS X, it is the desktop directory, which is
specifically∼/Desktop under Mac OS X.

– ’sys-dir — the directory containing the operating system for Windows. Under Unix and Mac OS X,
the result is"/" .

– ’exec-file — the path of the MzScheme executable as provided by the operating system for the current
invocation.10

– ’run-file — the path of the current executable; this may be different from result for’exec-file
because an alternate path was provided through a--name or -N command-line flag to stand-alone
MzScheme (or MrEd), or because an embedding executable installed an alternate path. In particular a
“launcher” script created bymake-mzscheme-launcher sets this path to the script’s path. In the
stand-alone MzScheme application, this path is also bound initially toprogram .

– ’collects-dir — a path to the main collection of libraries (see§16). If this path is relative, it’s
relative to the directory of(find-system-path ’exec-file) . This path is normally embedded in
a stand-alone MzScheme executable, but it can be overridden by the--collects or -X command-line
flag.

– ’orig-dir — the current directory at start-up, which can be useful in converting a relative-path result

10For MrEd, the executable path is the name of a MrEd executable.

133

11.3. Filesystem Utilities 11. Input and Output

from (find-system-path ’exec-file) or (find-system-path ’run-file) to a com-
plete path.

• (path-list-string->path-list string default-path-list) parses a string or byte string
containing a list of paths, and returns a list of path strings. Under Unix and Mac OS X, paths in a path list
are separated by a colon (“:”); under Windows, paths are separated by a semi-colon (“;”). Whenever the path
list contains an empty path, the listdefault-path-list is spliced into the returned list of paths. Parts of
string that do not form a valid path are not included in the returned list.

• (find-executable-path program-sub-path related-sub-path) finds a path for the exe-
cutableprogram-sub-path , returning#f if the path cannot be found.

If related-sub-path is not #f , then it must be a relative path string, and the path found for
program-sub-path must be such that the file or directoryrelated-sub-path exists in the same di-
rectory as the executable. The result is then the full path for the foundrelated-sub-path , instead of the
path for the executable.

This procedure is used by MzScheme (as a stand-alone executable) to find the standard library collection
directory (see Chapter16). In this case,program is the name used to start MzScheme andrelated
is "collects" . The related-sub-path argument is used because, under Unix and Mac OS X,
program-sub-path may involve to a sequence of soft links; in this case,related-sub-path deter-
mines which link in the chain is relevant.

If program-sub-path has a directory path, exists as a file or link to a file, andrelated-sub-path is
not #f , find-executable-path determines whetherrelated-sub-path exists relative to the direc-
tory of program-sub-path . If so, the complete path forprogram-sub-path is returned. Otherwise,
if program-sub-path is a link to another file path, the destination directory of the link is checked for
related-sub-path . Further links are inspected untilrelated-sub-path is found or the end of the
chain of links is reached.

If program-sub-path is a pathless name,find-executable-path gets the value of thePATH en-
vironment variable; if this environment variable is defined,find-executable-path tries each path in
PATH as a prefix forprogram-sub-path using the search algorithm described above for path-containing
program-sub-path s. If thePATH environment variable is not defined,program-sub-path is prefixed
with the current directory and used in the search algorithm above. (Under Windows, the current directory is al-
ways implicitly the first item inPATH, sofind-executable-path checks the current directory first under
Windows.)

11.3.3 Files

The file management utilities are:

• (file-exists? path) returns#t if a file (not a directory)path exists,#f otherwise.11

• (link-exists? path) returns#t if a link path exists (Unix and Mac OS X),#f otherwise. Note that
the predicatesfile-exists? or directory-exists? work on the final destination of a link or series of
links, while link-exists? only follows links to resolve the base part ofpath (i.e., everything except the
last name in the path). This procedure never raises theexn:fail:filesystem exception.

• (delete-file path) deletes the file with pathpath if it exists, returning void if a file was deleted suc-
cessfully, otherwise theexn:fail:filesystem exception is raised. Ifpath is a link, the link is deleted
rather than the destination of the link.

• (rename-file-or-directory old-path new-path [exists-ok?]) renames the file or direc-
tory with pathold-path — if it exists — to the pathnew-path . If the file or directory is renamed success-
fully, void is returned, otherwise theexn:fail:filesystem exception is raised.

11Under Windows,file-exists? reports#t for all variations of the special filenames (e.g.,"LPT1" , "x:/baddir/LPT1").

134

11. Input and Output 11.3. Filesystem Utilities

This procedure can be used to move a file/directory to a different directory (on the same disk) as well as rename
a file/directory within a directory. Unlessexists-ok? is provided as a true value,new-path cannot refer
to an existing file or directory. Even ifexists-ok? is true,new-path cannot refer to an existing file when
old-path is a directory, and vice versa. (Ifnew-path exists and is replaced, the replacement is atomic in
the filesystem, except under Windows 95, 98, or Me. However, the check for existence is not included in the
atomic action, which means that race conditions are possible whenexists-ok? is false or not supplied.)

If old-path is a link, the link is renamed rather than the destination of the link, and it counts as a file for
replacing any existingnew-path .

• (file-or-directory-modify-seconds path [secs-n fail-thunk]) returns the file or direc-
tory’s last modification date as platform-specific seconds (see also§15.1) whensecs-n is not provided or
is #f .12 If secs-n is provided and not#f , the access and modification times ofpath are set to the
given time. On error (e.g., if no such file exists),fail-thunk is called if it is provided, otherwise the
exn:fail:filesystem exception is raised

• (file-or-directory-permissions path) returns a list containing’read , ’write , and/or
’execute for the given file or directory path. On error (e.g., if no such file exists), the
exn:fail:filesystem exception is raised. Under Unix and Mac OS X, permissions are checked for the
current effective user instead of the real user.

• (file-size path) returns the (logical) size of the specified file in bytes. (Under Mac OS X, this size
excludes the resource-fork size.) On error (e.g., if no such file exists), theexn:fail:filesystem exception
is raised.

• (copy-file src-path dest-path) creates the filedest-path as a copy ofsrc-path . If the
file is successfully copied, void is returned, otherwise theexn:fail:filesystem exception is raised. If
dest-path already exists, the copy will fail. File permissions are preserved in the copy. Under Mac OS X,
the resource fork is also preserved in the copy. Ifsrc-path refers to a link, the target of the link is copied,
rather than the link itself.

• (make-file-or-directory-link to-path path) creates a linkpath to to-path under Unix
and Mac OS X. The creation will fail ifpath already exists. Theto-path need not refer to an exist-
ing file or directory, andto-path is not expanded before writing the link. If the link is created success-
fully, void is returned, otherwise theexn:fail:filesystem exception is raised. Under Windows, the
exn:fail:unsupported exception is raised always.

11.3.4 Directories

The directory management utilities are:

• (current-directory) returns the current directory and(current-directory path) sets the cur-
rent directory topath . This procedure is actually a parameter, as described in§7.9.1.1.

• (current-drive) returns the current drive name Windows. For other platforms, theexn:fail:unsupported
exception is raised. The current drive is always the drive of the current directory.

• (directory-exists? path) returns#t if path refers to a directory,#f otherwise.

• (make-directory path) creates a new directory with the pathpath . If the directory is created success-
fully, void is returned, otherwise theexn:fail:filesystem exception is raised.

• (delete-directory path) deletes an existing directory with the pathpath . If the directory is deleted
successfully, void is returned, otherwise theexn:fail:filesystem exception is raised.

12For FAT filesystems under Windows, directories do not have modification dates. Therefore, the creation date is returned for a directory (but the
modification date is returned for a file).

135

11.4. Networking 11. Input and Output

• (rename-file-or-directory old-path new-path exists-ok?) , as described in the previous
section, renames directories.

• (file-or-directory-modify-seconds path) , as described in the previous section, gets directory
dates.

• (file-or-directory-permissions path) , as described in the previous section, gets directory per-
missions.

• (directory-list [path]) returns a list of all files and directories in the directory specified bypath . If
path is omitted, a list of files and directories in the current directory is returned. Under Unix and Mac OS X,
an element of the list can start with period–slash–tilde (“./∼”) if it would otherwise start with tilde (“∼”). Under
Windows, an element of the list may start with\\?\REL\\.

• (filesystem-root-list) returns a list of all current root directories. Obtaining this list can be particu-
larly slow under Windows.

11.4 Networking

MzScheme supports networking with the TCP and UDP protocols.

11.4.1 TCP

For information about TCP in general, seeTCP/IP Illustrated, Volume 1by W. Richard Stevens.

• (tcp-listen port-k [max-allow-wait-k reuse? hostname-string-or-false]) creates
a “listening” server on the local machine at the specified port number (whereport-k is an exact integer be-
tween1 and65535 inclusive). Themax-allow-wait-k argument determines the maximum number of
client connections that can be waiting for acceptance. (Whenmax-allow-wait-k clients are waiting ac-
ceptance, no new client connections can be made.) The default value formax-allow-wait-k argument is
4.

If the reuse? argument is true, thentcp-listen will create a listener even if the port is involved in a
TIME WAIT state. Such a use ofreuse? defeats certain guarantees of the TCP protocol; see Stevens’s book
for details. Furthermore, on many modern platforms, a true value forreuse? overridesTIME WAIT only if
the listener was previously created with a true value forreuse? . The default forreuse? is #f .

If hostname-string-or-false is #f (the default), then the listener accepts connections to all of the lis-
tening machine’s addresses.13 Otherwise, the listener accepts connections only at the interface(s) associated with
the given hostname. For example, providing"127.0.0.1" ashostname-string-or-false creates a
listener that accepts only connections to"127.0.0.1" (the loopback interface) from the local machine.

The return value oftcp-listen is a TCP listener value. This value can be used in future calls to
tcp-accept , tcp-accept-ready? , andtcp-close . Each new TCP listener value is placed into the
management of the current custodian (see§9.2).

If the server cannot be started bytcp-listen , theexn:fail:network exception is raised.

• (tcp-connect hostname-string port-k [local-hostname-string-or-false local-port-k-or-false])
attempts to connect as a client to a listening server. Thehostname-string argument is the server host’s

13MzScheme implements a listener with multiple sockets, if necessary, to accomodate multiple addresses with different protocol families. Under
Linux, if hostname-string-or-false maps to both IPv4 and IPv6 addresses, then the behavior depends on whether IPv6 is supported and
IPv6 sockets can be configured to listen to only IPv6 connections: if IPv6 is not supported or IPv6 sockets are not configurable, then the IPv6
addresses are ignored; otherwise, each IPv6 listener accepts only IPv6 connections.

136

11. Input and Output 11.4. Networking

Internet address name14 (e.g., "www.plt-scheme.org"), andport-k (an exact integer between1 and
65535) is the port where the server is listening.

The optional local-hostname-string-or-false and local-port-k-or-false specify the
client’s address and port. If both are#f (the default), the client’s address and port are selected automatically. If
local-hostname-string-or-false is not #f , then local-port-k-or-false must be non-#f .
If local-port-k-or-false is non-#f and local-hostname-string-or-false is #f , then the
given port is used but the address is selected automatically.

Two values (see§2.2) are returned bytcp-connect : an input port and an output port. Data can be received
from the server through the input port and sent to the server through the output port. If the server is a MzScheme
process, it can obtain ports to communicate to the client withtcp-accept . These ports are placed into the
management of the current custodian (see§9.2).

Initially, the returned input port is block-buffered, and the returned output port is block-buffered. Change the
buffer mode usingfile-stream-buffer-mode (see§11.1.6).

Both of the returned ports must be closed to terminate the TCP connection. When both ports are still open,
closing the output port withclose-output-port sends a TCP close to the server (which is seen as an end-
of-file if the server reads the connection through a port). In contrast,tcp-abandon-port (see below) closes
the output port, but does not send a TCP close until the input port is also closed.

Note that the TCP protocol does not support a state where one end is willing to send but not read, nor does
it include an automatic message when one end of a connection is fully closed. Instead, the other end of a
connection discovers that one end is fully closed only as a response to sending data; in particular, some number
of writes on the still-open end may appear to succeed, though writes will eventually produce an error.

If a connection cannot be established bytcp-connect , theexn:fail:network exception is raised.

• (tcp-connect/enable-break hostname-string port-k [local-hostname-string local-port-k])
is like tcp-connect , but breaking is enabled (see§6.7) while trying to connect. If breaking is disabled when
tcp-connect/enable-break is called, then either ports are returned or theexn:break exception is
raised, but not both.

• (tcp-accept tcp-listener) accepts a client connection for the server associated withtcp-listener .
The tcp-listener argument is a TCP listener value returned bytcp-listen . If no client connection is
waiting on the listening port, the call totcp-accept will block. (See alsotcp-accept-ready? , below.)

Two values (see§2.2) are returned bytcp-accept : an input port and an output port. Data can be received
from the client through the input port and sent to the client through the output port. These ports are placed into
the management of the current custodian (see§9.2).

In terms of buffering and connection states, the ports act the same as ports fromtcp-connect .

If a connection cannot be accepted bytcp-accept , or if the listener has been closed, the
exn:fail:network exception is raised.

• (tcp-accept-ready? tcp-listener) tests whether an unaccepted client has connected to the server
associated withtcp-listener . The tcp-listener argument is a TCP listener value returned by
tcp-listen . If a client is waiting, the return value is#t , otherwise it is#f . A client is accepted with
the tcp-accept procedure, which returns ports for communicating with the client and removes the client
from the list of unaccepted clients.

If the listener has been closed, theexn:fail:network exception is raised.

• (tcp-accept/enable-break tcp-listener) is like tcp-accept , but breaking is enabled (see
§6.7) while trying to accept a connection. If breaking is disabled whentcp-accept/enable-break is
called, then either ports are returned or theexn:break exception is raised, but not both.

14If hostname-string is associated with multiple addresses, they are tried one at a time until a connection succeeds. The name
"localhost" generally specifies the local machine.

137

11.4. Networking 11. Input and Output

• (tcp-close tcp-listener) shuts down the server associated withtcp-listener . The
tcp-listener argument is a TCP listener value returned bytcp-listen . All unaccepted clients receive
an end-of-file from the server; connections to accepted clients are unaffected.

If the listener has already been closed, theexn:fail:network exception is raised.

The listener’s port number may not become immediately available for new listeners (with the default
reuse? argument oftcp-listen). For further information, see Stevens’s explanation of theTIME WAIT
TCP state.

• (tcp-listener? v) returns#t if v is a TCP listener value created bytcp-listen , #f otherwise.

• (tcp-accept-evt tcp-listener) returns a synchronizable event (see§7.7) that is in a blocking state
whentcp-accept on tcp-listener would block. If the event is chosen in a synchronization, the result
is a list of two items, which correspond to the two results oftcp-accept . (If the event is not chosen, no
connections are accepted.)

• (tcp-abandon-port tcp-port) is like close-output-port or close-input-port (depend-
ing on whethertcp-port is an input or output port), but iftcp-port is an output port and its associated
input port is not yet closed, then the other end of the TCP connection does not receive a TCP close message
until the input port is also closed.15

• (tcp-addresses tcp-port) returns two strings. The first string is the Internet address for the local
machine a viewed by the given TCP port’s connection.16 The second string is the Internet address for the other
end of the connection.

If the given port has been closed, theexn:fail:network exception is raised.

• (tcp-port? v) returns#t if v is a port returned bytcp-accept , tcp-connect , tcp-accept/enable-break ,
or tcp-connect/enable-break , #f otherwise.

11.4.2 UDP

For information about UDP in general, seeTCP/IP Illustrated, Volume 1by W. Richard Stevens (which discusses UDP
in addition to TCP).

• (udp-open-socket [family-hostname-string-or-false family-port-k-or-false]) cre-
ates and returns a UDP socket to send and receive datagrams (broadcasting is allowed). Initially, the socket is
not bound or connected to any address or port.

If family-hostname-string-or-false or family-port-k-or-false is provided and not#f ,
then the socket’s protocol family is determined from these arguments. The socket isnot bound to the hostname
or port number. For example, the arguments might be the hostname and port to which messages will be sent
through the socket, which ensures that the socket’s protocol family is consistent with the destination. Alter-
nately, the arguments might be the same as for a future call toudp-bind! , which ensures that the socket’s
protocol family is consistent with the binding. If neitherfamily-hostname-string-or-false nor
family-port-k-or-false is provided as non-#f , then the socket’s protocol family is IPv4.

• (udp-bind! udp-socket hostname-string-or-false port-k) binds an unboundudp-socket
to the local port numberport-k (an exact integer between1 and65535). The result is always void.

If hostname-string-or-false is #f , then the socket accepts connections to all of the listening machine’s
IP addresses atport-k . Otherwise, the socket accepts connections only at the IP address associated with the

15The TCP protocol does not include a “no longer reading” state on connections, sotcp-abandon-port is equivalent to
close-input-port on input TCP ports.

16For most machines, the answer corresponds to the current machine’s only Internet address. But when a machine serves multiple addresses, the
result is connection-specific.

138

11. Input and Output 11.4. Networking

given name. For example, providing"127.0.0.1" ashostname-string-or-false typically creates a
listener that accepts only connections to"127.0.0.1" from the local machine.

A socket cannot receive datagrams until it is bound to a local address and port. If a socket is not bound before
it is used with a sending procedureudp-send , udp-send-to , etc., the sending procedure binds the socket
to a random local port. Similarly, if an event fromudp-send-evt or udp-send-to-evt is chosen for a
synchronization (see§7.7), the socket is bound; if the event is not chosen, the socket may or may not become
bound. The binding of a bound socket cannot be changed.

If udp-socket is already bound or closed, theexn:fail:network exception is raised.

• (udp-connect! udp-socket hostname-string-or-false port-k-or-false) connects the
socket to the indicated remote address and port ifhostname-string-or-false is a string and
port-k-or-false is an exact integer between1 and65535 . The result is always void.

If hostname-string-or-false is #f , thenport-k-or-false also must be#f , and the port is dis-
connected (if connected). If one ofhostname-string-or-false or port-k-or-false is #f and the
other is not, theexn:fail:contract exception is raised.

A connected socket can be used withudp-send (notudp-send-to), and it accepts datagrams only from the
connected address and port. A socket need not be connected to receive datagrams. A socket can be connected,
re-connected, and disconnected any number of times.

If udp-socket is closed, theexn:fail:network exception is raised.

• (udp-send-to udp-socket hostname-address port-k bytes [start-k end-k]) sends
(subbytes bytes start-k end-k) as a datagram from the unconnectedudp-socket to the socket
at the remote machinehostname-address on the portport-k . Theudp-socket need not be bound or
connected; if it is not bound,udp-send-to binds it to a random local port. If the socket’s outgoing datagram
queue is too full to support the send,udp-send-to blocks until the datagram can be queued. The result is
always void.

The optionalstart-k argument defaults to0, and the optionalend-k argument defaults to the length of
bytes . If start-k is greater than the length ofbytes , or if end-k is less thanstart-k or greater than
the length ofbytes , theexn:fail:contract exception is raised.

If udp-socket is closed or connected, theexn:fail:network exception is raised.

• (udp-send udp-socket bytes [start-k end-k]) is likeudp-send-to , except thatudp-socket
must be connected, and the datagram goes to the connection target. Ifudp-socket is closed or unconnected,
theexn:fail:network exception is raised.

• (udp-send-to* udp-socket hostname-address port-k bytes [start-k end-k]) is like
udp-send-to , except that it never blocks; if the socket’s outgoing queue is too full to support the send,#f is
returned, otherwise the datagram is queued and the result is#t .

• (udp-send* udp-socket bytes [start-k end-k]) is likeudp-send , except that (likeudp-send-to)
it never blocks and returns#f or #t .

• (udp-send-to/enable-break udp-socket hostname-address port-k bytes [start-k
end-k]) is like udp-send-to , but breaking is enabled (see§6.7) while trying to send the datagram. If
breaking is disabled whenudp-send-to/enable-break is called, then either the datagram is sent or the
exn:break exception is raised, but not both.

• (udp-send/enable-break udp-socket bytes [start-k end-k]) is like udp-send , except
that breaks are enabled likeudp-send-to/enable-break .

• (udp-receive! udp-socket mutable-bytes [start-k end-k]) accepts up toend-k −
start-k bytes ofudp-socket ’s next incoming datagram intomutable-bytes , writing the datagram
bytes starting at positionstart-k within mutable-bytes . Theudp-socket must be bound to a local ad-
dress and port (but need not be connected). If no incoming datagram is immediately available,udp-receive!
blocks until one is available.

139

11.4. Networking 11. Input and Output

Three values are returned: an exact integer that indicates the number of received bytes (between0 andend-k −
start-k), a hostname string indicating the source address of the datagram, and an exact integer between1 and
65535 indicating the source port of the datagram. If the received datagram is longer thanend-k −start-k
bytes, the remainder is discarded.

The optionalstart-k argument defaults to0, and the optionalend-k argument defaults to the length of
mutable-bytes . If start-k is greater than the length ofmutable-bytes , or if end-k is less than
start-k or greater than the length ofmutable-bytes , theexn:fail:contract exception is raised.

• (udp-receive!* udp-socket mutable-bytes [start-k end-k]) is like udp-receive! ,
except that it never blocks. If no datagram is available, the three result values are all#f .

• (udp-receive!/enable-break udp-socket mutable-bytes [start-k end-k]) is likeudp-receive! ,
but breaking is enabled (see§6.7) while trying to receive the datagram. If breaking is disabled when
udp-receive!/enable-break is called, then either a datagram is received or theexn:break exception
is raised, but not both.

• (udp-close udp-socket) closesudp-socket , discarding unreceived datagrams. If the socket is al-
ready closed, theexn:fail:network exception is raised.

• (udp? v) returns#t if v is a socket created byudp-open-socket , #f otherwise.

• (udp-bound? udp-socket) returns#t if udp-socket is bound to a local address and port,#f other-
wise.

• (udp-connected? udp-socket) returns#t if udp-socket is connected to a remote address and port,
#f otherwise.

• (udp-send-ready-evt udp-socket) returns a synchronizable event (see§7.7) that is in a blocking
state whenudp-send-to onudp-socket would block.

• (udp-receive-ready-evt udp-socket) returns a synchronizable event (see§7.7) that is in a blocking
state whenudp-receive! onudp-socket would block.

• (udp-send-to-evt udp-socket hostname-address port-k bytes [start-k end-k]) re-
turns a synchronizable event. The event is in a blocking state whenudp-send onudp-socket would block.
Otherwise, if the event is chosen in a synchronization, data is sent as for(udp-send-to udp-socket
hostname-address port-k bytes start-k end-k) , and the synchronization result is void. (No
bytes are sent if the event is not chosen.)

• (udp-send-evt udp-socket bytes [start-k end-k]) is like udp-send-to-evt , except that
udp-socket must be connected when the event is synchronized, and if the event is chosen in a syn-
chronization, the datagram goes to the connection target. Ifudp-socket is closed or unconnected, the
exn:fail:network exception is raised during a synchronization attempt.

• (udp-receive!-evt udp-socket bytes [start-k end-k]) returns a synchronizable event. The
event is in a blocking state whenudp-receive on udp-socket would block. Otherwise, if the event is
chosen in a synchronization, data is receive intobytes as for(udp-receive! udp-socket bytes
start-k end-k) , and the synchronization result is a list of three values, corresponding to the three results
from udp-receive! . (No bytes are received and thebytes content is not modified if the event is not
chosen.)

140

12. Syntax and Macros

MzScheme supports theR5RS define-syntax , let-syntax , and letrec-syntax forms with
syntax-rules , with minor pattern and template extensions described in§12.1.

In addition tosyntax-rules , MzScheme supports macros that perform arbitrary transformations on syntax. In par-
ticular, atransformer expression — the right-hand side of adefine-syntax , let-syntax , or letrec-syntax
binding — can be an arbitrary expression, and it is evaluated in atransformer environment. When the expres-
sion produces a procedure, it is associated as a syntax transformer to the identifier bound bydefine-syntax ,
let-syntax , or letrec-syntax . This more general, mostly hygienic macro system is based onsyntax-case
by Dybvig, Hieb, and Bruggeman (see “Syntactic abstraction in Scheme” inLisp and Symbolic Computation, Decem-
ber 1993).

A transformer procedure consumes a syntax object and produces a new syntax object. A syntax object encodes S-
expression structure, but also includes source-location information and lexical-binding information for each element
within the S-expression. A syntax object is a first-class value, and it can exist at run-time. However, syntax objects are
more typically used at syntax-expansion time — which is the run-time of a transformer procedure.1

Unlike traditionaldefmacro systems, MzScheme keeps the top-level transformer environment separate from the
normal top-level environment. The environments are separated because the expressions in the different environments
are evaluated at different times (transformer expressions are evaluated at syntax-expansion time, while normal expres-
sions are evaluated at run time). Separating each environment ensures that compilation and analysis tools can process
programs properly. See§12.3.3for more information.

Also unlike traditional macro systems, a transformer procedure is invoked whenever its identifier is used in an expres-
sion position, not in application positions only. Even more generally, a transformer expression might not produce a
procedure value, in which case the non-procedure is associated to its identifier as a generic expansion-time value. For
example, a unit signature (see Chapter 52 ofPLT MzLib: Libraries Manual) is associated to an identifier through an
expansion-time value. See§12.6for more information on transformer applications and expansion-time values.

12.1 syntax-rules Extensions

MzScheme extends the pattern language forsyntax-rules so that a pattern of the form

(... pattern)

is equivalent topattern where... is treated like any other identifier. Similarly, a template of the form

(... template)

is equivalent totemplate where... is treated like any other identifier.

In a pattern, additional patterns can follow... , but only one... can appear in a sequence:

(pattern · · ·1 ... pattern · · ·)
1In general, modules and for-syntax imports create a hierarchy of run times and expansion times. See§12.3.4for more information.

141

12.1.syntax-rules Extensions 12. Syntax and Macros

Furthermore, a sequence containing... can end with a dotted pair:

(pattern · · ·1 ... pattern · · · . pattern)

but in this case, the finalpattern is never matched to a syntactic list.

A template element consists of any number of... s after a template. For each... after the first one, the preced-
ing element (with earlier... s) is conceptually wrapped with parentheses for generating output, and then wrapping
parentheses in the output are removed. If a pattern identifier is followed by more ellipses in a template than in the
pattern, then the pattern’s match is expanded normally for inner ellipses (up to the number of ellipses that appear in
the pattern), and then the match is replicated as necessary to satisfy outer ellipses.

To mesh gracefully with modules, literal identifiers are compared withmodule-identifier=? , which is equiv-
alent to the comparison behavior ofR5RSin the absence of modules; see§12.3.1for more information on identifier
syntax comparisons.

Examples:

(define-syntax ex1
(syntax-rules ()
[(ex1 a) ’(a (... ...))]))

(ex1 1) ; ⇒ ’(1 ...)

(define-syntax ex2
(syntax-rules ()
[(ex2 a ... b) ’(b a ...)]))

(ex2 1 2 3) ; ⇒ ’(3 1 2)

(define-syntax ex3
(syntax-rules ()
[(ex3 a ... b . c) ’(b a ... c)]))

(ex3 1 2 3 4) ; syntax error
(ex3 1 2 3 . 4) ; ⇒ ’(3 1 2 4)

(define-syntax ex4
(syntax-rules ()
[(ex4 (a ...) ... b) ’(a b)]))

(ex4 (1) (2 3) 4) ; ⇒ ’(1 2 3 4)

The syntax-id-rules form has the same syntax assyntax-rules , except that each pattern is used in its
entirety (instead of starting with a keyword placeholder that is ignored). Furthermore, when an identifierid is bound
as syntax to asyntax-id-rules transformer, the transformer is applied wheneverid appears in an expression
position — not just when it is in the application position — or whenid appears as the target of an assignment.
When the identifier appears in an application position,(id expr · · ·) , the entire “application” is provided to the
transformer, and when the identifier appears as aset! target,(set! id expr) , the entireset! expression is
provided to the transformer; otherwise, theid is provided alone to the transformer. Typically,set! is included as a
keyword in asyntax-id-rules use, and three patterns match the three possible uses of the identifier.

(define-syntax pwd
; For this macro to work, the set! case must
; be first, and the pwd case must be last
(syntax-id-rules (set!)

[(set! pwd expr) (current-directory expr)]
[(pwd expr ...) ((current-directory) expr ...)]
[pwd (current-directory)]))

142

12. Syntax and Macros 12.2. Syntax Objects

(set! pwd "/tmp") ; sets current-directory parameter
pwd ; ⇒ "/tmp"
(current-directory) ; ⇒ "/tmp"
(current-directory "/usr/tmp")
pwd ; ⇒ "/usr/tmp"

12.2 Syntax Objects

(read-syntax [source-name-v input-port]) is like read , except that it produces a syntax object with
source-location information. Thesource-name-v is used as the source field of the syntax object; it can be an
arbitrary value, but it should generally be a path for the source file. The defaultsource-name-v is the input port’s
name (according toobject-name ; see§6.2.3). See§11.2.4for more information aboutread andread-syntax ,
see§11.2.1.1for information about port locations, and see§12.6.2for information on the’paren-shape property
and original-indicator property attached to a syntax object byread-syntax .

The result ofread-syntax is a syntax object with source-location information, but no lexical information. Syntax
objects acquire lexical information during expansion, so that by the time a transformer is called, the provided syntax
object has lexical information.

The eval , compile , expand , expand-once , andexpand-to-top-form procedures work on syntax ob-
jects, especially syntax objects with no lexical context. (If one of these procedures is given a non-syntax S-expression,
the S-expression is converted to a syntax object containing no source information and no lexical context.) Each
of these procedures adds context to the syntax object usingnamespace-syntax-introduce before expand-
ing the syntax (but see§14.1for information on the special handling ofmodule). In contrast, theeval-syntax ,
compile-syntax , expand-syntax , expand-syntax-once , andexpand-syntax-to-top-form pro-
cedures do not add context to a given syntax object before expanding.

The syntax object produced byexpand , expand-syntax , etc. includes lexical information that influences future
expansion and compilation of the syntax object. Thus, a syntax object produced byread-syntax should be passed
to eval or expand (or another procedure without-syntax in its name), but a syntax object returned byexpand
should be passed toeval-syntax (or another procedure with-syntax in its name), since the result fromexpand
has acquired a lexical context.

For example, if the following text is parsed byread-syntax ,

(lambda (x) (+ x y))

the result is a syntax object that contains the S-expression structure’(lambda (x) (+ x y)) , but also source
information indicating that the firstx is in column 9, etc. Ifexpand is applied to the syntax object with a normal
top-level environment, then the result will be a similar syntax object (with the source-location information intact), but
the secondx in the syntax object will have lexical information that ties it to the firstx , andy in the syntax object will
be annotated as a free variable. Even the syntax object’s’lambda will have lexical information tying it to the built-in
lambda form.

Compilation (often as a prelude to interactive evaluation) strips away source and context information as it processes a
syntax object. The compilation of aquote-syntax form is an exception:

(quote-syntax datum)

The quote-syntax form produces a syntax object that preserves the source-location information fordatum . It
also encapsulates lexical-binding information accumulated by compilation in thequote-syntax expression’s en-
vironment. Aquote-syntax expression rarely appears in normal expressions;quote-syntax is more typically
used within a transformer expression.

143

12.2. Syntax Objects 12. Syntax and Macros

In addition to local and lexical information, a syntax object may have properties and certificates attached. Properties are
added or inspected usingsyntax-property , as described in§12.6.2. Certificates validate references to identifiers
that are not exported from a macro, as described in§12.6.3.

Thesyntax-object->datum procedure strips away location, lexical, property, and certificate information from a
syntax object to produce a plain S-expression. Thedatum->syntax-object procedure wraps syntax information
onto an S-expression, copying the source-location information of a given syntax object, the lexical information of
another syntax object, and the properties of a third syntax object (where some or all three of the given objects can
be the same). Thesyntax-e procedure unwraps only the immediate S-expression structure from a syntax object,
leaving nested structure in place. These procedures are described in§12.2.2.

Although procedures such assyntax-object->datum permit arbitrary manipulation of syntax objects, a syntax
transformer is more likely to use the pattern-matchingsyntax-case andsyntax forms, which are described in
the following subsection.

12.2.1 Syntax Patterns

Thesyntax-case form pattern-matches and deconstructs a syntax object:

(syntax-case stx-expr (literal-identifier ...)
syntax-clause
· · ·)

syntax-clause is one of
(pattern expr)
(pattern fender-expr expr)

If stx-expr expression does not produce a syntax object value, it is converted to one usingdatum->syntax-object
with the lexical context of the expression (see§12.2.2). The syntax is then compared to thepattern in
eachsyntax-clause until a match is found, and the result of the correspondingexpr is the result of the
syntax-case expression. If asyntax-clause contains afender-expr , the clause matches only when both
thepattern matches the syntax object and thefender-expr returns a true value. If no pattern matches, a “bad
syntax”exn:fail:syntax exception is raised.

A pattern is nearly the same as asyntax-rules pattern (seeR5RS), with the ellipsis-escaping extension
(see§12.1). The difference is that the first identifier inpattern is not ignored, unlike the leading keyword in a
syntax-rules pattern.

As in syntax-rules , a non-literal identifier in apattern is bound to a corresponding part of the syntax object
within the clause’sexpr and optionalfender-expr . The identifier cannot be used directly, however; a use of the
identifier in an expression position is a syntax error. Instead, the identifier can be used only insyntax expressions
within the binding’s scope.

A syntax expression has the form

(syntax template)

wheretemplate is as insyntax-rules (extended, as usual, for escaped ellipses). The result of asyntax ex-
pression is a syntax object. Identifiers in thetemplate that are bound by asyntax-case pattern are replaced with
their bindings in the generated syntax object. Asyntax expression that contains no pattern identifiers is equivalent to
a quote-syntax expression, except that unlikequote-syntax , thesyntax form always fails to compile (i.e.,
it loops forever) whentemplate is cyclic.

Thesyntax-rules form can be expressed as asyntax-case form wrapped inlambda :

144

12. Syntax and Macros 12.2. Syntax Objects

(syntax-rules (literal-identifier · · ·)
((ignored-identifier . pattern) template)
· · ·)

=expands=>
(lambda (stx)

(syntax-case stx (literal-identifier · · ·)
((generated-identifier . pattern) (syntax template))
· · ·))

Note that implicitlambda of syntax-rules for the transformer procedure is made explicit withsyntax-case .
Thedefine-syntax form supportsdefine -style abbreviations for transformer procedures (see§2.8.1).

The following example shows one reason to usesyntax-case instead ofsyntax-rules : custom error reporting.

(define-syntax (let1 stx)
(syntax-case stx ()

[(id val body)
(begin

;; If id is not an identifier, report an error in terms of let1 instead of let:
(unless (identifier? (syntax id))

(raise-syntax-error #f "expected an identifier" stx (syntax id)))
(syntax (let ([id val]) body)))]))

(let1 x 10 (add1 x)) ; ⇒ 11
(let1 2 10 (add1 x)) ; ⇒ let1: expected an identifier at: 2 in: (let1 2 10 (add1 x))

Another reason to usesyntax-case is to implement “non-hygienic” macros that introduce capturing identifiers:

(define-syntax (if-it stx)
(syntax-case stx ()

[(src-if-it test then else)
(syntax-case (datum->syntax-object (syntax src-if-it) ’it) ()

[it (syntax (let ([it test]) (if it then else)))])])))
(if-it (memq ’b ’(a b c)) it ’nope) ; ⇒ ’(b c)

The nestedsyntax-case is used to bind the pattern variableit . The syntax forit is generated with
datum->syntax-object using the context ofsrc-if-it , which means that the introduced variable has the
same lexical context asif-it at the macro’s use; in other words,it acts as if it existed in the input syntax, so it can
bind uses ofit in test .

The syntax-case ∗ form is a generalization ofsyntax-case where the procedure for comparing
literal-identifier s is determined by acomparison-proc-expr :

(syntax-case ∗ stx-expr (literal-identifier ...) comparison-proc-expr
syntax-clause
· · ·)

The result ofcomparison-proc-expr must be a procedure that accepts two arguments. The first argument is
an identifier fromstx-expr , and the second argument is an identifier from asyntax-clause pattern that is
module-identifier=? to one of theliteral-identifier s. A true result from the comparison procedure
indicates that the first identifier matches the second.

12.2.1.1 BINDING PATTERN VARIABLES

Thewith-syntax form is alet -like form for binding pattern variables:

145

12.2. Syntax Objects 12. Syntax and Macros

(with-syntax ((pattern stx-expr)
· · ·)

expr)

The pattern s are matched thestx-expr values, and all pattern identifiers are bound inexpr . The pattern
identifiers across allpattern s must be distinct. If astx-expr expression does not produce a syntax object, its
result is converted usingdatum->syntax-object and the lexical context of thestx-expr (see§12.2.2). If the
result of astx-expr does not match itspattern , theexn:fail:syntax exception is raised.

The if-it example can be written more simply usingwith-syntax :

(define-syntax (if-it stx)
(syntax-case stx ()

[(src-if-it test then else)
(with-syntax ([it (datum->syntax-object (syntax src-if-it) ’it)])

(syntax (let ([it test]) (if it then else))))]))

Macros that expand to non-hygienic macros rarely work as intended. For example:

(define-syntax (cond-it stx)
(syntax-case stx ()

[((test body) . rest)
(syntax (if-it test body (cond-it . rest)))]

[() (syntax (void))]))
(cond-it [(memq ’b ’(a b c)) it] [#t ’nope]) ; ⇒ undefined variable it

The problem is thatcond-it introducesif-it (hygienically), socond-it effectively introducesit (hygieni-
cally), which doesn’t bindit in the source use ofcond-it . In general, the solution is to avoid macros that expand
to uses of non-hygienic macros.2

12.2.1.2 QUASIQUOTING TEMPLATES

Thequasisyntax form is likesyntax , except with quasiquoting within the template:

(quasisyntax quasitemplate)

A quasitemplate is the same as atemplate , except thatunsyntax andunsyntax-splicing escape to
an expression:

(unsyntax expr)
(unsyntax-splicing expr)

The expression must produce a syntax object (or syntax list) to be substituted in place of theunsyntax or
unsyntax-splicing form within the quasiquoting template, just likeunquote and unquote-splicing
within quasiquote . (If the escaped expression does not generate a syntax object, it is converted to one in the same
was as for the right-hand sides ofwith-syntax .) Nestedquasisyntax es introduce quasiquoting layers in the
same way as nestedquasiquote s.

Also analogous toquote andquasiquote , the reader converts#’ to syntax , #‘ to quasisyntax , #, to
unsyntax , and#,@ to unsyntax-splicing . See also§11.2.4.

Example:

2In this particular case, Shriram Krishnamurthi points out changingif-it to use(datum->syntax-object (syntax test) ’it)
solves the problem in a sensible way.

146

12. Syntax and Macros 12.2. Syntax Objects

(with-syntax ([(v ...) (list 1 2 3)])
#‘(0 v ... #,(+ 2 2) #,@(list 5 6) 7)) ; ⇒ syntax for (0 1 2 3 4 5 6 7)

12.2.1.3 ASSIGNINGSOURCELOCATION

Thesyntax/loc form is like syntax , except that the immediate resulting syntax object takes its source-location
information from a supplied syntax object, unless thetemplate is just a pattern variable:

(syntax/loc location-stx-expr template)

Usesyntax/loc instead ofsyntax whenever possible to help tools that report source locations. For example, the
earlierif-it example should have been written withsyntax/loc :

(define-syntax (if-it stx)
(syntax-case stx ()

[(src-if-it test then else)
(with-syntax ([it (datum->syntax-object (syntax src-if-it) ’it)])

(syntax/loc stx (let ([it test]) (if it then else))))]))

Thequasisyntax/loc form is the quasiquoting analogue ofsyntax/loc :

(quasisyntax/loc location-stx-expr template)

12.2.2 Syntax Object Content

(syntax? v) returns#t if v is a syntax object,#f otherwise.

(syntax-source stx) returns the source for the syntax objectstx , or #f if none is known. The source is
represented by an arbitrary value (e.g., one passed toread-syntax), but it is typically a file path string. See also
§14.3.

(syntax-line stx) returns the line number (positive exact integer) for the start of the syntax object in its source,
or #f if the line number or source is unknown. The result is#f if and only if (syntax-column stx) produces
#f . See also§11.2.1.1and§14.3.

(syntax-column stx) returns the column number (non-negative exact integer) for the start of the syntax object
in its source, or#f if the source column is unknown. The result is#f if and only if (syntax-line stx) produces
#f . See also§11.2.1.1and§14.3.

(syntax-position stx) returns the character position (positive exact integer) for the start of the syntax object
in its source, or#f if the source position is unknown. See also§11.2.1.1and§14.3.

(syntax-span stx) returns the span (non-negative exact integer) in characters of the syntax object in its source,
or #f if the span is unknown. See also§14.3.

(syntax-original? stx) returns#t if stx has the property thatread-syntax andread-honu-syntax
attach to the syntax objects that they generate (see§12.6.2), and ifstx ’s lexical information does not indicate that the
object was introduced by a syntax transformer (see§12.3). The result is#f otherwise. This predicate can be used to
distinguish syntax objects in an expanded expression that were directly present in the original expression, as opposed
to syntax objects inserted by macros.

(syntax-source-module stx) returns a module path index or symbol (see§12.6.5) for the module whose
source containsstx , or #f if stx has no source module.

147

12.2. Syntax Objects 12. Syntax and Macros

(syntax-e stx) unwraps the immediate S-expression structure from a syntax object, leaving nested syntax struc-
ture (if any) in place. The result of(syntax-e stx) is one of the following:

• a symbol

• a syntax pair (described below)

• the empty list

• a vector containing syntax objects

• some other kind of datum, usually a number, boolean, or string

A syntax pair is a pair containing a syntax object as its first element, and either the empty list, a syntax pair, or a syntax
object as its second element.

A syntax object that is the result ofread-syntax reflects the use of dots (.) in the input by creating a syntax object
for every pair of parentheses in the source, and by creating a pair-valued syntax objectonly for parentheses in the
source. For example:

input read-syntax result
(a b) stx , where

(syntax-e stx) is equivalent to(list a-stx b-stx)
and(syntax-e a-stx) is equivalent to’a
and(syntax-e b-stx) is equivalent to’b

(a . (b)) stx , where
(syntax-e stx) is equivalent to(cons a-stx sb-stx)
and(syntax-e a-stx) is equivalent to’a
and(syntax-e sb-stx) is equivalent to(list b-stx)
and(syntax-e b-stx) is equivalent to’b

(syntax->list stx) returns an immutable list of syntax objects or#f . The result is a list of syntax objects when
(syntax-object->datum stx) would produce a list. In other words, syntax pairs in(syntax-e stx) are
flattened.

(syntax-object->datum stx) returns an S-expression by stripping the syntactic information fromstx .
Graph structure is preserved by the conversion.

(datum->syntax-object ctxt-stx v [src-stx-or-list prop-stx]) converts the S-expressionv
to a syntax object, using syntax objects already inv in the result. Converted objects inv are given the lexical context
information ofctxt-stx and the source-location information ofsrc-stx-or-list ; if the resulting syntax object
has no properties, then it is given the properties ofprop-stx . Any of ctxt-stx , src-stx-or-list , or
prop-stx can be#f , in which case the resulting syntax has no lexical context, source information, and/or new
properties. Ifsrc-stx-or-list is not#f or a syntax object, it must be a list of five elements:

(list source-name-v line-k column-k position-k span-k)

wheresource-name-v is an arbitrary value for the source name;line-k is a positive, exact integer for the source
line, or#f ; andcolumn-k is a non-negative, exact integer for the source column, or#f ; position-k is a positive,
exact integer for the source position, or#f ; andspan-k is a non-negative, exact integer for the source span, or#f .
The line-k andcolumn-k values must both be numbers or both be#f , otherwise theexn:fail exception is
raised. Graph structure is preserved by the conversion, but graph structure that is distributed among distinct syntax
objects inv may be hidden from future applications ofsyntax-object->datum andsyntax-graph? to the
new syntax object.

148

12. Syntax and Macros 12.3. Syntax and Lexical Scope

(syntax-graph? stx) returns #t if stx might be preservably shared within a syntax object created
by read-syntax , read-honu-syntax , or datum->syntax-object . In general, sharing detection
is approximate—datum->syntax-object can construct syntax objects with sharing that is hidden from
syntax-graph? —but syntax-graph? reliably returns#t for at least one syntax object in a cyclic struc-
ture. Meanwhile, deconstructing a syntax object with procedures such assyntax-e and comparing the results
with eq? can also fail to detect sharing (even cycles), due to the way lexical information is lazily propagated; only
syntax-object->datum reliably exposes sharing in a way that can be detected witheq? .

(identifier? v) returns#t if v is a syntax object and(syntax-e stx) produces a symbol.

(generate-temporaries stx-pair) returns a list of identifiers that are distinct from all other identifiers.
The list contains as many identifiers asstx-pair contains elements. Thestx-pair argument must be a syntax
pair that can be flattened into a list. The elements ofstx-pair can be anything, but string, symbol, and identifier
elements will be embedded in the corresponding generated name (useful for debugging purposes). The generated
identifiers are built with interned symbols (notgensyms), so the limitations described in§14.3do not apply.

12.3 Syntax and Lexical Scope

Hygienic macro expansion depends on information associated with each syntax object that records the lexical context
of the site where the syntax object is introduced. This information includes the identifiers that are bound bylambda ,
let , letrec , etc., at the syntax object’s introduction site, therequire d identifiers at the introduction site, and the
macro expansion that introduces the object.

Based on this information, a particular identifier syntax object falls into one of three classifications:

• lexical — the identifier is bound bylambda , let , letrec , or some other form besidesmodule or a top-level
definition.

• module-imported — the identifier is bound through arequire declaration or a top-level definition within
module .

• free — the identifier is not bound (and therefore refers to a top-level variable, if the identifier is not within a
module).

The identifier-binding procedure (described in§12.3.2) reports an identifiers classification. Further infor-
mation about a lexical identifier is available only in relative terms, such as whether two identifiers refer to the same
binding (seebound-identifier=? in §12.3.1). For module-imported identifiers, information about the module
source is available.

In a freshly read syntax object, identifiers have no lexical information, so they are all classified as free. During
expansion, some identifiers acquire lexical or module-import classifications. An identifier that becomes classified
as lexical will remain so classified, though its binding might shift as expansion proceeds (i.e., as nested binding
expressions are parsed, and as macro introductions are tracked). An identifier classified as module-imported might
similarly shift to the lexical classification, but if it remains module-imported, its source-module designation will never
change.

Lexical information is used to expand and parse syntax in a way that it obeys lexical and module scopes. In addition,
an identifier’s lexical information encompasses a second dimension, which distinguishes the environment of normal
expressions from the environment of transformer expressions. The module bindings of each environment can be
different, so an identifier may be classified differently depending on whether it is ultimately used in a normal expression
or in a transformer expression. See§12.3.3and§12.3.4for more information on the two environments.

149

12.3. Syntax and Lexical Scope 12. Syntax and Macros

12.3.1 Syntax Object Comparisons

(bound-identifier=? a-id-stx b-id-stx) returns #t if the identifier a-id-stx would bind
b-id-stx (or vice-versa) if the identifiers were substituted in a suitable expression context,#f otherwise.

(free-identifier=? a-id-stx b-id-stx) returns#t if a-id-stx andb-id-stx access the same
lexical, module, or top-level binding and return the same result forsyntax-e , #f otherwise.

(module-identifier=? a-id-stx b-id-stx) returns#t if a-id-stx andb-id-stx access the same
lexical, module, or top-level binding in the normal environment. “Same module binding” means that the identifiers re-
fer to the same original definition site, not necessarily therequire or provide site. Due to renaming inrequire
andprovide , the identifiers may return distinct results withsyntax-e .

(module-transformer-identifier=? a-id-stx b-id-stx) returns#t if a-id-stx andb-id-stx
access the same lexical, module, or top-level binding in the identifiers’ transformer environments (see§12.3.3).

(module-template-identifier=? a-id-stx b-id-stx) returns#t if a-id-stx and b-id-stx
access the same lexical or module binding in the identifiers’ template environments (see§12.3.4).

(check-duplicate-identifier id-stx-list) compares each identifier inid-stx-list with every
other identifier in the list withbound-identifier=? . If any comparison returns#t , one of the duplicate identi-
fiers is returned (the first one inid-stx-list that is a duplicate), otherwise the result is#f .

12.3.2 Syntax Object Bindings

(identifier-binding id-stx) returns one of three kinds of values, depending on the binding ofid-stx in
its normal environment:

• The result is’lexical if id-stx is bound in its context to anything other than a top-level variable or a
module variable.

• The result is a list of five items whenid-stx is bound in its context to a module-defined identifier:(list
source-mod source-id nominal-source-mod nominal-source-id et?) .

– source-mod is a module path index or symbol (see§12.6.5) that indicates the defining module.
– source-id is a symbol for the identifier’s name at its definition site in the source module. This can be

different from the local name returned bysyntax-object->datum for several reasons: the identifier
is renamed on import, it is renamed on export, or it is implicitly renamed because the identifier (or its
import) was generated by a macro invocation.

– nominal-source-mod is a module path index or symbol (see§12.6.5) that indicates the module
require d into the context ofid-stx to provide its binding. It can be different fromsource-mod
due to a re-export innominal-source-mod of some imported identifier.

– nominal-source-id is a symbol for the identifier’s name as exported bynominal-source-mod .
It can be different fromsource-id due to a renamingprovide , even if source-mod and
nominal-source-mod are the same.

– et? is #t if the source definition is for-syntax,#f otherwise.

• The result is#f if id-stx is not bound (or bound only to a top-level variable) in its lexical context.

(identifier-transformer-binding id-stx) is like identifier-binding , except that the re-
ported information is for the identifier’s bindings in the transformer environment (see§12.3.3), instead
of the normal environment. If the result is’lexical for either of identifier-binding or
identifier-transformer-binding , then the result is always’lexical for both.

150

12. Syntax and Macros 12.3. Syntax and Lexical Scope

(identifier-template-binding id-stx) is like identifier-binding , except that the reported in-
formation is for the identifier’s bindings in the template environment (see§12.3.4), instead of the normal environment.
If the result is’lexical for either of identifier-binding or identifier-template-binding , then
the result is always’lexical for both.

(identifier-binding-export-position id-stx) returns either#f or an exact non-negative integer. It
returns an integer only whenidentifier-binding returns a list, whenid-stx represents an imported binding,
and when the source module assigns internal positions for its definitions. This function is intended for use bymzc .

(identifier-transformer-binding-export-position id-stx) is like identifier-binding-export-position ,
except that the reported information is for the transformer environment. This function is intended for use bymzc .

12.3.3 Transformer Environments

The top-level environment for transformer expressions is separate from the normal top-level environment. Conse-
quently, top-level definitions are not available for use in top-level transformer definitions. For example, the following
program does not work:

(define count 0)
(define (inc!) (set! count (add1 count)))
(define-syntax (let1 stx)

(syntax-case stx ()
[(x v b)

(begin
(printf "expanding ˜a˜n" count) ; DOESN’T WORK
(inc!) ; ALSO DOESN’T WORK
(syntax (let ([x v]) b)))]))

(let1 x 2 (add1 x))

The variablescount andinc! are bound in the normal top-level environment, but it is not bound in the transformer
environment, so the attempt to expand(let1 x 2 (add1 x)) will result in an undefined-variable error.

In the same way thatdefine binds only in the normal environment, arequire expression imports only into
the normal environment, and the imported bindings are not made visible in the transformer environment. A top-
level require-for-syntax imports into the transformer environment without affecting the normal environment.
Furthermore, therequire andrequire-for-syntax forms create separate instantiations of any module that is
imported into both environments, in keeping with the separation of the environments.

The initial namespace created by the stand-alone MzScheme application imports all of MzScheme’s built-in syntax,
procedures, and constants into the transformer environment.3 To extend this environment, use one of the following:

• define-for-syntax , which is like define , but binds in the transformer environment. The body of
the definition is also evaluated in the transformer environment. Thedefine-values-for-syntaxes
form is the multiple-values variant ofdefine-for-syntax . Within a module,define-for-syntax
or define-values-for-syntaxes binds identifiers for unquoted expressions only after the definition
(plus in the right-hand side of the definition itself); in particular, mutually-referential for-syntax definitions in a
module must be defined with a singledefine-values-for-syntaxes .

• begin-for-syntax , which is likebegin , but its body is evaluated in the transformer environment. Fur-
thermore,define , define-values , require , andrequire-for-template declarations are treated
like define-for-syntax , define-values-for-syntax , require-for-syntax , andrequire
declarations, respectively.

3In contrast, a namespace created by(scheme-report-environment 5) imports onlysyntax-rules into the transformer environ-
ment.

151

12.3. Syntax and Lexical Scope 12. Syntax and Macros

• require-for-syntax , to import bindings into the transformer environment.

In particular, example above can be repairs by replacing

(define count 0)
(define (inc!) (set! count (add1 count)))

with either

(define-for-syntax count 0)
(define-for-syntax (inc!) (set! count (add1 count)))

or

(begin-for-syntax
(define count 0)
(define (inc!) (set! count (add1 count))))

or

(module counter mzscheme
(define count 0)
(define (inc!) (set! count (add1 count)))
(provide count inc!))

(require-for-syntax counter)

When an identifier binding is introduced by a form other thanmodule or a top-level definition, it extends the environ-
ment for both normal and transformer expressions within its scope, but the binding is only accessible by expressions
resolved in the proper environment (i.e., the one in which it was introduced). In particular, a transformer expression in
a let-syntax or letrec-syntax expression cannot access identifiers bound by enclosing forms, and an iden-
tifier bound in a transformer expression should not appear as an expression in the result of the transformer. Such
out-of-context uses of an identifier are flagged as syntax errors when attempting to resolve the identifier.

A let-syntax or letrec-syntax expression can never usefully appear as a transformer expression, because
MzScheme provides no mechanism for importing into the meta-transformer environment that would be used by meta-
transformer expressions to operate on transformer expressions. In other words, an expression of the form

(let-syntax ([identifier (let-syntax ([identifier expr])
body-expr)])

...)

is always illegal, assuming thatlet-syntax is bound in both the normal and transformer environments to the
let-syntax of mzscheme. No syntax (not even function application) is bound inexpr ’s environment. This
restriction in themzscheme language is of little consequence, however, since for-syntax exports allow the definition
of syntax applicable to the abovebody-expr .

12.3.4 Module Environments

In the same way that the normal and transformer environments are kept separate at the top level, a module’s normal
and transformer environments are also separated. Normal imports and definitions in a module — both variable and
syntax — contribute to the module’s normal environment, only.

For example, the module expression

(module m mzscheme

152

12. Syntax and Macros 12.3. Syntax and Lexical Scope

(define (id x) x)
(define-syntax (macro stx)

(id (syntax (printf "hi˜n")))))

is ill-formed becauseid is not bound in the transformer environment for themacro implementation. To makeid
usable from the transformer, the body of the modulemwould have to be executed — which is impossible in general,
because a syntax definition such asmacro affects the expansion of the rest of the module body.

Consequently, if a procedure such asid is to be used in a transformer, it must either remain local to the transformer
expression, or reside in a different module. For example, the above module is trivially repaired as

(module m mzscheme
(define-syntax macro

(let ([id (lambda (x) x)])
(lambda (stx)

(id (syntax (printf "hi˜n")))))))

Thedefine-for-syntax , begin-for-syntax , anddefine-syntaxes forms (see§12.3.3and§12.4) are
useful for defining multiple macros that share helper functions.

In the mzscheme language, the base environment for a transformer expression includes all of MzScheme. The
mzscheme language also provides arequire-for-syntax form (in the normal environment) for importing
bindings from another module into the importing module’s transformer environment:

(require-for-syntax require-spec · · ·)

A for-syntax import ofM within N causesM to be executed atN’s expansion time, instead of (or possibly in addition to)
run time forN. The syntax and variable identifiers exported by the for-syntax module are visible within the module’s
transformer environment, but not its normal environment. Like a normal expression, a transformer expression in a
module cannot contain free variables.

Finally,mzscheme provides therequire-for-template form, which is roughly dual torequire-for-syntax :

(require-for-template require-spec · · ·)

A for-template import ofM within N causes the referenced module to be executed at the run-time of anyP that includes
a for-syntax import ofN. In other words,require-for-template introduces bindings that become available in
a future run time.

Transformer expressions and imports for a moduleM are executed once each time a module is expanded usingM’s
syntax bindings or usingM as a for-syntax import. After the module is expanded, its transformer environment is
destroyed, including bindings from modules used at expansion time.

Example:

(module rt mzscheme
(printf "RT here˜n")
(define mx (lambda () 7))
(provide mx))

(module tt mzscheme
(printf "RT here, too˜n")
(define x 700)
(provide x))

153

12.3. Syntax and Lexical Scope 12. Syntax and Macros

(module et mzscheme
(require-for-template tt)
(printf "ET here˜n")
;; The x below is future-time:
(define mx (lambda () (syntax x)))
(provide mx))

(module m mzscheme
(require-for-syntax mzscheme)
(require rt) ; rt provides run-time mx
(require-for-syntax et) ; et provides exp-time mx

;; The mx below is run-time:
(printf "˜a˜n" (mx)) ; prints 7 when run

;; The mx below is exp-time:
(define-syntax onem (lambda (stx) (mx)))
(printf "˜a˜n" (onem)) ; prints 700 when run

;; The mx below is run-time:
(define-syntax twom (lambda (stx) (syntax (mx))))
(printf "˜a˜n" (twom))) ; prints 7 when run

;; "ET here" is printed during the expansion of m

(require m) ; prints "ET here" (for later macro expansion in the top level, if any)
; and "RT here, too" and "RT here" in some order,
; then 7, then 700, then 7

This expansion-time execution model explains the need to execute declared modules only when they are invoked. If
a declared module is imported into other modules only for syntax, then the module is needed only at expansion time
and can be ignored at run time. The separation of declaration and execution also allows a for-syntax module to be
executed once for each module that it expands throughrequire-for-syntax .

The hierarchy of run times avoids confusion among expansion and executing layers that can prevent separate compila-
tion. By ensuring that the layers are separate, a compiler or programming environment can expand, partially expand,
or re-expand a module without affecting the module’s run-time behavior, whether the module is currently executing or
not.

Since transformer expressions may themselves use macros defined by modules with for-syntax imports (to implement
the macros), expansion of a module creates a hierarchy of run times (or ”tower of expanders”). The expansion time of
each layer corresponds to the run time of the next deeper layer.

In the absence oflet-syntax andletrec-syntax , the hierarchy of run times would be limited to three levels,
since the transformer expressions for run-time imports would have been expanded before the importing module must be
expanded. Thelet-syntax andletrec-syntax forms, however, allow syntax visible in a for-syntax import’s
transformers to appear in the expansion of transformer expressions in the module. Consequently, the hierarchy is
bounded in principle only by the number of declared modules. In practice, the hierarchy will rarely exceed a few
levels.

12.3.5 Macro-Generated Top-Level and Module Definitions

When a top-level definition binds an identifier that originates from a macro expansion, the definition captures only
uses of the identifier that are generated by the same expansion. This behavior is consistent with internal definitions
(see§2.8.5), where the defined identifier turns into a fresh lexical binding.

154

12. Syntax and Macros 12.3. Syntax and Lexical Scope

Example:

(define-syntax def-and-use-of-x
(syntax-rules ()

[(def-and-use-of-x val)
; x below originates from this macro:
(begin (define x val) x)]))

(define x 1)
x ; ⇒ 1
(def-and-use-of-x 2) ; ⇒ 2
x ; ⇒ 1

(define-syntax def-and-use
(syntax-rules ()

[(def-and-use x val)
; x below was provided by the macro use:
(begin (define x val) x)]))

(def-and-use x 3) ; ⇒ 3
x ; ⇒ 3

For a top-level definition (outside ofmodule), the order of evaluation affects the binding of a generated definition for
a generated identifier use. If the use precedes the definition, then the use refers to a non-generated binding, just as if the
generated definition were not present. (No such dependency on order occurs within amodule , since a module binding
covers the entire module body.) To support the declaration of an identifier before its use, thedefine-syntaxes
form avoids binding an identifier if the body of thedefine-syntaxes declaration produces zero results (see also
§12.4).

Example:

(define bucket-1 0)
(define bucket-2 0)
(define-syntax def-and-set!-use-of-x

(syntax-rules ()
[(def-and-set!-use-of-x val)

(begin (set! bucket-1 x) (define x val) (set! bucket-2 x))]))
(define x 1)
(def-and-set!-use-of-x 2)
x ; ⇒ 1
bucket-1 ; ⇒ 1
bucket-2 ; ⇒ 2

(define-syntax defs-and-uses/fail
(syntax-rules ()

[(def-and-use)
(begin
; Initial reference to even precedes definition:
(define (odd x) (if (zero? x) #f (even (sub1 x))))
(define (even x) (if (zero? x) #t (odd (sub1 x))))
(odd 17))]))

(defs-and-uses/fail) ; ⇒ error: undefined identifier even

(define-syntax defs-and-uses
(syntax-rules ()

[(def-and-use)
(begin

155

12.4. Binding Multiple Syntax Identifiers 12. Syntax and Macros

; Declare before definition via no-values define-syntaxes:
(define-syntaxes (odd even) (values))
(define (odd x) (if (zero? x) #f (even (sub1 x))))
(define (even x) (if (zero? x) #t (odd (sub1 x))))
(odd 17))]))

(defs-and-uses) ; ⇒ #t

Within a module, macro-generatedrequire andprovide clauses also introduce and reference generation-specific
bindings:

• In require (see §5.2), for a require-spec of the form (rename local-identifier
exported-identifier) , the local-identifier is bound only for uses of the identifier generated
by the same macro expansion aslocal-identifier . In require for otherrequire-spec s, the gen-
erator of therequire-spec determines the scope of the bindings.

• In provide (see§5.2), for a provide-spec of the form identifier , the exported identifier is the one
that bindsidentifier within the module in a generator-specific way, but the external name is the plain
identifier . The exceptions forall-from-except andall-defined-except are similarly deter-
mined in a generator-specific way, as is thelocal-identifier binding of arename form, but plain iden-
tifiers are used for the external names. Forstruct , the context of thestruct-identifier determines lo-
cal bindings for all of the expandedstruct names. Forall-defined andall-defined-except , only
identifiers with definitions having the same generator as theall-defined or all-defined-except key-
word are exported; the external name is the plain identifier from the definition. The generator of anall-from
or all-from-except provide-spec does not affect the set identifiers exported by theprovide-spec .

12.4 Binding Multiple Syntax Identifiers

In addition todefine-syntax , let-syntax , andletrec-syntax , MzScheme providesdefine-syntaxes ,
let-syntaxes , andletrec-syntaxes . These forms are analogous todefine-values , let-values , and
letrec-values , allowing multiple syntax bindings at once (see§2.8).

(define-syntaxes (identifier · · ·) expr)

(let-syntaxes (((identifier · · ·) expr)
· · ·)

expr · · ·1)

(letrec-syntaxes (((identifier · · ·) expr)
· · ·)

expr · · ·1)

At the top level,define-syntaxes accepts zero results for any number ofidentifier s, and in that case, it
neither binds the identifiers nor signals an error. This behavior is useful foridentifier s that are introduced by a
macro that produces top-leveldefine s. See§12.3.5for more information.

MzScheme also provides aletrec-syntaxes+values form for binding both values and syntax in a single,
mutually recursive scope:

(letrec-syntaxes +values (((identifier · · ·) expr) · · ·)
(((identifier · · ·) expr) · · ·)

expr · · ·1)

The first set of bindings are syntax bindings (as inletrec-syntaxes), and the second set of bindings are normal
variable bindings (as inletrec-values).

156

12. Syntax and Macros 12.5. Special Syntax Identifiers

Examples:

;; Defines let/cc and let-current-continuation as the same macro:
(define-syntaxes (let/cc let-current-continuation)

(let ([macro (syntax-rules ()
[(id body1 body ...)

(call/cc (lambda (id) body1 body ...))])])
(values macro macro)))

(letrec-syntaxes +values ([(get-id) (syntax-rules ()
[() id])])

([(id) (lambda (x) x)]
[(x) (get-id)])

x) ; ⇒ the id identify procedure

12.5 Special Syntax Identifiers

To enable the definition of syntax transformers for application forms and other data (numbers, vectors, etc.), the syntax
expander treats#%app, #%top , and#%datum as special identifiers.

Any expandable expression of the form

(datum . datum)

where the firstdatum is not an identifier bound to an expansion-time value, is treated as

(#%app datum . datum)

so that the syntax transformer bound to#%app is applied. In addition,() is treated as(#%app) . Similarly, an
expression

identifier

whereidentifier has no binding other than a top-level binding, is treated as

(#%top . identifier)

Finally, an expression

datum

wheredatum is not an identifier or pair, is treated as

(#%datum . datum)

The mzscheme module binds#%app, #%top , and#%datum as regular application, top-level variable reference,
and implicit quote, respectively. A module can export different transformers with these names to support languages
different from conventional Scheme.

In addition, #%module-begin is used as a transformer for a module body. A#%module-begin is implic-
itly added around a module body when it contains multiple S-expressions, or when the S-expression expands to a
core form other than#%module-begin or #%plain-module-begin ; the lexical context for the introduced
#%module-begin identifier includes only the exports of the module’s initial import. After such wrapping, if any,
and before any expansion, an’enclosing-module-name property is attached to the module-body syntax object;
the property’s value is a symbol for the module name as specified after themodule keyword.

157

12.6. Macro Expansion 12. Syntax and Macros

Themzscheme module binds#%module-begin to a form that inserts a for-syntax import ofmzscheme, so that
mzscheme bindings can be used in syntax definitions. It also exports#%plain-module-begin , which can be
substituted for#%module-begin to avoid the for-syntax import ofmzscheme. Any other transformer used for
#%module-begin must expand tomzscheme’s #%module-begin or #%plain-module-begin .

When an expression is fully expanded, all applications, top-level variable references, and literal datum expressions
will appear as explicit#%app, #%top , and #%datum forms, respectively. Those forms can also be used di-
rectly by source code. The#%module-begin form can never usefully appear in an expression, and the body
of a fully expandedmodule declaration is not wrapped with#%module-begin ; instead, it is wrapped with
#%plain-module-begin .

The following example shows how the special syntax identifiers can be defined to create a non-Scheme module lan-
guage:

(module lambda-calculus mzscheme

; Restrict lambda to one argument:
(define-syntax lc-lambda

(syntax-rules ()
[((x) E) (lambda (x) E)]))

; Restrict application to two expressions:
(define-syntax lc-app

(syntax-rules ()
[(E1 E2) (E1 E2)]))

; Restrict a lambda calculus module to one body expression:
(define-syntax lc-module-begin

(syntax-rules ()
[(E) (#%module-begin E)]))

; Disallow numbers, vectors, etc.
(define-syntax lc-datum

(syntax-rules ()))

; Provide (with renaming):
(provide #%top ; keep mzscheme ’s free-variable error

(rename lc-lambda lambda)
(rename lc-app #%app)
(rename lc-module-begin #%module-begin)
(rename lc-datum #%datum)))

(module m lambda-calculus
; The only syntax defined by lambda-calculus is
; unary lambda, unary application, and variables.
; Also, the module must contain exactly one expression.
((lambda (y) (y y))
(lambda (y) (y y))))

(require m) ; executes m, loops forever

12.6 Macro Expansion

A define-syntax , let-syntax , or letrec-syntax form associates an identifier to an expansion-time value.
If the expansion-time value is a procedure of one argument, then the procedure is applied by the syntax expander when
the identifier is used in the scope of the syntax binding.

158

12. Syntax and Macros 12.6. Macro Expansion

The transformer for anidentifier is applied whenever theidentifier appears in an expression position —
not just when it appears after a parenthesis as(identifier ...) . When it does appear as(identifier
...) , the entire(identifier ...) expression is provided as the argument to the transformer. Otherwise only
identifier is provided to the transformer.

A typical transformer is implemented as

(lambda (stx)
(syntax-case stx ()

[(rest-of-pattern) expr]))

so thatidentifier by itself does not match the pattern; thus, theexn:fail:syntax exception is raised when
identifier does not appear as(identifier ...) .

(make-set!-transformer proc) also creates a transformer procedure. Theproc argument must be a proce-
dure of one argument; if the result of(make-set!-transformer proc) is bound as syntax toidentifier ,
thenproc is applied as a transformer whenidentifier is used in an expression position, or when it is used as
the target of aset! assignment:(set! identifier expr) . When the identifier appears as aset! target, the
entireset! expression is provided to the transformer.

Example:

(let ([x 1]
[y 2])

(let-syntax ([x (make-set!-transformer
(lambda (stx)
(syntax-case stx (set!)

; Redirect mutation of x to y
[(set! id v) (syntax (set! y v))])))]
; Normal use of x really gets x
[id (identifier? (syntax id)) (syntax x)])))])

(begin
(set! x 3)
(list x y)))) ; ⇒ ’(1 3)

(set!-transformer? v) returns#t if v is a value created bymake-set!-transformer , #f otherwise.

(set!-transformer-procedure transformer) returns the procedure passed tomake-set!-transformer
to createtransformer .

(make-rename-transformer id-stx) creates a transformer procedure that inserts the identifierid-stx in
place of whatever identifier binds the transformer, including in non-application positions, and inset! expressions.
Such a transformer could be written manually, but the one created bymake-rename-transformer cooperates
specially withsyntax-local-value (see below).

(rename-transformer? v) returns#t if v is a value created bymake-rename-transformer , #f other-
wise.

(rename-transformer-target transformer) returns the identifier passed tomake-rename-transformer
to createtransformer .

If a transformer expression produces a non-procedure value, the value is associated with the identifier as a generic
expansion-time value. Any use of the identifier in an expression position is rejected as a syntax error, but syntax
transformers can access the value. For example, thedefine-signature form (see Chapter 52 ofPLT MzLib:
Libraries Manual) associates a component interface description to the defined identifier.

159

12.6. Macro Expansion 12. Syntax and Macros

When a syntax transformer is applied, it can query the bindings of identifiers in the lexical environment of the
expression being transformed. For example, theunit/sig form can access a named interface description with
syntax-local-value :

• (syntax-local-value id-stx [failure-thunk]) returns the expansion-time value ofid-stx
in the transformed expression’s context. Ifid-stx is not bound to an expansion-time value (via
define-syntax , let-syntax , etc.) in the environment of the expression being transformed,
the result is obtained by applyingfailure-thunk . If failure-thunk is not provided, the
exn:fail:contract exception is raised. Ifid-stx is bound to a rename transformer created with
make-rename-transformer , syntax-local-value effectively calls itself with the target of the re-
name and returns that result, instead of the rename transformer.

Resolvingid-stx can use certificates for the expression being transformed (see§12.6.3) as well as inactive
certificates associated withid-stx (see§12.6.3.1). Furthermore, if the transformer is defined within a module
(i.e., the current transformation was triggered by a use of a module-defined identifier) or if the current expression
is being expanded for the body of a module, then resolvingid-stx can access any identifier defined by the
module.

• (syntax-local-lift-expression stx) returns a fresh identifier, and it cooperates with the
module , letrec-syntaxes+values , define-syntaxes , begin-for-syntax , and top-level ex-
panders to bind the generated identifier to the expressionstx . A run-time expression within a mod-
ule is lifted to the module’s top level, just before the expression whose expansion requests the lift.
Similarly, a run-time expression outside of a module is lifted to a top-level definition. A compile-
time expression in aletrec-syntaxes+values or define-syntaxes binding is lifted to alet
wrapper around the corresponding right-hand side of the binding. A compile-time expression within
begin-for-syntax is lifted to a define-for-syntax declaration just before the requesting ex-
pression. Other syntactic forms can capture lifts by usinglocal-expand/capture-lifts or
local-transformer-expand/capture-lifts .

• (syntax-local-lift-module-end-declaration stx) cooperates with themodule form to in-
sertstx as a top-level declaration at the end of the module currently being expanded. The result is void. If the
current expression being transformed is not within amodule form, or if it is not a run-time expression, then
theexn:fail:contract exception is raised.

• (syntax-local-name) returns an inferred name for the expression position being transformed, or#f ; see
also§6.2.3.

• (syntax-local-context) returns either’expression , ’top-level , ’module , ’module-begin ,
or a non-empty list of arbitrary values.

The first three possibilities indicate that the expression is being expanded for a (non-definition) expression
position, a top-level position, or a module top-level position, respectively. The next-to-last,’module-begin ,
indicates that the expression is being expanded as the sole form within a module, where it might produce
#%plain-module-begin .

The last possibility, a list, indicates expansion for an internal-definition position. The identity of the lists’s first
element (i.e., itseq?ness) reflects the identity of the internal-definition context; in particular two transformer
expansions receive the same first value if and only if they are invoked for the same internal-definition context.
Later values in the list similarly identify internal-definition contexts that are still being expanded, and that
required the expansion of nested internal-definition contexts.

• (syntax-local-get-shadower identifier) returnsidentifier if no binding in the current ex-
pansion context shadowsidentifier , if identifier has no module context, and if the current expansion
context is not a module. If a binding ofinner-identifier shadowsidentifier , the result is the same
as(syntax-local-get-shadower inner-identifier) , except that it has the location and prop-
erties ofidentifier . Otherwise, the result is the same asidentifier with its module context (if any)
removed and the current module context (if any) added. Thus, the result is an identifier corresponding to the

160

12. Syntax and Macros 12.6. Macro Expansion

innermost shadowing ofidentifier in the current context if its shadowed, and a module-contextless version
of identifier otherwise.

• (syntax-local-certifier) returns a procedure that captures any certificates currently available for
syntax-local-value or local-expand . The procedure accepts one to three arguments:stx (re-
quired), key-v (optional), andintro-proc (optional). The procedure’s result is a syntax object like
stx , except that it includes the captured certificates as inactive (see§12.6.3.1). If key-v is supplied
and not#f , it is associated with each captured certificate for later use throughsyntax-recertify (see
§12.6.3.3). If intro-proc is supplied, and if it is not#f (the default), then it must be a procedure created by
make-syntax-introducer , in which case the certificate applies only to parts ofstx that are marked as
introduced byintro-proc .

• (syntax-transforming?) returns#t if an expression is currently being transformed (so that procedures
like syntax-local-value can be called),#f otherwise.

A transformer can also expand or partially expand subexpressions from its input syntax object:

• (local-expand stx context-v stop-id-stx-list intdef-ctx) expandsstx in the lexi-
cal context of the expression currently being expanded. Thecontext-v argument is used as the result of
syntax-local-context for immediate expansions; for a particular internal-definition context, generate a
unique value andcons it onto the current result ofsyntax-local-context if it is a list.

When an identifier instop-id-stx-list is encountered by the expander in a subexpression, expansions
stops for the subexpression. If#%app, #%top , or #%datum (see§12.5) appears instop-id-stx-list ,
then application, top-level variable reference, and literal data expressions without the respective explicit form
are not wrapped with the explicit form. Ifstop-id-stx-list is #f instead of a list, thenstx is expanded
only as long as the outermost form ofstx is a macro (i.e., expansion does not proceed to sub-expressions).

The optionalintdef-ctx argument must be either#f (the default) or the result ofsyntax-local-make-definition-context .
In the latter case, lexical information for internal definitions is added tostx before it is expanded. The lexical
information is also added to the expansion result (because the expansion might introduce bindings or references
to internal-definition bindings).

Expansion ofstx can use certificates for the expression already being expanded (see§12.6.3) , and inactive
certificates associated withstx are activated forstx (see§12.6.3.1). Furthermore, if the macro expander is
defined within a module (i.e., the current expansion was triggered by a use of a module-defined identifier) or
if the current expression is being expanded for the body of a module, then the expansion ofstx can use any
identifier defined by the module.

• (local-transformer-expand stx context-v stop-id-stx-list intdef-ctx) is like
local-expand , butstx is expanded as a transformer expression instead of a run-time expression.

• (local-expand/capture-lifts stx context-v stop-id-stx-list intdef-ctx) is like
local-expand , but if syntax-local-lift-expression is called during the expansion ofstx , the
result is a syntax object that represents abegin expression; lifted expression appear with their identifiers in
define-values forms, and the expansion ofstx is the last expression in thebegin . The lifted expressions
are not expanded.

• (local-transformer-expand/capture-lifts stx context-v stop-id-stx-list intdef-ctx)
is like local-expand/capture-lifts , butstx is expanded as a transformer expression instead of a run-
time expression. Lifted expressions are reported asdefine-values forms (in the transformer environment).

• (syntax-local-make-definition-context) creates an opaque internal-definition context value to
be used withlocal-expand and other functions. A transformer should create one context for each set
of internal definitions to be expanded, and use it when expanding any form whose lexical context should in-
clude the definitions. After discovering an internaldefine-values or define-syntaxes form, use
syntax-local-bind-syntaxes to add bindings to the context.

161

12.6. Macro Expansion 12. Syntax and Macros

• (syntax-local-bind-syntaxes id-list expr-or-false intdef-ctx) binds each identi-
fier in id-list within the internal-definition context represented byintdef-ctx , whereintdef-ctx
is the result ofsyntax-local-make-definition-context . Supply#f for expr-or-false when
the identifiers correspond todefine-values bindings, and supply a compile-time expression when the iden-
tifiers correspond todefine-syntaxes bindings; the later case, the number of values produces by the ex-
pression should match the number of identifiers, otherwise theexn:fail:contract:arity exception is
raised.

To track the introduction of identifiers by a macro (see§12.3), the syntax expander adds a special “mark” to a syntax
object that is provided to a transformer, and also marks the result of the transformer. Consecutive marks cancel, and
each transformer application has a distinct mark, so the only parts of the resulting syntax object with marks are the
parts that were introduced by the transformer. A transformer can explicitly add a current mark to a syntax object using
syntax-local-introduce or the result ofmake-syntax-introducer :

• (syntax-local-introduce stx) produces a syntax object that is likestx , except that a mark for the
current expansion is added (possibly canceling an existing mark in parts ofstx).

• (make-syntax-introducer) produces a procedure that behaves likesyntax-local-introduce ,
except using a fresh mark. Multiple applications of the samemake-syntax-introducer result procedure
use the same mark, and different result procedures use distinct marks.

Explicit marking is useful on syntax objects that flow into or out of a transformer without being the transformer
argument or result. For example, DrScheme’s Check Syntax tool recognizes’disappeared-binding and
’disappeared-use properties, which specify bound–binding identifier pairs in the source program that do not
appear in the expansion. Example:

(define-syntax (match-list stx)
(syntax-case stx ()

[(expr (id ...) result-id)
(let ([ids (syntax- >list (syntax (id ...)))]

[result-id (syntax result-id)])
;; Make sure the expression is well formed:
(for-each (lambda (id)

(unless (identifier? id)
(raise-syntax-error #f "not an identifier" stx id)))

(append ids (list result-id)))
;; Find the matching identifier and produce a list-ref expression:
(let loop ([ids ids] [pos 0])

(cond
[(null? ids) (raise-syntax-error #f "no pattern binding" stx result-id)]
[(bound-identifier=? (car ids) result-id)

;; Found it; produce the list-ref expression, and
;; tell the Check Syntax tool about the pattern-variable binding:
(with-syntax ([pos pos])

(syntax-property
(syntax-property
(syntax (list-ref expr pos)) ; the expansion result
’disappeared-binding
(syntax-local-introduce (car ids)))

’disappeared-use
(syntax-local-introduce result-id)))]

[else (loop (cdr ids) (add1 pos))])))]))

;; Test it:

162

12. Syntax and Macros 12.6. Macro Expansion

(match-list ’(1 2 3) (a b c) b) ; ⇒ 2

In this example, Check Syntax will draw a binding arrow from the firstb to the secondb. Without the calls to
syntax-local-introduce , the identifiers stored in the property would appear to have originated from the trans-
former, instead of from the transformer’s argument; consequently, Check Syntax would not draw the arrow, because it
would not know that thebs exist in the source program.

12.6.1 Expanding Expressions to Primitive Syntax

(expand stx-or-sexpr) expands all non-primitive syntax instx-or-sexpr , and returns a syntax object
for the expanded expression. See below for the grammar of fully expanded expressions. Beforestx-or-sexpr is
expanded, its lexical context is enriched withnamespace-syntax-introduce as foreval (see§8.3and§14.1).
Usesyntax-object->datum to convert the returned syntax object into an S-expression.

(expand-syntax stx) is like (expand stx) , except that the argument must be a syntax object, and its lexical
context is not enriched before expansion.

(expand-once stx-or-sexpr) partially expands syntax in thestx-or-sexpr and returns a syntax ob-
ject for the partially-expanded expression. Due to limitations in the expansion mechanism, some context in-
formation may be lost. In particular, callingexpand-once on the result may produce a result that is dif-
ferent from expansion viaexpand . Before stx-or-sexpr is expanded, its lexical context is enriched with
namespace-syntax-introduce as foreval (see§8.3and§14.1).

(expand-syntax-once stx) is like (expand-once stx) , except that the argument must be a syntax ob-
ject, and its lexical context is not enriched before expansion.

(expand-to-top-form stx-or-sexpr) partially expands syntax instx-or-sexpr to reveal the outer-
most syntactic form. This partial expansion is mainly useful for detecting top-level uses ofbegin . Unlike expanding
the result ofexpand-once , expanding the result ofexpand-to-top-form with expand produces the same
result as usingexpand on the original syntax. Beforestx-or-sexpr is expanded, its lexical context is enriched
with namespace-syntax-introduce as foreval (see§8.3and§14.1).

(expand-syntax-to-top-form stx) is like (expand-to-top-form stx) , except that the argument
must be a syntax object, and its lexical context is not enriched before expansion.

The possible shapes of a fully expanded expression are defined bytop-level-expr :

top-level-expr is one of
general-top-level-expr
(module identifier name (#%plain-module-begin module-level-expr · · ·))
(begin top-level-expr · · ·)

module-level-expr is one of
general-top-level-expr
(provide provide-spec ...)

general-top-level-expr is one of
expr
(define-values (variable · · ·) expr)
(define-syntaxes (identifier · · ·) expr)
(define-values-for-syntax (variable · · ·) expr)
(require require-spec · · ·)
(require-for-syntax require-spec · · ·)
(require-for-template require-spec · · ·)

163

12.6. Macro Expansion 12. Syntax and Macros

expr is one of
variable
(lambda formals expr · · ·1)
(case-lambda (formals expr · · ·1) · · ·)
(if expr expr)
(if expr expr expr)
(begin expr · · ·1)
(begin0 expr expr · · ·)
(let-values (((variable · · ·) expr) · · ·) expr · · ·1)
(letrec-values (((variable · · ·) expr) · · ·) expr · · ·1)
(set! variable expr)
(quote datum)
(quote-syntax datum)
(with-continuation-mark expr expr expr)
(#%app expr · · ·1)
(#%datum . datum)
(#%top . variable)
(#%variable-reference variable)
(#%variable-reference (#%top . variable))

whereformals is defined in§2.9, andrequire-spec andprovide-spec are defined in§5.2.

When avariable expression appears in a fully-expanded expression, it either refers to a variable bound bylambda ,
case-lambda , let-values , letrec-values , or define (within the current module), or it refers to an im-
ported variable. (In other words, avariable not wrapped by#%top never refers to a top-level variable.)

The keywords in the above grammar are placeholders for identifiers that aremodule-identifier=? (or
module-transformer-identifier=? for define-syntax expressions) to the same-named exports of
mzscheme. Due to import renamings, the printed identifier names can be different in the expanded expression.

12.6.2 Syntax Object Properties

Every syntax object has an associated property list, which can be queried or extended withsyntax-property :

• (syntax-property stx key-v v) extendsstx by associating an arbitrary property valuev with the
keykey-v ; the result is a new syntax object with the association (whilestx itself is unchanged).

• (syntax-property stx key-v) returns an arbitrary property value associated tostx with the key
key-v , or #f if no value is associated tostx for key-v .

• (syntax-property-symbol-keys stx) returns a list of all symbols that as keys have associated prop-
erties instx . Uninterned symbols (see§3.7) are not included in the result list.

The read-syntax procedure attaches a’paren-shape property to any pair or vector syntax object generated
from parsing a pair of square brackets (“[” and “]”) or curly braces (“{” and “}”).4 The property value is#\[in the
former case, and#\{ in the latter case. Thesyntax form copies any’paren-shape property from the sourec of
a template to corresponding generated syntax.

Both the syntax input to a transformer and the syntax result of a transformer may have associated properties. The two
sets of properties are merged by the syntax expander: each property in the original and not present in the result is
copied to the result, and the values of properties present in both are combined withcons-immutable (result value
first, original value second).

4More precisely, the property is attached by the default read handler in syntax mode when using the default readtable.

164

12. Syntax and Macros 12.6. Macro Expansion

Before performing the merge, however, the syntax expander automatically add a property to the original syntax object
using the key’origin . If the source syntax has no’origin property, it is set to the empty list. Then, still before
the merge, the identifier that triggered the macro expansion (as syntax) iscons-immutable d onto the’origin
property so far.

The ’origin property thus records (in reverse order) the sequence of macro expansions that produced an expanded
expression. Usually, the’origin value is an immutable list of identifiers. However, a transformer might return
syntax that has already been expanded, in which case an’origin list can contain other lists after a merge.

For example, the expression

(or x y)

expands to

(let ((or-part x)) (if or-part or-part (or y)))

which, in turn, expands to

(let-values ([(or-part) x]) (if or-part or-part y))

The syntax object for the final expression will have an’origin property whose value is(list-immutable
(quote-syntax let) (quote-syntax or)) .

(syntax-track-origin new-stx orig-stx id-stx) add properties tonew-stx in the same way that
macro expansion adds properties to a transformer result. In particular, it merges the properties oforig-stx into
new-stx , first addingid-stx as an’origin property, and it returns the property-extended syntax object. Use
thesyntax-track-origin procedure in a macro transformer that discards syntax (corresponding toorig-stx
with a keywordid-stx) leaving some other syntax in its place (corresponding tonew-stx).

Besides’origin tracking for general macro expansion, MzScheme adds properties to expanded syntax (often using
syntax-track-origin) to record additional expansion details:

• When abegin form is spliced into a sequence with internal definitions (see§2.8.5), syntax-track-origin
is applied to every spliced element from thebegin body. The second argument tosyntax-track-origin
is thebegin form, and the third argument is thebegin keyword (extracted from the spliced form).

• When an internaldefine-values ordefine-syntaxes form is converted into aletrec-values+syntaxes
form (see§2.8.5), syntax-track-origin is applied to each generated binding clause. The second argu-
ment tosyntax-track-origin is the converted form, and the third argument is thedefine-values or
define-syntaxes keyword form the converted form.

• When aletrec-values+syntaxes expression is fully expanded, syntax bindings disappear, and the result
is either aletrec-values form (if the unexpanded form contained non-syntax bindings), or only the body of
the letrec-values+syntaxes form (wrapped withbegin if the body contained multiple expressions).
To record the disappeared syntax bindings, a property is added to the expansion result: an immutable list of
identifiers from the disappeared bindings, as a’disappeared-binding property.

• When a subtypingdefine-struct form is expanded, the identifier used to reference the base type does not
appear in the expansion. Therefore, thedefine-struct transformer adds the identifier to the expansion
result as a’disappeared-use property.

• When a reference to an unexported or protected identifier from a module is discovered (and the reference is
certified; see§12.6.3), the’protected property is added to the identifier with a#t value.

165

12.6. Macro Expansion 12. Syntax and Macros

• When orread-syntax or read-honu-syntax generates a syntax object, it attaches a property to the
object (using a private key) to mark the object as originating from a read. Thesyntax-original? predicate
looks for the property to recognize such syntax objects. (See§12.2.2for more information.)

Thesyntax-original? procedure and the’origin , ’disappeared-binding , and’disappeared-use
properties are used by program-processing tools (such as Check Syntax in DrScheme) to relate source code to
its expanded form. Implementors of macro transformers should consider whether properties added automati-
cally by MzScheme are sufficient for tools to make sense of expansion result, and implementors should use
syntax-track-origin andsyntax-property as necessary to fill in gaps (see§12.6for an example).

See§12.6.5for information about properties generated by the expansion of a module declaration. See§3.12.1and
§6.2.3for information about properties recognized when compiling a procedure. See§14.3for information on proper-
ties and byte codes.

12.6.3 Certificates for Protected References

As illustrated in§5.3, a macro can expand into a use of an identifier that is not exported from the macro’s module. In
general, such an identifier must not be extracted from the expanded expression and used in a different context, because
using the identifier in a different context may break invariants of the macro’s module. For example, the following
module exports a macrogo that expands to a use ofunchecked-go :

(module m mzscheme
(provide go)
(define (unchecked-go n x)

;; to avoid disaster, n must be a number
(+ n 17))

(define-syntax (go stx)
(syntax-case stx ()
[(x)

#’(unchecked-go 8 x)])))

If the reference tounchecked-go is extracted from the expansion of(go ’a) , then it might be inserted into a new
expression,(unchecked-go #f ’a) , leading to disaster. Thedatum->syntax-object procedure can be
used similarly to construct references to an unexported identifier, even when no macro expansion includes a reference
to the identifier.

To prevent such abuses of unexported identifiers, MzScheme’s macro expander and compiler reject references to un-
exported identifiers unless they appear incertified syntax objects. The macro expander always certifies a syntax object
that is produced by a transformer. For example, when(go ’a) is expanded to(unchecked-go 8 ’a) , a cer-
tificate is attached to the result(unchecked-go 8 ’a) . Extracting justunchecked-go removes the identifier
from the certified expression, so that the reference is disallowed when it is inserted into(unchecked-go #f ’a) .

In addition to checking module references, the macro expander disallows references to local bindings where the bind-
ing identifier is less certified than the reference. Otherwise, the expansion of(go ’a) could be wrapped with a local
binding that redirects#%app to values , thus obtaining the value ofunchecked-go . Note that a capturing#%app
would have to be extracted from the expansion of(go ’a) , since lexical scope would prevent an arbitrary#%app
from capturing. The act of extracting#%appremoves its certification, whereas the#%appwithin the expansion is still
certified; comparing these certifications, the macro expander rejects the local-binding reference, andunchecked-go
remains protected.

In much the same way that the macro expander copies properties from a transformer’s input to its output, the expander
copies certificates from a transformer’s input to its output. Building on the previous example,

(module n mzscheme

166

12. Syntax and Macros 12.6. Macro Expansion

(require m)
(provide go-more)
(define y ’hello)
(define-syntax (go-more stx)

#’(go y)))

the expansion of(go-more) introduces a reference to the unexportedy in (go y) , and a certificate allows the
reference toy . As (go y) is expanded to(unchecked-go 8 y) , the certificate that allowsy is copied over, in
addition to the certificate that allows the reference tounchecked-go .

When a protected identifier becomes inaccessible by direct reference (i.e., when the current code inspector is changed
so that it does not control the module’s invocation; see§9.4), the protected identifier is treated like an unexported
identifier.

12.6.3.1 CERTIFICATE PROPAGATION

When the result of a macro expansion contains aquote-syntax form, the macro expansion’s certificate must be
attached to the resulting syntax object to support macro-generating macros. In general, when the macro expander
encountersquote-syntax , it attaches all certificates from enclosing expressions to the quoted syntax constant.
However, the certificates are attached to the syntax constant asinactive certificates, and inactive certificates do not
count directly for certifying identifier access. Inactive certificates become active when the macro expander certifies
the result of a macro expansion; at that time, the expander removes all inactive certificates within the expansion result
and attaches active versions of the certificates to the overall expansion result.

For example, suppose that thego macro is implemented through a macro:

(module m mzscheme
(provide def-go)
(define (unchecked-go n x)

(+ n 17))
(define-syntax (def-go stx)
(syntax-case stx ()

[(go)
#’(define-syntax (go stx)

(syntax-case stx ()
[(x)

#’(unchecked-go 8 x)]))])))

When def-go is used inside another module, the generated macro should legally generate expressions that use
unchecked-go , sincedef-go in mhad complete control over the generated macro.

(module n mzscheme
(require m)
(def-go go)
(go 10)) ; access to unchecked-go is allowed

This example works because the expansion of(def-go go) is certified to access protected identifiers inm, including
unchecked-go . Specifically, the certified expansion is a definition of the macrogo , which includes a syntax-object
constantunchecked-go . Since the enclosing macro declaration is certified, theunchecked-go syntax constant
gets an inactive certificate to access protected identifiers ofm. When(go 10) is expanded, the inactive certificate on
unchecked-go is activated for the macro result(unchecked-go 8 10) , and the access ofunchecked-go
is allowed.

To see whyunchecked-go as a syntax constant must be given an inactive certificate instead of an active one, it’s

167

12.6. Macro Expansion 12. Syntax and Macros

helpful to write thedef-go macro as follows:

(define-syntax (def-go stx)
(syntax-case stx ()

[(go)
#’(define-syntax (go stx)

(syntax-case stx ()
[(x)

(with-syntax ([ug (quote-syntax unchecked-go)])
#’(ug 8 x))]))]))

In this case,unchecked-go is clearly quoted as an immediate syntax object in the expansion of(def-go go) .
If this syntax object were given an active certificate, then it would keep the certificate—directly on the identifier
unchecked-go —in the result(unchecked-go 8 10) . Consequently, theunchecked-go identifier could
be extracted and used with its certificate intact. Attaching an inactive certificate tounchecked-go and activating
it only for the complete result(unchecked-go 8 10) ensures thatunchecked-go is used only in the way
intended by the implementor ofdef-go .

12.6.3.2 INTERNAL CERTIFICATES

In some cases, a macro implementor intends to allow limited destructuring of a macro result without losing the result’s
certificate. For example, given the followingdefine-like-y macro,

(module q mzscheme
(provide define-like-y)
(define y ’hello)
(define-syntax (define-like-y stx)

(syntax-case stx ()
[(id) #’(define-values (id) y)])))

someone may use the macro in an internal definition:

(let ()
(define-like-y x)
x)

The implementor of theq module most likely intended to allow such uses ofdefine-like-y . To convert an
internal definition into aletrec binding, however, thedefine form produced bydefine-like-y must be
deconstructed, which would normally lose the certificate that allows the reference toy .

The internal use ofdefine-like-y is allowed because the macro expander treats specially a transformer result
that is a syntax list beginning withdefine-values . In that case, instead of attaching the certificate to the overall
expression, the certificate is instead attached to each individual element of the syntax list, pushing the certificates
into the second element of the list so that they are attached to the defined identifiers. Thus, a certificate is attached
to define-values , x , andy in the expansion result(define-values (x) y) , and the definition can be
deconstructed for conversion toletrec .

Just like the new certificate that is added to a transformer result, old certificates from the input are similarly moved
to syntax-list elements when the result starts withdefine-values . Thus,define-like-y could have been
implemented to produce(define id y) , usingdefine instead ofdefine-values . In that case, the certificate
to allow reference toy would be attached initially to the expansion result(define x y) , but as thedefine is
expanded todefine-values , the certificate would be moved to the parts.

The macro expander treats syntax-list results starting withdefine-syntaxes in the same way that it treats results
starting withdefine-values . Syntax-list results starting withbegin are treated similarly, except that the second

168

12. Syntax and Macros 12.6. Macro Expansion

element of the syntax list is treated like all the other elements (i.e., the certificate is attached to the element instead
of its content). Furthermore, the macro expander applies this special handling recursively, in case a macro produces a
begin form that contains nesteddefine-values forms.

The default application of certificates can be overridden by attaching a’certify-mode property (see§12.6.2) to
the result syntax object of a macro transformer. If the property value is’opaque , then the certificate is attached
to the syntax object and not its parts. If the property value is’transparent , then the certificate is attached to
the syntax object’s parts. If the property value is’transparent-binding , then the certificate is attached to the
syntax object’s parts and to the sub-parts of the second part (as fordefine-values anddefine-syntaxes).
The ’transparent and’transparent-binding modes triggers recursive property checking at the parts, so
that the certificate can be pushed arbitrarily deep into a transformer’s result.

12.6.3.3 CHECKING AND TRANSFERRINGCERTIFICATES

In general, a certificate combines a mark (see§12.6), a module name (more precisely, a module path index; see
§12.6.5), an inspector, and an arbitrary key object. Within a certified syntax object, the certificate’s mark is attached
to every piece of syntax that was introduced by the relevant macro transformation (see again§12.6), so the certificate
applies only to those pieces of syntax, and only to identifiers that are bound by the transformer’s module. The certifi-
cate’s inspector depends on the module that defined the transformer; specifically, it is the inspector for the module’s
declaration (see§9.4). A certificate’s key is hidden if it is introduced by macro expansion, but applying the result of
syntax-local-certifier (see§12.6) can introduce certificates with other keys.

To check access to an unexported identifier, the compiler or macro expander checks each of the identifier’s marks
and module bindings; if, for some mark, the identifier’s enclosing expressions include a certificate with the mark, the
identifier’s binding module, and with an inspector that controls the module’s invocation (as opposed to the module’s
declaration; see again§9.4), then the access is allowed. To check access to a protected identifier, only the certificate’s
mark and inspector are used (i.e., the module that bound the transformer is irrelevant, as long as it was evaluated with
a sufficiently powerful inspector). The certificate key is not used in checking references.

To check access to a locally bound identifier, the compiler or macro expander checks the marks of the binding and
reference identifiers; for every mark that they have in common, if the reference identifier has a certificate for the mark
from an enclosing expression, the binding identifier must have a certificate for the mark from an enclosing expression,
otherwise the reference is disallowed. (The reference identifier can have additional certificates for marks that are not
attached to the binding identifier.) The binding module (if any) and the certificate key are not used for checking a local
reference.

Thedatum->syntax-object procedure never transfers a certificate from one syntax object to another, so it cannot
be used to gain access to an unexported identifier. Thesyntax-recertify procedure can be used to transfer a
certificate from one syntax object to another, but only if the certificate’s key is provided, or if a sufficiently powerful
inspector is provided. Thus, a certificate’s inspector serves two roles: it determines the certificate’s power to grant
access, and also allows the certificate to be moved arbitrarily by anyone with a more powerful inspector.

(syntax-recertify new-stx old-stx inspector key-v) copies certain certificates ofold-stx to
new-stx : a certificate is copied if its inspector is eitherinspector or controlled byinspector , or if the
certificate’s key iskey-v ; otherwise the certificate is not copied. The result is a syntax object likenew-stx , but
with the copied certificates. (Thenew-stx object itself is not modified.) Both active and inactive certificates are
copied.

12.6.4 Information on Structure Types

Thedefine-struct form (see§4.1) binds the name of a structure type to an expansion-time value that records the
identifiers bound to the structure type, the constructor procedure, the predicate procedure, and the field accessor and
mutator procedures. This information can be used during the expansion of other expressions by transformer that call

169

12.6. Macro Expansion 12. Syntax and Macros

syntax-local-value (see§12.6).

For example, thedefine-struct variant for subtypes (see§4.2) uses the base type namet to find the variable
struct :t containing the base type’s descriptor; it also folds the field accessor and mutator information for the base
type into the information for the subtype. Thematch form (see Chapter 25 ofPLT MzLib: Libraries Manual) uses a
type name to find the predicates and field accessors for the structure type.

Besides using the information, other syntactic forms can even generate information with the same shape. For example,
thestruct form in an imported signature forunit/sig (see Chapter 52 ofPLT MzLib: Libraries Manual) causes
the unit/sig transformer to generate information about imported structure types, so thatmatch and subtyping
define-struct expressions work within the unit.

The expansion-time information for a structure type is represented as an immutable list of six items:

• an identifier that is bound to the structure type’s descriptor, or#f it none is known;

• an identifier that is bound to the structure type’s constructor, or#f it none is known;

• an identifier that is bound to the structure type’s predicate, or#f it none is known;

• an immutable list of identifiers bound to the field accessors of the structure type, optionally with#f as the list’s
last element. A#f as the last element indicates that the structure type may have additional fields, otherwise the
list is a reliable indicator of the number of fields in the structure type. Furthermore, the accessors are listed in
reverse order for the corresponding constructor arguments. (The reverse order enables sharing in the lists for a
subtype and its base type.)

• an immutable list of identifiers bound to the field mutators of the structure type, or#f for each field that has
no known mutator, and optionally with an extra#f as the list’s last element (if the accessor list has such a#f).
The list’s order and the meaning of a final#f are the same as for the accessor identifiers, and the length of the
mutator list is the same as the accessor list’s length.

• an identifier that determines a super-type for the structure type,#f if the super-type (if any) is unknown, or#t
if there is no super-type. If a super-type is specified, the identifier is also bound to structure-type expansion-time
information.

The implementor of a syntactic form can expect users of the form to know what kind of information is available about
a structure type. For example, thematch implementation works with structure information containing an incomplete
set of accessor bindings, because the user is assumed to know what information is available in the context of the
match expression. In particular, thematch expression can appear in aunit/sig form with an imported structure
type, in which case the user is expected to know the set of fields that are listed in the signature for the structure type.

12.6.5 Information on Expanded and Compiled Modules

MzScheme provides an interface for obtaining information about an expanded or compiled module declaration’s im-
ports and exports. This information is intended for use by tools such as a compilation manager. The information
usually identifies modules through amodule path index, which is a semi-interned5 opaque value that encodes a rela-
tive module path (see§5.4) and another index to which it is relative.

Where an index is expected, a symbol can usually take its place, representing a literal module name. A symbol is used
instead of an index when a module is imported using its name directly withrequire instead of a module path.

An index that returns#f for its path and base index represents “self” — i.e., the module declaration that was the
source of the index — and such an index is always used as the root for a chain of indices. For example, when

5Multiple references to the same relative module tend to use the same index value, but not always.

170

12. Syntax and Macros 12.6. Macro Expansion

extracting information about an identifier’s binding within a module, if the identifier is bound by a definition within
the same module, the identifier’s source module will be reported using the “self” index. If the identifier is instead
defined in a module that is imported via a module path (as opposed to a literal module name), then the identifier’s
source module will be reported using an index that contains therequire d module path and the “self” index.

• (module-path-index? v) returns#t if v is a module path index,#f otherwise.

• (module-path-index-split module-path-index) returns two values: a non-symbol S-
expression representing a module path, and a base index (to which the module path is relative), symbol, or
#f . A #f second result means “relative to a top-level environment”. A#f for the first result implies a#f for
the second result, and means thatmodule-path-index represents “self” (see above).

• (module-path-index-join module-path module-path-index) combines module-path
andmodule-path-index to create a new module path index. Themodule-path argument can be any-
thing except a symbol, and themodule-path-index argument can be a index, symbol, or#f .

Information for an expanded module declaration is stored in a set of properties attached to the syntax object:

• ’module-direct-requires — an immutable list of module path indices (or symbols) representing the
modules explicitly imported into the module.

• ’module-direct-for-syntax-requires — an immutable list of module path indices (or symbols)
representing the modules explicitly for-syntax imported into the module.

• ’module-direct-for-template-requires — an immutable list of module path indices (or symbols)
representing the modules explicitly for-template imported into the module.

• ’module-variable-provides — an immutable list of provided items, where each item is one of the
following:

– symbol — represents a locally defined variable that is provided with its defined name.
– (cons-immutable provided-symbol defined-symbol) — represents a locally defined

variable that is provided with renaming; the first symbol is the exported name, and the second symbol
is the defined name.

– (list*-immutable module-path-index provided-symbol defined-symbol) — rep-
resents a re-exported and possibly re-named variable from the specified module;module-path-index
is either an index or symbol, indicating the source module for the binding. Theprovided-symbol is
the external name for the re-export, anddefined-symbol is the originally defined name in the module
specified bymodule-path-index .

• ’module-syntax-provides — like ’module-variable-provides , but for syntax exports instead
of variable exports.

• ’module-indirect-provides — an immutable list of symbols for variables that are defined in the mod-
ule but not exported; they may be exported indirectly through macro expansions. Definitions of macro-generated
identifiers create uninterned symbols in this list.

• ’module-kernel-reprovide-hint — either#f , #t , or a symbol. If it is#t , then the module re-exports
all of the functionality from MzScheme’s internal kernel module. If it is a symbol, then all kernel exports but the
indicated one is re-exported, and some other export is provided with the indicated name. This ad hoc information
is used in an optimization by themzc compiler.

• ’module-self-path-index — a module path index whose parts are both#f . This information is used by
themzc compiler to manage syntax objects (which contain module-relative information keyed on the module’s
own index).

171

12.6. Macro Expansion 12. Syntax and Macros

(compiled-module-expression? v) returns#t if v is a compiled expression for amodule declaration,#f
otherwise. See also§14.3.

(module-compiled-name compiled-module-code) takes a module declaration in compiled form (see
§14.3) and returns a symbol for the module’s declared name.

(module-compiled-imports compiled-module-code) takes a module declaration in compiled form
(see§14.3) and returns three values: an immutable list of module path indices (and symbols) for the module’s ex-
plicit imports, an immutable list of module path indices (and symbols) for the module’s explicit for-syntax imports,
and an immutable list of module path indices (and symbols) for the module’s explicit for-template imports.

(module-compiled-exports compiled-module-code) takes a module declaration in compiled form
(see§14.3) and returns two values: an immutable list of symbols for the module’s explicit variable exports, an im-
mutable list symbols for the module’s explicit syntax exports.

172

13. Memory Management

13.1 Weak Boxes

A weak box is similar to a normal box (see§3.11), but when the automatic memory manager can prove that the content
value of a weak box is only reachable via weak references, the content of the weak box is replaced with#f . A weak
reference is a reference through a weak box, through a key reference in a weak hash table (see§3.14), through a value
in an ephemeron where the value can be replaced by#f (see§13.2), or through a custodian (see§9.2).

• (make-weak-box v) returns a new weak box that initially containsv .

• (weak-box-value weak-box) returns the value contained inweak-box . If the memory manager has
proven that the previous content value ofweak-box was reachable only through a weak reference, then#f is
returned.

• (weak-box? v) returns#t if v is a weak box,#f otherwise.

13.2 Ephemerons

An ephemeron is similar to a weak box (see§13.1), except that

1. an ephemeron contains a key and a value; the value can be extracted from the ephemeron, but the value is
replaced by#f when the automatic memory manager can prove that either the ephemeron or the key is reachable
only through weak references (see§13.1); and

2. nothing reachable from the value in an ephemeron counts toward the reachability of an ephemeron key (whether
for the same ephemeron or another), unless the same value is reachable through a non-weak reference, or
unless the value’s ephemeron key is reachable through a non-weak reference (see§13.1for information on weak
references).

In particular, an ephemeron can be combined with a weak hash table (see§3.14) to produce a mapping where the
memory manager can reclaim key–value pairs even when the value refers to the key. An example is shown below.

• (make-ephemeron key-v v) returns a new ephemeron whose key iskey-v and whose value is initially
v .

• (ephemeron-value ephemeron) returns the value contained inephemeron . If the memory manager
has proven that the key forephemeron is only weakly reachable, then the result is#f .

• (ephemeron? v) returns#t if v is an ephemeron,#f otherwise.

Example:

;; This weak map is like a weak hash table, but

173

13.3. Will Executors 13. Memory Management

;; without the key-in-value problem:
(define (make-weak-map)

(make-hash-table ’weak))

(define (weak-map-put! m k v)
(hash-table-put! m k (make-ephemeron k (box v))))

(define (weak-map-get m k def-v)
(let ([v (hash-table-get m k (lambda () #f))])

(if v
(let ([v (ephemeron-value v)])

(if v
(unbox v)
def-v))

def-v)))

(define m (make-weak-map))
(define k (list 1 2))
(weak-map-put! m k k)
(weak-map-get m k #f) ; ⇒ ’(1 2)
(set! k #f)

list is eventually GCed even ifmremains reachable

13.3 Will Executors

A will executor manages a collection of values and associatedwill procedures. The will procedure for each value is
ready to be executed when the value has been proven (by the automatic memory manager) to be unreachable, except
through weak references (see§13.1) or as the registrant for other will executors. A will is useful for triggering clean-up
actions on data associated with an unreachable value, such as closing a port embedded in an object when the object is
no longer used.

Calling thewill-execute or will-try-execute procedure executes a will that is ready in the specified will
executor. Wills are not executed automatically, because certain programs need control to avoid race conditions. How-
ever, a program can create a thread whose sole job is to execute wills for a particular executor.

• (make-will-executor) returns a new will executor with no managed values.

• (will-executor? v) returns#t if v is a will executor,#f otherwise.

• (will-register executor v proc) registers the valuev with the will procedureproc in the will
executorexecutor . Whenv is proven unreachable, then the procedureproc is ready to be called withv as
its argument viawill-execute or will-try-execute . Theproc argument is strongly referenced until
the will procedure is executed.

• (will-execute executor) invokes the will procedure for a single “unreachable” value registered with
the executorexecutable . The value(s) returned by the will procedure is the result of thewill-execute
call. If no will is ready for immediate execution,will-execute blocks until one is ready.

• (will-try-execute executor) is like will-execute if a will is ready for immediate execution.
Otherwise,#f is returned.

If a value is registered with multiple wills (in one or multiple executors), the wills are readied in the reverse order of
registration. Since readying a will procedure makes the value reachable again, the will must be executed and the value

174

13. Memory Management 13.4. Garbage Collection

must be proven again unreachable through only weak references before another of the wills is readied or executed.
However, wills for distinct unreachable values are readied at the same time, regardless of whether the values are
reachable from each other.

A will executor’s register is held non-weakly until after the corresponding will procedure is executed. Thus, if the
content value of a weak box (see§13.1) is registered with a will executor, the weak box’s content is not changed to
#f until all wills have been executed for the value and the value has been proven again reachable through only weak
references.

13.4 Garbage Collection

(collect-garbage) forces an immediate garbage collection. Since MzScheme uses a “conservative” garbage
collector, some effectively unreachable data may remain uncollected (because the collector cannot prove that it is
unreachable). This procedure provides some control over the timing of collections, but garbage will obviously be
collected even if this procedure is never called.

(current-memory-use [custodian]) returns an estimate of the number of bytes of memory occupied by
reachable data fromcustodian . (The estimate is calculatedwithoutperforming an immediate garbage collection;
performing a collection generally decreases the number returned bycurrent-memory-use .) If custodian is
not provided, the estimate is a total reachable from any custodians. Unless MzScheme is compiled with special support
for memory accounting, the estimate is the same (i.e., all memory) for any individual custodian.

(dump-memory-stats) dumps information about memory usage to the (low-level) standard output port.

175

14. Support Facilities

14.1 Eval and Load

(eval expr [namespace]) evaluatesexpr in namespace , or in the current namespace ifnamespace is
not supplied.1 (See§8 and §7.9.1.5for more information about namespaces.) Theexpr is evaluated in tail po-
sition with respect to theeval call. The expr can be a syntax object, a compiled expression, a compiled ex-
pression wrapped as a syntax object, or an arbitrary S-expression (which will be converted to a syntax object using
datum->syntax-object ; see§12.2.2). If expr is a syntax object or S-expression, then is enriched with lexical
context usingnamespace-syntax-introduce before it is evaluated. However, ifexpr is a pair (or syntax pair)
whose first element ismodule-identifier=? to MzScheme’smodule (after giving the identifier context with
namespace-syntax-introduce), then only themodule identifier is given context, and the rest ofexpr is left
to the module’s language.

(eval-syntax stx [namespace]) is like (eval stx) , except thatstx must be a syntax object, and its
lexical context is not enriched before it is evaluated.

(load file-path) evaluates each expression in the specified file usingeval .2 The return value fromload is the
value of the last expression from the loaded file (or void if the file contains no expressions). Iffile-path is a relative
path, then it is resolved to an absolute path using the current directory. Before the first expression offile-path
is evaluated, the currentload-relative directory (the value of thecurrent-load-relative-directory
parameter; see§7.9.1.6) is set to the absolute path of the directory containingfile-path ; after the last expression in
file-path is evaluated (or when the load is aborted), theload-relative directory is restored to its pre-load
value.

(load-relative file-path) is like load , but when file-path is a relative path, it is resolved to
an absolute path using the currentload-relative directory rather than the current directory. If the current
load-relative directory is#f , thenload-relative is the same asload .

(load/use-compiled file-path) is like load-relative , but load/use-compiled also checks
for .zo files (usually produced withcompile-file ; see Chapter 11 ofPLT MzLib: Libraries Manual) and
.so (Unix), .dll (Windows), or .dylib (Mac OS X) files.3 The check for a compiled file occurs whenever
file-path ends with any extension (e.g.,.ss or .scm), and the check consults the subdirectories indicated by the
use-compiled-file-paths parameter (see§7.9.1.6), relative tofile-path . The subdirectories are checked
in order. A.zo version of the file is loaded if it exists directly in one of the indicated subdirectories, or a.so /.dll /.dylib
version of the file is loaded if it exists within anative subdirectory of ause-compiled-file-paths directory,
in an even deeper subdirectory as named bysystem-library-subpath . A compiled file is loaded only if its
modification date is not older than the date forfile-path . If both .zo and .so /.dll /.dylib files are available, the
.so /.dll /.dylib file is used.

Multiple files can be combined into a single.so /.dll /.dylib file by creating a special dynamic extensionloader.so ,

1Theeval procedure actually calls the current evaluation handler (see§7.9.1.5) to evaluate the expression.
2The load procedure actually just sets the currentload-relative directory and calls the current load handler (see§7.9.1.6) with

file-path to load the file. The description ofload here is actually a description of the default load handler.
3The load/use-compiled procedure actually just calls the current load/use-compiled handler (see§7.9.1.6). The default handler, in turn,

calls the load or load-extension handler, depending on the type of file that is loaded.

176

14. Support Facilities 14.2. Exiting

loader.dll , or loader.dylib . When such an extension is present where a normal.so /.dll /.dylib would be loaded, then
the loader extension is first loaded. The result returned byloader must be a procedure that accepts a symbol. This
procedure will be called with a symbol matching the base part offile-path (without the directory path part of the
name and without the filename extension), and the result must be two values; if#f is returned as the first result, then
load/use-compiled ignores loader for file-path and continues as normal. Otherwise, the first return value
is yet another procedure. When this procedure is applied to no arguments, it should have the same effect as loading
file-path . The second return value is either a symbol or#f ; a symbol indicates that calling the returned procedure
has the effect of declaring the module named by the symbol (which is potentially useful information to a load handler;
see§5.8).

While a .zo, .so , .dll , or .dylib file is loaded (or while a thunk returned byloader is invoked), the current
load-relative directory is set to the directory of the originalfile-path .

(load/cd file-path) is the same as(load file-path) , but load/cd sets both the current directory and
currentload-relative directory to the directory offile-path before the file’s expressions are evaluated.

(read-eval-print-loop) starts a newread -eval -print loop using the current input, output, and error
ports. Whenread-eval-print-loop starts, it installs a new error escape procedure (see§6.8) that does not exit
the read -eval -print loop. Theread-eval-print-loop procedure does not return untileof is read as an
input expression; then it returns void.

Theread-eval-print-loop procedure is parameterized by the current prompt read handler, the current evalua-
tion handler, and the current print handler; a customread -eval -print loop can be implemented as in the following
example (see also§7.9.1):

(parameterize ([current-prompt-read my-read]
[current-eval my-eval]
[current-print my-print])

(read-eval-print-loop))

14.2 Exiting

(exit [v]) passesv on to the current exit handler (seeexit-handler in §7.9.1.9). The default value forv is
#t . If the exit handler does not escape or terminate the thread, void is returned.

The default exit handler quits MzScheme (or MrEd), using its argument as the exit code if it is between 1 and 255
inclusive (meaning “failure”), or 0 (meaning “success”) otherwise.

When MzScheme is embedded within another application, the default exit handler may behave differently.

14.3 Compilation

Normally, compilation happens automatically: when syntax is evaluated, it is first compiled and then the compiled code
is executed. However, MzScheme can also write and read compiled code. MzScheme can read compiled code much
faster than reading syntax and compiling it, so compilation can be used to speed up program loading. The MzLib
procedurecompile-file (see Chapter 11 ofPLT MzLib: Libraries Manual) is sufficient for most compilation
purposes.

• (compile expr) returns a compiled expression forexpr such that(eval (compile expr)) is the
same as(eval expr) . More precisely,compile calls the current compilation handler (see§7.9.1.5) to
compileexpr .

177

14.4. Dynamic Extensions 14. Support Facilities

• (compile-syntax stx) returns a compiled expression forstx such that(eval (compile-syntax
stx)) is the same as(eval-syntax stx) .

• (compiled-expression? v) returns#t if v is a compiled expression,#f otherwise.

When a compiled expression is written to an output port, the written form starts with#˜ . These expressions are
essentially assembly code for the MzScheme interpreter, and reading such an expression produces a compiled expres-
sion. When a compiled expression contains syntax object constants, the#˜ form of the expression drops location
information and properties for the syntax objects (see§12.2and§12.6.2).

Theread procedure will not parse input beginning with#˜ unless theread-accept-compiled parameter (see
§7.9.1.3) is set to true. When the default load handler is used to load a file, compiled-expression reading is automati-
cally (temporarily) enabled as each expression is read.

Compiled code parsed from#˜ may contain references to unexported or protected bindings from a module. At read
time, such references are associated with the current code inspector (see§7.9.1.8), and the code will only execute if
that inspector controls the relevant module invocation (see§9.4).

A compiled-expression object may contain uninterned symbols (see§3.7) that were created bygensym or
string->uninterned-symbol . When the compiled object is read via#˜ , each uninterned symbol in the orig-
inal expression is mapped to a new uninterned symbol, where multiple instances of a single symbol are consistently
mapped to the same new symbol. The original and new symbols have the same printed representation.

Due to the above restrictions, do not usegensym or string->uninterned-symbol to construct an identifier
for a top-level or module binding. Instead, generate distinct identifiers either withgenerate-temporaries (see
§12.2.2) or by applying the result ofmake-syntax-introducer (see§12.6) to an existing identifier.

14.4 Dynamic Extensions

A dynamically-linked extension library is loaded into MzScheme with(load-extension file-path) . The
separate documentInside PLT MzSchemecontains information about writing MzScheme extensions. An extension can
only be loaded once during a MzScheme session, although the extension-writer can provide functionality to handle
extra calls toload-extension for a single extension.

As with load , the currentload-relative directory (the value of thecurrent-load-relative-directory
parameter; see§7.9.1.6) is set while the extension is loaded. Theload-relative-extension procedure is like
load-extension , but it loads an extension with a path that is relative to the currentload-relative directory
instead of the current directory.

The load-extension procedure actually just dispatches to the current load extension handler (see§7.9.1.6).
The result of callingload-extension is determined by the extension. If the extension cannot be loaded, the
exn:fail:filesystem exception is raised, and if the load fails because the extension has the wrong version,
more specifically theexn:fail:filesystem:version exception is raised.

178

15. System Utilities

15.1 Time

15.1.1 Real Time and Date

(current-seconds) returns the current time in seconds. This time is always an exact integer based on a platform-
specific starting date (with a platform-specific minimum and maximum value).

The value of(current-seconds) increases as time passes (increasing by 1 for each second that passes). The
current time in seconds can be compared with a time returned byfile-or-directory-modify-seconds (see
§11.3.3).

(seconds->date secs-n) takessecs-n , a platform-specific time in seconds (an exact integer) returned by
current-seconds or file-or-directory-modify-seconds , and returns an instance of thedate struc-
ture type, as described below. Ifsecs-n is too small or large, theexn:fail exception is raised.

The value returned bycurrent-seconds or file-or-directory-modify-seconds is not portable among
platforms. Convert a time in seconds usingseconds->date when portability is needed.

Thedate structure type has the following fields:

• second : 0 to 61 (60 and61 are for unusual leap-seconds)
• minute : 0 to 59
• hour : 0 to 23
• day : 1 to 31
• month : 1 to 12
• year : e.g.,1996
• week-day : 0 (Sunday) to6 (Saturday)
• year-day : 0 to 365 (364 in non-leap years)
• dst? : #t (daylight savings time) or#f
• time-zone-offset : the number of seconds east of GMT for this time zone (e.g., Pacific Standard Time is
−28800), an exact integer1

Thedate structure type is transparent to all inspectors (see§4.5).

See also Chapter 14 ofPLT MzLib: Libraries Manualfor additional date utilities.

15.1.2 Machine Time

(current-milliseconds) returns the current “time” in fixnum milliseconds (possibly negative). This time is
based on a platform-specific starting date or on the machine’s startup time. Since the result is a fixnum, the value
increases only over a limited (though reasonably long) time.

1The value produced for thetime-zone-offset field tends to be sensitive to the value of the"TZ" environment variable, especially on
Unix platforms. Consult the system documentation (usually undertzset) for details.

179

15.2. Operating System Processes 15. System Utilities

(current-inexact-milliseconds) returns the current “time” in positive milliseconds, not necessarily an
integer. This time is based on a platform-specific starting date or on the machine’s startup time, but it never decreases
(until the machine is turned off).

(current-process-milliseconds) returns the amount of processor time in fixnum milliseconds that has
been consumed by the MzScheme process on the underlying operating system. (Under Unix and Mac OS X, this
includes both user and system time.) The precision of the result is platform-specific, and since the result is a fixnum,
the value increases only over a limited (though reasonably long) time.

(current-gc-milliseconds) returns the amount of processor time in fixnum milliseconds that has
been consumed by MzScheme’s garbage collection so far. This time is a portion of the time reported by
(current-process-milliseconds) .

15.1.3 Timing Execution

Thetime-apply procedure collects timing information for a procedure application:

• (time-apply proc arg-list) invokes the procedureproc with the arguments inarg-list . Four
values are returned: a list containing the result(s) of applyingproc , the number of milliseconds of CPU time
required to obtain this result, the number of “real” milliseconds required for the result, and the number of
milliseconds of CPU time (included in the first result) spent on garbage collection.

The reliability of the timing numbers depends on the platform; see§15.1.2for more information on time accounting.
If multiple MzScheme threads are running, then the reported time may include work performed by other threads.

Thetime syntactic form reports timing information directly to the current output port:

• (time expr) times the evaluation ofexpr , printing timing information to the current output port. The result
of thetime expression is the result ofexpr .

15.2 Operating System Processes

(subprocess stdout-output-port stdin-input-port stderr-output-port command-path
arg-string · · ·) creates a new process in the underlying operating system to executecommand-path asyn-
chronously. Thecommand-path argument is a path to a program executable, and thearg-string s are command-
line arguments for the program. Under Unix and Mac OS X, command-line arguments are passed as byte strings using
the current locale’s encoding (see§1.2.3).

Under Windows, the firstarg-string can be’exact , which triggers a Windows-specific hack: the second
arg-string is used exactly as the command-line for the subprocess, and no additionalarg-string s can be sup-
plied. Otherwise, a command-line string is constructed fromcommand-path andarg-string so that a typical
Windows console application can parse it back to an array of arguments.2 If ’exact is provided on a non-Windows
platform, theexn:fail:contract exception is raised.

Unless it is#f , stdout-output-port is used for the launched process’s standard output,stdin-input-port
is used for the process’s standard input, andstderr-output-port is used for the process’s standard error. All
provided ports must be file-stream ports. Any of the ports can be#f , in which case a system pipe is created and
returned bysubprocess . For each port that is provided, no pipe is created and the corresponding returned value is
#f .

Thesubprocess procedure returns four values:

2For information on the Windows command-line conventions, search for “command line parsing” athttp://msdn.microsoft.com/ .

180

15. System Utilities 15.3. Windows Actions

• a subprocess value representing the created process;
• an input port piped from the process’s standard output, or#f if stdout-output-port was a port;
• an output port piped to the process standard input, or#f if stdin-input-port was a port;
• an input port piped from the process’s standard error, or#f if stderr-output-port was a port.

Important: All ports returned fromsubprocess must be explicitly closed withclose-input-port and
close-output-port .

The returned ports are file-stream ports (see§11.1.6), and they are placed into the management of the current custodian
(see§9.2). The exn:fail exception is raised when a low-level error prevents the spawning of a process or the
creation of operating system pipes for process communication.

A subprocess value can be used to obtain further information about the process:

• (subprocess-wait subprocess) blocks until the process terminates, then returns void.

• (subprocess-status subprocess) returns’running if the process is still running, or its exit code
otherwise. The exit code is an exact integer, and0 typically indicates success. If the process terminated due to
a fault or signal, the exit code is non-zero.

• (subprocess-kill subprocess force?) terminates the subprocess ifforce? is true and if the
process still running, then returns void. If an error occurs during termination, theexn:fail exception is
raised.

If force? is #f under Unix and Mac OS X, the subprocess is sent an interrupt signal instead of a kill signal
(and the subprocess might handle the signal without terminating). Under Windows, no action is taken when
force? is #f .

• (subprocess-pid subprocess) returns the operating system’s numerical ID for the process (if any),
valid only as long as the process is running. The ID is an exact integer.

• (subprocess? v) returns#t if v is a subprocess value,#f otherwise.

MzLib provides procedures for executing shell commands (as opposed to directly executing a program); see Chapter 36
of PLT MzLib: Libraries Manualfor details.

15.3 Windows Actions

(shell-execute verb-string target-string parameters-string dir-path show-mode-symbol)
performs the action specified byverb-string on target-string in Windows. For example,

(shell-execute #f "http://www.plt-scheme.org" "" (current-directory) ’sw shownormal)

opens the PLT Scheme home page in a browser window. For platforms other than Windows, the
exn:fail:unsupported exception is raised.

Theverb-string can be#f , in which case the operating system will use a default verb. Common verbs include
"open" , "edit" , "find" , "explore" , and"print" .

The target-string is the target for the action, usually a filename path. The file could be executable, or it could
be a file with a recognized extension that can be handled by an installed application.

Theparameters-string argument is passed on to the system to perform the action. For example, in the case of
opening an executable, theparameters-string is used as the command line (after the executable name).

181

15.4. Operating System Environment Variables 15. System Utilities

Thedir-path is used as the current directory when performing the action.

Theshow-mode-symbol sets the display mode for a Window affected by the action. It must be one of the following
symbols; the description of each symbol’s meaning is taken from the Windows API documentation.

• ’sw hide or ’SW HIDE — Hides the window and activates another window.

• ’sw maximize or ’SW MAXIMIZE — Maximizes the window.

• ’sw minimize or ’SW MINIMIZE — Minimizes the window and activates the next top-level window in the
z-order.

• ’sw restore or ’SW RESTORE— Activates and displays the window. If the window is minimized or maxi-
mized, Windows restores it to its original size and position.

• ’sw show or ’SW SHOW— Activates the window and displays it in its current size and position.

• ’sw showdefault or ’SW SHOWDEFAULT— Uses a default.

• ’sw showmaximized or ’SW SHOWMAXIMIZED— Activates the window and displays it as a maximized
window.

• ’sw showminimized or ’SW SHOWMINIMIZED— Activates the window and displays it as a minimized
window.

• ’sw showminnoactive or ’SW SHOWMINNOACTIVE— Displays the window as a minimized window.
The active window remains active.

• ’sw showna or ’SW SHOWNA— Displays the window in its current state. The active window remains active.

• ’sw shownoactivate or ’SW SHOWNOACTIVATE— Displays a window in its most recent size and posi-
tion. The active window remains active.

• ’sw shownormal or ’SW SHOWNORMAL— Activates and displays a window. If the window is minimized
or maximized, Windows restores it to its original size and position.

If the action fails, theexn:fail exception is raised. If the action succeeds, the result is#f . In future versions of
MzScheme, the result may be a subprocess value (see§15.2) if the operating system did returns a process handle (but
if a subprocess value is returned, its process ID will be0 instead of the real process ID).

15.4 Operating System Environment Variables

(getenv name-string) gets the value of an operating system environment variable. Thename-string argu-
ment cannot contain a null character; if an environment variable named byname-string exists, its value is returned
(as a string); otherwise,#f is returned.

(putenv name-string value-string) sets the value of an operating system environment variable. The
name-string andvalue-string arguments are strings that cannot contain a null character; the environment
variable named byname-string is set tovalue-string . The return value is#t if the assignment succeeds,#f
otherwise.

15.5 Runtime Information

(system-type [mode]) returns information about the operating system, build mode, or machine for a running
MzScheme. Themodeargument must be either’os (the default),’link , or ’machine . In ’os mode, the possible
symbol results are:

182

15. System Utilities 15.5. Runtime Information

• ’unix
• ’windows
• ’macosx

In ’link mode, the possible symbol results are:

• ’static (Unix)
• ’shared (Unix)
• ’dll (Windows)
• ’framework (Mac OS X)

(Future ports of MzScheme may expand the list of system and link symbol results.) In’machine mode, then the
result is a string, which contains further details about the current machine in a platform-specific format.

(system-language+country) returns a string to identify the current user’s language and country. Under Unix
and Mac OS X, the string is five characters: two lowercase ASCII letters for the language, an underscore, and two
uppercase ASCII letters for the country. Under Windows, the string can be arbitrarily long, but the language and
country are in English (all ASCII letters or spaces) separated by an underscore. Under Unix, the result is determined
by checking theLC ALL , LC TYPE, andLANG environment variables, in that order (and the result is used if the
environment variable’s value starts with two lowercase ASCII letters, an underscore, and two uppercase ASCII letters,
followed by either nothing or a period). Under Windows and Mac OS X, the result is determined by system calls.

(system-library-subpath [variant?]) returns a relative directory path string. This string can be used to
build paths to system-specific files. For example, when MzScheme is running under Solaris on a Sparc architecture, the
subpath is"sparc-solaris" , while the subpath for Windows on an Intel architecture is"win32 \\i386" . The
subpath also distinguishes among MzScheme variants (e.g., the “3m” variant with more precise garbage collection)
by extending the “normal” variant path with a subdirectory. Ifvariant? is #f , then the returned path is for the
“normal” variant.

(version) returns an immutable string indicating the currently executing version of MzScheme.

(banner) returns an immutable string for MzScheme’s start-up banner text (or the banner text for an embedding
program, such as MrEd). The banner string ends with a newline.

(vector-set-performance-stats! mutable-vector [thread]) sets elements inmutable-vector
to report current performance statistics. Ifthread is specified, a particular set of thread-specific statistics are re-
ported, otherwise a different set of global statics are reported.

For global statistics, up to 8 elements are set in the vector, starting from the beginning. (In future versions of
MzScheme, additional elements will be set.) Ifmutable-vector hasn elements wheren < 8, then then ele-
ments are set to the firstn performance-statistics values. The reported statistics values are as follows, in the order that
they are set withinmutable-vector :

• 0: The same value as returned bycurrent-process-milliseconds (see§15.1.2).

• 1: The same value as returned bycurrent-milliseconds (see§15.1.2).

• 2: The same value as returned bycurrent-gc-milliseconds (see§15.1.2).

• 3: The number of garbage collections performed since start-up.

• 4: The number of thread context switches performed since start-up.

• 5: The number of internal stack overflows handled since start-up.

183

15.5. Runtime Information 15. System Utilities

• 6: The number of threads currently scheduled for execution (i.e., threads that are running, not suspended, and
not unscheduled due to a synchronization).

• 7: The number of syntax objects read from compiled code since start-up.

• 8: The number of hash-table searches performed.

• 9: The number of additional hash slots searched to complete hash searches (using double hashing).

For thread-specific statistics, up to 4 elements are set in the vector:

• 0: #t if the thread is running,#f otherwise (same result asthread-running?).

• 1: #t if the thread has terminated,#f otherwise (same result asthread-dead?).

• 2: #t if the thread is currently blocked on a synchronizable event (or sleeping for some number of milliseconds),
#f otherwise.

• 3: The number of bytes currently in use for the thread’s continuation.

184

16. Library Collections and MzLib

A library is module declaration for use by multiple programs. MzScheme provides a mechanism for grouping
libraries intocollections that can be easily distributed and easily added to a local MzScheme installation. A collection
is normally installed into a directory namedcollects that is in the same directory as the MzScheme executable.1 Each
installed collection is represented as a subdirectory within thecollects directory.

Client programs incorporate a library by using a module path of the form(lib library-file-path
collection · · ·) . For example, the following module uses thematch.ss library module from the defaultmzlib
collection, thegetinfo.ss library module from thesetup collection, and thecards.ss library module from thegames
collection’scards subcollection:

(module my-game mzscheme
(require (lib "match.ss")

(lib "getinfo.ss" "setup")
(lib "cards.ss" "games" "cards"))

....)

In general,(lib library-file-path collection ···) accesses the module in the filelibrary-file-path
in the collection named by the firstcollection , where bothlibrary-file-path andcollection are literal
strings that will be used as elements in a path. If additionalcollection strings are provided, they are used to form
a path into a subcollection. If thecollection arguments are omitted, the library is accessed in themzlib collection.

The info.ss library in a collection is special by convention. This library is used to provide information about the
collection tomzc (the MzScheme compiler) or MrEd. For more information seePLT mzc: MzScheme Compiler
ManualandPLT MrEd: Graphical Toolbox Manual.

There is usually one standardcollects directory, but MzScheme supports any number of directories containing collec-
tions. The search path for collections is determined by thecurrent-library-collection-paths parameter
(see§7.9.1.6). The list of paths incurrent-library-collection-paths is searched from first to last to lo-
cate a collection. To find a sub-collection, the enclosing collection is first found; if the sub-collection is not present in
the found enclosing collection, then the search continues by looking for another instance of the enclosing collection,
and so on. In other words, the directory tree for each element in the search path is spliced together with the directory
trees of other path elements. (The “splicing” of tress applies only to directories; a file within a collection is found only
within the first instance of the collection.)

The value of thecurrent-library-collection-paths parameter is initialized by the stand-alone version of
MzScheme to the result of(find-library-collection-paths) .2 Thefind-library-collection-paths
procedure produces a list of paths as follows:

• The path produced by(build-path (find-system-path ’addon-dir) (version) "collects")
is the first element of the default collection path list, unless the value of theuse-user-specific-search-paths
parameter is#f .

1In the PLT distribution of MzScheme for Unix, thecollects directory is in the top-levelplt directory, rather than with the platform-specific
binary inplt/bin .

2MrEd initializes thecurrent-library-collection-paths parameter in the same way.

185

16. Library Collections and MzLib

• If the executable embeds a list of search paths, they are included (in order) after the first element in the default
collection path list. Embedded relative paths are included only when the corresponding directory exists relative
to the executable.

• If the directory specified by(find-system-path ’collects-dir) is absolute, or if it is relative (to
the executable) and it exists, then it is added to the end of the default collection path list.

• If the PLTCOLLECTS environment variable is defined, it is combined with the default list using
path-list-string->path-list (see§11.3.2). If it is not defined, the default collection path list (as
constructed by the first three bullets above) is used directly.

The path produced by(find-system-path ’collects-dir) is normally embedded in an executable; in
stand-alone MzScheme (or MrEd), it can be overridden via a--collects or -X command-line flag.

(collection-path collection · · ·1) returns the path containing the libraries ofcollection ; if the col-
lection is not found, theexn:fail:filesystem exception is raised.

MzScheme is distributed with a standard collection of utility libraries with MzLib as the representative library. The
name of this collection ismzlib , so the libraries are distributed in amzlib subdirectory of thecollects library collection
directory. MzLib is described inPLT MzLib: Libraries Manual.

186

17. Running MzScheme

The stand-alone version of MzScheme accepts a number of command-line flags.

MzScheme accepts the following flags:

• Startup file and expression flags:

◦ -e expr or --eval expr : Evaluatesexpr after MzScheme starts.
◦ -f file or --load file : Loadsfile after MzScheme starts.
◦ -d file or --load-cd file : Usesload/cd to loadfile after MzScheme starts.
◦ -t file or --require file : Requiresfile after MzScheme starts.
◦ -F or --Load : Loads each remaining argument as a file after MzScheme starts.
◦ -D or --Load-cd : Loads each remaining argument as a file usingload/cd after MzScheme starts.
◦ -T or --Require : Requires each remaining argument as a file after MzScheme starts.
◦ -l file or --mzlib file : Requires the MzLib libraryfile after MzScheme starts.
◦ -L file collect : Requires the libraryfile in the collectioncollect after MzScheme starts.
◦ -M collect : Requires the librarycollect .ss in the collectioncollect after MzScheme starts.
◦ -r file or --script file : Use this flag for MzScheme-based scripts. It mutes the startup banner

printout, suppresses theread -eval -print loop, and loadsfile after MzScheme starts. No argument
afterfile is treated as a flag. The-r or --script flag is a shorthand for-fmv- .

◦ -i file or --script-cd file : Same as-r file or --script file , except that the current
directory is changed tofile ’s directory before it is loaded. The-i or --script-cd flag is a shorthand
for -dmv- .

◦ -u file or --require-script file : Same as-r file or --script file , except thatfile
is require d instead ofload ed. The-u or --require-script flag is a shorthand for-tmv- .

◦ -w or --awk : Loads theawk.ss library after MzScheme starts.
◦ -k n m : Loads code embedded in the executable from file positionn to mafter MzScheme starts. This

flag is useful for creating a stand-alone binary by appending code to the normal MzScheme executable.
SeePLT mzc: MzScheme Compiler Manualfor more details.

◦ -C or --main : Like -r , then calls the function bound tomain in the top-level environment.
The argument tomain is a list of immutable strings; the first string is the path of the file that
was loaded, and the rest of the list contains leftover command-line arguments (the ones installed in
current-command-line-arguments). The main function is called only if no previous evalua-
tions or loads resulted in an uncaught exception.

• Initialization flags:

◦ -X dir or --collects dir : Setsdir as the path to the main collection of libraries (and makes
(find-system-path ’collects-dir) producedir).

◦ -S dir or --search dir : Addsdir to the library collection search path (after a user-specific direc-
tory, if any, and before the main collection directory).

◦ -U or --no-user-path : Omits paths in the search for collections, C libraries, etc. More specifically,
this flag initializes theuse-user-specific-search-paths parameter to#f .

◦ -x or --no-lib-path : Suppresses the initialization ofcurrent-library-collection-paths
(as described in Chapter16).

187

17.1. Flag Conventions 17. Running MzScheme

◦ -N file or --name file : sets the name of the executable as reported by(find-system-path
’run-file) to file . Also,program is initially defined asfile .

◦ -q or --no-init-file : Suppresses loading the user’s initialization file, as described below.
◦ -A or --no-argv : Suppresses the definition ofargv andprogram , as described below.
◦ -j or --no-jit : Disables the native-code just-in-time compiler, setting theeval-jit-enabled

parameter to#f .

• Language setting flags:

◦ -g or --case-sens : Makes the reader initially case-sensitive (the default).
◦ -G or --case-insens : Makes the reader initially case-insensitive.
◦ -s or --set-undef : Creates an initial namespace whereset! will successfully mutate an undefined

global variable (implicitly defining it).

• Miscellaneous flags:

◦ -- : No argument following this flag is used as a flag.
◦ -m or --mute-banner : Suppresses the startup banner text produced by-v .
◦ -v or --version : Suppresses theread -eval -print loop.
◦ -h or --help : Shows information about MzScheme’s command-line flags and then exits, ignoring other

flags.
◦ -p or --persistent : Catches the SIGDANGER (low page space) signal and ignores it (AIX only).

17.1 Flag Conventions

Extra arguments following the last flag are available from thecurrent-command-line-arguments parameter
(see§7.9.1.6) as an immutable vector of immutable strings. The name used to start MzScheme is available from
the find-system-path procedure (see§11.3.2) using ’exec-file . In addition, unless-A is specified, the
argument vector is put into the global variableargv , and the name used to start MzScheme is put into the global
variableprogram as a path.

Multiple single-letter flags (the ones preceded by a single dash) can be collapsed into a single flag by concatenating
the letters, as long as the first flag is not-- . The arguments for each flag are placed after the collapsed flags (in the
order of the flags). For example,

-vfme file expr

and

-v -f file -m -e expr

are equivalent. If a collapsed-- appears before other collapsed flags, it is implicitly moved to the end of the collapsed
set.

17.2 Executable Name

If the MzScheme executable is given a name of the formscheme- dialect , then the command line is effectively
prefixed with

-qAeC ’(require (lib "init.ss" "script-lang" " dialect "))’

The first actual command-line argument thus serves as a file to load. The file is loaded into a namespace that is initial-
ized by thedialect -specificinit.ss library. The loaded file should definemain , which is called with command-line
arguments—starting with the loaded file name—as a list of immutable strings.

188

17. Running MzScheme 17.3. Initialization

17.3 Initialization

Thecurrent-library-collection-paths parameter is initialized (as described in Chapter16) before any
expression or file is evaluated or loaded, unless the-x or --no-lib-path flag is specified.

Unless the-q or --no-init-file flag is specified, a user initialization file is loaded aftercurrent-library-collection-paths
parameter is initialized and before any other expression or file is evaluated or loaded. The path to the user initialization
file is obtained from MzScheme’sfind-system-path procedure using’init-file .

Expressions and files are evaluated and loaded in order that they are provided on the command line, including calls
to main implied by--main , embeddings loaded by-k , and so on. If an uncaught exception occurs, the remaining
expressions and files are skipped. The thread that loads the files and evaluates the expressions is themain thread.
When the main thread terminates (or is killed), the MzScheme process exits.

After the command-line files and expressions are loaded and evaluated, the main thread callsread-eval-print-loop ,
unless the-v , --version , -r , --script , -i , or --script-cd flag is specified.

The exit status for the MzScheme process indicates an error if an error occurs evaluating or loading a command-line
expression or file andread-eval-print-loop is not called afterwards, or if the default exit handler is called
with an exact integer between 1 and 255.

189

18. Writing and Running Scripts

Under Unix, a Scheme file can be turned into an executable script using the shell’s#! convention. The first two
characters of the file must be#! , and the remainder of the first line must be a command to execute the script. For
some platforms, the total length of the first line is restricted to 32 characters.

The simplest script format uses an absolute path to amzscheme executable, followed by-qr . For example, if
mzscheme is installed in/usr/plt/bin , then a file containing the following text acts as a “hello world” script:

#! /usr/plt/bin/mzscheme -qr
(display "Hello, world!")
(newline)

In particular, if the above is put into a filehello and the file is made executable (e.g., withchmod a+x hello), then
typing ./hello at the shell prompt will produce the output “Hello, world!”.

Instead of specifying a complete path to themzscheme executable, an alternative is to require thatmzscheme is in
the user’s command path, and then “trampoline” with/bin/sh :

#! /bin/sh
#|
exec mzscheme -qr "$0" ${1+"$@"}
|#
(display "Hello, world!")
(newline)

The effect is the same, because# starts a one-line comment to/bin/sh , but#| starts a block comment to MzScheme.
Finally, callingmzscheme with exec causes the MzScheme process to replace the/bin/sh process.

To implement a script insidemodule , use-qu instead of-qr :
#! /usr/plt/bin/mzscheme -qu
(module hello mzscheme

(display "Hello, world!")
(newline))

The -qr command-line flag to MzScheme is an abbreviation for the-q flag followed by the-r flag. As detailed in
Chapter17, -q skips the loading of∼/.mzschemerc , while -r suppresses MzScheme’s startup banner, suppresses the
read-eval-print loop, and loads the specified file. In the first example above, the file for-r is supplied by the shell’s
#! handling: it automatically puts the name of the executed script at the end of the#! line. In the second example,
the script file name is supplied explicitly with"$0" . The -qu flag is similarly an abbreviation for-q followed by
-u , which acts like-r except that itrequire s the script file instead ofload ing it.

If command-line arguments are supplied to a shell script, the shell attaches them as extra arguments to the script
command. Among its other jobs, the-r or -u flag ensures that the extra arguments are not interpreted by MzScheme,
but instead put into thecurrent-command-line-arguments parameter as a vector of strings. For example,
the followingmock script prints each command-line argument back on its own line:

#! /usr/plt/bin/mzscheme -qu

190

18. Writing and Running Scripts

(module mock mzscheme
(for-each (lambda (arg)

(display arg)
(newline))

(vector->list (current-command-line-arguments))))

Thus,mock a b c would print “a”, “b”, and “c”, each on its own line. The/bin/sh version is similar:
#! /bin/sh
#|
exec mzscheme -qu "$0" ${1+"$@"}
|#
(module mock mzscheme

(for-each (lambda (arg)
(display arg)
(newline))

(vector->list (current-command-line-arguments))))

The ${1+"$@"} part of the mzscheme command line copies all shell script arguments to MzScheme for
current-command-line-arguments .

For high-quality scripts, use thecmdline MzLib library to parse command-line arguments (see Chapter 8 ofPLT
MzLib: Libraries Manual). The followinghello2 script accepts a--chinese flag to produce Chinese pinyin output.
Due to the built-in functionality of thecommand-line form, the script also accepts a--help or -h flag that
produces detailed help on the available command-line options:

#! /bin/sh
#|
exec mzscheme -qu "$0" ${1+"$@"}
|#
(module hello2 mzscheme

(require (lib "cmdline.ss"))

(define chinese? #f)

(command-line
"hello2"
(current-command-line-arguments)
(once-each

[("--chinese") "Chinese output"
(set! chinese? #t)]))

(display (if chinese?
"Nihao, shijie!"
"Hello, world!"))

(newline))

191

19. Honu

Honu is a family of languages built on top of MzScheme. Honu syntax resembles Java, instead of Scheme. Like
Scheme, however, Honu has no fixed syntax. Honu supports extensibility through macros and a base syntax of H-
expressions, which are analogous to S-expressions.

The MzScheme reader incorporates an H-expression reader, and MzScheme’s printer also supports printing values in
Honu syntax. The reader can be put into H-expression mode either by including#hx or #honu in the input stream,
or by callingread-honu or read-honu-syntax instead ofread or read-syntax :

• (read-honu [input-port]) is the same as callingread with the same arguments, but with#hx implic-
itly in the stream at the start of the read.

• (read-honu-syntax [source-name-v input-port]) is the same as callingread-syntax with
the same arguments, but with#hx implicitly in the stream at the start of the read.

Similarly, print 1 produces Honu output when theprint-honu parameter is set to#t .

When the reader encounters#hx , it reads a single H-expression, and it produces an S-expression that encodes the
H-expression. Except for atomic H-expressions, evaluating this S-expression as Scheme is unlikely to succeed. In
other words, H-expressions are not intended as a replacement for S-expressions to represent Scheme code.

When the reader encounters#honu , it reads H-expressions repeatedly until an end-of-file is encountered. The col-
lected H-expression results are wrapped with(module id (lib "honu-module.ss" "honu-module")
....) , whereid is generated as described below. Thehonu-module.ss module defines#%module-begin to
parse S-expressions that encode H-expressions; expanding the module produces a Scheme program that corresponds
to the H-expression-based Honu program in the original input stream. Thus, a file that starts with#honu can define a
module to berequire d in a Scheme module or another Honu module.

In themodule wrapper for#honu , theid is derived from the read port’s name: if the port’s name is a symbol, then
it is used asid ; if the port’s name is a path, then the last element of the path is converted to a symbol and used asid ;
otherwise,’unknown is used.

The honu-module.ss module and Honu language dialects are documented elsewhere. In principle, MzScheme’s
parsing and printing of H-expressions is independent of the Honu language, so it is currently documented here.

19.1 Honu Input Parsing

Ignoring whitespace, an H-expression is either

• a number (see§19.1.1);

• an identifier (see§19.1.2);

1More precisely, the default print handler.

192

19. Honu 19.1. Honu Input Parsing

• a string (see§19.1.3);

• a character (see§19.1.4);

• a sequence of H-expressions between parentheses (see§19.1.5);

• a sequence of H-expressions between square brackets (see§19.1.5);

• a sequence of H-expressions between curly braces (see§19.1.5);

• a comment followed by an H-expression (see§19.1.6);

• #; followed by two H-expressions (see§19.1.6);

• #hx followed by an H-expression;

• #sx followed by an S-expression (see§11.2.4).

Whitespace for H-expressions is as in Scheme: any character for whichchar-whitespace? returns true counts as
a whitespace.

19.1.1 Numbers

The syntax for Honu numbers is the same as for Java. The S-expression encoding of a particular H-expression number
is the obvious Scheme number.

19.1.2 Identifiers

The syntax for Honu identifiers is the union of Java identifiers plus semicolon (;), comma (,), and a set of operator
identifiers. Anoperator identifier is any combination of the following characters:

+ - = ? : < > . ! % ˆ & * / ∼ |

The S-expression encoding of an H-expression identifier is the obvious Scheme symbol.

Input is parsed to form maximally long identifiers. For example, the inputint->int; is parsed as four H-
expressions:int , -> , int , and; .

19.1.3 Strings

The syntax for an H-expression string is exactly the same as for an S-expression string, and an H-expression string is
represented by the obvious Scheme string.

19.1.4 Characters

The syntax for an H-expression character is the same as for an H-expression string that has a single content character,
except that a single quote (’) surrounds the character instead of double quotes ("). The S-expression representation
of an H-expression character is the obvious Scheme character.

19.1.5 Parentheses, Brackets, and Braces

A parenthesized (), bracketed [], or braced{} H-expression sequence is represented by a Scheme list. The first element
of the list is’#%parens for a paremnthesized sequence,’#%brackets for a brackets sequence, or’#%braces
for a braced sequence. The remaining elements are the Scheme representation for the parenthesized, bracketed, or
braced H-expressions in order.

193

19.2. Honu Output Printing 19. Honu

19.1.6 Comments

An H-expression comment starts with either// or /* . In the former case, the comment runs until a linefeed or return.
In the second case, the comment runs until*/ , but /* */ comments can be nested. Comments are treated
like whitespace.

A #; starts an H-expression comment, as in Scheme. It is followed by an H-expression to be treated as white. Note
that#; is equivalent to#sx#;#hx .

19.2 Honu Output Printing

Some Scheme values have a standard H-expression representation. For values with no H-expression representation
but with a read able S-expression form, the MzScheme printer produces an S-expression prefixed with#sx . For
values with neither an H-expression form or aread able S-expression form, then printer produces output of the form
#<...> , as in Scheme mode.

The values with H-expression forms are as follows:

• Every real number has an H-expression form, although the representation for an exact, non-integer rational
number is actually three H-expressions, where the middle H-expression is/ .

• Every character string is represented the same in H-expression form as its S-expression form.

• Every character is represented like a single-character string, but (1) using a single quote as the delimiter instead
of double quotes, and (2) protecting a single-quote character content a backslash instead of protecting double-
quote character content.

• A list is represented with the H-expression sequencelist(v , · · ·) , where eachv is the representation of
each element of the list.

• A pair that is not a list is represented with the H-expression sequencecons(v1 , v2) , wherev1 andv2 are
the representations of the pair elements.

• A vector’s representation depends on the value of theprint-vector-length parameter (see§7.9.1.4). If it
is true, the vector is represented with the H-expression sequencevectorN(n, v , · · ·) , wheren is the length
of the vector and eachv is the representation of each element of the vector, and multiple instances of the same
value at the end of the vector are represented by a singlev . If print-vector-length is set to false, the
vector is represented with the H-expression sequencevector(v , · · ·) , where eachv is the representation of
each element of the vector.

• The empty list is represented as the H-expressionnull .

• True is represented as the H-expressiontrue .

• False is represented as the H-expressionfalse .

194

20. Windows Path Syntax

In general, a Windows pathname consists of an optional drive specifier and a drive-specific path. As noted in§11.3, a
Windows path can beabsolute but still relative to the current drive; such paths start with a forward slash or backslash
separator and are not UNC paths or paths that start with\\?\.

A path that starts with a drive specification iscomplete. Roughly, a drive specification is either a Roman letter
followed by a colon, a UNC path of the form\\machine \volume , or a\\?\ form followed by something other than
REL\element . (Variants of\\?\ paths are described further below.)

MzScheme fails to implement the usual Windows path syntax in one way. Outside of MzScheme, a pathname
C:rant.txt can be a drive-specific relative path. That is, it names a filerant.txt on driveC:, but the complete path
to the file is determined by the current working directory for driveC:. MzScheme does not support drive-specific
working directories (only a working directory across all drives, as reflected by thecurrent-directory parame-
ter; see§7.9.1.1). Consequently, MzScheme implicitly converts a path likeC:rant.txt into C:\rant.txt . More generally,

• MzScheme-specific:Whenever a path starts with a drive specifierletter : that is not followed by a forward slash
or backslash, a backslash is inserted as the path is expanded.

Otherwise, MzScheme follows standard Windows path conventions, and MzScheme adds a\\?\REL convention plus
conventions to deal with excessive backslashes in\\?\ paths. In the following,letter stands for a Roman letter (case
does not matter),machine stands for any sequence of characters that does not include backslashes or forward slashes
and is not?, volume stands for any sequence of characters that does not include backslashes or forward slashes, and
element stands for any sequence of characters that does not include backslashes.

• Trailing spaces and periods in a path element are ignored when the element is the last one in the path, unless the
path starts with\\?\ or the element consists of only spaces and periods.

• The following special “files”, which access devices, exist in all directories, case-insensitively, and with all
possible endings after a period or colon, except in pathnames that start with\\?\: NUL, CON, PRN, AUX,
COM1, COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3, LPT4, LPT5, LPT6,
LPT7, LPT8, LPT9.

• Except for\\?\ paths, forward slashes are equivalent to backslashes. Except for\\?\ paths and the start of
UNC paths, multiple adjacent slashes and backslashes count as a single backslash. In a path that starts\\?\
paths, elements can be separated by either a single or double backslash.

• A directory can be accessed with or without a trailing separator. In the case of a non-\\?\ path, the trailing
separator can be any number of forward slashes and backslashes; in the case of a\\?\ path, a trailing separator
must be a single backslash, except that two backslashes can follow\\?\letter :.

• Except for\\?\ paths, a single period (.) as a path element means “the current directory”, and a double period
(..) as a path element means “the parent directory.” Up-directory path elements (i.e.,..) immediately after a
drive are ignored.

• A pathname that starts\\machine \volume (where a forward slash can replace any backslash) is a UNC path,
and the starting\\machine \volume counts as the drive specifier.

195

20. Windows Path Syntax

• Normally, a path element cannot contain any of the following characters:

< > : " / \ |

Except for backslash, path elements containing these characters can be accessed using a\\?\ path (assuming
that the underlying filesystem allows the characters).

• In a pathname that starts\\?\letter :\, the\\?\letter :\ prefix counts as the path’s drive, as long as the path does
not both contain non-drive elements and end with two consecutive backslashes, and as long as the path contains
no sequence of three or more backslashes. Forward slashes cannot be used in place of backslashes (but forward
slashes can be used in element names, though the result generally does not name an actual directory or file).

• In a pathname that starts\\?\UNC\machine \volume , the\\?\UNC\machine \volume prefix counts as the
path’s drive, as long as the path does not end with two consecutive backslashes, and as long as the path contains
no sequence of three or more backslashes. Two backslashes can appear in place of the backslash afterUNC
and/or the backslash aftermachine . The UNC part must be exactly the three uppercase letters, and forward
slashes cannot be used in place of backslashes (but forward slashes can be used in element names).

• MzScheme-specific:A pathname that starts\\?\REL\element or \\?\REL\\element is a relative path, as
long as the path does not end with two consecutive backslashes, and as long as the path contains no sequence
of three or more backslashes. This MzScheme-specific path form supports relative paths with elements that are
not normally expressible in Windows paths (e.g., a final element that ends in a space). TheREL part must be
exactly the three uppercase letters, and forward slashes cannot be used in place of backslashes. If the path starts
\\?\REL\.. then for as long as the path continues with reptitions of\.., each element counts as an up-directory
element; a single backslash must be used to seperate the up-directory elements. As soon as a second backslash
is used to separate the elements, or as soon as a non-.. element is encountered, the remaining elements are all
literals (never up-directory elements). When a\\?\REL path value is converted to a string (or when the path
value is written or displayed), the string does not contain the starting\\?\REL or the immediately following
backslashes; converting a path value to a byte string preserves the\\?\REL prefix.

Three additional MzScheme-specific rules provide meanings to character sequences that are otherwise ill-formed as
Windows paths:

• MzScheme-specific:In a pathname of the form\\?\any \\ whereany is any sequence of characters that does
not startletter :, the entire path counts as the path’s (non-existent) drive.

• MzScheme-specific:In a pathname of the form\\?\any \\\elements , whereany is any sequence of characters
that does not startletter : andelements is any sequence that does not start with a backslash, does not end with
two backslashes, and does not contain a sequence of three backslashes, the\\?\any \\\ part counts as the path’s
(non-existent) drive.

• MzScheme-specific:In a pathname that starts\\?\ and does not match either of the patterns from the preceding
five bullets,\\?\ counts as the path’s (non-existent) drive.

Outside of MzScheme, except for\\?\ paths, pathnames are typically limited to 259 characters. MzScheme internally
converts pathnames to\\?\ form as needed to avoid this limit. The operating system cannot access files through\\?\
paths that are longer than 32,000 characters or so.

Where the above descriptions says “character,” substitute “byte” for interpreting byte strings as paths. The encoding
of Windows paths into bytes preserves ASCII characters, and all special characters mentioned above are ASCII, so all
of the rules are the same.

Beware that the backslash path separator is an escape character in MzScheme strings. Thus, the path\\?\REL\..\\..
as a string must be written" \\\\?\\REL\\.. \\\\.." .

196

License

GNU Library General Public License

Version 2, June 1991

Copyright (C) 1991 Free Software Foundation, Inc.

675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

[This is the first released version of the library GPL. It is numbered 2 because it goes with version 2 of the ordinary GPL.]

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU General Public Licenses are
intended to guarantee your freedom to share and change free software—to make sure the software is free for all its users.

This license, the Library General Public License, applies to some specially designated Free Software Foundation software, and to any other libraries
whose authors decide to use it. You can use it for your libraries, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if you wish), that you receive source code or can get it if you want it, that
you can change the software or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute copies of the library, or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients all the rights that we gave you. You
must make sure that they, too, receive or can get the source code. If you link a program with the library, you must provide complete object files to
the recipients so that they can relink them with the library, after making changes to the library and recompiling it. And you must show them these
terms so they know their rights.

Our method of protecting your rights has two steps: (1) copyright the library, and (2) offer you this license which gives you legal permission to
copy, distribute and/or modify the library.

Also, for each distributor’s protection, we want to make certain that everyone understands that there is no warranty for this free library. If the library
is modified by someone else and passed on, we want its recipients to know that what they have is not the original version, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that companies distributing free software will
individually obtain patent licenses, thus in effect transforming the program into proprietary software. To prevent this, we have made it clear that
any patent must be licensed for everyone’s free use or not licensed at all.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License, which was designed for utility programs.
This license, the GNU Library General Public License, applies to certain designated libraries. This license is quite different from the ordinary one;
be sure to read it in full, and don’t assume that anything in it is the same as in the ordinary license.

The reason we have a separate public license for some libraries is that they blur the distinction we usually make between modifying or adding to
a program and simply using it. Linking a program with a library, without changing the library, is in some sense simply using the library, and is
analogous to running a utility program or application program. However, in a textual and legal sense, the linked executable is a combined work, a
derivative of the original library, and the ordinary General Public License treats it as such.

Because of this blurred distinction, using the ordinary General Public License for libraries did not effectively promote software sharing, because
most developers did not use the libraries. We concluded that weaker conditions might promote sharing better.

However, unrestricted linking of non-free programs would deprive the users of those programs of all benefit from the free status of the libraries

197

20. Windows Path Syntax

themselves. This Library General Public License is intended to permit developers of non-free programs to use free libraries, while preserving your
freedom as a user of such programs to change the free libraries that are incorporated in them. (We have not seen how to achieve this as regards
changes in header files, but we have achieved it as regards changes in the actual functions of the Library.) The hope is that this will lead to faster
development of free libraries.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to the difference between a “work based
on the library” and a “work that uses the library”. The former contains code derived from the library, while the latter only works together with the
library.

Note that it is possible for a library to be covered by the ordinary General Public License rather than by this special one.

GNU LIBRARY GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library which contains a notice placed by the copyright holder or other authorized party
saying it may be distributed under the terms of this Library General Public License (also called “this License”). Each licensee is addressed
as “you”.

A “library” means a collection of software functions and/or data prepared so as to be conveniently linked with application programs (which
use some of those functions and data) to form executables.

The “Library”, below, refers to any such software library or work which has been distributed under these terms. A “work based on the
Library” means either the Library or any derivative work under copyright law: that is to say, a work containing the Library or a portion of it,
either verbatim or with modifications and/or translated straightforwardly into another language. (Hereinafter, translation is included without
limitation in the term “modification”.)

“Source code” for a work means the preferred form of the work for making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated interface definition files, plus the scripts used to control compilation and
installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The act of running
a program using the Library is not restricted, and output from such a program is covered only if its contents constitute a work based on the
Library (independent of the use of the Library in a tool for writing it). Whether that is true depends on what the Library does and what the
program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty; keep intact all the notices
that refer to this License and to the absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the Library, and copy and distribute
such modifications or work under the terms of Section 1 above, provided that you also meet all of these conditions:

a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a table of data to be supplied by an application program that uses the facility,

other than as an argument passed when the facility is invoked, then you must make a good faith effort to ensure that, in the event
an application does not supply such function or table, the facility still operates, and performs whatever part of its purpose remains
meaningful.
(For example, a function in a library to compute square roots has a purpose that is entirely well-defined independent of the application.
Therefore, Subsection 2d requires that any application-supplied function or table used by this function must be optional: if the
application does not supply it, the square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the Library, and can be
reasonably considered independent and separate works in themselves, then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the same sections as part of a whole which is a work based on the Library,
the distribution of the whole must be on the terms of this License, whose permissions for other licensees extend to the entire whole, and
thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works based on the Library.

In addition, mere aggregation of another work not based on the Library with the Library (or with a work based on the Library) on a volume
of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so that they refer to the ordinary GNU General Public License, version 2, instead
of to this License. (If a newer version than version 2 of the ordinary GNU General Public License has appeared, then you can specify that
version instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a library.

198

20. Windows Path Syntax

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object code or executable form under the terms
of Sections 1 and 2 above provided that you accompany it with the complete corresponding machine-readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering equivalent access to copy the source
code from the same place satisfies the requirement to distribute the source code, even though third parties are not compelled to copy the
source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the Library by being compiled or linked
with it, is called a “work that uses the Library”. Such a work, in isolation, is not a derivative work of the Library, and therefore falls outside
the scope of this License.

However, linking a “work that uses the Library” with the Library creates an executable that is a derivative of the Library (because it contains
portions of the Library), rather than a “work that uses the library”. The executable is therefore covered by this License. Section 6 states
terms for distribution of such executables.

When a “work that uses the Library” uses material from a header file that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not. Whether this is true is especially significant if the work can be linked
without the Library, or if the work is itself a library. The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros and small inline functions
(ten lines or less in length), then the use of the object file is unrestricted, regardless of whether it is legally a derivative work. (Executables
containing this object code plus portions of the Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under the terms of Section 6. Any
executables containing that work also fall under Section 6, whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also compile or link a “work that uses the Library” with the Library to produce a work
containing portions of the Library, and distribute that work under terms of your choice, provided that the terms permit modification of the
work for the customer’s own use and reverse engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the Library and its use are covered by this
License. You must supply a copy of this License. If the work during execution displays copyright notices, you must include the copyright
notice for the Library among them, as well as a reference directing the user to the copy of this License. Also, you must do one of these
things:

a) Accompany the work with the complete corresponding machine-readable source code for the Library including whatever changes
were used in the work (which must be distributed under Sections 1 and 2 above); and, if the work is an executable linked with the
Library, with the complete machine-readable “work that uses the Library”, as object code and/or source code, so that the user can
modify the Library and then relink to produce a modified executable containing the modified Library. (It is understood that the
user who changes the contents of definitions files in the Library will not necessarily be able to recompile the application to use the
modified definitions.)

b) Accompany the work with a written offer, valid for at least three years, to give the same user the materials specified in Subsection 6a,
above, for a charge no more than the cost of performing this distribution.

c) If distribution of the work is made by offering access to copy from a designated place, offer equivalent access to copy the above
specified materials from the same place.

d) Verify that the user has already received a copy of these materials or that you have already sent this user a copy.

For an executable, the required form of the “work that uses the Library” must include any data and utility programs needed for reproducing
the executable from it. However, as a special exception, the source code distributed need not include anything that is normally distributed
(in either source or binary form) with the major components (compiler, kernel, and so on) of the operating system on which the executable
runs, unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that do not normally accompany the
operating system. Such a contradiction means you cannot use both them and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library together with other library facilities not
covered by this License, and distribute such a combined library, provided that the separate distribution of the work based on the Library and
of the other library facilities is otherwise permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities.
This must be distributed under the terms of the Sections above.

b) Give prominent notice with the combined library of the fact that part of it is a work based on the Library, and explaining where to
find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense, link with, or distribute the Library is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long
as such parties remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are prohibited by law if you do not accept this License. Therefore, by modifying
or distributing the Library (or any work based on the Library), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically receives a license from the original
licensor to copy, distribute, link with or modify the Library subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing compliance by third parties to this License.

199

20. Windows Path Syntax

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse
you from the conditions of this License. If you cannot distribute so as to satisfy simultaneously your obligations under this License and
any other pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a patent license would not
permit royalty-free redistribution of the Library by all those who receive copies directly or indirectly through you, then the only way you
could satisfy both it and this License would be to refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section is intended to
apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity of any such
claims; this section has the sole purpose of protecting the integrity of the free software distribution system which is implemented by public
license practices. Many people have made generous contributions to the wide range of software distributed through that system in reliance
on consistent application of that system; it is up to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by copyrighted interfaces, the original copy-
right holder who places the Library under this License may add an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Library General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and conditions either of that version or of any later version published by the Free
Software Foundation. If the Library does not specify a license version number, you may choose any version ever published by the Free
Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions are incompatible with these, write to
the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the Free Software Foundation;
we sometimes make exceptions for this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE LIBRARY, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE LIBRARY IS WITH YOU. SHOULD
THE LIBRARY PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA
BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE LIBRARY
TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

200

Index

+inf.0 , 13
+nan.0 , 13
,, 117
,@,117
-- , 188
--Load , 187
--Load-cd , 187
--Require , 187
--awk , 187
--case-insens , 188
--case-sens , 188
--collects , 187
--eval , 187
--help , 188
--load , 187
--load-cd , 187
--main , 187
--mute-banner , 188
--mzlib , 187
--name , 188
--no-argv , 188
--no-init-file , 188
--no-jit , 188
--no-lib-path , 187
--no-user-path , 187
--persistent , 188
--require , 187
--require-script , 187
--script , 187
--script-cd , 187
--search , 187
--set-undef , 188
--version , 188
-A , 188
-C , 187
-D , 187
-F , 187
-G , 188
-L , 187
-M, 187
-N , 188
-S , 187
-T , 187
-U , 187
-X , 187
-d , 187
-e , 187
-f , 187
-g , 188

-h , 188
-i , 187
-inf.0 , 13
-j , 188
-k , 187
-l , 187
-m, 188
-nan.0 , 13
-p , 188
-q , 188
-r , 187
-s , 188
-t , 187
-u , 187
-v , 188
-w , 187
-x , 187
., 117
... , 141
.mzschemerc , 133
: , 118
=>, 5
[] , 69
#! , 118, 190
#" , 116
#’ , 115
#, , 115
#,@, 115
#\backspace , 115
#\linefeed , 115
#\newline , 115
#\nul , 115
#\null , 115
#\page , 115
#\return , 115
#\rubout , 115
#\space , 115
#\tab , 115
#\vtab , 115
#; , 118
#<<, 116
#<undefined> , 12
#<void> , 12
#%, 118
#%app, 157
#%datum, 157
#%module-begin , 157
#%top , 157
#%variable-reference , 11

201

INDEX

#&, 115
#n=, 118, 120
#n#, 118, 120
#‘ , 115
#ci , 117
#cs , 117
#hash , 118
#hasheq , 118
#honu , 118
#hx , 118
#k+ , 118
#k- , 118
#px , 118
#px# , 118
#reader , 118
#rx , 118
#rx# , 118
#sx , 118
#∼, 118
\, 117
\’ , 116
\U h, 116
\U hh , 116
\U hhh , 116
\U hhhh , 116
\U hhhhh , 116
\U hhhhhh , 116
\U hhhhhhh , 116
\U hhhhhhhh , 116
\a , 116
\b , 116
\e , 116
\f , 116
\n , 116
\ o, 116
\ ooo , 116
\ oo , 116
\r , 116
\t , 116
\u h, 116
\u hh , 116
\u hhh , 116
\u hhhh , 116
\v , 116
\x hh , 116
\x h, 116
loader.dll , 177
loader.dylib , 177
loader.so , 176
{ }, 69
‘, 117

abort-continuation-prompt , 53
’aborts , 22

absolute-path? , 131
add1 , 13
’addon-dir , 133
alarm-evt , 63
alarms,63
all-defined , 40
all-defined-except , 40
all-except , 39
all-from , 40
all-from-except , 40
and , 6
andmap, 12
’any , 109
’any-one , 109
’append , 93
append! , 24
argv , 72, 188
arithmetic-shift , 14
arity , 26
arity-at-least , 25
arity-at-least-value , 25
arity-at-least? , 25
assoc , 24
assq , 24
assv , 24
AUX, 195

banner , 183
begin , 6, 9
begin-for-syntax , 151
begin0 , 6
bignum,13
’binary , 93
bitwise operators,14
bitwise-and , 14
bitwise-ior , 14
bitwise-not , 14
bitwise-xor , 14
’block , 95
bound-identifier=? , 150
box , 24
box-immutable , 25
box? , 25
boxes,24, 69, 115

printing,70, 119
break-enabled , 57
break-thread , 56, 61
breaks,seethreads, breaking
Bruggeman, Carl,141
build-path , 130
byte codes,177
byte strings,19, 116

as ports,94
printing,120

202

INDEX

reading to and writing from,94
byte-pregexp , 86
byte-pregexp? , 87
byte-regexp , 86
byte-regexp? , 87
byte? , 19
bytes,19
bytes , 19
bytes->immutable-bytes , 19
bytes->list , 19
bytes->path , 129
bytes->path-element , 130
bytes->string/latin-1 , 20
bytes->string/locale , 20
bytes->string/utf-8 , 20
bytes-append , 19
bytes-close-converter , 22
bytes-convert , 22
bytes-convert-end , 22
bytes-converter? , 23
bytes-copy , 19
bytes-copy! , 19
bytes-fill! , 19
bytes-length , 19
bytes-open-converter , 21
bytes-ref , 19
bytes-set! , 19
bytes-utf-8-index , 21
bytes-utf-8-length , 21
bytes-utf-8-ref , 21
bytes<? , 19
bytes=? , 19
bytes>? , 19
bytes? , 19

call-in-nested-thread , 61
call-with-break-parameterization , 57
call-with-composable-continuation , 54
call-with-continuation-barrier , 51
call-with-continuation-prompt , 53
call-with-current-continuation , 50
call-with-escape-continuation , 51
call-with-input-file , 93
call-with-output-file , 93
call-with-parameterization , 75
call-with-semaphore , 62
call-with-semaphore/enable-break , 62
call/cc , 50
call/ec , 51
case sensitivity,69
case-lambda , 10
’cc , 16
certificates

syntax,166

’certify-mode , 169
’cf , 16
channel-get , 62
channel-put , 63
channel-put-evt , 63
channel-try-get , 62
channel? , 62
char->integer , 15
char-alphabetic? , 16
char-blank? , 16
char-ci<=? , 15
char-ci<? , 15
char-ci=? , 15
char-ci>=? , 15
char-ci>? , 15
char-downcase , 16
char-foldcase , 17
char-general-category , 16
char-graphic? , 16
char-iso-control? , 16
char-lower-case? , 16
char-numeric? , 16
char-punctuation? , 16
char-symbolic? , 16
char-title-case? , 16
char-titlecase , 16
char-upcase , 16
char-upper-case? , 16
char-utf-8-length , 17
char-whitespace? , 16
char<=? , 15
char<? , 15
char=? , 15
char>=? , 15
char>? , 15
characters,2, 15

constants,115
printing,119

Check Syntax,162, 166
check-duplicate-identifier , 150
choice-evt , 65
’client , 81
’cn , 16
’co , 16
code points,2
collect-garbage , 175
collection-path , 186
collections,185
’collects-dir , 133
column numbers,111
COM1, 195
COM2, 195
COM3, 195

203

INDEX

COM4, 195
COM5, 195
COM6, 195
COM7, 195
COM8, 195
COM9, 195
command-line arguments,72, 187
comments,118

comments
S-expression , 118

communication,61, 62
communications,136
compilation handler,71
compile , 71, 177
compile-allow-set!-undefined , 71
compile-enforce-module-constants , 71
compile-syntax , 177
compiled code,69
compiled-expression? , 178
compiled-module-expression? , 172
compiling,177
’complete , 22, 23
complete-path? , 131
complex,13
CON, 195
concatenate strings,24
cons-immutable , 24
context,54
continuation-mark-set->context , 55
continuation-mark-set->list , 55
continuation-mark-set->list* , 55
continuation-mark-set-first , 55
continuation-mark-set? , 55
continuation-marks , 55
continuation-prompt-available? , 54
continuations,50

barrier crossings,51
barriers,51
escape,51

’continues , 22, 23
control flow,50
copy-file , 135
’cs , 16
curly braces,69
current namespace,71
current-break-parameterization , 57
current-code-inspector , 74
current-command-line-arguments , 72, 188
current-compile , 71
current-continuation-marks , 48, 55
current-custodian , 74, 81
current-directory , 69, 135
current-drive , 135

current-error-port , 69
current-eval , 71
current-evt-pseudo-random-generator , 74
current-exception-handler , 73
current-gc-milliseconds , 180
current-inexact-milliseconds , 179
current-input-port , 69, 92
current-inspector , 74
current-library-collection-paths , 72, 185,

187, 189
current-load , 71
current-load-extension , 72
current-load-relative-directory , 72, 176,

178
current-load/use-compiled , 72
current-locale , 74
current-memory-use , 175
current-milliseconds , 14, 179
current-module-name-prefix , 74
current-module-name-resolver , 74
current-namespace , 71
current-output-port , 69, 92
current-parameterization , 75
current-preserved-thread-cell-values ,

66
current-print , 71
current-process-milliseconds , 180
current-prompt-read , 70
current-pseudo-random-generator , 14, 74
current-reader-guard , 70
current-readtable , 70
current-seconds , 179
current-security-guard , 74, 80
current-thread , 61
current-thread-group , 74
current-thread-initial-stack-size , 75
current-write-relative-directory , 72
custodian-limit-memory , 82
custodian-managed-list , 82
custodian-require-memory , 82
custodian-shutdown-all , 82
custodian? , 82
custodians,74, 81
cycles,120

date,179
date , 179
date-day , 179
date-dst? , 179
date-hour , 179
date-minute , 179
date-month , 179
date-second , 179
date-time-zone-offset , 179

204

INDEX

date-week-day , 179
date-year , 179
date-year-day , 179
date? , 179
datum->syntax-object , 148
decimal input,13
default-continuation-prompt-tag , 53
define , 7
define

internal,9
define-for-syntax , 151
define-struct , 29
define-syntax , 145
define-syntaxes , 156
define-values , 7
define-values-for-syntaxes , 151
’delete , 81
delete-directory , 135
delete-file , 134
’desk-dir , 133
directories

contents,136
creating,135
current,69, 135
dates,136
deleting,135
moving,136
of currently loading file,72, 176, 178
paths,seepaths
permissions,136
renaming,136
root,136
testing,135

directory-exists? , 135
directory-list , 136
’disappeared-binding , 162, 165
’disappeared-use , 162, 165
’dispatch-macro , 122
display , 121
display extensions,119
division by inexact zero,13
’dll , 183
’doc-dir , 133
dump-memory-stats , 175
Dybvig, Kent,46, 141
dynamic-require , 44
dynamic-require-for-syntax , 44
dynamic-wind , 51

else , 5
’empty , 78
’enclosing-module-name , 157
environments

top-level,141, 151

eof , 92
eof-object? , 92
ephemeron-value , 173
ephemeron? , 173
ephemerons,173
eq-hash-code , 27
eq? , 16, 37
’equal , 27
equal-hash-code , 27
equal? , 12, 25, 37
eqv? , 12, 13, 37
’error , 22, 93
error , 48
error display handler,73
error escape handlers,58, 59
error value conversion handler,73
error-display-handler , 73
error-escape-handler , 58, 73
error-print-context-length , 73
error-print-source-location , 73
error-print-width , 73
error-value->string-handler , 73
errors,47, 48, 73

arity, 49
mismatch,49
syntax,49
type,49

eval , 71, 176
eval-jit-enabled , 71
eval-syntax , 176
evaluation handler,71
evaluation order,5
even? , 13
evt? , 66
’exact , 180
exception handlers,59
exceptions,46, 73

primitive hierarchy,47
’exec-file , 133
’execute , 80, 135
’exists , 81
exit , 74, 177
exit handler,74
exit-handler , 74
exiting,74
exn , 47
exn:break , 47, 56, 57, 62, 65, 110, 113, 137, 139,

140
exn:fail , 45, 48, 61, 62, 81, 90, 95, 96, 148, 179,

181, 182
exn:fail:contract , 12, 13, 15, 17, 20, 24, 25,

27, 31, 33, 34, 36, 44, 47–49, 55, 60, 61, 63,
79, 82, 93, 95, 97, 99, 105, 106, 109–114,

205

INDEX

120, 129–132, 139, 140, 160, 180
exn:fail:contract:arity , 5, 10, 25, 49, 162
exn:fail:contract:continuation , 51, 53,

54
exn:fail:contract:variable , 78
exn:fail:filesystem , 93, 95, 96, 132, 134,

135, 178, 186
exn:fail:filesystem:version , 178
exn:fail:network , 136–140
exn:fail:read , 20, 48, 115, 116, 118, 121
exn:fail:read:non-char , 119
exn:fail:syntax , 48, 49, 78, 144, 146, 159
exn:fail:unsupported , 82, 135, 181
exn? , 47
expand , 163
expand-once , 163
expand-path , 131
expand-syntax , 163
expand-syntax-once , 163
expand-syntax-to-top-form , 163
expand-to-top-form , 163
expansion-time value,160
exponential input,13
expressions

shared structure,120

fields,29
file , 42
file-exists? , 134
file-or-directory-modify-seconds , 135,

136, 179
file-or-directory-permissions , 135, 136
file-position , 95
file-size , 135
file-stream-buffer-mode , 95
file-stream-port? , 92
files,95

copying,135
deleting,134
loading,176
modification dates,135
moving,134
paths,seepaths
permissions,135
renaming,134
sizes,135
testing,134

filesystem-root-list , 136
finalization,seewill executors
find-executable-path , 134
find-library-collection-paths , 185
find-system-path , 132, 188, 189
fixnum,13
floating-point-bytes->real , 15

flonum,13
fluid-let , 9
flush-output , 95
force , 26
formals,7
format , 114
fprintf , 114
fraction,13
’framework , 183
free-identifier=? , 150
Friedman, Dan,46

Gasbichler, Martin,69
generate-temporaries , 149
gensym , 23
get-output-bytes , 94
get-output-string , 94
getenv , 182
global port print handler,69
global-port-print-handler , 69, 114, 122
glyphs,2
graphs,118, 120

printing,120
guard-evt , 65
guardians,seewill executors

handle-evt , 65
handle-evt? , 66
hash tables,26

constants,118
printing,70, 120

hash-table-copy , 27
hash-table-count , 27
hash-table-for-each , 27
hash-table-get , 27
hash-table-map , 27
hash-table-put! , 27
hash-table-remove! , 27
hash-table? , 27
Haynes, Chris,46
header,7
here strings,116
Hieb, Rob,141
HOME, 133
’home-dir , 133
HOMEDRIVE, 133
HOMEPATH, 133
Honu,192

iconv , 22
iconv.dll , 22
identifier macro,142, 159
identifier-binding , 150
identifier-binding-export-position , 151

206

INDEX

identifier-template-binding , 150
identifier-transformer-binding , 150
identifier-transformer-binding-export-position ,

151
identifier? , 149
immutable? , 24
’inferred-name , 50
infinity, 13
infix, 116
info.ss , 185
’init-dir , 133
’init-file , 133
’initial , 78
initial-exception-handler , 73
inode,96
input ports

pattern matching,84
inspector? , 34
inspectors,33, 74
integer->char , 15
integer->integer-bytes , 15
integer-bytes->integer , 15
integer-sqrt , 14
integer-sqrt/remainder , 14

keyword->string , 23
keyword? , 23
keywords,23, 118

printing,119
kill-thread , 60

Latin-1,3
let , 8
let ∗, 8
let ∗-values , 8
let-struct , 30
let-syntaxes , 156
let-values , 8
let/cc , 50, 51
let/ec , 51
let/ec , 51
letrec , 8
letrec-syntaxes , 156
letrec-syntaxes+values , 156
letrec-values , 8, 12
’lexical , 150
lib , 42
libiconv.dll , 22
libraries,185
’line , 95
line numbers,111
’linefeed , 109
’link , 182
link-exists? , 134

links
creating,135
testing,134

list , 24
list* , 24
list*-immutable , 24
list->bytes , 19
list-immutable , 24
list-ref , 24
list-tail , 24
’ll , 16
’lm , 16
’lo , 16
load , 71, 72, 118, 176
load extension handler,72
load handler,71
load-extension , 72, 178
load-relative , 71, 72, 176
load-relative-extension , 72, 178
load/cd , 71, 177
load/use-compiled , 71, 72, 176
load/use-compiled handler,72
load/used-compiled , 72
local-expand , 161
local-expand/capture-lifts , 161
local-transformer-expand , 161
local-transformer-expand/capture-lifts ,

161
locale-string-encoding , 23
locales,74
logical operators,seebitwise operators
LOGNAME , 133
LPT1, 195
LPT2, 195
LPT3, 195
LPT4, 195
LPT5, 195
LPT6, 195
LPT7, 195
LPT8, 195
LPT9, 195
’lt , 16
’lu , 16

’machine , 182
’macosx , 183
macros,seesyntax
make-bytes , 19
make-channel , 62
make-continuation-prompt-tag , 53
make-custodian , 82
make-date , 179
make-directory , 135
make-ephemeron , 173

207

INDEX

make-file-or-directory-link , 135
make-hash-table , 26
make-immutable-hash-table , 27
make-input-port , 96
make-inspector , 34
make-known-char-range-list , 17
make-namespace , 77
make-output-port , 104
make-parameter , 75
make-pipe , 94
make-pseudo-random-generator , 14
make-readtable , 122
make-rename-transformer , 159
make-security-guard , 80
make-semaphore , 61
make-set!-transformer , 159
make-special-comment , 127
make-string , 17
make-struct-field-accessor , 31
make-struct-field-mutator , 32
make-struct-type , 31
make-struct-type-property , 32
make-syntax-introducer , 162
make-thread-cell , 66
make-thread-group , 83
make-weak-box , 173
make-will-executor , 174
’mc , 16
’me , 16
member, 24
memq, 24
memv, 24
’method-arity-error , 25
’mn , 16
module , 38
module name resolver,42
module path index,170
module registry,76
module->namespace , 79
module-compiled-exports , 172
module-compiled-imports , 172
module-compiled-name , 172
’module-direct-for-syntax-requires , 171
’module-direct-for-template-requires ,

171
’module-direct-requires , 171
module-identifier=? , 150
’module-indirect-provides , 171
’module-kernel-reprovide-hint , 171
module-path-index-join , 171
module-path-index-split , 171
module-path-index? , 171
module-provide-protected? , 79

’module-self-path-index , 171
’module-syntax-provides , 171
module-template-identifier=? , 150
module-transformer-identifier=? , 150
’module-variable-provides , 171
modules,38

body,39
built-in, 44
compiling,43
dynamic imports,44
execution,38
expansion,38
exports,39
for-syntax imports,152
imports,39
in files,42
libraries,42
macros,41, 152
paths,42
pre-defined,44
predefined,44
re-declaring,44
re-defining,44
redeclaring,44
redefining,44
syntax,41

msvcrt.dll , 22
multiple return values,5
MzLib library, 186
MzScheme

stand-alone,1, 187
mzscheme, 38
MzScheme3m,1
mzschemerc.ss , 133

nack-guard-evt , 65
namespace-attach-module , 43, 79
namespace-mapped-symbols , 78
namespace-module-registry , 79
namespace-require , 78
namespace-require/copy , 78
namespace-require/expansion-time , 78
namespace-set-variable-value! , 78
namespace-symbol->identifier , 78
namespace-syntax-introduce , 79
namespace-transformer-require , 78
namespace-undefine-variable! , 78
namespace-unprotect-module , 79
namespace-variable-value , 78
namespace? , 78
namespaces,76

initial, 77
initial environment,77
initial transformer environment,151

208

INDEX

’nd , 16
networking,136
’nl , 16
’no , 16
’non-terminating-macro , 122
’none , 95
normal-case-path , 132
not-a-number,13
NUL, 195
null , 24
null-environment , 76
number->string , 13
numbers,13, 116

big-endian,15
converting,15
floating-point,15
little-endian,15
machine representations,15

object-name , 50
odd? , 13
only , 39
’opaque , 169
open-input-bytes , 94
open-input-file , 93
open-input-output-file , 93
open-input-string , 94
open-output-bytes , 94
open-output-file , 93
open-output-string , 94
or , 6
’orig-dir , 133
’origin , 165
ormap , 12
’os , 182

packages,38
parameter procedure,67
parameter-procedure=? , 75
parameter? , 75
parameterization,67
parameterization? , 75
parameterize , 67
parameterize-break , 57
parameters,67

built-in, 69
’paren-shape , 164
parsing,69
PATH, 134
path->bytes , 129
path->complete-path , 131
path->directory-path , 131
path->string , 129
path-element->bytes , 130

path-list-string->path-list , 134
path-replace-suffix , 132
path-string? , 129
path? , 129
pathnames,seepaths
paths,129

expansion,129
printing,120

pattern matching,84
’pc , 16
’pd , 16
’pe , 16
peek-byte , 111
peek-byte-or-special , 111
peek-bytes , 110
peek-bytes! , 110
peek-bytes-avail! , 110
peek-bytes-avail!* , 110
peek-bytes-avail!/enable-break , 110
peek-char , 111
peek-char-or-special , 111
peek-string , 110
peek-string! , 110
’pf , 16
’pi , 16
pipe-content-length , 94
planet , 42
platform,132, 182
PLTCOLLECTS , 186
PLTNOMZJIT , 71
’po , 16
poll, seesync
poll-guard-evt , 65
port display handler,121
port positions,111
port print handler,121
port read handler,121
port write handler,121
port-commit-peeked , 111
port-count-lines! , 112
port-count-lines-enabled , 69
port-display-handler , 121
port-file-identity , 96
port-next-location , 112
port-print-handler , 121
port-progress-evt , 111
port-provides-progress-evts? , 111
port-read-handler , 121
port-write-handler , 121
port-writes-atomic? , 113
port-writes-special? , 113
port? , 92
ports,59, 69, 92

209

INDEX

byte string,94
custom,96
file, 95
flushing,95
string,94

’pref-dir , 133
’pref-file , 133
prefix , 39
prefix-all-defined , 40
prefix-all-defined-except , 40
pregexp , 86
pregexp? , 86
primitive procedure,26
primitive-closure? , 26
primitive-result-arity , 26
primitive? , 26
print , 114, 121
print handler,71
print-box , 70, 119
print-graph , 70, 120
print-hash-table , 70
print-honu , 70
print-struct , 70, 119
print-unreadable , 70
print-vector-length , 70, 119
printf , 114
printing sharing,70
PRN, 195
procedure-arity , 25
procedure-arity-includes? , 25
procedure-closure-contents-eq? , 26
procedure? , 10, 35
processes,180
program , 133, 188
promise? , 26
promises,26
prompt read handler,70
prop:exn:srclocs , 48
protect , 40
’protected , 165
provide , 40
’ps , 16
pseudo-random-generator->vector , 14
pseudo-random-generator? , 14
putenv , 182

quasiquote , 6
quasisyntax , 146
quasisyntax/loc , 147
quote-syntax , 143
quotient/remainder , 13

raise , 46
raise-arity-error , 49

raise-mismatch-error , 49
raise-syntax-error , 49
raise-type-error , 49
raise-user-error , 49
random , 14, 74
random numbers,74
random-seed , 14, 74
’read , 80, 135
read , 48
read extensions,115
read-accept-bar-quote , 70, 117, 119
read-accept-box , 69, 115
read-accept-compiled , 69, 178
read-accept-dot , 70, 117
read-accept-graph , 70, 120
read-accept-quasiquote , 70, 117
read-accept-reader , 70
read-byte , 111
read-byte-or-special , 111
read-bytes , 109
read-bytes! , 109
read-bytes-avail! , 109
read-bytes-avail!* , 110
read-bytes-avail!/enable-break , 110
read-bytes-line , 109
read-case-sensitive , 69, 118, 119
read-char-or-special , 111
read-curly-brace-as-paren , 69, 115, 118
read-decimal-as-inexact , 70, 116
read-eval-print loop,70

read -eval -print loop
customized,177

read -eval -print loop,177
read-eval-print-loop , 177, 189
read-honu , 192
read-honu-syntax , 166, 192
read-line , 108
read-square-bracket-as-paren , 69, 115,

118
read-string , 109
read-string! , 109
read-syntax , 143, 166
read-syntax/recursive , 127
read/recursive , 127
reader macros,122
readtable-mapping , 123
readtables,122
real->floating-point-bytes , 15
regexp , 86
regexp-match , 87, 88
regexp-match-peek , 89
regexp-match-peek-immediate , 89
regexp-match-peek-positions , 89

210

INDEX

regexp-match-peek-positions-immediate ,
89

regexp-match-positions , 89
regexp-match? , 89
regexp-replace , 89, 90
regexp-replace* , 90
regexp? , 86
regexps,seeregular expressions
regular expressions,84

constants,118
printing,120

’relative , 132
relative-path? , 131
rename , 40
rename-file-or-directory , 134, 136
rename-transformer-target , 159
rename-transformer? , 159
repl,seeread-eval-print loop
’replace , 93
require , 39, 72
require-for-syntax , 152, 153
require-for-template , 153
resolve-path , 131
’return , 109
’return-linefeed , 109
reverse! , 24
’run-file , 133
run-time hierarchy,154
’running , 181

’same , 130, 132
’sc , 16
scheme-report-environment , 76
scripts,190
Scsh,69
seconds->date , 179
security guards,74, 80
security-guard? , 81
select,seesync
semaphore-peek-evt , 62
semaphore-post , 62
semaphore-try-wait? , 62
semaphore-wait , 62
semaphore-wait/enable-break , 62
semaphore? , 62
semaphores,61
’server , 81
set! , 9
set! , 188
set!-transformer-procedure , 159
set!-transformer? , 159
set!-values , 9
set-arity-at-least-value! , 25
set-box! , 25

set-date-day! , 179
set-date-dst?! , 179
set-date-hour! , 179
set-date-minute! , 179
set-date-month! , 179
set-date-second! , 179
set-date-time-zone-offset! , 179
set-date-week-day! , 179
set-date-year! , 179
set-date-year-day! , 179
’shared , 183
shell scripts,190
shell-execute , 181
ShellExecute,181
simplify-path , 131
’sk , 16
sleep , 61
’sm , 16
’so , 16
sockets,136
special-comment-value , 127
special-comment? , 127
Sperber, Michael,69
split-path , 132
square brackets,69
srcloc , 112
stack trace,54

length,73
’static , 183
string converters,21
string->bytes/latin-1 , 20
string->bytes/locale , 20
string->bytes/utf-8 , 20
string->immutable-string , 17
string->keyword , 23
string->number , 13
string->path , 129
string->symbol , 23
string->uninterned-symbol , 23
string-ci<=? , 17
string-ci<? , 17
string-ci=? , 17
string-ci>=? , 17
string-ci>? , 17
string-copy! , 17
string-downcase , 18
string-foldcase , 18
string-locale-ci<? , 18
string-locale-ci=? , 18
string-locale-ci>? , 18
string-locale-downcase , 18
string-locale-upcase , 18
string-locale<? , 18

211

INDEX

string-locale=? , 18
string-locale>? , 18
string-normalize-nfc , 19
string-normalize-nfd , 19
string-normalize-nfkc , 19
string-normalize-nfkd , 19
string-titlecase , 18
string-upcase , 17
string-utf-8-length , 20
string<=? , 17
string<? , 17
string=? , 17
string>=? , 17
string>? , 17
strings,116

as ports,94
immutable,17
pattern matching,84
printing,119
reading to and writing from,94

struct , 40
struct->vector , 36
struct-accessor-procedure? , 37
struct-constructor-procedure? , 37
struct-info , 34
struct-mutator-procedure? , 37
struct-predicate-procedure? , 37
struct-type-info , 34
struct-type-make-constructor , 34
struct-type-make-predicate , 34
struct-type-property? , 33
struct-type? , 37
struct:date , 179
struct? , 36
structs

printing,70
structure subtypes,30
structure type descriptors,29
structure type properties,32
structure types,29

predicates,36
structures,29

equality,37
printing,119

sub1 , 13
subbytes , 19
subprocess , 180
subprocess-kill , 181
subprocess-pid , 181
subprocess-status , 181
subprocess-wait , 181
subprocess? , 181
subprocesses,180

substring , 17
’SW HIDE, 182
’sw hide , 182
’SW MAXIMIZE, 182
’sw maximize , 182
’SW MINIMIZE , 182
’sw minimize , 182
’SW RESTORE, 182
’sw restore , 182
’SW SHOW, 182
’sw show, 182
’SW SHOWDEFAULT, 182
’sw showdefault , 182
’SW SHOWMAXIMIZED, 182
’sw showmaximized , 182
’SW SHOWMINIMIZED, 182
’sw showminimized , 182
’SW SHOWMINNOACTIVE, 182
’sw showminnoactive , 182
’SW SHOWNA, 182
’sw showna , 182
’SW SHOWNOACTIVATE, 182
’sw shownoactivate , 182
’SW SHOWNORMAL, 182
’sw shownormal , 182
symbols,117

case sensitivity,117
generating,23
printing,119
unique,23

sync , 63, 74
sync/enable-break , 65, 74
sync/timeout , 63
sync/timeout/enable-break , 65
synchronous channels,62
syntax,141

expanding,163
macro calls,158
modules,152
partial expansion,161

syntax , 144
syntax objects,143

comparisons,150
identifier,149
operations,147
pattern-matching,144
properties,164, 178
source location,147, 178
source module,147

syntax pair,148
syntax->list , 148
syntax-case , 144
syntax-case ∗, 145

212

INDEX

syntax-column , 147
syntax-e , 147
syntax-graph? , 148
syntax-id-rules , 142
syntax-line , 147
syntax-local-bind-syntaxes , 162
syntax-local-certifier , 161
syntax-local-context , 160
syntax-local-get-shadower , 160
syntax-local-introduce , 162
syntax-local-lift-expression , 160
syntax-local-lift-module-end-declaration ,

160
syntax-local-make-definition-context ,

161
syntax-local-name , 160
syntax-local-value , 160
syntax-object->datum , 148
syntax-original? , 147
syntax-position , 147
syntax-property , 164
syntax-property-symbol-keys , 164
syntax-recertify , 169
syntax-rules , 141
syntax-source , 147
syntax-source-module , 147
syntax-span , 147
syntax-track-origin , 165
syntax-transforming? , 161
syntax/loc , 147
syntax? , 147
’sys-dir , 133
system-big-endian? , 15
system-language+country , 183
system-library-subpath , 183
system-type , 182

tcp-abandon-port , 138
tcp-accept , 137
tcp-accept-evt , 138
tcp-accept-ready? , 137
tcp-accept/enable-break , 137
tcp-addresses , 138
tcp-close , 138
tcp-connect , 136
tcp-connect/enable-break , 137
tcp-listen , 136
tcp-listener? , 138
tcp-port? , 138
TCP/IP,136
’temp-dir , 133
terminal-port? , 92
’terminating-macro , 122
’text , 93

thread
groups,seethread groups

thread , 59
thread cells,66
thread descriptor,59
thread groups,74, 83
thread-cell-ref , 66
thread-cell-set! , 66
thread-cell? , 66
thread-dead-evt , 60
thread-dead? , 61
thread-group? , 83
thread-resume , 60
thread-resume-evt , 60
thread-running? , 61
thread-suspend , 59
thread-suspend-evt , 60
thread-wait , 60
thread/suspend-to-kill , 60
thread? , 61
threads,59

breaking,56, 61
communication,61, 62
killing, 60
nesting,61
resuming,60
run state,61
stack size,75
suspending,59
synchronization,61, 62

time,179
machine,179

time , 180
time-apply , 180
TMPDIR, 133
top-level environment,seenamespaces
transformer environments,141

in modules,152
transformers,141

application,158
’transparent , 169
’transparent-binding , 169
’truncate , 93
’truncate/replace , 93

UDP,138
udp-bind! , 138
udp-bound? , 140
udp-close , 140
udp-connect! , 139
udp-connected? , 140
udp-open-socket , 138
udp-receive! , 139
udp-receive!* , 140

213

INDEX

udp-receive!-evt , 140
udp-receive!/enable-break , 140
udp-receive-ready-evt , 140
udp-send , 139
udp-send* , 139
udp-send-evt , 140
udp-send-ready-evt , 140
udp-send-to , 139
udp-send-to* , 139
udp-send-to-evt , 140
udp-send-to/enable-break , 139
udp-send/enable-break , 139
udp? , 140
unbox , 25
uncertified context,166
undefined values , 12
Unicode,2
uninterned symbol,23
’unix , 183
unless , 6
unquote , 7
unquote-splicing , 7
unreadable

printing,70, 120
unsyntax , 146
unsyntax-splicing , 146
’up , 130, 132
’update , 93
use-compiled-file-paths , 72
use-user-specific-search-paths , 72
USER, 133
USERPROFILE, 133
UTF-8,3
UTF-8-permissive,21

vector->immutable-vector , 24
vector->pseudo-random-generator , 14
vector-immutable , 24
vector-set-performance-stats! , 183
vectors,115

printing,70, 119
version , 183
vertical bar,69
void , 12
void? , 12

’weak , 27
weak boxes,173
weak references,173
weak-box-value , 173
weak-box? , 173
when, 6
will executors,174
will-execute , 174

will-executor? , 174
will-register , 174
will-try-execute , 174
’windows , 183
Windows pathname syntax,195
with-continuation-mark , 54
with-handlers , 46
with-handlers ∗, 47
with-input-from-file , 93
with-output-to-file , 93
with-syntax , 145
wrap-evt , 65
’write , 80, 135
write , 121
write extensions,119
write-byte , 113
write-bytes , 113
write-bytes-avail , 113
write-bytes-avail* , 113
write-bytes-avail-evt , 113
write-bytes-avail/enable-break , 113
write-special , 113
write-special-avail* , 113
write-special-evt , 113
write-string , 112

’zl , 16
’zp , 16
’zs , 16

214

	1 Introduction
	1.1 MrEd, DrScheme, and mzc
	1.2 Unicode, Locales, Strings, and Ports
	1.2.1 Unicode
	1.2.2 Locale
	1.2.3 Encodings and Ports

	1.3 Notation

	2 Basic Syntax Extensions
	2.1 Evaluation Order
	2.2 Multiple Return Values
	2.3 Cond and Case
	2.4 When and Unless
	2.5 And and Or
	2.6 Sequences
	2.7 Quote and Quasiquote
	2.8 Binding Forms
	2.8.1 Definitions
	2.8.2 Local Bindings
	2.8.3 Assignments
	2.8.4 Fluid-Let
	2.8.5 Syntax Expansion and Internal Definitions

	2.9 Case-Lambda
	2.10 Procedure Application
	2.11 Variable Reference

	3 Basic Data Extensions
	3.1 Void and Undefined
	3.2 Booleans
	3.3 Numbers
	3.4 Characters
	3.5 Strings
	3.6 Byte Strings
	3.7 Symbols
	3.8 Keywords
	3.9 Vectors
	3.10 Lists
	3.11 Boxes
	3.12 Procedures
	3.12.1 Arity
	3.12.2 Primitives
	3.12.3 Procedure Names
	3.12.4 Closure Equality

	3.13 Promises
	3.14 Hash Tables

	4 Structures
	4.1 Defining Structure Types
	4.2 Creating Subtypes
	4.3 Structure Types with Automatic Fields, Immutable Fields, and Properties
	4.4 Structure Type Properties
	4.5 Structure Inspectors
	4.6 Structures as Procedures
	4.7 Structures as Synchronizable Events
	4.8 Structure Utilities

	5 Modules
	5.1 Module Expansion and Execution
	5.2 Module Bodies
	5.3 Modules and Macros
	5.4 Module Paths
	5.4.1 Module Name Resolver
	5.4.2 Module Names and Compilation

	5.5 Dynamic Module Access
	5.6 Re-declaring Modules
	5.7 Built-in Modules
	5.8 Modules and Load Handlers

	6 Exceptions and Control Flow
	6.1 Exceptions
	6.1.1 Primitive Exceptions

	6.2 Errors
	6.2.1 Application Errors
	6.2.2 Syntax Errors
	6.2.3 Inferred Value Names

	6.3 Continuations
	6.4 Dynamic Wind
	6.5 Prompts and Composable Continuations
	6.6 Continuation Marks
	6.7 Breaks
	6.8 Error Escape Handler

	7 Threads
	7.1 Suspending, Resuming, and Killing Threads
	7.2 Synchronizing Thread State
	7.3 Additional Thread Utilities
	7.4 Semaphores
	7.5 Channels
	7.6 Alarms
	7.7 Synchronizing Events
	7.8 Thread-Local Storage Cells
	7.9 Parameters
	7.9.1 Built-in Parameters
	7.9.2 Parameter Utilities

	8 Namespaces
	8.1 Identifier Resolution in Namespaces
	8.2 Initial Namespace
	8.3 Namespace Utilities

	9 Security
	9.1 Security Guards
	9.2 Custodians
	9.3 Thread Groups
	9.4 Inspectors and Modules

	10 Regular Expressions
	11 Input and Output
	11.1 Ports
	11.1.1 End-of-File Constant
	11.1.2 Current Ports
	11.1.3 Opening File Ports
	11.1.4 Pipes
	11.1.5 String Ports
	11.1.6 File-Stream Ports
	11.1.7 Custom Ports

	11.2 Reading and Writing
	11.2.1 Reading Bytes, Characters, and Strings
	11.2.2 Writing Bytes, Characters, and Strings
	11.2.3 Writing Structured Data
	11.2.4 Default Reader
	11.2.5 Default Printer
	11.2.6 Replacing the Reader
	11.2.7 Replacing the Printer
	11.2.8 Customizing the Reader through Readtables
	11.2.9 Reader-Extension Procedures
	11.2.10 Customizing the Printer through Custom-Write Procedures

	11.3 Filesystem Utilities
	11.3.1 Paths
	11.3.2 Locating Paths
	11.3.3 Files
	11.3.4 Directories

	11.4 Networking
	11.4.1 TCP
	11.4.2 UDP

	12 Syntax and Macros
	12.1 syntax-rules Extensions
	12.2 Syntax Objects
	12.2.1 Syntax Patterns
	12.2.2 Syntax Object Content

	12.3 Syntax and Lexical Scope
	12.3.1 Syntax Object Comparisons
	12.3.2 Syntax Object Bindings
	12.3.3 Transformer Environments
	12.3.4 Module Environments
	12.3.5 Macro-Generated Top-Level and Module Definitions

	12.4 Binding Multiple Syntax Identifiers
	12.5 Special Syntax Identifiers
	12.6 Macro Expansion
	12.6.1 Expanding Expressions to Primitive Syntax
	12.6.2 Syntax Object Properties
	12.6.3 Certificates for Protected References
	12.6.4 Information on Structure Types
	12.6.5 Information on Expanded and Compiled Modules

	13 Memory Management
	13.1 Weak Boxes
	13.2 Ephemerons
	13.3 Will Executors
	13.4 Garbage Collection

	14 Support Facilities
	14.1 Eval and Load
	14.2 Exiting
	14.3 Compilation
	14.4 Dynamic Extensions

	15 System Utilities
	15.1 Time
	15.1.1 Real Time and Date
	15.1.2 Machine Time
	15.1.3 Timing Execution

	15.2 Operating System Processes
	15.3 Windows Actions
	15.4 Operating System Environment Variables
	15.5 Runtime Information

	16 Library Collections and MzLib
	17 Running MzScheme
	17.1 Flag Conventions
	17.2 Executable Name
	17.3 Initialization

	18 Writing and Running Scripts
	19 Honu
	19.1 Honu Input Parsing
	19.1.1 Numbers
	19.1.2 Identifiers
	19.1.3 Strings
	19.1.4 Characters
	19.1.5 Parentheses, Brackets, and Braces
	19.1.6 Comments

	19.2 Honu Output Printing

	20 Windows Path Syntax
	License
	Index

