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Outline	for	today	

•  Modeling	sequen&al	data	(e.g.,	=me	series,	
speech	processing)	using	hidden	Markov	
models	(HMMs)	

•  Bayesian	networks 		
–  Independence	proper=es	
– Examples	
– Learning	and	inference	



Example	applica=on:	Tracking	

Radar	

Observe	noisy	measurements	of	
missile	loca=on:	Y1,	Y2,	…	

Where	is	the	missile	now?	Where	will	it	be	in	10	seconds?	



Probabilis=c	approach	

•  Our	measurements	of	the	missile	loca=on	were	
Y1,	Y2,	…,	Yn	

•  Let	Xt	be	the	true	<missile	loca=on,	velocity>	at	
=me	t	

•  To	keep	this	simple,	suppose	that	everything	is	
discrete,	i.e.	Xt	takes	the	values	1,	…,	k	

Grid	the	space:	



Probabilis=c	approach	

•  First,	we	specify	the	condi&onal	distribu=on	
Pr(Xt	|	Xt-1):	

•  Then,	we	specify	Pr(Yt	|	Xt=<(10,20),	200	mph	
toward	the	northeast>):	

With	probability	½,	Yt	=	Xt	(ignoring	the	velocity).	Otherwise,	Yt	is	a	
uniformly	chosen	grid	loca=on	

From	basic	physics,	we	can	bound	
the	distance	that	the	missile	can	
have	traveled	



Hidden	Markov	models	
•  Assume	that	the	joint	distribu=on	on	X1,	X2,	…,	Xn	and	Y1,	Y2,	

…,	Yn	factors	as	follows:	

•  To	find	out	where	the	missile	is	now,	we	do	marginal	
inference:	

•  To	find	the	most	likely	trajectory,	we	do	MAP	(maximum	a	
posteriori)	inference:	

Pr(x1, . . . xn, y1, . . . , yn) = Pr(x1) Pr(y1 | x1)
nY

t=2

Pr(xt | xt�1) Pr(yt | xt)

Pr(xn | y1, . . . , yn)

argmax

x

Pr(x1, . . . , xn | y1, . . . , yn)

1960’s	



Inference	

•  Recall,	to	find	out	where	the	missile	is	now,	we	do	marginal	
inference:	

•  How	does	one	compute	this?	

•  Applying	rule	of	condi=onal	probability,	we	have:		

•  Naively,	would	seem	to	require	kn-1	summa=ons,	

Pr(xn | y1, . . . , yn)

Pr(x
n

| y1, . . . , yn) =
Pr(x

n

, y1, . . . , yn)

Pr(y1, . . . , yn)
=

Pr(x
n

, y1, . . . , yn)P
k

x̂n=1 Pr(x̂n

, y1, . . . , yn)

Pr(x
n

, y1, . . . , yn) =
X

x1,...,xn�1

Pr(x1, . . . , xn

, y1, . . . , yn)

Is	there	a	
more	efficient	
algorithm?	



Marginal	inference	in	HMMs	
•  Use	dynamic	programming	

•  For	n=1,	ini=alize		
•  Total	running	=me	is	O(nk)	–	linear	=me!	

Pr(x
n

, y1, . . . , yn) =
X

xn�1

Pr(x
n�1, xn

, y1, . . . , yn)

=
X

xn�1

Pr(x
n�1, y1, . . . , yn�1) Pr(xn

, y

n

| x
n�1, y1, . . . , yn�1)

=
X

xn�1

Pr(x
n�1, y1, . . . , yn�1) Pr(xn

, y

n

| x
n�1)

=
X

xn�1

Pr(x
n�1, y1, . . . , yn�1) Pr(xn

| x
n�1) Pr(yn | x

n

, x

n�1)

=
X

xn�1

Pr(x
n�1, y1, . . . , yn�1) Pr(xn

| x
n�1) Pr(yn | x

n

)

Pr(x1, y1) = Pr(x1) Pr(y1 | x1)

Easy	to	do	filtering	

Pr(A = a) =
X

b

Pr(B = b, A = a)

Pr( �A = �a, �B = �b) = Pr( �A = �a) Pr( �B = �b | �A = �a)

Condi=onal	independence	in	HMMs	

Pr(A = a,B = b) = Pr(A = a) Pr(B = b | A = a)

Condi=onal	independence	in	HMMs	



MAP	inference	in	HMMs	

•  MAP	inference	in	HMMs	can	also	be	solved	in	linear	=me!	

•  Formulate	as	a	shortest	paths	problem	

argmax

x

Pr(x1, . . . xn | y1, . . . , yn) = argmax

x

Pr(x1, . . . xn, y1, . . . , yn)

= argmax

x

log Pr(x1, . . . xn, y1, . . . , yn)

= argmax

x

log

h
Pr(x1) Pr(y1 | x1)

i
+

nX

i=2

log

h
Pr(xi | xi�1) Pr(yi | xi)

i

s	 t	

X1	 X2	 Xn-1	 Xn	

…	

k	nodes	per	variable	

Weight	for	edge	(xn,	t)	is	0	

Called	the	Viterbi	algorithm	

Path	from	s	to	t	gives	
the	MAP	assignment	

Weight	for	edge	(s,	x1)	is	
log

h
Pr(x1) Pr(y1 | x1)

i
-	

log

h
Pr(xi | xi�1) Pr(yi | xi)

i
Weight	for	edge	(xi-1,	xi)	is	 -	



Applica=ons	of	HMMs	

•  Speech	recogni=on	
–  Predict	phonemes	from	the	sounds	forming	words	(i.e.,	the	
actual	signals)	

•  Natural	language	processing	
–  Predict	parts	of	speech	(verb,	noun,	determiner,	etc.)	from	
the	words	in	a	sentence	

•  Computa=onal	biology	
–  Predict	intron/exon	regions	from	DNA	

–  Predict	protein	structure	from	DNA	(locally)	

•  And	many	many	more!	



•  We	can	represent	a	hidden	Markov	model	with	a	graph:	

•  There	is	a	1-1	mapping	between	the	graph	structure	and	the	factoriza=on	
of	the	joint	distribu=on	

HMMs	as	a	graphical	model	

X1	 X2	 X3	 X4	 X5	 X6	

Y1	 Y2	 Y3	 Y4	 Y5	 Y6	

Pr(x1, . . . xn, y1, . . . , yn) = Pr(x1) Pr(y1 | x1)
nY

t=2

Pr(xt | xt�1) Pr(yt | xt)

Shading	in	denotes	
observed	variables	(e.g.	what	
is	available	at	test	=me)	



•  We	can	represent	a	naïve	Bayes	model	with	a	graph:	

•  There	is	a	1-1	mapping	between	the	graph	structure	and	the	factoriza=on	
of	the	joint	distribu=on	

Y

X1 X2 X3 Xn. . .

Features

Label

   

Naïve	Bayes	as	a	graphical	model	

Pr(y, x1, . . . , xn) = Pr(y)
nY

i=1

Pr(xi | y)

Shading	in	denotes	
observed	variables	(e.g.	what	
is	available	at	test	=me)	



Bayesian	networks	

•  A	Bayesian	network	is	specified	by	a	directed	acyclic	graph	
G=(V,E)	with:	
–  One	node	i	for	each	random	variable	Xi	
–  One	condi=onal	probability	distribu=on	(CPD)	per	node,	p(xi	|	xPa(i)),	

specifying	the	variable’s	probability	condi=oned	on	its	parents’	values	

•  Corresponds	1-1	with	a	par=cular	factoriza=on	of	the	joint	
distribu=on:	

•  Powerful	framework	for	designing	algorithms	to	perform	
probability	computa=ons	

Bayesian networks
Reference: Chapter 3

A Bayesian network is specified by a directed acyclic graph
G = (V , E ) with:

1 One node i 2 V for each random variable X

i

2 One conditional probability distribution (CPD) per node, p(x
i

| xPa(i)

),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x
1

, . . . x
n

) =
Y

i2V

p(x
i

| xPa(i))

Powerful framework for designing algorithms to perform probability
computations
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2011	Turing	award	was	for	Bayesian	networks	



Example	
•  Consider	the	following	Bayesian	network:	

•  What	is	its	joint	distribu=on?	

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

Example

Consider the following Bayesian network:

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

What is its joint distribution?

p(x
1

, . . . x
n

) =
Y

i2V

p(x
i

| xPa(i))

p(d , i , g , s, l) = p(d)p(i)p(g | i , d)p(s | i)p(l | g)
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Example	from	Koller	&	
Friedman,	Probabilis&c	
Graphical	Models,	2009	



Example	
•  Consider	the	following	Bayesian	network:	

•  What	is	this	model	assuming?	

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

Example	from	Koller	&	
Friedman,	Probabilis&c	
Graphical	Models,	2009	

SAT 6? Grade

SAT ? Grade | Intelligence



Example	
•  Consider	the	following	Bayesian	network:	

•  Compared	to	a	simple	log-linear	model	to	predict	intelligence:	
–  Captures	non-linearity	between	grade,	course	difficulty,	and	intelligence	

–  Modular.	Training	data	can	come	from	different	sources!	

–  Built	in	feature	selec&on:	lerer	of	recommenda=on	is	irrelevant	given	
grade	

Grade

Letter

SAT

IntelligenceDifficulty

d1d0

0.6 0.4

i1i0

0.7 0.3

i0

i1

s1s0

0.95

0.2

0.05

0.8

g1

g2

g2

l1l 0

0.1

0.4

0.99

0.9

0.6

0.01

i0,d0

i0,d1

i0,d0

i0,d1

g2 g3g1

0.3

0.05

0.9

0.5

0.4

0.25

0.08

0.3

0.3

0.7

0.02

0.2

Example	from	Koller	&	
Friedman,	Probabilis&c	
Graphical	Models,	2009	



Bayesian	networks	enable	use	of	
domain	knowledge	

Will	my	car	start	this	morning?	

Heckerman	et	al.,	Decision-Theore=c	Troubleshoo=ng,	1995	

Bayesian networks
Reference: Chapter 3

A Bayesian network is specified by a directed acyclic graph
G = (V , E ) with:

1 One node i 2 V for each random variable X

i

2 One conditional probability distribution (CPD) per node, p(x
i

| xPa(i)

),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x
1

, . . . x
n

) =
Y

i2V

p(x
i

| xPa(i))

Powerful framework for designing algorithms to perform probability
computations
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Bayesian	networks	enable	use	of	
domain	knowledge	

What	is	the	differen=al	diagnosis?	

Beinlich	et	al.,	The	ALARM	Monitoring	System,	1989	



Bayesian	networks	are	genera&ve	models	

•  Can	sample	from	the	joint	distribu=on,	top-down	

•  Suppose	Y	can	be	“spam”	or	“not	spam”,	and	Xi	is	a	binary	
indicator	of	whether	word	i	is	present	in	the	e-mail	

•  Let’s	try	genera=ng	a	few	emails!	

•  Oven	helps	to	think	about	Bayesian	networks	as	a	genera=ve	
model	when	construc=ng	the	structure	and	thinking	about	
the	model	assump=ons	

Y

X1 X2 X3 Xn. . .

Features

Label

   



Inference	in	Bayesian	networks	
•  Compu=ng	marginal	probabili=es	in	tree	structured	Bayesian	

networks	is	easy	
–  The	algorithm	called	“belief	propaga=on”	generalizes	what	we	showed	for	

hidden	Markov	models	to	arbitrary	trees	

•  Wait…	this	isn’t	a	tree!	What	can	we	do?	

X1	 X2	 X3	 X4	 X5	 X6	

Y1	 Y2	 Y3	 Y4	 Y5	 Y6	

Y

X1 X2 X3 Xn. . .

Features

Label

   



Inference	in	Bayesian	networks	

•  In	some	cases	(such	as	this)	we	can	transform	this	into	what	is	
called	a	“junc=on	tree”,	and	then	run	belief	propaga=on	



Approximate	inference	

•  There	is	also	a	wealth	of	approximate	inference	algorithms	that	can	
be	applied	to	Bayesian	networks	such	as	these	

•  Markov	chain	Monte	Carlo	algorithms	repeatedly	sample	
assignments	for	es=ma=ng	marginals	

•  Varia=onal	inference	algorithms	(determinis=c)	find	a	simpler	
distribu=on	which	is	“close”	to	the	original,	then	compute	marginals	
using	the	simpler	distribu=on	



Maximum	likelihood	es=ma=on	in	
Bayesian	networks	ML estimation in Bayesian networks

Suppose that we know the Bayesian network structure G

Let ✓
x

i

|x
pa(i)

be the parameter giving the value of the CPD p(x
i

| x
pa(i)

)

Maximum likelihood estimation corresponds to solving:

max
✓

1

M

MX

m=1

log p(xM ; ✓)

subject to the non-negativity and normalization constraints

This is equal to:

max
✓

1

M

MX

m=1

log p(xM ; ✓) = max
✓

1

M

MX

m=1

NX

i=1

log p(xM
i

| xM
pa(i)

; ✓)

= max
✓

NX

i=1

1

M

MX

m=1

log p(xM
i

| xM
pa(i)

; ✓)

The optimization problem decomposes into an independent optimization
problem for each CPD! Has a simple closed-form solution.
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