Bayesian networks
 Lecture 18

David Sontag
New York University

Outline for today

- Modeling sequential data (e.g., time series, speech processing) using hidden Markov models (HMMs)
- Bayesian networks
- Independence properties
- Examples
- Learning and inference

Example application: Tracking

Observe noisy measurements of missile location: Y_{1}, Y_{2}, \ldots

Radar
Where is the missile now? Where will it be in 10 seconds?

Probabilistic approach

- Our measurements of the missile location were $Y_{1}, Y_{2}, \ldots, Y_{n}$
- Let X_{t} be the true <missile location, velocity> at time t
- To keep this simple, suppose that everything is discrete, i.e. X_{t} takes the values $1, \ldots, k$

Grid the space:

Probabilistic approach

- First, we specify the conditional distribution $\operatorname{Pr}\left(X_{t} \mid X_{t-1}\right)$:

From basic physics, we can bound the distance that the missile can have traveled

- Then, we specify $\operatorname{Pr}\left(\mathrm{Y}_{\mathrm{t}} \mid X_{\mathrm{t}}=<(10,20), 200 \mathrm{mph}\right.$ toward the northeast>):

With probability $1 / 2, Y_{t}=X_{t}$ (ignoring the velocity). Otherwise, Y_{t} is a uniformly chosen grid location

Hidden Markov models

- Assume that the joint distribution on $X_{1}, X_{2}, \ldots, X_{n}$ and Y_{1}, Y_{2}, ..., Y_{n} factors as follows:

$$
\operatorname{Pr}\left(x_{1}, \ldots x_{n}, y_{1}, \ldots, y_{n}\right)=\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(y_{1} \mid x_{1}\right) \prod_{t=2}^{n} \operatorname{Pr}\left(x_{t} \mid x_{t-1}\right) \operatorname{Pr}\left(y_{t} \mid x_{t}\right)
$$

- To find out where the missile is now, we do marginal inference:

$$
\operatorname{Pr}\left(x_{n} \mid y_{1}, \ldots, y_{n}\right)
$$

- To find the most likely trajectory, we do MAP (maximum a posteriori) inference:

$$
\arg \max _{\mathbf{x}} \operatorname{Pr}\left(x_{1}, \ldots, x_{n} \mid y_{1}, \ldots, y_{n}\right)
$$

Inference

- Recall, to find out where the missile is now, we do marginal inference: $\quad \operatorname{Pr}\left(x_{n} \mid y_{1}, \ldots, y_{n}\right)$
- How does one compute this?

- Applying rule of conditional probability, we have:

$$
\operatorname{Pr}\left(x_{n} \mid y_{1}, \ldots, y_{n}\right)=\frac{\operatorname{Pr}\left(x_{n}, y_{1}, \ldots, y_{n}\right)}{\operatorname{Pr}\left(y_{1}, \ldots, y_{n}\right)}
$$

- Naively, would seem to require $\mathrm{k}^{\mathrm{n}-1}$ summations,

$$
\operatorname{Pr}\left(x_{n}, y_{1}, \ldots, y_{n}\right)=\sum_{x_{1}, \ldots, x_{n-1}} \operatorname{Pr}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)
$$

Is there a more efficient algorithm?

Marginal inference in HMMs

- Use dynamic programming

$$
\begin{array}{r}
\operatorname{Pr}(A=a)=\sum_{b} \operatorname{Pr}(B=b, A=a) \\
\operatorname{Pr}\left(x_{n}, y_{1}, \ldots, y_{n}\right)=\sum_{x_{n-1}} \begin{array}{r}
\operatorname{Pr}\left(x_{n-1}, x_{n}, y_{1}, \ldots, y_{n}\right) \\
\operatorname{Pr}(\vec{A}=\vec{a}, \vec{B}=\vec{b})=\operatorname{Pr}(\vec{A}=\vec{a}) \operatorname{Pr}(\vec{B}=\vec{b} \mid \vec{A}=\vec{a}) \\
=\sum_{x_{n-1}} \operatorname{Pr}\left(x_{n-1}, y_{1}, \ldots, y_{n-1}\right) \operatorname{Pr}\left(x_{n}, y_{n} \mid x_{n-1}, y_{1}, \ldots, y_{n-1}\right) \\
\quad=\sum_{x_{n-1}} \operatorname{Pr}\left(x_{n-1}, y_{1}, \ldots, y_{n-1}\right) \operatorname{Pr}\left(x_{n}, y_{n} \mid x_{n-1}\right) \\
\quad=\sum_{x_{n-1}} \operatorname{Pr}\left(x_{n-1}, y_{1}, \ldots, y_{n-1}\right) \operatorname{Pr}\left(x_{n} \mid x_{n-1}\right) \operatorname{Pr}\left(y_{n} \mid x_{n}, x_{n-1}\right) \\
\quad \text { Conditional independence in HMMs } \\
=
\end{array} \sum_{x_{n-1}} \operatorname{Pr}\left(x_{n-1}, y_{1}, \ldots, y_{n-1}\right) \operatorname{Pr}\left(x_{n} \mid x_{n-1}\right) \operatorname{Pr}\left(y_{n} \mid x_{n}\right)
\end{array}
$$

- For $\mathrm{n}=1$, initialize $\operatorname{Pr}\left(x_{1}, y_{1}\right)=\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(y_{1} \mid x_{1}\right)$
- Total running time is $\mathrm{O}(\mathrm{nk})$ - linear time! Easy to do filtering

MAP inference in HMMs

- MAP inference in HMMs can also be solved in linear time!

$$
\begin{aligned}
& \arg \max _{\mathbf{x}} \operatorname{Pr}\left(x_{1}, \ldots x_{n} \mid y_{1}, \ldots, y_{n}\right)=\arg \max _{\mathbf{x}} \operatorname{Pr}\left(x_{1}, \ldots x_{n}, y_{1}, \ldots, y_{n}\right) \\
& \quad=\arg \max _{\mathbf{x}} \log \operatorname{Pr}\left(x_{1}, \ldots x_{n}, y_{1}, \ldots, y_{n}\right) \\
& \quad=\arg \max _{\mathbf{x}} \log \left[\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(y_{1} \mid x_{1}\right)\right]+\sum_{i=2}^{n} \log \left[\operatorname{Pr}\left(x_{i} \mid x_{i-1}\right) \operatorname{Pr}\left(y_{i} \mid x_{i}\right)\right]
\end{aligned}
$$

- Formulate as a shortest paths problem

Called the Viterbi algorithm

Applications of HMMs

- Speech recognition
- Predict phonemes from the sounds forming words (i.e., the actual signals)
- Natural language processing
- Predict parts of speech (verb, noun, determiner, etc.) from the words in a sentence
- Computational biology
- Predict intron/exon regions from DNA
- Predict protein structure from DNA (locally)
- And many many more!

HMMs as a graphical model

- We can represent a hidden Markov model with a graph:

Shading in denotes observed variables (e.g. what is available at test time)
$\operatorname{Pr}\left(x_{1}, \ldots x_{n}, y_{1}, \ldots, y_{n}\right)=\operatorname{Pr}\left(x_{1}\right) \operatorname{Pr}\left(y_{1} \mid x_{1}\right) \prod_{t=2}^{n} \operatorname{Pr}\left(x_{t} \mid x_{t-1}\right) \operatorname{Pr}\left(y_{t} \mid x_{t}\right)$

- There is a 1-1 mapping between the graph structure and the factorization of the joint distribution

Naïve Bayes as a graphical model

- We can represent a naïve Bayes model with a graph:

Shading in denotes observed variables (e.g. what is available at test time)

Features

$$
\operatorname{Pr}\left(y, x_{1}, \ldots, x_{n}\right)=\operatorname{Pr}(y) \prod_{i=1}^{n} \operatorname{Pr}\left(x_{i} \mid y\right)
$$

- There is a 1-1 mapping between the graph structure and the factorization of the joint distribution

Bayesian networks

- A Bayesian network is specified by a directed acyclic graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with:
- One node i for each random variable X_{i}
- One conditional probability distribution (CPD) per node, $p\left(x_{i} \mid \boldsymbol{x}_{P a(i)}\right)$, specifying the variable's probability conditioned on its parents' values
- Corresponds 1-1 with a particular factorization of the joint distribution:

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right)
$$

- Powerful framework for designing algorithms to perform probability computations

2011 Turing award was for Bayesian networks

Example

- Consider the following Bayesian network:

Example from Koller \& Friedman, Probabilistic Graphical Models, 2009

- What is its joint distribution?

$$
\begin{aligned}
p\left(x_{1}, \ldots x_{n}\right) & =\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right) \\
p(d, i, g, s, l) & =p(d) p(i) p(g \mid i, d) p(s \mid i) p(/ \mid g)
\end{aligned}
$$

Example

- Consider the following Bayesian network:

Example from Koller \& Friedman, Probabilistic Graphical Models, 2009

- What is this model assuming?

SAT $\not \subset$ Grade
SAT \perp Grade \mid Intelligence

Example

- Consider the following Bayesian network:

Example from Koller \& Friedman, Probabilistic Graphical Models, 2009

- Compared to a simple log-linear model to predict intelligence:
- Captures non-linearity between grade, course difficulty, and intelligence
- Modular. Training data can come from different sources!
- Built in feature selection: letter of recommendation is irrelevant given grade

Bayesian networks enable use of domain knowledge

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right)
$$

Will my car start this morning?

Heckerman et al., Decision-Theoretic Troubleshooting, 1995

Bayesian networks enable use of domain knowledge

$$
p\left(x_{1}, \ldots x_{n}\right)=\prod_{i \in V} p\left(x_{i} \mid \mathbf{x}_{\mathrm{Pa}(i)}\right)
$$

What is the differential diagnosis?

Fig. 1 The ALARM network representing causal relationships is shown with diagnostic (e), intermediate (O) and measurement (0) nodes. CO; cardioc output, CVP: central venous pressure. LVED volume: left ventricular enddiastollc volume, IV fallure: left ventricular fallure, MV: mirute ventllation, PA Sat: pulmonary artery axagen saturation. PAP: pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, Pres: breathing pressure, RR: resptratory rate, TPR: total pertpheral resistance, TV: tidal volume

Beinlich et al., The ALARM Monitoring System, 1989

Bayesian networks are generative models

- Can sample from the joint distribution, top-down
- Suppose Y can be "spam" or "not spam", and X_{i} is a binary indicator of whether word i is present in the e-mail
- Let's try generating a few emails!

- Often helps to think about Bayesian networks as a generative model when constructing the structure and thinking about the model assumptions

Inference in Bayesian networks

- Computing marginal probabilities in tree structured Bayesian networks is easy
- The algorithm called "belief propagation" generalizes what we showed for hidden Markov models to arbitrary trees

- Wait... this isn't a tree! What can we do?

Inference in Bayesian networks

- In some cases (such as this) we can transform this into what is called a "junction tree", and then run belief propagation

Approximate inference

- There is also a wealth of approximate inference algorithms that can be applied to Bayesian networks such as these

- Markov chain Monte Carlo algorithms repeatedly sample assignments for estimating marginals
- Variational inference algorithms (deterministic) find a simpler distribution which is "close" to the original, then compute marginals using the simpler distribution

Maximum likelihood estimation in Bayesian networks

- Suppose that we know the Bayesian network structure G
- Let $\theta_{x_{i} \mid x_{\rho a(i)}}$ be the parameter giving the value of the CPD $p\left(x_{i} \mid \mathbf{x}_{p a(i)}\right)$
- Maximum likelihood estimation corresponds to solving:

$$
\max _{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p\left(\mathbf{x}^{M} ; \theta\right)
$$

subject to the non-negativity and normalization constraints

- This is equal to:

$$
\begin{aligned}
\max _{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p\left(\mathbf{x}^{M} ; \theta\right) & =\max _{\theta} \frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{N} \log p\left(x_{i}^{M} \mid \mathbf{x}_{p a(i)}^{M} ; \theta\right) \\
& =\max _{\theta} \sum_{i=1}^{N} \frac{1}{M} \sum_{m=1}^{M} \log p\left(x_{i}^{M} \mid \mathbf{x}_{p a(i)}^{M} ; \theta\right)
\end{aligned}
$$

- The optimization problem decomposes into an independent optimization problem for each CPD! Has a simple closed-form solution.

