
Unsupervised	learning	(part	1)	
Lecture	19	

David	Sontag	
New	York	University	

Slides	adapted	from	Carlos	Guestrin,	Dan	Klein,	Luke	Ze@lemoyer,	
Dan	Weld,	Vibhav	Gogate,	and	Andrew	Moore	



Bayesian	networks	enable	use	of	
domain	knowledge	

Will	my	car	start	this	morning?	

Heckerman	et	al.,	Decision-TheoreMc	TroubleshooMng,	1995	

Bayesian networks
Reference: Chapter 3

A Bayesian network is specified by a directed acyclic graph
G = (V , E ) with:

1 One node i 2 V for each random variable X

i

2 One conditional probability distribution (CPD) per node, p(x
i

| xPa(i)

),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x
1

, . . . x
n

) =
Y

i2V

p(x
i

| xPa(i))

Powerful framework for designing algorithms to perform probability
computations
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Bayesian	networks	enable	use	of	
domain	knowledge	

What	is	the	differenMal	diagnosis?	

Beinlich	et	al.,	The	ALARM	Monitoring	System,	1989	



Bayesian	networks	are	genera*ve	models	

•  Can	sample	from	the	joint	distribuMon,	top-down	

•  Suppose	Y	can	be	“spam”	or	“not	spam”,	and	Xi	is	a	binary	
indicator	of	whether	word	i	is	present	in	the	e-mail	

•  Let’s	try	generaMng	a	few	emails!	

•  OZen	helps	to	think	about	Bayesian	networks	as	a	generaMve	
model	when	construcMng	the	structure	and	thinking	about	
the	model	assumpMons	

Y

X1 X2 X3 Xn. . .

Features

Label

   



Inference	in	Bayesian	networks	
•  CompuMng	marginal	probabiliMes	in	tree	structured	Bayesian	

networks	is	easy	
–  The	algorithm	called	“belief	propagaMon”	generalizes	what	we	showed	for	

hidden	Markov	models	to	arbitrary	trees	

•  Wait…	this	isn’t	a	tree!	What	can	we	do?	

X1	 X2	 X3	 X4	 X5	 X6	

Y1	 Y2	 Y3	 Y4	 Y5	 Y6	

Y

X1 X2 X3 Xn. . .

Features

Label

   



Inference	in	Bayesian	networks	

•  In	some	cases	(such	as	this)	we	can	transform	this	into	what	is	
called	a	“juncMon	tree”,	and	then	run	belief	propagaMon	



Approximate	inference	

•  There	is	also	a	wealth	of	approximate	inference	algorithms	that	can	
be	applied	to	Bayesian	networks	such	as	these	

•  Markov	chain	Monte	Carlo	algorithms	repeatedly	sample	
assignments	for	esMmaMng	marginals	

•  Varia4onal	inference	algorithms	(determinisMc)	find	a	simpler	
distribuMon	which	is	“close”	to	the	original,	then	compute	marginals	
using	the	simpler	distribuMon	



Maximum	likelihood	esMmaMon	in	
Bayesian	networks	ML estimation in Bayesian networks

Suppose that we know the Bayesian network structure G

Let ✓
x

i

|x
pa(i)

be the parameter giving the value of the CPD p(x
i

| x
pa(i)

)

Maximum likelihood estimation corresponds to solving:

max
✓

1

M

MX

m=1

log p(xM ; ✓)

subject to the non-negativity and normalization constraints

This is equal to:

max
✓

1

M

MX

m=1

log p(xM ; ✓) = max
✓

1

M

MX

m=1

NX

i=1

log p(xM
i

| xM
pa(i)

; ✓)

= max
✓

NX

i=1

1

M

MX

m=1

log p(xM
i

| xM
pa(i)

; ✓)

The optimization problem decomposes into an independent optimization
problem for each CPD! Has a simple closed-form solution.
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Returning	to	clustering…	

•  Clusters	may	overlap	
•  Some	clusters	may	be	
“wider”	than	others	

•  Can	we	model	this	
explicitly?	

•  With	what	probability	is	
a	point	from	a	cluster?	



ProbabilisMc	Clustering	

•  Try	a	probabilisMc	model!	
•  allows	overlaps,	clusters	of	different	

size,	etc.	

•  Can	tell	a	genera*ve	story	for	
data	
– P(Y)P(X|Y)	

•  Challenge:	we	need	to	esMmate	
model	parameters	without	
labeled	Ys		

Y	 X1	 X2	

??	 0.1	 2.1	

??	 0.5	 -1.1	

??	 0.0	 3.0	

??	 -0.1	 -2.0	

??	 0.2	 1.5	

…	 …	 …	



Gaussian	Mixture	Models	

µ1	
µ2	

µ3	

•  P(Y):	There	are	k	components	

•  P(X|Y):	Each	component	generates	data	from	a	mul>variate	Gaussian	
with	mean	μi	and	covariance	matrix	Σi	

Each	data	point	assumed	to	have	been	sampled	from	a	genera4ve	process:		

1.  Choose	component	i	with	probability	P(y=i)					[Mul*nomial]	

2.  Generate	datapoint	~	N(mi,	Σi	)	

€ 

P(X = x j |Y = i) =

1
(2π)m / 2 ||Σi ||

1/ 2 exp −
1
2
x j − µi( )

T
Σi
−1 x j − µi( )⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

By	fi:ng	this	model	(unsupervised	
learning),	we	can	learn	new	insights	
about	the	data	



MulMvariate	Gaussians	

Σ	∝	idenMty	matrix	

P(X = x j |Y = i) =
1

(2π )m/2 || Σi ||
1/2 exp −

1
2
x j −µi( )

T
Σi
−1 x j −µi( )

#

$%
&

'(
																P(X=xj)= 



MulMvariate	Gaussians	

Σ	=	diagonal	matrix	
Xi	are	independent	ala	Gaussian	NB	

P(X = x j |Y = i) =
1

(2π )m/2 || Σi ||
1/2 exp −

1
2
x j −µi( )

T
Σi
−1 x j −µi( )

#

$%
&

'(
																P(X=xj)= 



MulMvariate	Gaussians	

Σ	=	arbitrary	(semidefinite)	matrix:		
	-	specifies	rotaMon	(change	of	basis)	
	-	eigenvalues	specify	relaMve	elongaMon	

P(X = x j |Y = i) =
1

(2π )m/2 || Σi ||
1/2 exp −

1
2
x j −µi( )

T
Σi
−1 x j −µi( )

#

$%
&

'(
																P(X=xj)= 



P(X = x j |Y = i) =
1

(2π )m/2 || Σi ||
1/2 exp −

1
2
x j −µi( )

T
Σi
−1 x j −µi( )

#

$%
&

'(
																P(X=xj)= 

Covariance	matrix,	Σ,	=	
degree	to	which	xi	vary	
together	

Eigenvalue,	λ,	of	Σ	

MulMvariate	Gaussians	



Modelling	erupMon	of	geysers	

Old	Faithful	Data	Set	

Ti
m
e	
to
	E
ru
pM

on
	

DuraMon	of	Last	ErupMon	



Modelling	erupMon	of	geysers	

Old	Faithful	Data	Set	

Single	Gaussian	 Mixture	of	two	Gaussians	



Marginal	distribuMon	for	mixtures	of	
Gaussians	

Component	

Mixing	coefficient	

K=3	



Marginal	distribuMon	for	mixtures	of	
Gaussians	



Learning	mixtures	of	Gaussians	

Original	data	(hypothesized)	 Observed	data	(y	missing)	

Pr(Y = i | x)

Inferred	y’s	(learned	model)	

Shown	is	the	posterior	probability	that	a	point	was	generated	
from	ith	Gaussian:	



ML	esMmaMon	in	supervised	setng	

•  Univariate	Gaussian	

•  Mixture	of	Mul4variate	Gaussians	

ML	esMmate	for	each	of	the	MulMvariate	Gaussians	is	given	by:	

Just	sums	over	x	generated	from	the	k’th	Gaussian	

µML =
1
n

xn
j=1

n

∑ ΣML =
1
n

x j −µML( ) x j −µML( )
T

j=1

n

∑k	 k	 k	 k	



What	about	with	unobserved	data?	

•  Maximize	marginal	likelihood:	
– argmaxθ	∏j	P(xj)	=	argmax	∏j	∑k=1	P(Yj=k,	xj)	

•  Almost	always	a	hard	problem!	
– Usually	no	closed	form	soluMon	

– Even	when	lgP(X,Y)	is	convex,	lgP(X)	generally	isn’t…	

– Many	local	opMma	

K	



ExpectaMon	
MaximizaMon	

1977:	Dempster,	Laird,	&	Rubin	



The	EM	Algorithm	

•  A	clever	method	for	maximizing	marginal	
likelihood:	
–  argmaxθ	∏j	P(xj)	=	argmaxθ	∏j	∑k=1

K	P(Yj=k,	xj)	

– Based	on	coordinate	descent.	Easy	to	implement	
(eg,	no	line	search,	learning	rates,	etc.)	

•  Alternate	between	two	steps:	
– Compute	an	expectaMon	
– Compute	a	maximizaMon	

•  Not	magic:	s4ll	op4mizing	a	non-convex	
func4on	with	lots	of	local	op4ma	
–  The	computaMons	are	just	easier	(oZen,	significantly	so)	



EM:	Two	Easy	Steps	
Objec>ve:	argmaxθ	lg∏j	∑k=1

K	P(Yj=k,	xj	;	θ)	=	∑j	lg	∑k=1
K	P(Yj=k,	xj;	θ)		

Data:	{xj	|	j=1	..	n}		

•  E-step:	Compute	expectaMons	to	“fill	in”	missing	y	values	
according	to	current	parameters,	θ		

–  For	all	examples	j	and	values	k	for	Yj,	compute:	P(Yj=k	|	xj;	θ)		

•  M-step:	Re-esMmate	the	parameters	with	“weighted”	MLE	
esMmates	

–  Set	θnew	=	argmaxθ	∑j	∑k
	P(Yj=k	|	xj	;θold)	log	P(Yj=k,	xj	;	θ)	

Par>cularly	useful	when	the	E	and	M	steps	have	closed	form	solu>ons	



Gaussian	Mixture	Example:	Start	



AZer	first	iteraMon	



AZer	2nd	iteraMon	



AZer	3rd	iteraMon	



AZer	4th	iteraMon	



AZer	5th	iteraMon	



AZer	6th	iteraMon	



AZer	20th	iteraMon	



EM	for	GMMs:	only	learning	means	(1D)	
Iterate:		On	the	t’th	iteraMon	let	our	esMmates	be	

λt	=	{	μ1(t),	μ2(t)	…	μK(t)	}	
E-step	

	Compute	“expected”	classes	of	all	datapoints	

M-step	

	Compute	most	likely	new	μs	given	class	expectaMons	
€ 

P Yj = k x j ,µ1...µK( )∝ exp − 1
2σ 2 (x j − µk )

2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ P Yj = k( )

€ 

µk =  
P Yj = k x j( )

j=1

m

∑ x j

P Yj = k x j( )
j=1

m

∑



What	if	we	do	hard	assignments?	
Iterate:		On	the	t’th	iteraMon	let	our	esMmates	be	

λt	=	{	μ1(t),	μ2(t)	…	μK(t)	}	
E-step	

	Compute	“expected”	classes	of	all	datapoints	

M-step	

	Compute	most	likely	new	μs	given	class	expectaMons	

€ 

µk =  j=1

m
∑ δ Yj = k,x j( ) x j

δ Yj = k,x j( )
j=1

m

∑

δ	represents	hard	
assignment	to	“most	
likely”	or	nearest	
cluster	

	Equivalent	to	k-means	clustering	algorithm!!!	

€ 

P Yj = k xj ,µ1...µK( ) ∝ exp − 1
2σ 2 (xj −µk )

2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ P Yj = k( )

€ 

µk =  
P Yj = k x j( )

j=1

m

∑ x j

P Yj = k x j( )
j=1

m

∑



E.M.	for	General	GMMs	
Iterate:		On	the	t’th	iteraMon	let	our	esMmates	be	

λt	=	{	μ1(t),	μ2(t)	…	μK(t),	Σ1
(t),	Σ2

(t)	…	ΣK
(t),	p1(t),	p2(t)	…	pK(t)	}	

E-step	
	Compute	“expected”	classes	of	all	datapoints	for	each	class	

€ 

P Yj = k x j;λt( )∝ pk
( t )p x j ;µk

( t ),Σk
(t )( )

pk(t)	is	shorthand	for	
esMmate	of	P(y=k)	on	
t’th	iteraMon	

M-step			

		Compute	weighted	MLE	for	μ	given	expected	classes	above	

€ 

µk
t+1( ) =

P Yj = k x j;λt( )
j
∑  x j

P Yj = k x j;λt( )
j
∑

€ 

Σk
t+1( ) =

P Yj = k x j;λt( )
j
∑  x j − µk

t+1( )[ ] x j − µk
t+1( )[ ]

T

P Yj = k x j ;λt( )
j
∑  

€ 

pk
(t+1) =

P Yj = k x j;λt( )
j
∑

m m	=	#training	examples	

Evaluate	probability	of	a	
mul*variate	a	Gaussian	at	xj	



The	general	learning	problem	with	missing	data	
•  Marginal	likelihood:	X	is	observed,	

	 	 	 	 	 	 	 	 	
	 	 				Z	(e.g.	the	class	labels	Y)	is	missing:	

•  ObjecMve:	Find	argmaxθ	l(θ:Data)	
•  Assuming	hidden	variables	are	missing	completely	at	random	

(otherwise,	we	should	explicitly	model	why	the	values	are	missing)	



ProperMes	of	EM	

•  One	can	prove	that:	
– EM	converges	to	a	local	maxima	

– Each	iteraMon	improves	the	log-likelihood	

•  How?	(Same	as	k-means)	
– Likelihood	objecMve	instead	of	k-means	objecMve	
– M-step	can	never	decrease	likelihood	



EM	pictorially	Derivation of EM algorithm

L(θ) l(θ|θn)

θn θn+1

L(θn) = l(θn|θn)
l(θn+1|θn)

L(θn+1)

L(θ)
l(θ|θn)

θ

Figure 2: Graphical interpretation of a single iteration of the EM algorithm:
The function l(θ|θn) is bounded above by the likelihood function L(θ). The
functions are equal at θ = θn. The EM algorithm chooses θn+1 as the value of θ
for which l(θ|θn) is a maximum. Since L(θ) ≥ l(θ|θn) increasing l(θ|θn) ensures
that the value of the likelihood function L(θ) is increased at each step.

We have now a function, l(θ|θn) which is bounded above by the likelihood
function L(θ). Additionally, observe that,

l(θn|θn) = L(θn) + ∆(θn|θn)

= L(θn) +
∑

z

P(z|X, θn) ln
P(X|z, θn)P(z|θn)

P(z|X, θn)P(X|θn)

= L(θn) +
∑

z

P(z|X, θn) ln
P(X, z|θn)

P(X, z|θn)

= L(θn) +
∑

z

P(z|X, θn) ln 1

= L(θn), (16)

so for θ = θn the functions l(θ|θn) and L(θ) are equal.
Our objective is to choose a values of θ so that L(θ) is maximized. We have

shown that the function l(θ|θn) is bounded above by the likelihood function L(θ)
and that the value of the functions l(θ|θn) and L(θ) are equal at the current
estimate for θ = θn. Therefore, any θ which increases l(θ|θn) will also increase
L(θ). In order to achieve the greatest possible increase in the value of L(θ), the
EM algorithm calls for selecting θ such that l(θ|θn) is maximized. We denote
this updated value as θn+1. This process is illustrated in Figure (2).

7

(Figure from tutorial by Sean Borman)
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Likelihood	
objecMve	

Lower	bound	
at	iter	n	



What	you	should	know	
•  Mixture	of	Gaussians	

•  EM	for	mixture	of	Gaussians:	
–  How	to	learn	maximum	likelihood	parameters	in	the	case	of	unlabeled	data	

–  RelaMon	to	K-means		
•  Two	step	algorithm,	just	like	K-means	

•  Hard	/	soZ	clustering	
•  ProbabilisMc	model	

•  Remember,	EM	can	get	stuck	in	local	minima,	 		
–  And	empirically	it	DOES	


