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Bayesian networks enable use of
domain knowledge

p(x1,...xp) = H p(Xi | Xpa(i))
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Heckerman et al., Decision-Theoretic Troubleshooting, 1995



Bayesian networks enable use of
domain knowledge

p(x1; ... xn) = H p(Xi | Xpa(i))
eV
What is the differential diagnosis?
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Fyg. 1 The ALARM network representing causal relationships is shown with diagnostic (@), tntermediate (Q) and
measurement () nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular end-
diastolic volume, LV failure: left ventricular fatlure, MV: minute ventilation, PA Sat: pulmonary artery oxygen satu-
ration, PAP: pulmonary artery pressure, PCWP: pulmonary captllary wedge pressure, Pres: breathing pressure, RR:

Beinlich et al., The ALARM Monitoring System, 1989



Bayesian networks are generative models

Can sample from the joint distribution, top-down

Suppose Y can be “spam” or “not spam”, and X; is a binary
indicator of whether word i is present in the e-mail

Let’s try generating a few emails! Label

Features

Often helps to think about Bayesian networks as a generative

model when constructing the structure and thinking about
the model assumptions



Inference in Bayesian networks

 Computing marginal probabilities in tree structured Bayesian
networks is easy

— The algorithm called “belief propagation” generalizes what we showed for

hidden Markov models to arbitrary trees
Label
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Features

e Wait... thisisn’t a tree! What can we do?

HR BP HR HR SAT
EKG




Inference in Bayesian networks

* In some cases (such as this) we can transform this into what is
called a “junction tree”, and then run belief propagation
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Approximate inference

There is also a wealth of approximate inference algorithms that can
be applied to Bayesian networks such as these

Q)
HRBP HR HR SAT

EKG

Markov chain Monte Carlo algorithms repeatedly sample
assignments for estimating marginals

Variational inference algorithms (deterministic) find a simpler

distribution which is “close” to the original, then compute marginals
using the simpler distribution



Maximum likelihood estimation in
Bayesian networks

@ Suppose that we know the Bayesian network structure G
® Let 0, be the parameter giving the value of the CPD p(x; | Xpa())

@ Maximum likelihood estimation corresponds to solving:

M
1 M
max — log p(x™: 6
ax ;) log p(x"; 0)
m=1
subject to the non-negativity and normalization constraints

@ This is equal to:

M M N
max - mz_:l log p(x™;0) = max mz_:l ; log p(Xi" | Xpa(i): 6)
Ny oM
= max) - > log p(” | xphiy: 0)
i=1 m=1

@ The optimization problem decomposes into an independent optimization
problem for each CPD! Has a simple closed-form solution.



Returning to clustering...

* Clusters may overlap
* Some clusters may be
o “wider” than others
qb * Can we model this
explicitly?

* With what probability is
a point from a cluster?



Probabilistic Clustering

* Try a probabilistic model!

* allows overlaps, clusters of different -

Size, etc. 7?7 0.1 2.1
* Can tell a generative story for ? 05 -11
data ?? 00 3.0
— P(Y)P(X]Y)
. ?? -0.1 -2.0
* Challenge: we need to estimate
model parameters without SRR

labeled Ys



Gaussian Mixture Models

e P(Y): There are k components

e P(X|Y): Each component generates data from a multivariate Gaussian
with mean p;and covariance matrix 2;

Each data point assumed to have been sampled from a generative process:
1. Choose component i with probability P(y=i) [Multinomial]

2. Generate datapoint ¥~ N(m,, %))

P(X=Xj|Y=i)= U
Uy

1 1 T .
(2n)m/2 ”21 ”1/2 expli_a( J - ‘ul) Zi](xj - Ml)] /
By fitting this model (unsupervised T U
learning), we can learn new insights
about the data




Multivariate Gaussians

1 1 T
P(X:x]): (2.7_[)m/2 ” D ”1/2 expl_a(xj _‘U) 2 1(Xj —HU )
2132‘
.xl

> « jdentity matrix



Multivariate Gaussians

1 I
P(X=x)= _(x,
A=)~ Gypris i =P l > (%,

2 = diagonal matrix
X. are independent ala Gaussian NB



Multivariate Gaussians

1 1 T 4
P(X:x]): (2ﬂ)m/2 1> ”1/2 €Xp!——(xj _‘U) ~ (XJ - )

@

> = arbitrary (semidefinite) matrix:
- specifies rotation (change of basis)
- eigenvalues specify relative elongation

332‘

X
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Multivariate Gaussians

»,  Eigenvalue, A, of 2

A u?

Y2 Covariance matrix, 2, =
n degree to which x; vary
together

\L/2
A2

P~ (x-0) = (x,-0)

Q)"



Modelling eruption of geysers

Old Faithful Data Set
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Modelling eruption of geysers

Old Faithful Data Set
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Single Gaussian Mixture of two Gaussians



Marginal distribution for mixtures of
Gaussians

. p(z)a
p(x) = ZWkN(X|Nka Ek?

k=1 r
Component

Mixing coefficient

K=3



Marginal distribution for mixtures of

Gaussians
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Learning mixtures of Gaussians

Original data (hypothesized) Observed data (y missing) Inferred y’s (learned model)

1 Lt 1

0.5 057 0.5

Shown is the posterior probability that a point was generated
from ith Gaussian: Pr(Y =i | )



ML estimation in supervised setting

e Univariate Gaussian

e Mixture of Multivariate Gaussians

ML estimate for each of the Multivariate Gaussians is given by:

[ & .
Mz@f;;xn S =%E(X1‘M@L)(XJ‘MAZL)T
n =

\ /

Just sums over x generated from the k’th Gaussian



What about with unobserved data?

* Maximize marginal likelihood.
—argmaxg | [; P(x;) = argmax | |, 3y P(Y;=k, x;)

* Almost always a hard problem!

— Usually no closed form solution
— Even when IgP(X,Y) is convex, IgP(X) generally isn’t...

— Many local optima
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1977: Dempster, Laird, & Rubin



The EM Algorithm

* A clever method for maximizing marginal
likelihood:
— argmaxg [ [; P(x;) = argmaxg [ [; -, P(Y;=k, x))

— Based on coordinate descent. Easy to implement
(eg, no line search, learning rates, etc.)

e Alternate between two steps:
— Compute an expectation
— Compute a maximization
* Not magic: still optimizing a non-convex
function with lots of local optima

— The computations are just easier (often, significantly so)



EM: Two Easy Steps
Objective: argmaxg Ig[ [; X\, P(Y;=k, x;; 8) = 3;1g 2, ., P(Y;=k, x;; 6)
Data: {x; | j=1.. n}

e E-step: Compute expectations to “fill in” missing y values
according to current parameters, 0

— For all examples j and values k for Y;, compute: P(Y;=k | x;; 6)

* M-step: Re-estimate the parameters with “weighted” MLE
estimates

— Set 6" = argmaxg Y, X, P(Y;=k | x;;6°%) log P(Y;=k, x;; 6)

Particularly useful when the E and M steps have closed form solutions






After first iteration




After 2nd iteration




After 3rd iteration




After 4th iteration




After 5th iteration




After 6th iteration
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After 20th iteration




EM for GMMs: only learning means (1D)

Iterate: On the t'th iteration let our estimates be
}\'t = {’ul(t)’ 'uz(t) “K(t)}

E-step
Compute “expected” classes of all datapoints
1 >
P(Y]. = k‘xj,pq...uK) x exp by (X, —uw) P(Yj = k)
M-step

Compute most likely new us given class expectations
EP(YJ. = k‘xj) X

j=1

> P(Y; = x|

j=1

W, =



What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be

}\'t = {’ul(t)’ 'uz(t) “K(t)}
E-step

Compute “expected” classes of all datapoints

1 2
P(YJ = k‘xj MMK) X exp(— 25" (X, — ) )PM

M-step J represents hard
assignment to “most
likely” or nearest
cluster

Compute most likely new us given class expectations

Equivalent to k-means clustering algorithm!!!



E.M. for General GMMS [, 4. oo

. . . estimate of P(y=k) on
Iterate: On the t'th iteration let our estimates be t'th iteration

A= {0, 0 o 0, 200 200 30 p ) p 0 pl0))

E-step
Compute “expected” classes of all datapoints for each class

P(Yj - k‘xj;)w) * pk(t)p(xj;‘uk(t)’zk(t))/

Evaluate probability of a
multivariate a Gaussian at x;

M-step

Compute weighted MLE for p given expected classes above

EP(YJ. = k‘xj;)ut)xj EP(Y]. = k‘xj;lt) [x]. - uk(”l):[xj - Mk(”l)]T
(1+1) J ) J

Uy = EP(YJ, _ k‘xj;)\,t) Zk(Hl _ EP(YJ, = k‘xj;)";
J J

EP(YJ. = k‘xj;)»t)

(r+1) _ j

Pk m/

m = #training examples




The general learning problem with missing data
* Marginal likelihood: X is observed,
Z (e.g. the class labels Y) is missing:

¢(0:D) = log ﬁ P(x; | 0)
j=1

m

> log P(x; | 6)
j=1

m

— ZlogZP(X]’,Z|9>
=1 'z

* Objective: Find argmaxg |(8:Data)

* Assuming hidden variables are missing completely at random
(otherwise, we should explicitly model why the values are missing)



Properties of EM

* One can prove that:
— EM converges to a local maxima

— Each iteration improves the log-likelihood

* How? (Same as k-means)
— Likelihood objective instead of k-means objective
— M-step can never decrease likelihood
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(Figure from tutorial by Sean Borman)



What you should know

e Mixture of Gaussians

 EM for mixture of Gaussians:
— How to learn maximum likelihood parameters in the case of unlabeled data

— Relation to K-means
e Two step algorithm, just like K-means
* Hard / soft clustering

* Probabilistic model

e Remember, EM can get stuck in local minima,
— And empirically it DOES



