Unsupervised learning (part 1) Lecture 19

David Sontag **New York University**

Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore

Bayesian networks enable use of domain knowledge ² One conditional probability distribution (CPD) per node, *p*(*xⁱ |* xPa(*i*)), Corresponds 1-1 with a particular factorization of the joint

$$
p(x_1,\ldots x_n)=\prod_{i\in V}p(x_i\mid \mathbf{x}_{\text{Pa}(i)})
$$

Will my car start this morning?

Heckerman et al., Decision-Theoretic Troubleshooting, 1995

8 Avesian networks ena ² One conditional probability distribution (CPD) per node, *p*(*xⁱ |* xPa(*i*)), specifying the variable's probability conditioned on its parents' values Corresponds 1-1 with a particular factorization of the joint Bayesian networks enable use of domain knowledge

$$
p(x_1,...x_n) = \prod_{i \in V} p(x_i \mid \mathbf{x}_{\text{Pa}(i)})
$$

What is the differential diagnosis?

Fig. 1 The ALARM network representing causal relationships is shown with diagnostic (.), intermediate (O) and measurement (@) nodes. CO: cardiac output, CVP: central venous pressure, LVED volume: left ventricular enddiastolic volume, LV failure: left ventricular failure, MV: minute ventilation, PA Sat: pulmonary artery oxygen saturation, PAP: pulmonary artery pressure, PCWP: pulmonary capillary wedge pressure, Pres: breathing pressure, RR: respiratory rate, TPR: total peripheral resistance, TV: tidal volume

Beinlich *et al.*, The ALARM Monitoring System, 1989

Bayesian networks are *generative models*

- Can sample from the joint distribution, top-down
- Suppose Y can be "spam" or "not spam", and X_i is a binary indicator of whether word *i* is present in the e-mail
- Let's try generating a few emails!

• Often helps to think about Bayesian networks as a generative model when constructing the structure and thinking about the model assumptions

Inference in Bayesian networks

- Computing marginal probabilities in tree structured Bayesian networks is easy
	- The algorithm called "belief propagation" generalizes what we showed for hidden Markov models to arbitrary trees

• Wait... this isn't a tree! What can we do?

Inference in Bayesian networks

• In some cases (such as this) we can *transform* this into what is called a "junction tree", and then run belief propagation

Approximate inference

• There is also a wealth of **approximate** inference algorithms that can be applied to Bayesian networks such as these

- **Markov chain Monte Carlo algorithms** repeatedly sample assignments for estimating marginals
- Variational inference algorithms (deterministic) find a simpler distribution which is "close" to the original, then compute marginals using the simpler distribution

Maximum likelihood estimation in Bayesian networks

- Suppose that we know the Bayesian network structure *G* Suppose that we know the Bayesian network structure *G* Suppose that we know the Bayesian network structure *G*
- Let $\theta_{x_i | \mathbf{x}_{pa(i)}}$ be the parameter giving the value of the CPD $p(x_i | \mathbf{x}_{pa(i)})$ Let $v_{x_i}|_{\mathbf{x}_{pa}(i)}$ be the parameter giving the value of the CFD $p(x_i | \mathbf{x}_{pa}(i))$
- Maximum likelihood estimation corresponds to solving: Maximum likelihood estimation corresponds to solving: Maximum likelihood estimation corresponds to solving:

$$
\max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}^{M}; \theta)
$$

subject to the non-negativity and normalization constraints subject to the non-negativity and normalization constraints subject to the non-negativity and normalization constraints

This is equal to: This is equal to: This is equal to:

$$
\max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \log p(\mathbf{x}^{M}; \theta) = \max_{\theta} \frac{1}{M} \sum_{m=1}^{M} \sum_{i=1}^{N} \log p(x_{i}^{M} | \mathbf{x}_{pa(i)}^{M}; \theta)
$$

$$
= \max_{\theta} \sum_{i=1}^{N} \frac{1}{M} \sum_{m=1}^{M} \log p(x_{i}^{M} | \mathbf{x}_{pa(i)}^{M}; \theta)
$$

The optimization problem decomposes into an independent optimization problem for each CPD! Has a simple closed-form solution. The optimization problem decomposes into an independent optimization The optimization problem decomposes into an independent optimization problem for each CPD! Has a simple closed-form solution. problem for each CPD! Has a simple closed-form solution.

Returning to clustering...

- Clusters may overlap
- Some clusters may be "wider" than others
- Can we model this explicitly?
- With what **probability** is a point from a cluster?

Probabilistic Clustering

- Try a probabilistic model!
	- allows overlaps, clusters of different size, etc.
- Can tell a *generative story* for data
	- $P(Y)P(X|Y)$
- Challenge: we need to estimate model parameters without labeled Ys

Gaussian Mixture Models

- $P(Y)$: There are k components
- P(X|Y): Each component generates data from a **multivariate Gaussian** with mean μ_i and covariance matrix Σ_i

Each data point assumed to have been sampled from a *generative process*:

- 1. Choose component i with probability $P(y=i)$ [Multinomial]
- 2. Generate datapoint $\sim N(m_i, \Sigma_i)$

$$
P(X = \mathbf{x}_j \mid Y = i) =
$$

$$
\frac{1}{(2\pi)^{m/2} \|\Sigma_i\|^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_j - \mu_i)^T \Sigma_i^{-1}(\mathbf{x}_j - \mu_i)\right]
$$

By fitting this model (unsupervised *learning), we can learn new insights about the data*

$$
P(X=x_j) = \frac{1}{(2\pi)^{m/2} \parallel \Sigma \parallel^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_j - \mu)\right]^T \Sigma^{-1}(\mathbf{x}_j - \mu)\right]
$$

$$
x_2 \blacklozenge
$$

 x_1

Σ ∝ identity matrix

$$
P(X=x_j) = \frac{1}{(2\pi)^{m/2} \parallel \Sigma \parallel^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_j - \mu)\right]^T \Sigma_i^{-1}(\mathbf{x}_j - \mu)\right]
$$

$$
x_2
$$

Σ = diagonal matrix X_i are independent *ala* Gaussian NB

$$
P(X=x_j) = \frac{1}{(2\pi)^{m/2} \parallel \Sigma \parallel^{1/2}} \exp\left[-\frac{1}{2}(\mathbf{x}_j - \mu)\right]^T \Sigma^{-1}(\mathbf{x}_j - \mu)\right]
$$

$$
x_2
$$

 Σ = arbitrary (semidefinite) matrix:

- specifies rotation (change of basis)
- eigenvalues specify relative elongation

Modelling eruption of geysers

Old Faithful Data Set

Duration of Last Eruption

Modelling eruption of geysers

Old Faithful Data Set

Marginal distribution for mixtures of Gaussians

Marginal distribution for mixtures of Gaussians

Learning mixtures of Gaussians

from ith Gaussian: $Pr(Y = i | x)$ Shown is the *posterior probability* that a point was generated

ML estimation in **supervised** setting

• Univariate Gaussian

$$
\mu_{MLE} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \sigma_{MLE}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2
$$

• *Mixture* of *Multivariate* Gaussians

ML estimate for each of the Multivariate Gaussians is given by:

$$
\mu_{ML}^k = \frac{1}{n} \sum_{j=1}^n x_n \qquad \sum_{M}^k = \frac{1}{n} \sum_{j=1}^n (\mathbf{x}_j - \mu_{ML}^k) (\mathbf{x}_j - \mu_{ML}^k)^T
$$

Just sums over *x* **generated from the** *k***th Gaussian**

What about with unobserved data?

- Maximize *marginal likelihood*: — argmax $_{\theta} \prod_{j} P(x_{j}) = \text{argmax} \prod_{j} \sum_{k=1}^{K} P(Y_{j} = k, x_{j})$
- Almost always a hard problem!
	- $-$ Usually no closed form solution
	- $-$ Even when $Igp(X,Y)$ is convex, $Igp(X)$ generally isn't...
	- Many local optima

1977: Dempster, Laird, & Rubin

The EM Algorithm

- A clever method for maximizing marginal likelihood:
	- $-$ argmax $_{\theta}$ \prod_{j} P(x_j) = argmax $_{\theta}$ \prod_{j} $\sum_{k=1}^{K}$ P(Y_j=k, x_j)
	- $-$ Based on coordinate descent. Easy to implement (eg, no line search, learning rates, etc.)
- Alternate between two steps:
	- $-$ Compute an expectation
	- $-$ Compute a maximization
- Not magic: *still optimizing a non-convex* function with lots of local optima
	- $-$ The computations are just easier (often, significantly so)

EM: Two Easy Steps

Objective: argmax_{θ} $\text{lg}\prod_{j} \sum_{k=1}^{K} P(Y_j = k, x_j; \theta) = \sum_{j} \text{lg} \sum_{k=1}^{K} P(Y_j = k, x_j; \theta)$

 $\mathsf{Data:} \{ \mathsf{x}_{\mathsf{j}} \mid \mathsf{j=1} \dots \mathsf{n} \}$

• **E-step**: Compute expectations to "fill in" missing y values according to current parameters, θ

— For all examples j and values k for Y_j, compute: P(Y_j=k | x_j; θ)

• **M-step**: Re-estimate the parameters with "weighted" MLE estimates

— Set θ $^{\text{new}}$ = argmax $_{\theta}$ \sum_{j} \sum_{k} P(Y_j=k | x_j;θ^{old}) log P(Y_j=k, x_j; θ)

Particularly useful when the E and M steps have closed form solutions

Gaussian Mixture Example: Start

After first iteration

After 2nd iteration

After 3rd iteration

After 4th iteration

After 5th iteration

After 6th iteration

After 20th iteration

EM for GMMs: only learning means (1D)

Iterate: On the t'th iteration let our estimates be $\lambda_t = \{\mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)}\}$

E-step

Compute "expected" classes of all datapoints

$$
P(Y_j = k | x_j, \mu_1 \dots \mu_K) \propto \exp\left(-\frac{1}{2\sigma^2} (x_j - \mu_k)^2\right) P(Y_j = k)
$$

M-step

Compute most likely new **μ**s given class expectations

$$
\mu_k = \frac{\sum_{j=1}^m P(Y_j = k | x_j) x_j}{\sum_{j=1}^m P(Y_j = k | x_j)}
$$

What if we do hard assignments?

Iterate: On the t'th iteration let our estimates be $\lambda_t = \{\mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)}\}$

E-step

Compute "expected" classes of all datapoints $P(Y_j = k | x_j, u_1, \ldots, u_k) \propto \exp\left(-\frac{1}{2\epsilon}\right)$ $\frac{1}{2\sigma^2}(x_j - \mu_k)$ $\left(\frac{1}{(x+1)^2} \right)$ ⎝ $\left(-\frac{1}{2\epsilon^2}(x_j - \mu_k)^2\right)$ \int $|P(Y_j)|$ = *k*)

M-step

Compute most likely new **μ**s given class expectations

δ represents hard assignment to "most likely" or nearest cluster

Equivalent to k-means clustering algorithm!!!

E.M. for General GMMs

Iterate: On the t'th iteration let our estimates be

 $\lambda_t = \{ \mu_1^{(t)}, \mu_2^{(t)} \dots \mu_K^{(t)}, \sum_1^{(t)}, \sum_2^{(t)} \dots \sum_K^{(t)}, p_1^{(t)}, p_2^{(t)} \dots p_K^{(t)} \}$

E-step

Compute "expected" classes of all datapoints for each class

$$
P(Y_j = k | x_j; \lambda_t) \propto p_k^{(t)} p(x_j; \mu_k^{(t)}, \Sigma_k^{(t)})
$$

Evaluate probability of a
multivariate a Gaussian at x_j

 $p_{k}^{\left(t\right) }$ is shorthand for estimate of $P(y=k)$ on

t'th iteration

M-step

Compute weighted MLE for **µ** given expected classes above

$$
\mu_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k | x_{j}; \lambda_{t}) x_{j}}{\sum_{j} P(Y_{j} = k | x_{j}; \lambda_{t})} \sum_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k | x_{j}; \lambda_{t}) [x_{j} - \mu_{k}^{(t+1)}][x_{j} - \mu_{k}^{(t+1)}]^{T}}{\sum_{j} P(Y_{j} = k | x_{j}; \lambda_{t})}
$$
\n
$$
p_{k}^{(t+1)} = \frac{\sum_{j} P(Y_{j} = k | x_{j}; \lambda_{t})}{m}
$$
\n*m* = \#training examples

The general learning problem with missing data • Marginal likelihood: **X** is observed,

> **Z** (e.g. the class labels **Y**) is missing: $\ell(\theta : \mathcal{D}) = \log \prod_{i=1}^{n} P(\mathbf{x}_j | \theta)$ $i=1$ $=\sum_{j=1}^{m} \log P(\mathbf{x}_j | \theta)$ $i=1$ $= \sum_{j=1}^{m} \log \sum_{\mathbf{z}} P(\mathbf{x}_j, \mathbf{z} | \theta)$

- Objective: Find argmax_e $I(\theta:Data)$
- Assuming hidden variables are *missing completely at random* **(otherwise, we should explicitly model why the values are missing)**

Properties of EM

- One can prove that:
	- EM converges to a local maxima
	- $-$ Each iteration improves the log-likelihood
- How? (Same as k-means)
	- Likelihood objective instead of k-means objective
	- M-step can never decrease likelihood

EM pictorially

(Figure from tutorial by Sean Borman) $\frac{1}{\sqrt{2}}$

What you should know

- Mixture of Gaussians
- EM for mixture of Gaussians:
	- $-$ How to learn maximum likelihood parameters in the case of unlabeled data
	- $-$ Relation to K-means
		- Two step algorithm, just like K-means
		- Hard / soft clustering
		- Probabilistic model
- Remember, EM can get stuck in local minima,
	- $-$ And empirically it **DOES**