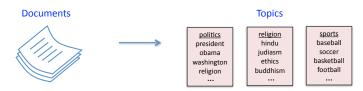
Introduction To Machine Learning


David Sontag

New York University

Lecture 22, April 19, 2016

Latent Dirichlet allocation (LDA)

 Topic models are powerful tools for exploring large data sets and for making inferences about the content of documents

 Many applications in information retrieval, document summarization, and classification

LDA is one of the simplest and most widely used topic models

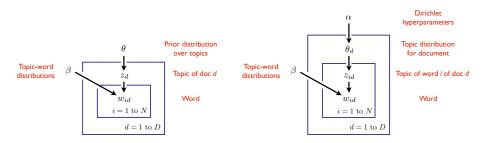
Generative model for a document in LDA

9 Sample the document's **topic distribution** θ (aka topic vector)

$$\theta \sim \text{Dirichlet}(\alpha_{1:T})$$

where the $\{\alpha_t\}_{t=1}^T$ are fixed hyperparameters. Thus θ is a distribution over T topics with mean $\theta_t = \alpha_t / \sum_{t'} \alpha_{t'}$

② For i = 1 to N, sample the **topic** z_i of the i'th word


$$z_i|\theta \sim \theta$$

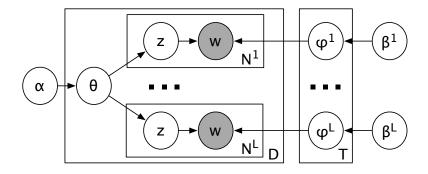
 \odot ... and then sample the actual **word** w_i from the z_i 'th topic

$$w_i|z_i\sim \beta_{z_i}$$

where $\{\beta_t\}_{t=1}^T$ are the *topics* (a fixed collection of distributions on words)

Comparison of mixture and admixture models

- Model on left is a mixture model
 - Called multinomial naive Bayes (a word can appear multiple times)
 - Document is generated from a single topic
- Model on right (LDA) is an admixture model
 - Document is generated from a <u>distribution</u> over topics


Two steps

- Can typically separate out these two uses of topic models:
 - **1** Learn the model parameters (α, β)
 - 2 Use model to make inferences about a single document
- Step 1 is when topic discovery happens. Since the topic assignments *z* are never observed, one can use EM to do this
- Exact inference is intractable: approximate inference (typically Gibbs sampling) is used

Polylingual topic models (Mimno et al., EMNLP '09)

- Goal: topic models that are aligned across languages
- Training data: corpora with multiple documents in each language
 - EuroParl corpus of parliamentary proceedings (11 western languages; exact translations)
 - Wikipedia articles (12 languages; not exact translations)
- How to do this?

Polylingual topic models (Mimno et al., EMNLP '09)

Learned topics

DA	centralbank europæiske ecb s lån centralbanks
DE	zentralbank ezb bank europäischen investitionsbank darleher
EL	τράπεζα τράπεζας κεντρική εκτ κεντρικής τράπεζες
ΕN	bank central ecb banks european monetary
ES	banco central europeo bce bancos centrales
FI	keskuspankin ekp n euroopan keskuspankki eip
FR	banque centrale bce européenne banques monétaire
ΙΤ	banca centrale bce europea banche prestiti
NL	bank centrale ecb europese banken leningen
PT	banco central europeu bce bancos empréstimos
SV	centralbanken europeiska ecb centralbankens s lån

Learned topics

- DA børn familie udnyttelse børns børnene seksuel
- DE kinder kindern familie ausbeutung familien eltern
- EL παιδιά παιδιών οικογένεια οικογένειας γονείς παιδικής
- EN children family child sexual families exploitation
- ES niños familia hijos sexual infantil menores
- FI lasten lapsia lapset perheen lapsen lapsiin
- FR enfants famille enfant parents exploitation familles
- IT bambini famiglia figli minori sessuale sfruttamento
- NL kinderen kind gezin seksuele ouders familie
- PT crianças família filhos sexual criança infantil
- SV barn barnen familjen sexuellt familj utnyttjande

Discussion

- How would you use this?
- How could you extend this?

Author-topic model (Rosen-Zvi et al., UAI '04)

- Goal: topic models that take into consideration author interests
- Training data: corpora with label for who wrote each document
 - Papers from NIPS conference from 1987 to 1999
 - Twitter posts from US politicians
- Why do this?
- How to do this?

Author-topic model (Rosen-Zvi et al., UAI '04)

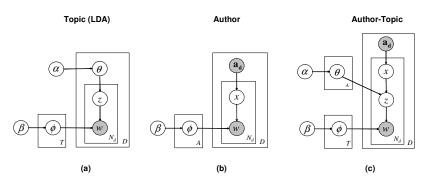
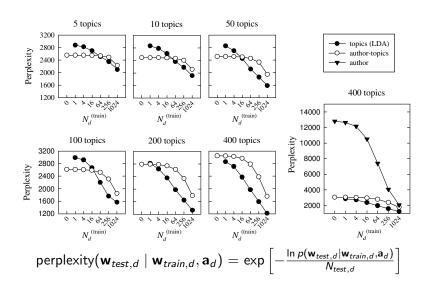


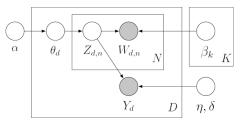
Figure 1: Generative models for documents. (a) Latent Dirichlet Allocation (LDA; Blei et al., 2003), a topic model. (b) An author model. (c) The author-topic model.

Most likely author for a topic


TOPIC 31	
WORD	PROB.
SPEECH	0.0823
RECOGNITION	0.0497
HMM	0.0234
SPEAKER	0.0226
CONTEXT	0.0224
WORD	0.0166
SYSTEM	0.0151
ACOUSTIC	0.0134
PHONEME	0.0131
CONTINUOUS	0.0129
AUTHOR	PROB.
Waibel_A	0.0936
Makhoul_J	0.0238
De-Mori_R	0.0225
Bourlard_H	0.0216
Cole_R	0.0200
Rigoll_G	0.0191
Hochberg_M	0.0176
Franco_H	0.0163
Abrash_V	0.0157
Movellan_J	0.0149

TOPIC 61	
WORD	PROB.
BAYESIAN	0.0450
GAUSSIAN	0.0364
POSTERIOR	0.0355
PRIOR	0.0345
DISTRIBUTION	0.0259
PARAMETERS	0.0199
EVIDENCE	0.0127
SAMPLING	0.0117
COVARIANCE	0.0117
LOG	0.0112
AUTHOR	PROB.
Bishop_C	0.0563
Williams_C	0.0497
Barber_D	0.0368
MacKay_D	0.0323
Tipping_M	0.0216
Rasmussen_C	0.0215
Opper_M	0.0204
Attias_H	0.0155
Sollich_P	0.0143
Schottky_B	0.0128

T0010 T1	
TOPIC 71	
WORD	PROB.
MODEL	0.4963
MODELS	0.1445
MODELING	0.0218
PARAMETERS	0.0205
BASED	0.0116
PROPOSED	0.0103
OBSERVED	0.0100
SIMILAR	0.0083
ACCOUNT	0.0069
PARAMETER	0.0068
AUTHOR	PROB.
Omohundro_S	0.0088
Zemel_R	0.0084
Ghahramani_Z	0.0076
Jordan_M	0.0075
Sejnowski_T	0.0071
Atkeson_C	0.0070
Bower_J	0.0066
Bengio_Y	0.0062
Revow_M	0.0059
Williams_C	0.0054


TOPIC 100		
WORD	PROB.	
HINTON	0.0329	
VISIBLE	0.0124	
PROCEDURE	0.0120	
DAYAN	0.0114	
UNIVERSITY	0.0114	
SINGLE	0.0111	
GENERATIVE	0.0109	
COST	0.0106	
WEIGHTS	0.0105	
PARAMETERS	0.0096	
AUTHOR	PROB.	
AUTHOR Hinton_G	PROB. 0.2202	
Hinton_G	0.2202	
Hinton_G Zemel_R	0.2202 0.0545	
Hinton_G Zemel_R Dayan_P Becker_S	0.2202 0.0545 0.0340	
Hinton_G Zemel_R Dayan_P Becker_S Jordan_M	0.2202 0.0545 0.0340 0.0266	
Hinton_G Zemel_R Dayan_P Becker_S Jordan_M Mozer_M	0.2202 0.0545 0.0340 0.0266 0.0190	
Hinton_G Zemel_R Dayan_P Becker_S Jordan_M Mozer_M	0.2202 0.0545 0.0340 0.0266 0.0190 0.0150	
Hinton_G Zemel_R Dayan_P Becker_S Jordan_M Mozer_M Williams_C	0.2202 0.0545 0.0340 0.0266 0.0190 0.0150 0.0099 0.0087	

Perplexity as a function of number of observed words

Supervised Topic Models

- The inferred θ or **z** can be used as features in many prediction tasks.
- Performance can be improved by jointly training the representation and the predictor.
- Hence, supervised LDA:

