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Key idea #1: Allow for slack 
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Equivalent hinge loss formulation 

Σj ξj 
- ξj ξj≥0 

Substituting into the objective, we get: 

, ξ 

Now an unconstrained optimization problem. No longer a linear objective, 
but it is convex. 



Key idea #2: seek large margin 



•  Consider the constraints: 

•  As the norm of the weight vector ||w|| and b get smaller, the 
optimization problem becomes infeasible: 
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As ||w|| (and |b|) 
get smaller 
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What is    (geometric margin) as a function of w? 

- 

We also know that: 

So, (assuming there is a data point 
 on the w.x + b = +1 or -1 line) 

Final result: can maximize      by minimizing ||w||2!!! 



(Hard margin) support vector machines 

•  Example of a convex optimization problem 

–  A quadratic program 
–  Polynomial-time algorithms to solve! 

•  Hyperplane defined by support vectors 

–  Could use them as a lower-dimension 
basis to write down line, although we 
haven’t seen how yet 

•  More on these later 
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Support Vectors: 
•  data points on the 

canonical lines 

Non-support Vectors: 
•  everything else 
•  moving them will 

not change w 



Allowing for slack: “Soft margin SVM” 

For each data point: 
• If margin ≥ 1, don’t care 
• If margin < 1, pay linear penalty 
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Slack penalty C > 0: 
•  C=∞ ! have to separate the data! 
•  C=0 !  ignores the data entirely! 
•  Select using cross-validation 

“slack variables” 

ξ2 

ξ1 

ξ3 

ξ4 



Equivalent formulation using hinge loss 

+ C Σj ξj 
- ξj ξj≥0 

Substituting into the objective, we get: 

This part is empirical risk minimization, 
using the hinge loss 

This is called regularization; 
used to prevent overfitting! 

Recall, the hinge loss is 


