Support vector machines (SVMs) Lecture 6

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin

Pegasos vs. Perceptron

```
Pegasos Algorithm
Initialize: w
For iter = 1,2,\ldots,20
    For j=1,2,\ldots,|data|
        t=t+1
        \eta
        If }\mp@subsup{\textrm{y}}{\textrm{j}}{}(\mp@subsup{\textrm{w}}{\textrm{t}}{}\mp@subsup{\textrm{x}}{\textrm{j}}{})<
        wt+1}=(1-\eta\mp@subsup{\eta}{t}{}\lambda)\mp@subsup{w}{t}{}+\mp@subsup{\eta}{t}{}\mp@subsup{y}{j}{}\mp@subsup{x}{j}{
            Else
        wt+1
```

Output: wt+1

Pegasos vs. Perceptron

Perceptron Algorithm

Initialize: $\mathrm{w}_{1}=0, \mathrm{t}=0$
For iter = 1,2, $\ldots, 20$
For $\mathrm{j}=1,2, \ldots, \mid$ data \mid
$t=t+1$
If $y_{j}\left(w_{t} x_{j}\right)<10$

$$
w_{t+1}=\left(1 n_{11}\right) w_{t}+n_{\pi} y_{j} x_{j}
$$

Output: wt+1

Much faster than previous methods

- 3 datasets (provided by Joachims)
- Reuters CCAT (800K examples, 47k features)
- Physics ArXiv (62k examples, 100k features)
- Covertype (581k examples, 54 features)

Training Time (in seconds):

	Pegasos	SVM-Perf	SVM-Light
Reuters	$\mathbf{2}$	77	20,075
Covertype	$\mathbf{6}$	85	25,514
Astro-Physics	$\mathbf{2}$	5	80

Running time guarantee

- Approximation error: - Best error achievable by large-margin predictor - Error of population minimizer $\mathrm{w}_{0}=\operatorname{argmin} \mathrm{E}[f(\mathrm{w})]=\operatorname{argmin} \lambda\|\mathrm{w}\|^{2}+\mathrm{E}_{x, y}[\operatorname{loss}(\langle\mathrm{w}, \mathrm{x}\rangle ; \mathrm{y})]$ - Estimation error: - Extra error due to replacing E[loss] with empirical loss $w^{*}=\arg \min f_{n}(w)$ - Optimization error: - Extra error due to only optimizing to within finite precision

Running time guarantee

Extending to multi-class classification

One versus all classification

Learn 3 classifiers:

- vs $\{0,+\}$, weights w_{-} -+ vs $\{0,-\}$, weights w_{+} $\cdot \circ$ vs $\{+,-\}$, weights w_{0}

Predict label using:
$\hat{y} \leftarrow \arg \max _{k} w_{k} \cdot x+b_{k}$

Any problems?
Could we learn this (1-D) dataset? \rightarrow

Multi-class SVM

Simultaneously learn 3 sets of weights:

- How do we guarantee the correct labels?
-Need new constraints!

The "score" of the correct class must be better than the "score" of wrong classes:

$$
w^{\left(y_{j}\right)} \cdot x_{j}+b^{\left(y_{j}\right)}>w^{(y)} \cdot x_{j}+b^{(y)} \quad \forall j, y \neq y_{j}
$$

Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

$$
\begin{aligned}
& \operatorname{minimize}_{\mathbf{w}, b} \sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)}+C \sum_{j} \xi_{j} \\
& \mathbf{w}^{\left(y_{j}\right)} \cdot \mathbf{x}_{j}+b^{\left(y_{j}\right)} \geq \mathbf{w}^{\left(y^{\prime}\right)} \cdot \mathbf{x}_{j}+b^{\left(y^{\prime}\right)}+1-\xi_{j}, \forall y^{\prime} \neq y_{j}, \forall j \\
& \xi_{j} \geq 0, \forall j
\end{aligned}
$$

To predict, we use:
$\hat{y} \leftarrow \arg \max _{k} w_{k} \cdot x+b_{k}$

Now can we learn it? \rightarrow

$$
\begin{aligned}
& w_{-}=-1 \quad w_{+}=1 \\
& b_{-}=-.5 \quad b_{+}=-.5 \\
& w_{o}=0 \\
& b_{o}=.001
\end{aligned}
$$

How to deal with imbalanced data?

- In many practical applications we may have imbalanced data sets
- We may want errors to be equally distributed between the positive and negative classes
- A slight modification to the SVM objective does the trick!

$$
N=N_{+}+N_{-}
$$

$$
\min _{w, b}\|w\|_{2}^{2}+\frac{C N}{2 N_{+}} \sum_{j: y_{j}=+1} \xi_{j}+\frac{C N}{2 N_{-}} \sum_{j: y_{j}=-1} \xi_{j}
$$

Class-specific weighting of the slack variables

What if the data is not linearly separable?

Use features of features of features of features....

Feature space can get really large really quickly!

Key idea \#3: the kernel trick

- High dimensional feature spaces at no extra cost!
- After every update (of Pegasos), the weight vector can be written in the form:

$$
\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}
$$

- As a result, prediction can be performed with:

$$
\begin{aligned}
\hat{y} & \leftarrow \operatorname{sign}(\mathbf{w} \cdot \phi(\mathbf{x})) \\
& =\operatorname{sign}\left(\left(\sum_{i} \alpha_{i} y_{i} \phi\left(\mathbf{x}_{i}\right)\right) \cdot \phi(\mathbf{x})\right) \\
& =\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i}\left(\phi\left(\mathbf{x}_{i}\right) \cdot \phi(\mathbf{x})\right)\right) \\
& =\operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)\right) \quad \text { where } K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right) .
\end{aligned}
$$

Common kernels

- Polynomials of degree exactly d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v})^{d}
$$

- Polynomials of degree up to d

$$
K(\mathbf{u}, \mathbf{v})=(\mathbf{u} \cdot \mathbf{v}+1)^{d}
$$

- Gaussian kernels

$$
K(\vec{u}, \vec{v})=\exp \left(-\frac{\|\vec{u}-\vec{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

- Sigmoid

$$
K(\mathbf{u}, \mathbf{v})=\tanh (\eta \mathbf{u} \cdot \mathbf{v}+\nu)
$$

- And many others: very active area of research!

Polynomial kernel

$$
\begin{aligned}
& d=1 \\
& \quad \phi(u) \cdot \phi(v)=\binom{u_{1}}{u_{2}} \cdot\binom{v_{1}}{v_{2}}=u_{1} v_{1}+u_{2} v_{2}=u \cdot v \\
& \begin{aligned}
& d=2 \\
& \phi(u) \cdot \phi(v)=\left(\begin{array}{c}
u_{1}^{2} \\
u_{1} u_{2} \\
u_{2} u_{1} \\
u_{2}^{2}
\end{array}\right) \cdot\left(\begin{array}{c}
v_{1}^{2} \\
v_{1} v_{2} \\
v_{2} v_{1} \\
v_{2}^{2}
\end{array}\right)=u_{1}^{2} v_{1}^{2}+2 u_{1} v_{1} u_{2} v_{2}+u_{2}^{2} v_{2}^{2} \\
&=\left(u_{1} v_{1}+u_{2} v_{2}\right)^{2} \\
&=(u \cdot v)^{2}
\end{aligned}
\end{aligned}
$$

For any d (we will skip proof):

$$
\phi(u) \cdot \phi(v)=(u . v)^{d}
$$

Polynomials of degree exactly d

Quadratic kernel

Non-linear separator in the original x -space

Linear separator in the feature ϕ-space
[Tommi Jaakkola]

Gaussian kernel

$$
K(\vec{u}, \vec{v})=\exp \left(-\frac{\|\vec{u}-\vec{v}\|_{2}^{2}}{2 \sigma^{2}}\right)
$$

Level sets, i.e. $w \cdot \phi(x)=r$ for some \mathbf{r}

Support vectors

$$
y \leftarrow \operatorname{sign}\left[\sum_{i} \alpha_{i} y_{i} \exp \left(-\frac{\left\|\vec{x}-\vec{x}_{i}\right\|_{2}^{2}}{2 \sigma^{2}}\right)+b\right]
$$

Kernel algebra

kernel composition	feature composition
a) $k(\mathbf{x}, \mathbf{v})=k_{a}(\mathbf{x}, \mathbf{v})+k_{b}(\mathbf{x}, \mathbf{v})$	$\phi(\mathbf{x})=\left(\phi_{a}(\mathbf{x}), \phi_{b}(\mathbf{x})\right)$,
b) $k(\mathbf{x}, \mathbf{v})=f k_{a}(\mathbf{x}, \mathbf{v}), f>0$	$\boldsymbol{\phi}(\mathbf{x})=\sqrt{f} \phi_{a}(\mathbf{x})$
c) $k(\mathbf{x}, \mathbf{v})=k_{a}(\mathbf{x}, \mathbf{v}) k_{b}(\mathbf{x}, \mathbf{v})$	$\phi_{m}(\mathbf{x})=\phi_{a i}(\mathbf{x}) \phi_{b j}(\mathbf{x})$
d) $k(\mathbf{x}, \mathbf{v})=\mathbf{x}^{T} A \mathbf{v}, A$ positive semi-definite	$\boldsymbol{\phi}(\mathbf{x})=L^{T} \mathbf{x}$, where $A=L L^{T}$.
e) $k(\mathbf{x}, \mathbf{v})=f(\mathbf{x}) f(\mathbf{v}) k_{a}(\mathbf{x}, \mathbf{v})$	$\phi(\mathbf{x})=f(\mathbf{x}) \phi_{a}(\mathbf{x})$

Q: How would you prove that the "Gaussian kernel" is a valid kernel?
A: Expand the Euclidean norm as follows:

$$
\exp \left(-\frac{\|\vec{u}-\vec{v}\|_{2}^{2}}{2 \sigma^{2}}\right)=\exp \left(-\frac{\|\vec{u}\|_{2}^{2}}{2 \sigma^{2}}\right) \exp \left(-\frac{\|\vec{v}\|_{2}^{2}}{2 \sigma^{2}}\right) \exp \left(\frac{\vec{u} \cdot \vec{v}}{\sigma^{2}}\right)
$$

To see that this is a kernel, use the Taylor series expansion of the
Then, apply (e) from above
The feature mapping is infinite dimensional! exponential, together with repeated application of (a), (b), and (c):

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

Dual SVM interpretation: Sparsity

Overfitting?

- Huge feature space with kernels: should we worry about overfitting?
- SVM objective seeks a solution with large margin
- Theory says that large margin leads to good generalization (we will see this in a couple of lectures)
- But everything overfits sometimes!!!
- Can control by:
- Setting C
- Choosing a better Kernel
- Varying parameters of the Kernel (width of Gaussian, etc.)

