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Pegasos vs. Perceptron 

Pegasos Algorithm 
Initialize: w1 = 0, t=0 
For iter = 1,2,…,20 

 For j=1,2,…,|data| 
  t = t+1 
  ηt = 1/(tλ) 
  If yj(wt xj) < 1 
   wt+1 = (1-ηtλ) wt + ηt yj xj 
  Else 
   wt+1 = (1-ηtλ) wt 

Output: wt+1 



Pegasos vs. Perceptron 

Perceptron Algorithm 
Initialize: w1 = 0, t=0 
For iter = 1,2,…,20 

 For j=1,2,…,|data| 
  t = t+1 
  ηt = 1/(tλ) 
  If yj(wt xj) < 1 
   wt+1 = (1-ηtλ) wt + ηt yj xj 
  Else 
   wt+1 = (1-ηtλ) wt 

Output: wt+1 

0 



Much faster than previous methods 

•  3 datasets (provided by Joachims) 
–  Reuters CCAT (800K examples, 47k features) 
–  Physics ArXiv (62k examples, 100k features) 
–  Covertype (581k examples, 54 features) 

Training Time 
(in seconds): 

Pegasos SVM-Perf SVM-Light 

Reuters 2 77 20,075 

Covertype 6 85 25,514 

Astro-Physics 2 5 80 



Running time guarantee Error Decomposition

• Approximation error:
– Best error achievable by large-margin predictor
– Error of population minimizer

w0 = argmin E[f(w)] = argmin λ|w|2 + Ex,y[loss(⟨w,x⟩;y)]
• Estimation error:

– Extra error due to replacing E[loss] with empirical loss
w* = arg min fn(w)

• Optimization error:
– Extra error due to only optimizing to within finite precision

err(w0)

err(w*)

err(w)
Prediction error

[Shalev Schwartz, 
Srebro ’08] 

Note: w0 is redefined in this 
context (see below) – 
does not refer to initial weight 
vector 
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Extending to multi-class classification 



One versus all classification 

Learn 3 classifiers: 
• - vs {o,+}, weights w- 
• + vs {o,-}, weights w+ 
• o vs {+,-}, weights wo 

Predict label using: 

w+ 

w- 

Any problems? 

Could we learn this (1-D) dataset? ! 

wo 

0 -1 1 



Multi-class SVM 

Simultaneously learn 3 sets 
of weights: 

• How do we guarantee the 
correct labels? 

• Need new constraints! 

w+ 

w- 

wo 

The “score” of the correct 
class must be better than the 
“score” of wrong classes: 



As for the SVM, we introduce slack variables and maximize margin: 

Now can we learn it?  ! 

Multi-class SVM 

To predict, we use: 

0 -1 1 



•  In many practical applications we may have 
imbalanced data sets 

•  We may want errors to be equally distributed 
between the positive and negative classes 

•  A slight modification to the SVM objective 
does the trick! 

How to deal with imbalanced data? 

Class-specific weighting of the slack variables 



What if the data is not linearly 
separable? 

Use features of features  
of features of features…. 

Feature space can get really large really quickly! 
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Key idea #3: the kernel trick 
•  High dimensional feature spaces at no extra cost! 
•  After every update (of Pegasos), the weight vector can 

be written in the form:  

•  As a result, prediction can be performed with:  
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Common kernels 
•  Polynomials of degree exactly d 

•  Polynomials of degree up to d 

•  Gaussian kernels 

•  Sigmoid 

•  And many others: very active area of research! 



Polynomial kernel 

Polynomials of degree exactly d 
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d=2 

For any d (we will skip proof): 
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[Tommi Jaakkola] 

Quadratic kernel 



Gaussian kernel 

[Cynthia Rudin] [mblondel.org] 

Support vectors 

Level sets, i.e.                  for some r 



Kernel algebra 

[Justin Domke] 

Q: How would you prove that the “Gaussian kernel” is a valid kernel? 
A: Expand the Euclidean norm as follows: 

Then, apply (e) from above 
To see that this is a kernel, use the 
Taylor series expansion of the 
exponential, together with repeated 
application of (a), (b), and (c): 

The feature mapping is 
infinite dimensional! 



Dual SVM interpretation: Sparsity 

w
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 +
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w
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 0

 

Support Vectors: 
•  αj≥0 

Non-support Vectors: 
• αj=0 
• moving them will not 
change w 

Final solution tends to 
be sparse 

• αj=0 for most j 

• don’t need to store these 
points to compute w or make 
predictions  



Overfitting? 

•  Huge feature space with kernels: should we worry about 
overfitting? 
–  SVM objective seeks a solution with large margin 

•  Theory says that large margin leads to good generalization 
(we will see this in a couple of lectures) 

–  But everything overfits sometimes!!! 

–  Can control by: 
•  Setting C  

•  Choosing a better Kernel 

•  Varying parameters of the Kernel (width of Gaussian, etc.) 


