### Support vector machines (SVMs) Lecture 6

# David Sontag New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate, and Carlos Guestrin

### Pegasos vs. Perceptron

Pegasos Algorithm Initialize:  $w_1 = 0, t=0$ For iter = 1,2,...,20 For j=1,2,...,|data| t = t+1  $\eta_t = 1/(t\lambda)$ If  $y_j(w_t x_j) < 1$   $w_{t+1} = (1-\eta_t\lambda) w_t + \eta_t y_j x_j$ Else  $w_{t+1} = (1-\eta_t\lambda) w_t$ 

### Pegasos vs. Perceptron



### Much faster than previous methods

- **3 datasets** (provided by Joachims)
  - Reuters CCAT (800K examples, 47k features)
  - Physics ArXiv (62k examples, 100k features)
  - Covertype (581k examples, 54 features)

|                                |               | Pegasos | SVM-Perf | SVM-Light |
|--------------------------------|---------------|---------|----------|-----------|
| Training Time<br>(in seconds): | Reuters       | 2       | 77       | 20,075    |
|                                | Covertype     | 6       | 85       | 25,514    |
|                                | Astro-Physics | 2       | 5        | 80        |

## Running time guarantee



# Running time guarantee



### Extending to multi-class classification



### One versus all classification



Learn 3 classifiers:
- vs {0,+}, weights w<sub>-</sub>
+ vs {0,-}, weights w<sub>+</sub>
o vs {+,-}, weights w<sub>o</sub>

Predict label using:

$$\hat{y} \leftarrow \arg\max_k w_k \cdot x + b_k$$

Any problems?

Could we learn this (1-D) dataset?  $\rightarrow$ 



### Multi-class SVM

Simultaneously learn 3 sets of weights:

- •How do we guarantee the correct labels?
- •Need new constraints!

The "score" of the correct class must be better than the "score" of wrong classes:



$$w^{(y_j)} \cdot x_j + b^{(y_j)} > w^{(y)} \cdot x_j + b^{(y)} \quad \forall j, \ y \neq y_j$$

### Multi-class SVM

As for the SVM, we introduce slack variables and maximize margin:

$$\begin{array}{l} \text{minimize}_{\mathbf{w},b} \quad \sum_{y} \mathbf{w}^{(y)} \cdot \mathbf{w}^{(y)} + C \sum_{j} \xi_{j} \\ \mathbf{w}^{(y_{j})} \cdot \mathbf{x}_{j} + b^{(y_{j})} \geq \mathbf{w}^{(y')} \cdot \mathbf{x}_{j} + b^{(y')} + 1 - \xi_{j}, \ \forall y' \neq y_{j}, \ \forall j \\ \xi_{j} \geq 0, \ \forall j \end{array}$$

To predict, we use:  $\hat{y} \leftarrow \arg \max_{k} w_k \cdot x + b_k$ 

Now can we learn it?  $\rightarrow$ 

### How to deal with imbalanced data?



- In many practical applications we may have • imbalanced data sets
- We may want errors to be equally distributed between the positive and negative classes
- A slight modification to the SVM objective • does the trick!

$$N = N_+ + N_-$$



Class-specific weighting of the slack variables

# What if the data is not linearly separable?

# Use features of features of features....



#### Feature space can get really large really quickly!

# Key idea #3: the kernel trick

- High dimensional feature spaces at no extra cost!
- After every update (of Pegasos), the weight vector can be written in the form:

$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

• As a result, prediction can be performed with:

$$\hat{y} \leftarrow \operatorname{sign}(\mathbf{w} \cdot \phi(\mathbf{x})) \\ = \operatorname{sign}\left(\left(\sum_{i} \alpha_{i} y_{i} \phi(\mathbf{x}_{i})\right) \cdot \phi(\mathbf{x})\right) \\ = \operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} (\phi(\mathbf{x}_{i}) \cdot \phi(\mathbf{x}))\right) \\ = \operatorname{sign}\left(\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x})\right) \quad \text{where } K(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x}) \cdot \phi(\mathbf{x}').$$

# Common kernels

- Polynomials of degree exactly d $K(\mathbf{u}, \mathbf{v}) = (\mathbf{u} \cdot \mathbf{v})^d$
- Polynomials of degree up to *d*

$$K(\mathbf{u},\mathbf{v}) = (\mathbf{u} \cdot \mathbf{v} + 1)^d$$

Gaussian kernels

$$K(\vec{u}, \vec{v}) = \exp\left(-\frac{||\vec{u} - \vec{v}||_2^2}{2\sigma^2}\right)$$

• Sigmoid

$$K(\mathbf{u},\mathbf{v}) = \tanh(\eta\mathbf{u}\cdot\mathbf{v} + \nu)$$

• And many others: very active area of research!

# **Polynomial kernel**

$$d=1 
\phi(u).\phi(v) = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \cdot \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = u_1v_1 + u_2v_2 = u.v 
d=2 
\phi(u).\phi(v) = \begin{pmatrix} u_1^2 \\ u_1u_2 \\ u_2u_1 \\ u_2^2 \end{pmatrix} \cdot \begin{pmatrix} v_1^2 \\ v_1v_2 \\ v_2v_1 \\ v_2^2 \end{pmatrix} = u_1^2v_1^2 + 2u_1v_1u_2v_2 + u_2^2v_2^2 
= (u_1v_1 + u_2v_2)^2 
= (u.v)^2$$

For any d (we will skip proof):  $\phi(u).\phi(v) = (u.v)^d$ 

Polynomials of degree exactly d

### **Quadratic kernel**



Non-linear separator in the original x-space



Linear separator in the feature  $\phi$ -space

[Tommi Jaakkola]

### Gaussian kernel

$$K(\vec{u},\vec{v}) = \exp\left(-\frac{||\vec{u} - \vec{v}||_{2}^{2}}{2\sigma^{2}}\right)$$



$$y \leftarrow \operatorname{sign}\left[\sum_{i} \alpha_{i} y_{i} \exp\left(-\frac{\|\vec{x} - \vec{x}_{i}\|_{2}^{2}}{2\sigma^{2}}\right) + b\right]$$

[Cynthia Rudin]

[mblondel.org]

### Kernel algebra

| kernel composition                                                                         | feature composition                                                                                   |  |
|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| a) $k(\mathbf{x}, \mathbf{v}) = k_a(\mathbf{x}, \mathbf{v}) + k_b(\mathbf{x}, \mathbf{v})$ | $\boldsymbol{\phi}(\mathbf{x}) = (\boldsymbol{\phi}_a(\mathbf{x}), \boldsymbol{\phi}_b(\mathbf{x})),$ |  |
| b) $k(\mathbf{x}, \mathbf{v}) = fk_a(\mathbf{x}, \mathbf{v}), f > 0$                       | $oldsymbol{\phi}(\mathbf{x}) = \sqrt{f} oldsymbol{\phi}_a(\mathbf{x})$                                |  |
| c) $k(\mathbf{x}, \mathbf{v}) = k_a(\mathbf{x}, \mathbf{v})k_b(\mathbf{x}, \mathbf{v})$    | $\phi_m(\mathbf{x}) = \phi_{ai}(\mathbf{x})\phi_{bj}(\mathbf{x})$                                     |  |
| d) $k(\mathbf{x}, \mathbf{v}) = \mathbf{x}^T A \mathbf{v}, A$ positive semi-definite       | $\boldsymbol{\phi}(\mathbf{x}) = L^T \mathbf{x}$ , where $A = L L^T$ .                                |  |
| e) $k(\mathbf{x}, \mathbf{v}) = f(\mathbf{x})f(\mathbf{v})k_a(\mathbf{x}, \mathbf{v})$     | $\phi(\mathbf{x}) = f(\mathbf{x})\phi_a(\mathbf{x})$                                                  |  |

Q: How would you prove that the "Gaussian kernel" is a valid kernel? A: Expand the Euclidean norm as follows:



[Justin Domke]

### **Dual SVM interpretation: Sparsity**



$$\mathbf{w} = \sum_{j} \alpha_{j} y_{j} \mathbf{x}_{j}$$

Final solution tends to be sparse

• $\alpha_i$ =0 for most j

 don't need to store these points to compute w or make predictions

### Overfitting?

- Huge feature space with kernels: should we worry about overfitting?
  - SVM objective seeks a solution with large margin
    - Theory says that large margin leads to good generalization (we will see this in a couple of lectures)
  - But everything overfits sometimes!!!
  - Can control by:
    - Setting C
    - Choosing a better Kernel
    - Varying parameters of the Kernel (width of Gaussian, etc.)