
Support vector machines (SVMs)
Lecture 6

David Sontag
New York University

Slides adapted from Luke Zettlemoyer, Vibhav Gogate,
and Carlos Guestrin

Pegasos vs. Perceptron

Pegasos Algorithm
Initialize: w1 = 0, t=0
For iter = 1,2,…,20

 For j=1,2,…,|data|
 t = t+1
 ηt = 1/(tλ)
 If yj(wt xj) < 1
 wt+1 = (1-ηtλ) wt + ηt yj xj
 Else
 wt+1 = (1-ηtλ) wt

Output: wt+1

Pegasos vs. Perceptron

Perceptron Algorithm
Initialize: w1 = 0, t=0
For iter = 1,2,…,20

 For j=1,2,…,|data|
 t = t+1
 ηt = 1/(tλ)
 If yj(wt xj) < 1
 wt+1 = (1-ηtλ) wt + ηt yj xj
 Else
 wt+1 = (1-ηtλ) wt

Output: wt+1

0

Much faster than previous methods

•  3 datasets (provided by Joachims)
–  Reuters CCAT (800K examples, 47k features)
–  Physics ArXiv (62k examples, 100k features)
–  Covertype (581k examples, 54 features)

Training Time
(in seconds):

Pegasos SVM-Perf SVM-Light

Reuters 2 77 20,075

Covertype 6 85 25,514

Astro-Physics 2 5 80

Running time guarantee Error Decomposition

• Approximation error:
– Best error achievable by large-margin predictor
– Error of population minimizer

w0 = argmin E[f(w)] = argmin λ|w|2 + Ex,y[loss(⟨w,x⟩;y)]
• Estimation error:

– Extra error due to replacing E[loss] with empirical loss
w* = arg min fn(w)

• Optimization error:
– Extra error due to only optimizing to within finite precision

err(w0)

err(w*)

err(w)
Prediction error

[Shalev Schwartz,
Srebro ’08]

Note: w0 is redefined in this
context (see below) –
does not refer to initial weight
vector

Error Decomposition

• Approximation error:
– Best error achievable by large-margin predictor
– Error of population minimizer

w0 = argmin E[f(w)] = argmin λ|w|2 + Ex,y[loss(⟨w,x⟩;y)]
• Estimation error:

– Extra error due to replacing E[loss] with empirical loss
w* = arg min fn(w)

• Optimization error:
– Extra error due to only optimizing to within finite precision

err(w0)

err(w*)

err(w)
Prediction error

Pegasos

After updates:

 err(wT) < err(w0) +

With probability 1-

✏

�

T = Õ

✓
1

��✏

◆

Running time guarantee
[Shalev Schwartz,
Srebro ’08]

Extending to multi-class classification

One versus all classification

Learn 3 classifiers:
• - vs {o,+}, weights w-
• + vs {o,-}, weights w+
• o vs {+,-}, weights wo

Predict label using:

w+

w-

Any problems?

Could we learn this (1-D) dataset? !

wo

0 -1 1

Multi-class SVM

Simultaneously learn 3 sets
of weights:

• How do we guarantee the
correct labels?

• Need new constraints!

w+

w-

wo

The “score” of the correct
class must be better than the
“score” of wrong classes:

As for the SVM, we introduce slack variables and maximize margin:

Now can we learn it? !

Multi-class SVM

To predict, we use:

0 -1 1

•  In many practical applications we may have
imbalanced data sets

•  We may want errors to be equally distributed
between the positive and negative classes

•  A slight modification to the SVM objective
does the trick!

How to deal with imbalanced data?

Class-specific weighting of the slack variables

What if the data is not linearly
separable?

Use features of features
of features of features….

Feature space can get really large really quickly!

�(x) =

�

⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇧⇤

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⇥

⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌃⌅

7

Key idea #3: the kernel trick
•  High dimensional feature spaces at no extra cost!
•  After every update (of Pegasos), the weight vector can

be written in the form:

•  As a result, prediction can be performed with:

w =
X

i

↵iyixi

= sign
⇣X

i

↵iyiK(xi,x)
⌘

= sign
⇣X

i

↵iyi(�(xi) · �(x))
⌘

= sign
⇣
(
X

i

↵iyi�(xi)) · �(x)
⌘ŷ sign(w · �(x))

where K(x,x0) = �(x) · �(x0).

Common kernels
•  Polynomials of degree exactly d

•  Polynomials of degree up to d

•  Gaussian kernels

•  Sigmoid

•  And many others: very active area of research!

Polynomial kernel

Polynomials of degree exactly d

d=1

⇥(x) =

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⌅

�����������⌃

⇤L

⇤w
= w �

j

�jyjxj

⇥(u).⇥(v) =

�
u1
u2

⇥
.

�
v1
v2

⇥
= u1v1 + u2v2 = u.v

7

d=2

For any d (we will skip proof):

⇥(x) =

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⌅

�����������⌃

⇤L

⇤w
= w �

j

�jyjxj

⇥(u).⇥(v) =

�
u1
u2

⇥
.

�
v1
v2

⇥
= u1v1 + u2v2 = u.v

⇥(u).⇥(v) = (u.v)d

7

⇥(x) =

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⌅

�����������⌃

⇤L

⇤w
= w �

j

�jyjxj

⇥(u).⇥(v) =

�
u1
u2

⇥
.

�
v1
v2

⇥
= u1v1 + u2v2 = u.v

⇥(u).⇥(v) =

⇤

⌥⌥⇧

u21
u1u2
u2u1
u22

⌅

��⌃ .

⇤

⌥⌥⇧

v21
v1v2
v2v1
v22

⌅

��⌃ = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

⇥(u).⇥(v) = (u.v)d

7

⇥(x) =

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⌅

�����������⌃

⇤L

⇤w
= w �

j

�jyjxj

⇥(u).⇥(v) =

�
u1
u2

⇥
.

�
v1
v2

⇥
= u1v1 + u2v2 = u.v

⇥(u).⇥(v) =

⇤

⌥⌥⇧

u21
u1u2
u2u1
u22

⌅

��⌃ .

⇤

⌥⌥⇧

v21
v1v2
v2v1
v22

⌅

��⌃ = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

= (u1v1 + u2v2)
2

⇥(u).⇥(v) = (u.v)d

7

⇥(x) =

⇤

⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⌥⇧

x(1)

. . .
x(n)

x(1)x(2)

x(1)x(3)

. . .

ex(1)

. . .

⌅

�����������⌃

⇤L

⇤w
= w �

j

�jyjxj

⇥(u).⇥(v) =

�
u1
u2

⇥
.

�
v1
v2

⇥
= u1v1 + u2v2 = u.v

⇥(u).⇥(v) =

⇤

⌥⌥⇧

u21
u1u2
u2u1
u22

⌅

��⌃ .

⇤

⌥⌥⇧

v21
v1v2
v2v1
v22

⌅

��⌃ = u21v
2
1 + 2u1v1u2v2 + u22v

2
2

= (u1v1 + u2v2)
2

= (u.v)2

⇥(u).⇥(v) = (u.v)d

7

[Tommi Jaakkola]

Quadratic kernel

Gaussian kernel

[Cynthia Rudin] [mblondel.org]

Support vectors

Level sets, i.e. for some r

Kernel algebra

[Justin Domke]

Q: How would you prove that the “Gaussian kernel” is a valid kernel?
A: Expand the Euclidean norm as follows:

Then, apply (e) from above
To see that this is a kernel, use the
Taylor series expansion of the
exponential, together with repeated
application of (a), (b), and (c):

The feature mapping is
infinite dimensional!

Dual SVM interpretation: Sparsity

w
.x

 +
 b

 =
 +

1

w
.x

 +
 b

 =
 -1

w
.x

 +
 b

 =
 0

Support Vectors:
•  αj≥0

Non-support Vectors:
• αj=0
• moving them will not
change w

Final solution tends to
be sparse

• αj=0 for most j

• don’t need to store these
points to compute w or make
predictions

Overfitting?

•  Huge feature space with kernels: should we worry about
overfitting?
–  SVM objective seeks a solution with large margin

•  Theory says that large margin leads to good generalization
(we will see this in a couple of lectures)

–  But everything overfits sometimes!!!

–  Can control by:
•  Setting C

•  Choosing a better Kernel

•  Varying parameters of the Kernel (width of Gaussian, etc.)

