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1 Introduction

The goal of this note is to give background on convex optimization and the Pegasos algorithm

by Shalev-Schwartz et al. The Pegasos algorithm is a Stochastic sub-gradient descent method

for solving SVM problems which takes advantage of the structure and convexity of the SVM

loss function. We describe each of these terms in the upcoming sections.

2 Convexity

A set X ⊆ Rd is a convex set if for any ~x, ~y ∈ X and 0 ≤ α ≤ 1,

α~x+ (1− α)~y ∈ X

Informally, if for any two points ~x, ~y that are in the set every point on the line connecting

~x and ~y is also included in the set, then the set is convex. See Figure 1 for examples of

non-convex and convex sets.

A function f : X → R is convex for a convex set X if ∀~x, ~y ∈ X and 0 ≤ α ≤ 1,

f(α~x+ (1− α)~y) ≤ αf(~x) + (1− α)f(~y) (1)

Informally, a function is convex if the line between any two points on the curve always upper

bounds the function (see Figure 3). We call a function strictly convex if the inequality in

Eq. 1 is a strict inequality. See See Figure 2 for examples of non-convex and convex functions.
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Not convex: Convex:

X = {�x ∈ R2 : A�x ≤ b}
Set specified by linear inequalities:

Figure 1: Illustration of a non-convex and two convex sets in R2.

A function f(x) is concave is −f(x) is convex. Importantly, it can be shown that strictly

convex functions always have a unique minima.

For a function f(x) defined over the real line, one can show that f(x) is convex if and

only if d2

dx2f ≥ 0 ∀x. Just as before, strict convexity occurs when the inequality is strict.

For example, consider f(x) = x2. The first derivative of f(x) is given by d
dx
f = 2x and its

second derivative by d2

dx2f = 2. Since this is always strictly greater than 0, we have proven

that f(x) = x2 is strictly convex. As a second example, consider f(x) = log(x). The first

derivative is d
dx
f = 1

x
, and its second derivative is given by d2

dx2f = − 1
x2 . Since this is negative

for all x > 0, we have proven that log(x) is a concave function over R+.

This matters because optimization for convex functions is easy. In particular, one can

show that nearly any reasonable optimization method, such as gradient descent (where one

starts at arbitrary point, moves a little bit in the direction opposite to the gradient, and then

repeats), is guaranteed to reach a global optimum of the function. Note that whereas the

minimization of convex functions is easy, likewise, the maximization of concave functions is

easy.

Not convex: Convex:

x

f(x)

x x

f(x)f(x) = x2

Figure 2: Illustration of a non-convex and two convex functions over X = R.
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Figure 3: Convexity: Taking a weigted average of the values of the function (green) is greater
than or equal to evaluating the function at a point which is the weighted average of the
arguments (red).

2.1 Combining convex functions

Certain methods of combining convex functions preserves their convexity. These combination

rules are useful to be able to look at a function composed of simple parts and determine

quickly that it is also convex. For our purposes now, we note that a non-negative weighted

sum of convex functions is convex:

g =
∑
i

cifi is convex if all fi are convex and ci ≥ 0. (2)

Additionally, a pointwise maximum of convex functions is convex.

h = max{fi(w), fj(w)} is convex if all fi and fj are convex. (3)

For more detail on convexity preserving operations see Chapter 3 of Boyd and Vandenberghe’s

Convex Optimization (link).

2.2 The primal SVM objective is convex in w and b

Recall that primal SVM objective can be written as:

f(w, b) =
1

2
||w||2 +

∑
i

max{0, 1− (yiw · xi − b)}.
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Check for yourself that the above rules can be used to quickly prove that the above function

is convex by breaking it into simpler parts with recognizable convexity.

2.3 Convex functions and greedy descent

Convex functions have an important property that allows us to search for a minimum using

a greedy search method. If f is convex, with a global minimizer w∗ (i.e. f(w∗) ≤ f(w) ∀w)

then from any point w0, there is a connected path w0 → w∗ such that for every point wi

along the path, we have that f(wi) ≤ f(w0). This property allows us to use a greedy search

method which always takes steps to reduce f(w) without worrying that it will lead to a

sub-optimal solution. This property follows from the definition of convexity (i.e. Equation 1).

This brings us to our next section on greedy descent methods.

3 Greedy descent methods

Let’s say we want to minimize some differentiable function f(w). The following greedy

descent algorithm is a template for many optimization techniques. We will give some more

detail about each of these steps in the upcoming sections.

Algorithm 1 Greedy Descent

Input: a convex, differentiable function f .
Output: wt, a minimizer of f .
initialize w0 = 0, t = 0
while not converged do

Choose a direction pt
Choose a stepsize αt

Update wt+1 ← wt + αtpt
Test for convergence
t← t+ 1

end while

3.1 Choosing a direction p

We can choose p = −∇f (steepest descent). Later in this note we will see the stochastic

gradient descent algorithm which uses an approximation to the gradient. Many other methods

exist for choosing a direction, but we will not discuss them here.
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3.2 Choosing a stepsize

Many options here:

• Constant stepsize: αt = c.

• Decaying stepsize: αt = c/t (can also use different rates of decay (e.g. 1√
t
).

• Backtracking linesearch: Start with αt = c. Check for a decrease: Is f(wt + αtp) lower

than f(wt)? If the decrease condition is not met, multiply αt by a decaying factor γ,

(common choice is γ = 0.5) and repeat until the decrease condition is met. (Prove to

yourself that this method will not terminate until it reaches a local minimum.)

The ipython notebook linked to on the course website gives interactive examples of the effects

of choosing a stepsize rule.

3.3 Test for convergence

Again, many options exist here:

• Fixed number of iterations: Terminate if t ≥ T .

• Small increase: Terminate if f(wt+1)− f(wt) ≤ ε.

• Small change: Terminate if ||wt+1 − wt|| ≤ ε.

4 Sub-gradient descent methods

Notice that the SVM objective is not continously differentiable. We cannot directly apply

gradient descent but we can apply subgradient descent.

The subgradient of a convex function f at w0 is formally defined as all vectors v such that

for any other point w

f(w)− f(w0) ≥ v · (w − w0) (4)

If f is differentiable at w0, then the subgradient contains only one vector which is the

gradient ∇f(w0). However, when f is not differentiable, there may be many different values

for v that satisfy this inequality (Figure 4).
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Figure 4: Subgradient: Function A is differentiable and only has a single subgradient at
each point Function B is not differentiable at a single point. At that point it has many
subgradients. (subtangent lines are shown in blue.)

5 Stochastic sub-gradient descent methods

Notice that the SVM objective contains an average over data points. We can approximate

this average by looking at a single data point at a time. This serves as the basis for stochastic

gradient descent methods. At each iteration we randomly choose a single data point to look

at, uniformly from the set of all data points.

Instead of calculating the exact gradient by summing over all data points, we approximate

it by looking at only a single data point. (Mini-batch methods exist which interpolate

between the two extremes of stochastic gradient descent and traditional gradient descent. In

a mini-batch method, the sum is approximated by looking at a small set of training points.)

6 Putting it all together

The Pegasos algorithm by Shalev-Schwartz et al. is a stochastic subgradient descent method

on the primal objective of the SVM function (by now you should know what each of those

terms means).

Recall once more the SVM objective with M data points:

f(w) =
1

2
||w||2 + C

M−1∑
i=0

max{0, 1− (yiw · xi)}.

Here we assume that b = 0, so we are solving the SVM with an unbiased hyperplane. The
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following is a subgradient with respect to w (verify for yourself):

g(w) = w − C
M−1∑
i=1

1 [yiw · xi < 1] yixi

A stochastic version of the algorithm uses the following approximation to the subgradient:

g̃(w) = w − CM1 [yiwt · xi < 1] yixi

where i is chosen uniformly at random from [0... M-1] at each step.

The subgradient gives a direction of movement, we also need to choose a stepsize. The

Pegasos algorithm uses a decaying stepsize of αt = CM
t

.

We can now put the full pesasos algorithm together:

Algorithm 2 Pegasos algorithm

Output: wt, an approximate minimizer of f , the SVM primal objective function.
initialize w1 = 0, t = 1
while not converged do

Choose a direction: pt ← −g̃(wt, bt)
Choose a stepsize: αt ← CM

t

Update wt+1 ← wt + αtpt
t← t+ 1
Test for convergence

end while

7


	Introduction
	Convexity
	Combining convex functions
	The primal SVM objective is convex in w and b
	Convex functions and greedy descent

	Greedy descent methods
	Choosing a direction p
	Choosing a stepsize
	Test for convergence

	Sub-gradient descent methods
	Stochastic sub-gradient descent methods
	Putting it all together

