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ABSTRACT
We consider a permutation betting scenario, where people
wager on the final ordering of n candidates: for example,
the outcome of a horse race. We examine the auctioneer
problem of risklessly matching up wagers or, equivalently,
finding arbitrage opportunities among the proposed wagers.
Requiring bidders to explicitly list the orderings that they’d
like to bet on is both unnatural and intractable, because the
number of orderings is n! and the number of subsets of or-
derings is 2n!. We propose two expressive betting languages
that seem natural for bidders, and examine the computa-
tional complexity of the auctioneer problem in each case.
Subset betting allows traders to bet either that a candidate
will end up ranked among some subset of positions in the
final ordering, for example, “horse A will finish in positions
4, 9, or 13-21”, or that a position will be taken by some sub-
set of candidates, for example “horse A, B, or D will finish
in position 2”. For subset betting, we show that the auc-
tioneer problem can be solved in polynomial time if orders
are divisible. Pair betting allows traders to bet on whether
one candidate will end up ranked higher than another can-
didate, for example “horse A will beat horse B”. We prove
that the auctioneer problem becomes NP-hard for pair bet-
ting. We identify a sufficient condition for the existence of a
pair betting match that can be verified in polynomial time.
We also show that a natural greedy algorithm gives a poor
approximation for indivisible orders.
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1. INTRODUCTION
Buying or selling a financial security in effect is a wager

on the security’s value. For example, buying a stock is a bet
that the stock’s value is greater than its current price. Each
trader evaluates his expected profit to decide the quantity
to buy or sell according to his own information and sub-
jective probability assessment. The collective interaction of
all bets leads to an equilibrium that reflects an aggregation
of all the traders’ information and beliefs. In practice, this
aggregate market assessment of the security’s value is often
more accurate than other forecasts relying on experts, polls,
or statistical inference [16, 17, 5, 2, 15].
Consider buying a security at price fifty-two cents, that

pays $1 if and only if a Democrat wins the 2008 US Presi-
dential election. The transaction is a commitment to accept
a fifty-two cent loss if a Democrat does not win in return
for a forty-eight cent profit if a Democrat does win. In this
case of an event-contingent security, the price—the market’s
value of the security—corresponds directly to the estimated
probability of the event.
Almost all existing financial and betting exchanges pair up

bilateral trading partners. For example, one trader willing
to accept an x dollar loss if a Democrat does not win in
return for a y dollar profit if a Democrat wins is matched
up with a second trader willing to accept the opposite.
However in many scenarios, even if no bilateral agreements

exist among traders, multilateral agreements may be possi-
ble. For example, if one trader bets that the Democratic
candidate will receive more votes than the Republican can-
didate, a second trader bets that the Republican candidate
will receive more votes than the Libertarian candidate, and a
third trader bets that the Libertarian candidate will receive
more votes than the Democratic candidate, then, depend-
ing on the odds they each offer, there may be a three-way
agreeable match even though no two-way matches exist.
We propose an exchange where traders have considerable

flexibility to naturally and succinctly express their wagers,



and examine the computational complexity of the auction-
eer’s resulting matching problem of identifying bilateral and
multilateral agreements. In particular, we focus on a setting
where traders bet on the outcome of a competition among
n candidates. For example, suppose that there are n candi-
dates in an election (or n horses in a race, etc.) and thus
n! possible orderings of candidates after the final vote tally.
Traders may like to bet on arbitrary properties of the final
ordering, for example “candidate D will win”, “candidate D
will finish in either first place or last place”, “candidate D
will defeat candidate R”, “candidates D and R will both de-
feat candidate L”, etc. The goal of the exchange is to search
among all the offers to find two or more that together form
an agreeable match. As we shall see, the matching prob-
lem can be set up as a linear or integer program, depending
on whether orders are divisible or indivisible, respectively.
Attempting to reduce the problem to a bilateral matching
problem by explicitly creating n! securities, one for each pos-
sible final ordering, is both cumbersome for the traders and
computationally infeasible even for modest sized n. More-
over, traders’ attention would be spread among n! indepen-
dent choices, making the likelihood of two traders converging
at the same time and place seem remote.
There is a tradeoff between the expressiveness of the bid-

ding language and the computational complexity of the match-
ing problem. We want to offer traders the most expressive
bidding language possible while maintaining computational
feasibility. We explore two bidding languages that seem nat-
ural from a trader perspective. Subset betting, described in
Section 3.2, allows traders to bet on which positions in the
ranking a candidate will fall, for example “candidate D will
finish in position 1, 3-5, or 10”. Symetrically, traders can
also bet on which candidates will fall in a particular posi-
tion. In Section 4, we derive a polynomial-time algorithm
for matching (divisible) subset bets. The key to the result
is showing that the exponentially big linear program has a
corresponding separation problem that reduces to maximum
weighted bipartite matching and consequently we can solve
it in time polynomial in the number of orders.
Pair betting, described in Section 3.3, allows traders to

bet on the final ranking of any two candidates, for example
“candidate D will defeat candidate R”. In Section 5, we show
that optimal matching of (divisible or indivisible) pair bets
is NP-hard, via a reduction from the unweighted minimum
feedback arc set problem. We also provide a polynomially-
verifiable sufficient condition for the existence of a pair-
betting match and show that a greedy algorithm offers poor
approximation for indivisible pair bets.

2. BACKGROUND AND RELATED WORK
We consider permutation betting, or betting on the out-

come of a competition among n candidates. The final out-
come or state s ∈ S is an ordinal ranking of the n candidates.
For example, the candidates could be horses in a race and
the outcome the list of horses in increasing order of their
finishing times. The state space S contains all n! mutually
exclusive and exhaustive permutations of candidates.
In a typical horse race, people bet on properties of the

outcome like “horse A will win”, “horse A will show, or
finish in either first or second place”, or “horses A and B will
finish in first and second place, respectively”. In practice
at the racetrack, each of these different types of bets are
processed in separate pools or groups. In other words, all

the “win” bets are processed together, and all the “show”
bets are processed together, but the two types of bets do
not mix. This separation can hurt liquidity and information
aggregation. For example, even though horse A is heavily
favored to win, that may not directly boost the horse’s odds
to show.
Instead, we describe a central exchange where all bets

on the outcome are processed together, thus aggregating
liquidity and ensuring that informational inference happens
automatically.
Ideally, we’d like to allow traders to bet on any property

of the final ordering they like, stated in exactly the language
they prefer. In practice, allowing too flexible a language cre-
ates a computational burden for the auctioneer attempting
to match willing traders. We explore the tradeoff between
the expressiveness of the bidding language and the compu-
tational complexity of the matching problem.
We consider a framework where people propose to buy

securities that pay $1 if and only if some property of the
final ordering is true. Traders state the price they are will-
ing to pay per share and the number of shares they would
like to purchase. (Sell orders may not be explicitly needed,
since buying the negation of an event is equivalent to selling
the event.) A divisible order permits the trader to receive
fewer shares than requested, as long as the price constraint
is met; an indivisible order is an all-or-nothing order. The
description of bets in terms of prices and shares is without
loss of generality: we can also allow bets to be described in
terms of odds, payoff vectors, or any of the diverse array of
approaches practiced in financial and gambling circles.
In principle, we can do everything we want by explicitly

offering n! securities, one for every state s ∈ S (or in fact
any set of n! linearly independent securities). This is the
so-called complete Arrow-Debreu securities market [1] for
our setting. In practice, traders do not want to deal with
low-level specification of complete orderings: people think
more naturally in terms of high-level properties of order-
ings. Moreover, operating n! securities is infeasible in prac-
tice from a computational point of view as n grows.
A very simple bidding language might allow traders to bet

only on who wins the competition, as is done in the “win”
pool at racetracks. The corresponding matching problem is
polynomial, however the language is not very expressive. A
trader who believes that A will defeat B, but that neither
will win outright cannot usefully impart his information to
the market. The price space of the market reveals the col-
lective estimates of win probabilities but nothing else. Our
goal is to find languages that are as expressive and intuitive
as possible and reveal as much information as possible, while
maintaining computational feasibility.
Our work is in direct analogy to work by Fortnow et.

al. [6]. Whereas we explore permutation combinatorics, Fort-
now et. al. explore Boolean combinatorics. The authors con-
sider a state space of the 2n possible outcomes of n binary
variables. Traders express bets in Boolean logic. The au-
thors show that divisible matching is co-NP-complete and
indivisible matching is Σp

2-complete.
Hanson [9] describes a market scoring rule mechanism

which can allow betting on combinatorial number of out-
comes. The market starts with a joint probability distribu-
tion across all outcomes. It works like a sequential version
of a scoring rule. Any trader can change the probability dis-
tribution as long as he agrees to pay the most recent trader



according to the scoring rule. The market maker pays the
last trader. Hence, he bears risk and may incur loss. Mar-
ket scoring rule mechanisms have a nice property that the
worst-case loss of the market maker is bounded. However,
the computational aspects on how to operate the mecha-
nism have not been fully explored. Our mechanisms have
an auctioneer who does not bear any risk and only matches
orders.
Research on bidding languages and winner determination

in combinatorial auctions [4, 14, 18] considers similar com-
putational challenges in finding an allocation of items to
bidders that maximizes the auctioneer’s revenue. Combi-
natorial auctions allow bidders to place distinct values on
bundles of goods rather than just on individual goods. Un-
certainty and risk are typically not considered and the cen-
tral auctioneer problem is to maximize social welfare. Our
mechanisms allow traders to construct bets for an event with
n! outcomes. Uncertainty and risk are considered and the
auctioneer problem is to explore arbitrage opportunities and
risklessly match up wagers.

3. PERMUTATION BETTING
In this section, we define the matching and optimal match-

ing problems that an auctioneer needs to solve in a general
permutation betting market. We then illustrate the prob-
lem definitions in the context of the subset-betting and pair-
betting markets.

3.1 Securities, Orders and Matching Problems
Consider an event with n competing candidates where

the outcome (state) is a ranking of the n candidates. The
bidding language of a market offering securities in the fu-
ture outcomes determines the type and number of securi-
ties available and directly affects what information can be
aggregated about the outcome. A fully expressive bidding
language can capture any possible information that traders
may have about the final ranking; a less expressive language
limits the type of information that can be aggregated though
it may enable a more efficient solution to the matching prob-
lem. For any bidding language and number of securities in
a permutation betting market, we can succinctly represent
the problem of the auctioneer to risklessly match offers as
follows.
Consider an index set of bets or orders O which traders

submit to the auctioneer. Each order i ∈ O is a triple
(bi, qi, φi), where bi denotes how much the trader is willing
to pay for a unit share of security φi and qi is the number
of shares of the security he wants to purchase at price bi.
Naturally, bi ∈ (0, 1) since a unit of the security pays off at
most $1 when the event is realized. Since order i is defined
for a single security φi, we will omit the security variable
whenever it is clear from the context.
The auctioneer can accept or reject each order, or in a

divisible world accept a fraction of the order. Let xi be the
fraction of order i ∈ O accepted. In the indivisible version
of the market xi = 0 or 1 while in the divisible version
xi ∈ [0, 1]. Further let Ii(s) be the indicator variable for
whether order i is winning in state s, that is Ii(s) = 1 if the
order is paid back $1 in state s and Ii(s) = 0 otherwise.
There are two possible problems that the auctioneer may

want to solve. The simpler one is to find a subset of orders
that can be matched risk-free, namely a subset of orders
which accepted together give a nonnegative profit to the

auctioneer in every possible outcome. We call this problem
the existence of a match or sometimes simply, the matching
problem. The more complex problem is for the auctioneer to
find the optimal match with respect to some criterion such
as profit, trading volume, etc.

Definition 1 (Existence of match, indivisible orders).
Given a set of orders O, does there exist a set of xi ∈

{0, 1}, i ∈ O, with at least one xi = 1 such that
∑

i

(bi − Ii(s))qixi ≥ 0, ∀s ∈ S? (1)

Similarly we can define the existence of a match with di-
visible orders.

Definition 2 (Existence of match, divisible orders).
Given a set of orders O, does there exist a set of xi ∈ [0, 1],

i ∈ O, with at least one xi > 0 such that
∑

i

(bi − Ii(s))qixi ≥ 0, ∀s ∈ S? (2)

The existence of a match is a decision problem. It only
returns whether trade can occur at no risk to the auction-
eer. In addition to the risk-free requirement, the auctioneer
can optimize some criterion in determining the orders to ac-
cept. Some reasonable objectives include maximizing the
total trading volume in the market or the worst-case profit
of the auctioneer. The following optimal matching problems
are defined for an auctioneer who maximizes his worst-case
profit.

Definition 3 (Optimal match, indivisible orders).
Given a set of orders O, choose xi ∈ {0, 1} such that the
following mixed integer programming problem achieves its
optimality

max
xi,c

c (3)

s.t.
∑

i

(

bi − Ii(s)
)

qixi ≥ c, ∀s ∈ S
xi ∈ {0, 1}, ∀i ∈ O.

Definition 4 (Optimal match, divisible orders).
Given a set of orders O, choose xi ∈ [0, 1] such that the fol-
lowing linear programming problem achieves its optimality

max
xi,c

c (4)

s.t.
∑

i

(

bi − Ii(s)
)

qixi ≥ c, ∀s ∈ S
0 ≤ xi ≤ 1, ∀i ∈ O.

The variable c is the worst-case profit for the auctioneer.
Note that, strictly speaking, the optimal matching problems
do not require to solve the optimization problems (3) and
(4), because only the optimal set of orders are needed. The
optimal worst-case profit may remain unknown.

3.2 Subset Betting
A subset betting market allows two different types of bets.

Traders can bet on a subset of positions a candidate may end
up at, or they can bet on a subset of candidates that will
occupy a particular position. A security 〈α|Φ〉 where Φ is
a subset of positions pays off $1 if candidate α stands at a
position that is an element of Φ and it pays $0 otherwise.
For example, security 〈α|{2, 4}〉 pays $1 when candidate α



is ranked second or fourth. Similarly, a security 〈Ψ|j〉 where
Ψ is a subset of candidates pays off $1 if any of the candi-
dates in the set Ψ ranks at position j. For instance, security
〈{α, γ}|2〉 pays off $1 when either candidate α or candidate
γ is ranked second.
The auctioneer in a subset betting market faces a non-

trivial matching problem, that is to determine which orders
to accept among all submitted orders i ∈ O. Note that al-
though there are only n candidates and n possible positions,
the number of available securities to bet on is exponential
since a trader may bet on any of the 2n subsets of candi-
dates or positions. With this, it is not immediately clear
whether one can even find a trading partner or a match for
trade to occur, or that the auctioneer can solve the match-
ing problem in polynomial time. In the next section, we will
show that somewhat surprisingly there is an elegant poly-
nomial solution to both the matching and optimal matching
problems, based on classic combinatorial problems.
When an order is accepted, the corresponding trader pays

the submitted order price bi to the auctioneer and the auc-
tioneer pays the winning orders $1 per share after the out-
come is revealed. The auctioneer has to carefully choose
which orders and what fractions of them to accept so as
to be guaranteed a nonnegative profit in any future state.
The following example illustrates the matching problem for
indivisible orders in the subset-betting market.

Example 1. Suppose n = 3. Objects α, β, and γ compete
for positions 1, 2, and 3 in a competition. The auctioneer
receives the following 4 orders: (1) buy 1 share 〈α|{1}〉 at
price $0.6; (2) buy 1 share 〈β|{1, 2}〉 at price $0.7; (3) buy
1 share 〈γ|{1, 3}〉 at price $0.8; and (4) buy 1 share 〈β|{3}〉
at price $0.7. There are 6 possible states of ordering: αβγ,
αγβ, βαγ, βγα, γαβ,and γβα. The corresponding state-
dependent profit of the auctioneer for each order can be cal-
culated as the following vectors,

c1 = (−0.4,−0.4, 0.6, 0.6, 0.6, 0.6)

c2 = (−0.3, 0.7,−0.3,−0.3, 0.7,−0.3)
c3 = (−0.2, 0.8,−0.2, 0.8,−0.2,−0.2)
c4 = ( 0.7,−0.3, 0.7, 0.7,−0.3, 0.7).

6 columns correspond to the 6 future states. For indivisible
orders, the auctioneer can either accept orders (2) and (4)
and obtain profit vector

c = (0.4, 0.4, 0.4, 0.4, 0.4, 0.4),

or accept orders (2), (3), and (4) and has profit across state

c = (0.2, 1.2, 0.2, 1.2, 0.2, 0.2).

3.3 Pair Betting
A pair betting market allows traders to bet on whether

one candidate will rank higher than another candidate, in an
outcome which is a permutation of n candidates. A security
〈α > β〉 pays off $ 1 if candidate α is ranked higher than
candidate β and $ 0 otherwise. There are a total of N(N−1)
different securities offered in the market, each corresponding
to an ordered pair of candidates.
Traders place orders of the form “buy qi shares of 〈α > β〉

at price per share no greater than bi”. bi in general should
be between 0 and 1. Again the order can be either indivisible
or divisible and the auctioneer needs to decide what fraction
xi of each order to accept so as not to incur any loss, with
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Figure 1: Every cycle has negative worst-case profit
of −0.02 (for the cycles of length 4) or less (for the
cycles of length 6), however accepting all edges in
full gives a positive worst-case profit of 0.44.

xi ∈ {0, 1} for indivisible and xi ∈ [0, 1] for divisible orders.
The same definitions for existence of a match and optimal
match from Section 3.1 apply.
The orders in the pair-betting market have a natural in-

terpretation as a graph, where the candidates are nodes in
the graph and each order which ranks a pair of candidates
α > β is represented by a directed edge e = (α, β) with price
be and weight qe. With this interpretation, it is tempting
to assume that a necessary condition for a match is to have
a cycle in the graph with a nonnegative worst-case profit.
Assuming qe = 1 for all e, this is a cycle C with a total of
|C| edges such that the worst-case profit for the auctioneer
is

(

∑

e∈C

be

)

− (|C| − 1) ≥ 0,

since in the worst-case state the auctioneer needs to pay
$,1 to every order in the cycle except one. However, the
example in Figure 1 shows that this is not the case: we
may have a set of orders in which every single cycle has a
negative worst-case profit, and yet there is a positive worst-
case match overall. The edge labels in the figure are the
prices be; both the optimal divisible and indivisible solution
in this case accept all orders in full, xe = 1.

4. COMPLEXITY OF SUBSET BETTING
The matching problems of the auctioneer in any permu-

tation market, including the subset betting market have n!
constraints. Brute-force methods would take exponential
time to solve. However, given the special form of the se-
curities in the subset betting market, we can show that the
matching problems for divisible orders can be solved in poly-
nomial time.

Theorem 1. The existence of a match and the optimal
match problems with divisible orders in a subset betting mar-
ket can both be solved in polynomial time.



Proof. Consider the linear programming problem (4) for
finding an optimal match. This linear program has |O| + 1
variables, one variable xi for each order i and the profit vari-
able c. It also has exponentially many constraints. However,
we can solve the program in time polynomial in the num-
ber of orders |O| by using the ellipsoid algorithm, as long
as we can efficiently solve its corresponding separation prob-
lem in polynomial time [7, 8]. The separation problem for
a linear program takes as input a vector of variable values
and returns if the vector is feasible, or otherwise it returns
a violated constraint.
For given values of the variables, a violated constraint in

Eq. (4) asks whether there is a state or permutation s in
which the profit is less than c, and can be rewritten as

∑

i

Ii(s)qixi <
(

∑

i

biqixi

)

− c ∀s ∈ S. (5)

Thus it suffices to show how to find efficiently a state s
satisfying the above inequality (5) or verify that the opposite
inequality holds for all states s.
We will show that the separation problem can be reduced

to the maximum weighted bipartite matching1 problem [3].
The left hand side in Eq. (5) is the total money that the
auctioneer needs to pay back to the winning traders in state
s. The first term on the right hand side is the total money
collected by the auctioneer and it is fixed for a given solu-
tion vector of xi’s and c. A weighted bipartite graph can
be constructed between the set of candidates and the set of
positions. For every order of the form 〈α|Φ〉 there are edges
from candidate node α to every position node in Φ. For or-
ders of the form 〈Ψ|j〉 there are edges from each candidate in
Ψ to position j. For each order i we put weight qixi on each
of these edges. All multi-edges with the same end points
are then replaced with a single edge that carries the total
weight of the multi-edge. Every state s then corresponds
to a perfect matching in the bipartite graph. In addition,
the auctioneer pays out to the winners the sum of all edge
weights in the perfect matching since every candidate can
only stand in one position and every position is taken by
one candidate. Thus, the auctioneer’s worst-cast state and
payment are the solution to the maximum weighted bipar-
tite matching problem, which has known polynomial-time
algorithms [12, 13]. Hence, the separation problem can be
solved in polynomial time.
Naturally, if the optimal solution to (4) gives a worst-case

profit of c∗ > 0, there exists a matching. Thus, the matching
problem can be solved in polynomial time also.

5. COMPLEXITY OF PAIR BETTING
In this section we show that a slight change of the bid-

ding language may bring about a dramatic change in the
complexity of the optimal matching problem of the auction-
eer. In particular, we show that finding the optimal match in
the pair betting market is NP-hard for both divisible and in-
divisible orders. We then identify a polynomially-verifiable
sufficient condition for deciding the existence of a match.
The hardness results are surprising especially in light of

the observation that a pair betting market has a seemingly
more restrictive bidding language which only offers n(n−1)

1The notion of perfect matching in a bipartite graph, which
we use only in this proof, should not be confused with the
notion of matching bets which we use throughout the paper.

securities. In contrast, the subset betting market enables
traders to bet on an exponential number of securities and
yet had a polynomial time solution for finding the optimal
match. Our hope is that the comparison of the complexities
of the subset and pair betting markets would offer insight
into what makes a bidding language expressive while at the
same time enabling an efficient matching solution.
In all analysis that follows, we assume that traders submit

unit orders in pair betting markets, that is qi = 1. A set
of orders O received by the auctioneer in a pair betting
market with unit orders can be represented by a directed
graph, G(V,E), where the vertex set V contains candidates
that traders bet on. An edge e ∈ E, denoted (α, β, be),
represents an order to buy 1 share of the security 〈α > β〉
at price be. All edges have equal weight of 1.
We adopt the following notations throughout the paper:

• G(V,E): original equally weighted directed graph for
the set of unit orders O.

• be: price of the order for edge e.

• G∗(V ∗, E∗); a weighted directed graph of accepted or-
ders for optimal matching, where edge weight xe is the
quantity of order e accepted by the auctioneer. xe = 1
for indivisible orders and 0 < xe ≤ 1 for divisible or-
ders.

• H(V,E): a generic weighted directed graph of accepted
orders.

• k(H): solution to the unweighted minimum feedback
arc set problem on graph H. k(H) is the minimum
number of edges to remove so that H becomes acyclic.

• l(H): solution to the weighted minimum feedback arc
set problem on graph H. l(H) is the minimum total
weights for the set of edges which, when removed, leave
H acyclic.

• c(H): worst-case profit of the auctioneer if he accepts
all orders in graph H.

• ε: a sufficiently small positive real number. Where
not stated, ε < 1/(2|E|) for a graph H(V,E). In other
cases, the value is determined in context.

A feedback arc set of a directed graph is a set of edges
which, when removed from the graph, leave a directed acyclic
graph (DAG). Unweighted minimum feedback arc set prob-
lem is to find a feedback arc set with the minimum car-
dinality, while weighted minimum feedback arc set problem
seeks to find a feedback arc set with the minimum total edge
weight. Both unweighted and weighted minimum feedback
arc set problems have been shown to be NP-complete [10].
We will use this result in our complexity analysis on pair
betting markets.

5.1 Optimal Indivisible Matching
The auctioneer’s optimal indivisible matching problem is

introduced in Definition 3 of Section 3. Assuming unit or-
ders and considering the order graph G(V,E), we restate
the auctioneer’s optimal matching problem in a pair bet-
ting market as picking a subset of edges to accept such that



worst-case profit is maximized in the following optimization
problem,

max
xe,c

c (6)

s.t.
∑

e

(

be − Ie(s)
)

xe ≥ c, ∀s ∈ S
xe ∈ {0, 1}, ∀e ∈ E.

Without lose of generality, we assume that there are no
multi-edges in the order graph G.
We show that the optimal matching problem for indivisi-

ble orders is NP-hard via a reduction from the unweighted
minimum feedback arc set problem. The latter takes as in-
put a directed graph, and asks what is the minimum number
of edges to delete from the graph so as to be left with a DAG.
Our hardness proof is based on the following lemmas.

Lemma 2. Suppose the auctioneer accepts all edges in an
equally weighted directed graph H(V,E) with edge price be =
(1 − ε) and edge weight xe = 1. Then the worst-case profit
is equal to k(H) − ε|E|, where k(H) is the solution to the
unweighted minimum feedback arc problem on H.

Proof. If the order of an edge gets $1 payoff at the end
of the market we call the edge a winning edge, otherwise it
is called a losing edge. For any state s, all winning edges
necessarily form a DAG. Conversely, for every DAG there
is a state in which the DAG edges are winners (though the
remaining edges in G are not necessarily losers).
Suppose that in state s there are ws winning edges and

ls = |E| − ws losing edges. Then, ls is the cardinality of a
feedback arc set that consists of all losing edges in state s.
The edges that remain after deleting the minimum feedback
arc set form the maximum DAG for the graph H. Consider
the state smax in which all edges of the maximum DAG are
winners. This gives the maximum number of winning edges
wmax. All other edges are necessarily losers in the state
smax, since any edge which is not in the max DAG must
form a cycle together with some of the DAG edges. The
number of losing edges in state smax is the cardinality of the
minimum feedback arc set of H, that is |E| −wmax = k(H).
The profit of the auctioneer in a state s is

profit(s) =
(

∑

e∈E

be

)

− w

= (1− ε)|E| − w

≥ (1− ε)|E| − wmax,

where equality holds when s = smax. Thus, the worst-case
profit is achieved at state smax,

profit(smax) = (|E| − wmax)− ε|E| = k(H)− ε|E|.

Consider the graph of accepted orders for optimal match-
ing, G∗(V ∗, E∗), which consists of the optimal subset of
edges E∗ to be accepted by the auctioneer, that is edges
with xe = 1 in the solution of the optimization problem (6).
We have the following lemma.

Lemma 3. If the edge prices are be = (1−ε), then the op-
timal indivisible solution graph G∗ has the same unweighted
minimum feedback arc set size as the graph of all orders G,
that is k(G∗) = k(G). Furthermore, G∗ is the smallest such
subgraph of G, i.e., it is the subgraph of G with the small-
est number of edges, that has the same size of unweighted
minimum feedback arc set as G.

Proof. G∗ is a subgraph of G, hence the minimum num-
ber of edges to break cycles in G∗ is no more than that in
G, namely k(G∗) ≤ k(G).
Suppose k(G∗) < k(G). Since both k(G∗) and k(G) are

integers, for any ε < 1
|E|

we have that k(G∗) − ε|E∗| <
k(G)−ε|E|. Hence by Lemma 2, the auctioneer has a higher
worst-case profit by accepting G than accepting G∗, which
contradicts the optimality of G∗. Finally, the worst-case
profit k(G) − ε|E∗| is maximized when |E∗| is minimized.
Hence, G∗ is the smallest subgraph of G such that k(G∗) =
k(G).

The above two lemmas prove that the maximum worst-
case profit in the optimal indivisible matching is directly
related to the size of the minimum feedback arc set. Thus
computing each automatically gives the other, hence com-
puting the maximum worst-case profit in the indivisible pair
betting problem is NP-hard.

Theorem 4. Computing the maximum worst-case profit
in indivisible pair betting is NP-hard.

Proof. By Lemma 3, the maximum worst-case profit
which is the optimum to the mixed integer programming
problem (6), is k(G) − ε|E∗|, where |E∗| is the number of
accepted edges. Since k(G) is integer and ε|E∗| ≤ ε|E| < 1,
solving (6) will automatically give us the cardinality of the
minimum feedback arc set ofG, k(G). Because the minimum
feedback arc set problem is NP-complete [10], computing the
maximum worst-case profit is NP-hard.

Theorem 4 states that solving the optimization problem
is hard, because even if the optimal set of orders are pro-
vided computing the optimal worst-case profit from accept-
ing those orders is NP-hard. However, it does not imply
whether the optimal matching problem, i.e. finding the op-
timal set of orders to accept, is NP-hard. It is possible to
be able to determine which edges in a graph participating in
the optimal match, yet unable to compute the correspond-
ing worst-case profit. Next, we prove that the indivisible
optimal matching problem is actually NP-hard. We will use
the following short fact repeatedly.

Lemma 5 (Edge removal lemma). Given a weighted
graph H(V,E), removing a single edge e with weight xe from
the graph decreases the weighted minimum feedback arc set
solution l(H) by no more than xe and reduces the unweighted
minimum feedback arc set solution k(H) by no more than 1.

Proof. Suppose the weighted minimum feedback arc set
for the graph H − {e} is F . Then F ∪ {e} is a feedback arc
set for H, and has total edge weight l(H−{e})+xe. Because
l(H) is the solution to the weighted minimum feedback arc
set problem on H, we have l(H) ≤ l(H−{e})+xe, implying
that l(H − {e}) ≥ l(H)− xe.
Similarly, suppose the unweighted minimum feedback arc

set for the graph H −{e} is F ′. Then F ′ ∪{e} is a feedback
arc set forH, and has set cardinality k(H−{e})+1. Because
k(H) is the solution to the unweighted minimum feedback
arc set problem on H, we have k(H) ≤ k(H − {e}) + 1,
giving that k(H − {e}) ≥ k(H)− 1.

Theorem 6. Finding the optimal match in indivisible pair
betting is NP-hard.



Proof. We reduce from the unweighted minimum feed-
back arc set problem again, although with a slightly more
complex polynomial transformation involving multiple calls
to the optimal match oracle. Consider an instance graph G
of the minimum feedback arc set problem. We are interested
in computing k(G), the size of the minimum feedback arc
set of G.
Suppose we have an oracle which solves the optimal match-

ing problem. Denote by optimal match(G′) the output of
the optimal matching oracle on graph G′ with prices be =
(1−ε) on all its edges. By Lemma 3, on input G′, the oracle
optimal match returns the subgraph of G′ with the small-
est number of edges, that has the same size of minimum
feedback arc set as G′.
The following procedure finds k(G) by using polynomially

many calls to the optimal match oracle on a sequence of
subgraphs of G.

set G′ := G
iterations := 0
while (G′ has nonempty edge set)

reset G′ := optimal match(G′)
if (G′ has nonempty edge set)

increment iterations by 1

reset G′ by removing any edge e
end if

end while

return (iterations)

This procedure removes edges from the original graph G
layer by layer until the graph is empty, while at the same
time computing the minimum feedback arc set size k(G) of
the original graph as the number of iterations. In each it-
eration, we start with a graph G′ and replace it with the
smallest subgraph G′ that has the same k(G′). At this
stage, removing an additional edge e necessarily results in
k(G′−{e}) = k(G′)−1, because k(G′−{e}) < k(G′) by the
optimality of G′, and k(G′ − {e}) ≥ k(G′)− 1 by the edge-
removal lemma. Therefore, in each iteration the cardinality
of the minimum feedback arc set gets reduced exactly by 1.
Hence the number of iterations is equal to k(G).
Note that this procedure gives a polynomial transforma-

tion from the optimal matching problem to the unweighted
minimum feedback arc set problem, which calls the optimal
matching oracle exactly k(G) ≤ |E| times, where |E| is the
number of edges of G. Hence the optimal matching problem
is NP-hard.

5.2 Optimal Divisible Matching
When orders are divisible, the auctioneer’s optimal match-

ing problem is described in Definition 4 of Section 3. As-
suming unit orders and considering the order graph G(V,E),
we restate the auctioneer’s optimal matching problem for
divisible orders as choosing quantity of orders to accept,
xe ∈ [0, 1], such that worst-case profit is maximized in the
following linear programming problem,

max
xe,c

c (7)

s.t.
∑

e

(

be − Ie(s)
)

xe ≥ c, ∀s ∈ S
xe ∈ [0, 1], ∀e ∈ E.

We still assume that there are no multi-edges in the order
graph G.

When orders are divisible, the auctioneer can be better
off by accepting partial orders. Example 2 shows a situation
when accepting partial orders generates higher worst-case
profit than the optimal indivisible solution.

Example 2. We show that the linear program (7) some-
times has a non-integer optimal solution.

A
B

C

D

E

F

b

b

b

b

b
b

b

b

b

Figure 2: An order graph. Letters on edges repre-
sent order prices.

Consider the graph in Figure 2. There are a total of five
cycles in the graph: three four-edge cycles ABCD, ABEF,
CDEF, and two six-edge cycles ABCDEF and ABEFCD.
Suppose each edge has price b such that 4b − 3 > 0 and
6b− 5 < 0, namely b ∈ (.75, .80), for example b = .78. With
this, the optimal indivisible solution consists of at most one
four-edge cycle, with worst case profit (4b−3). On the other
hand, taking 1

2
fraction of each of the three four-edge cycles

would yield higher worst-case profit of 3
2
(4b− 3).

Despite the potential profit increase for accepting divisible
orders, the auctioneer’s optimal matching problem remains
to be NP-hard for divisible orders, which is presented below
via several lemmas and theorems.

Lemma 7. Suppose the auctioneer accept orders described
by a weighted directed graph H(V,E) with edge weight xe to
be the quantity accepted for edge order e. The worst-case
profit for the auctioneer is

c(H) =
∑

e∈E

(be − 1)xe + l(H). (8)

Proof. For any state s, the winning edges form a DAG.
Thus, the worst-case profit for the auctioneer achieves at
the state(s) when the total quantity of losing orders is min-
imized. The minimum total quantity of losing orders is the
solution to weighted minimal feedback arc set problem on
H, that is l(H).

Consider the graph of accepted orders for optimal divisible
matching, G∗(V ∗, E∗), which consists of the optimal subset
of edges E∗ to be accepted by the auctioneer, with edge
weight xe > 0 getting from the optimal solution of the linear
program (7). We have the following lemmas.



Lemma 8. l(G∗) ≤ k(G∗) ≤ k(G).

Proof. l(G∗) is the solution of the weighted minimum
feedback arc set problem on G∗, while k(G∗) is the solution
of the unweighted minimum feedback arc set problem on
G∗. When all edge weights in G∗ are 1, l(G∗) = k(G∗).
When xe’s are less than 1, l(G∗) can be less than or equal
to k(G∗). Since G∗ is a subgraph of G but possibly with
different edge weights, k(G∗) ≤ k(G). Hence, we have the
above relation.

Lemma 9. There exists some ε such that when all edge
prices be’s are (1− ε), l(G∗) = k(G).

Proof. From lemma 8, l(G∗) ≤ k(G). We know that the
auctioneer’s worst-case profit when accepting G∗ is

c(G∗) =
∑

e∈E∗

(be − 1)xe + l(G∗) = l(G∗)− ε
∑

e∈E∗

xe.

When he accepts the original order graphG in full, his worst-
case profit is

c(G) =
∑

e∈E

(be − 1) + k(G) = k(G)− ε|E|.

Suppose l(G∗) < k(G). If |E| −∑
e∈E∗ xe = 0, it means

that G∗ is G. Hence, l(G∗) = k(G) regardless of ε, which
contradicts with the assumption l(G∗) < k(G). If |E| −
∑

e∈E∗ xe > 0, then when

ε <
k(G)− l(G∗)

|E| −∑
e∈E∗ xe

,

c(G) is strictly greater than c(G∗), contradicting with the
optimality of c(G∗). Because xe’s are less than 1, l(G∗) >
k(G) is impossible. Thus, l(G∗) = k(G).

Theorem 10. Finding the optimal worst-case profit in
divisible pair betting is NP-hard.

Proof. Given the optimal set of partial orders to accept
for G when edge weights are (1 − ε), if we can calculate
the optimal worst-case profit, by lemma 9 we can solve the
unweighted minimum feedback arc set problem on G, which
is NP-hard. Hence, finding the optimal worst-case profit is
NP-hard.

Theorem 10 states that solving the linear program (7) is
NP-hard. Similarly to the indivisible case, we still need to
prove that just finding the optimal divisible match is hard,
as opposed to being able to compute the optimal worst-
case profit. Since in the divisible case the edges do not
necessarily have unit weights, the proof in Theorem 6 does
not apply directly. However, with an additional property
of the divisible case, we can augment the procedure from
the indivisible hardness proof to compute the unweighted
minimum feedback arc set size k(G) here as well.
First, note that the optimal divisible subgraph G∗ of a

graph G is the weighted subgraph with minimum weighted
feedback arc set size l(G∗) = k(G) and smallest sum of edge
weights

∑

e∈E∗ xe, since its corresponding worst case profit

is
(

k(G)− ε
∑

e∈E∗ xe

)

according to lemmas 7 and 9.

Lemma 11. Suppose graph H satisfies l(H) = k(H) and
we remove edge e from it with weight xe < 1. Then, k(H −
{e}) = k(H).

Proof. Assume the contrary, namely k(H−{e}) < k(H).
Then by Lemma 5, k(H − {e}) = k(H)− 1. Since removing
a single edge cannot reduce the minimum feedback arc set
by more than the edge weight,

l(H)− xe ≤ l(H − {e}). (9)

On the other hand H − {e} ⊂ H so we have,

l(H − {e}) ≤ k(H − {e}) = k(H)− 1 = l(H)− 1. (10)

Combining (9) and (10), we get xe ≥ 1. The contradic-
tion arises. Therefore, removing any edge with less than
unit weight from an optimal divisible graph does not change
k(H), the minimal feedback arc set size of the unweighted
version of the graph.

We now can augment the procedure for the indivisible case
in Theorem 6, to prove hardness of the divisible version, as
follows.

Theorem 12. Finding the optimal match in divisible pair
betting is NP-hard.

Proof. We reduce from the unweighted minimum feed-
back arc set problem for graphG. Suppose we have an oracle
for the optimal divisible problem called optimal divisible match,
which on input graph H computes edge weights xe ∈ (0, 1]
for the optimal subgraph H∗ of H, satisfying l(H∗) = k(H).
The following procedure outputs k(G).

set G′ := G
iterations := 0
while (G′ has nonempty edge set)

reset G′ := optimal divisible match(G′)
while (G′ has edges with weight < 1)

remove an edge with weight < 1 from G′

reset G′ by setting all edge weights to 1

reset G′ := optimal divisible match(G′)
end while

if (G′ has nonempty edge set)

increment iterations by 1

reset G′ by removing any edge e
end if

end while

return (iterations)

As in the proof of the corresponding Theorem 6 for the
indivisible case, we compute k(G) by iteratively removing
edges and recomputing the optimal divisible solution on the
remaining subgraph, until all edges are deleted. In each
iteration of the outer while loop, the minimum feedback arc
set is reduced by 1, thus the number of iterations is equal
to k(G).
It remains to verify that each iteration reduces k(G) by

exactly 1. Starting from a graph at the beginning of an
iteration, we compute its optimal divisible subgraph. We
then keep removing one non-unit weight edge at a time and
recomputing the optimal divisible subgraph, until the lat-
ter contains only edges with unit weight. By Lemma 11
throughout the iteration so far the minimum feedback arc set
of the corresponding unweighted graph remains unchanged.
Once the oracle returns a graph G′ with unit edge weights,

removing any edge would reduce the minimum feedback arc
set: otherwise G′ is not optimal since G′ − {e} would have



the same minimum feedback arc set but smaller total edge
weight. By Lemma 5 removing a single edge cannot reduce
the minimum feedback arc set by more than one, thus as
all edges have unit weight, k(G′) gets reduced by exactly
one. k(G) is equal to the returned value from the procedure.
Hence, the optimal matching problem for divisible orders is
NP-hard.

5.3 Existence of a Match
Knowing that the optimal matching problem is NP-hard

for both indivisible and divisible orders in pair betting, we
check whether the auctioneer can identify the existence of
a match with ease. Lemma 13 states a sufficient condition
for the matching problem with both indivisible and divisible
orders.

Lemma 13. A sufficient condition for the existence of a
match for pair betting is that there exists a cycle C in G
such that,

∑

e∈C

be ≥ |C| − 1, (11)

where |C| is the number of edges in the cycle C.
Proof. The left-hand side of the inequality (11) repre-

sents the total payment that the auctioneer receives by ac-
cepting every unit orders in the cycle C in full. Because the
direction of an edge represents predicted ordering of the two
connected nodes in the final ranking, forming a cycle mean-
ing that there is some logical contradiction on the predicted
orderings of candidates. Hence, whichever state is realized,
not all of the edges in the cycle can be winning edges. The
worst-case for the auctioneer corresponds to a state where
every edge in the cycle gets paid by $ 1 except one, with
|C| − 1 be the maximum payment to traders. Hence, if in-
equality (11) is satisfied, the auctioneer has non-negative
worst-case profit by accepting the orders in the cycle.

It can be shown that identifying such a non-negative worst-
case profit cycle in an order graph G can be achieved in
polynomial time.

Lemma 14. It takes polynomial time to find a cycle in an
order graph G(V,E) that has the highest worst-case profit,
that is

max
C∈C

(

∑

e∈C

be − (|C| − 1)

)

,

where C is the set of all cycles in G.
Proof. Because
∑

e∈C

be − (|C| − 1) =
∑

e∈C

(be − 1) + 1 = 1−
∑

e∈C

(1− be),

finding the cycle that gives the highest worst-case profit in
the original order graph G is equivalent to finding the short-
est cycle in a converted graph H(V,E), where H is achieved
by setting the weight for edge e in G to be (1− be).
Finding the shortest cycle in graph H can be done within

polynomial time by resorting to the shortest path problem.
For any vertex v in V , we consider every neighbor vertex
w such that (v, w) ∈ E. We then find the shortest path
from w to v, denoted as path(w, v). The shortest cycle that
passes vertex v is found by choosing the w such that e(v,w)+

path(w, v) is minimized. Comparing the shortest cycle found
for every vertex, we then can determine the shortest overall
cycle for the graph H. Because the short path problem can
be solved in polynomial time [3], we can find the solution to
our problem in polynomial time.

If the worst-case profit for the optimal cycle is non-negative,
we know that there exists a match in G. However, the con-
dition in lemma 13 is not a necessary condition for the ex-
istence of a match. Even if all single cycles in the order
graph have negative worst-case profit, the auctioneer may
accept multiple interweaving cycles to have positive worst-
case profit. Figure 1 exhibits such a situation.
If the optimal indivisible match consists only of edge dis-

joint cycles, a natural greedy algorithm can find the cycle
that gives the highest worst-case profit, remove its edges
from the graph, and proceed until no more cycles exist.
However, we show that such greedy algorithm can give a
very poor approximation.

√

n + 1

√

n + 1

√

n

√

n + 1

√

n + 1

√

n + 1

√

n + 1

Figure 3: Graph with n vertices and n +
√
n edges

on which the greedy algorithm finds only two cy-
cles, the dotted cycle in the center and the unique
remaining cycle. The labels in the faces give the
number of edges in the corresponding cycle.

Lemma 15. The greedy algorithm gives at most an O(
√
n)-

approximation to the maximum number of disjoint cycles.

Proof. Consider the graph in Figure 3 consisting of a
cycle with

√
n edges, each of which participates in another

(otherwise disjoint) cycle with
√
n + 1 edges. Suppose all

edge weights are (1− ε). The maximum number of disjoint
cycles is clearly

√
n, taking all cycles with length

√
n+ 1.

Because smaller cycles gives higher worst-case profit, the
greedy algorithm would first select the cycle of length

√
n,

after which there would be only one remaining cycle of length
n. Thus the total number of cycles selected by greedy is 2
and the approximation factor in this case is

√
n/2.

In light of Lemma 15, one may expect that greedy algo-
rithms would give

√
n-approximations at best. Approxima-



tion algorithms for finding the maximum number of edge-
disjoint cycles have been considered by Krivelevich, Nu-
tov and Yuster [11, 19]. Indeed, for the case of directed
graphs, the authors show that a greedy algorithm gives a√
n-approximation [11]. When the optimal match does not

consist of edge-disjoint cycles as in the example of Figure 3,
greedy algorithm trying to finding optimal single cycles fails
obviously.

6. CONCLUSION
We consider a permutation betting scenario, where traders

wager on the final ordering of n candidates. While it is un-
natural and intractable to allow traders to bet directly on
the n! different final orderings, we propose two expressive
betting languages, subset betting and pair betting. In a
subset betting market, traders can bet either on a subset of
positions that a candidate stands or on a subset of candi-
dates who occupy a specific position in the final ordering.
Pair betting allows traders bet on whether one given candi-
date ranks higher than another given candidate.
We examine the auctioneer problem of matching orders

without incurring risk. We find that in a subset betting mar-
ket an auctioneer can find the optimal set and quantity of
orders to accept such that his worst-case profit is maximized
in polynomial time if orders are divisible. The complexity
changes dramatically for pair betting. We prove that the
optimal matching problem for the auctioneer is NP-hard for
pair betting with both indivisible and divisible orders via
reductions to the minimum feedback arc set problem. We
identify a sufficient condition for the existence of a match,
which can be verified in polynomial time. A natural greedy
algorithm has been shown to give poor approximation for
indivisible pair betting.
Interesting open questions for our permutation betting in-

clude the computational complexity of optimal indivisible
matching for subset betting and the necessary condition for
the existence of a match in pair betting markets. We are
interested in further exploring better approximation algo-
rithms for pair betting markets.
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