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Abstract

We present a new method for real-time rendering of shadows in dynamic scenes. Our approach builds on the
shadow map algorithm by attaching geometric primitives that we call “smoothies” to the objects’ silhouettes.
The smoothies give rise to fake shadows that appear qualitatively like soft shadows, without the cost of densely
sampling an area light source. The soft shadow edges hide objectionable aliasing artifacts that are noticeable
with ordinary shadow maps. Our algorithm computes shadows efficiently in image space and maps well to pro-
grammable graphics hardware. We present results from several example scenes rendered in real-time.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Graphics processors, I.3.3
[Computer Graphics]: Bitmap and framebuffer operations, I.3.7 [Computer Graphics]: Color, shading, shadowing,
and texture

Keywords: soft shadow algorithms, projective texture mapping, programmable graphics hardware

1. Introduction

Shadows are important to image synthesis because they add
realism and help the viewer identify spatial relationships33.
Many of the shadow generation techniques developed over
the years have been used successfully in offline movie pro-
duction. It is still challenging, however, to compute high-
quality shadows in real-time for dynamic scenes. Existing
methods are usually limited by sampling artifacts or scala-
bility issues.

This paper describes a new real-time algorithm that com-
bines shadow maps with geometric primitives that we call
smoothies to render fake soft shadows (see Figure 1). Al-
though our method is not geometrically accurate, the result-
ing shadows appear qualitatively like soft shadows. Specifi-
cally, the algorithm:
1. hides undersampling artifacts such as aliasing,
2. generates soft shadow edges that resemble penumbrae,
3. performs shadow calculations efficiently in image space,
4. maps well to programmable graphics hardware, and
5. automatically handles dynamic scenes.
We present results from several example scenes rendered by
our algorithm in real-time.

† email: {ericchan|fredo}@graphics.lcs.mit.edu

We emphasize that our method does not compute geomet-
rically correct shadows. Instead, we focus on the qualitative
aspects of penumbrae without modeling an area light source.
For example, we compute the penumbra size using the ratio
of distances between the light source, blocker, and receiver,
but we consider neither the shape nor orientation of the light
source.

2. Related Work
Our method builds on the ideas of several existing shadow
algorithms. We focus our discussion below on the most rele-
vant methods and refer the reader to Woo et al.’s paper35 for
a broader survey of shadow algorithms.

A popular means for generating shadows is the shadow
map, introduced by Williams in 197834. The algorithm first
renders a depth map of the scene from the light’s viewpoint;
the depth map is then used to determine which samples in
the final image are visible to the light. Shadow maps are ef-
ficient and are accelerated in modern graphics hardware, but
they are prone to sampling artifacts such as aliasing. Recent
work attempts to reduce aliasing by increasing the effective
shadow map resolution12, 32.

Shadow maps have been extended to support an-
tialiased shadows and soft shadows through a combina-
tion of filtering, stochastic sampling, and image warping
techniques29, 21, 1, 16, 13. However, these methods require ex-
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Figure 1: Smoothie algorithm overview. (a) We first render a shadow map from the light’s viewpoint. Next, we construct
geometric primitives that we call smoothies at the objects’ silhouettes. (b) We render the smoothies’ depth values into the
smoothie buffer. (c) For each pixel in the smoothie buffer, we also store an alpha value that depends on the ratio of distances
between the light source, blocker, and receiver. (d) Finally, we render the scene from the observer’s viewpoint. We perform depth
comparisons against the values stored in both the shadow map and the smoothie buffer, then filter the results. The smoothies
produce soft shadow edges that resemble penumbrae.

amining many samples per pixel to minimize noise and
banding artifacts. Dense sampling is costly, even on modern
graphics hardware which supports multiple texture accesses
per pixel. Consequently, these techniques are mostly used
today in high-quality offline rendering systems.

To avoid the cost of dense sampling, some methods use
convolution to ensure a continuous variation of light inten-
sity at the shadow edges. For example, Soler and Sillion31

showed how to approximate soft shadows using projective
texture mapping and convolution in image space; they con-
volve the image of the blockers with the inverse image of
the light source. Unfortunately, their method cannot easily
handle self-shadowing.

Researchers have developed simpler approximations that
take advantage of shadow mapping hardware. For instance,
Heidrich et al.17 described how shadow maps can support
linear light sources using only two samples per light. Brabec
and Seidel6 extended this idea to handle area light sources by
searching over regions of the shadow map. Although their
method uses only one depth sample per pixel, it requires a
search procedure and an expensive readback from the hard-
ware depth buffer to the host processor. Thus their method is
practical only for low-resolution shadow maps.

Parker et al.27 proposed creating an “outer surface” around
each object in the context of a ray tracer. Their technique
can be seen as convolution in object space: a sample point
whose shadow ray intersects the volume between a real sur-
face and its outer surface is considered partially in shadow.
The sample’s light intensity is determined by interpolating
alpha values from 0 to 1 between the two surfaces. Only one
shadow ray is needed to provide visually smooth results, but
because of the way outer surfaces are constructed, only outer
shadow penumbrae are supported. In other words, the com-
puted shadow umbrae do not shrink properly as the size of
the area light source increases.

Recently, researchers have pushed this idea further with
an emphasis on real-time rendering of soft shadows us-

ing graphics hardware. For instance, Akenine-Möller and
Assarsson3 developed a soft shadow algorithm based on
shadow volumes8. They replace each shadow volume poly-
gon with a penumbra wedge, a set of polygons that encloses
the penumbra region for a given silhouette edge. The method
achieves visual smoothness by linearly interpolating light in-
tensity within the wedge, and the wedges are constructed in
a manner that supports inner shadow penumbrae.

Assarsson and Akenine-Möller4 subsequently generalized
their penumbra wedge algorithm. They describe an im-
proved wedge construction technique that increases robust-
ness and can handle multiple wedges independently of each
other. When rendering a wedge, the shadow polygon for the
corresponding silhouette edge is clipped against the image
of the light source to estimate partial visibility. The clipping
calculation is performed for each wedge at every pixel to ac-
cumulate light into a visibility texture. This geometry-based
approach yields an accurate approximation, supports inner
shadow penumbrae, and can handle animated light sources
with different shapes.

Unfortunately, shadow volumes are expensive, even when
accelerated using a hardware stencil buffer. The reason is
that each rendered pixel of every shadow volume polygon
requires a stencil buffer update, resulting in significant over-
draw and large fillrate requirements. Optimizations using
per-object scissor rectangles and depth bounds clipping can
reduce the fillrate consumption11, but in many cases shadow
volumes are too expensive for complex scenes. The penum-
bra wedge algorithms consume even more fillrate than or-
dinary shadow volumes, because each silhouette edge gives
rise to multiple wedge polygons. Furthermore, a long pixel
shader that performs visibility calculations must be executed
for all rasterized wedge pixels.

Other techniques rely on projective texturing to avoid the
cost of shadow volumes. For instance, Haines14 describes a
method for rendering a hard drop shadow into a texture map
and approximating a penumbra along the shadow silhou-
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Figure 2: Smoothie construction. A smoothie edge is ob-
tained by extending a blocker’s silhouette edge outwards to
form a rectangle in screen space. A smoothie corner con-
nects adjacent smoothie edges.

ettes. The method works by drawing cones at the silhouette
vertices and drawing sheets that connect the cones at their
outer tangents. The cones and sheets are smoothly shaded
and projected onto the ground plane to produce soft planar
shadows. Like the work of Parker et al.27, this construction
only grows penumbra regions outward from the umbra and
does not support inner shadow penumbrae.

Recently, Wyman and Hansen36 independently devel-
oped a soft shadow algorithm similar to ours. They ex-
tend Haines’s work by drawing cones and sheets at the ob-
jects’ silhouettes and storing intensity values into a penum-
bra map, which is then applied as a projective texture to cre-
ate soft shadow edges. We compare their approach to ours in
Section 6.1.

2.1. Overview
An overview of our approach is shown in Figure 1. We first
render an ordinary shadow map from the light’s viewpoint.
Next, we construct geometric primitives that we call smooth-
ies at the objects’ silhouettes (see Figure 2). We render the
smoothies into a smoothie buffer and store a depth and alpha
value at each pixel. The alpha value depends on the ratio of
distances between the light source, blocker, and receiver. Fi-
nally, we render the scene from the observer’s viewpoint. We
combine the depth and alpha information from the shadow
map and smoothie buffer to compute soft shadows that re-
semble penumbrae (see Figure 3). A limitation of this ap-
proach is that computed shadow umbrae do not diminish as
the area of the light source increases.

Our proposed algorithm is inspired by the different classes
of techniques discussed above. For example, we identify sil-
houettes with respect to the light source in object space, an
idea borrowed from shadow volumes. In some sense, our
method is a hybrid between the “outer surface” approach of
Parker at al.27 and the convolution approach of Soler and
Sillion31. Specifically, smoothies are defined in object space

blocker

receiver

light source

smoothie

a. b. c.

Figure 3: Three possible scenarios: an image sample is ei-
ther (a) illuminated, (b) partially in shadow, or (c) com-
pletely in shadow.

and are related to the outer volume, but they can also be seen
as pre-convolved shadow edges. Smoothies are also related
to the work of Lengyel et al.20, who showed how texture-
mapped fins can improve the quality of fur rendering at the
silhouettes.

We make the following assumptions in our approach:
1. Blockers are opaque. We do not handle shadows due to

semi-transparent surfaces.
2. Blockers are represented as closed triangle meshes. This

representation simplifies the task of finding object-space
silhouette edges.

In addition, our method does not take into account the shape
and orientation of light sources, so we assume that light
sources are roughly spherical.

3. Algorithm

The smoothie algorithm has five steps:
1. Create a shadow map. This is done by rendering the

blockers from the light source and storing the nearest depth
values to a buffer (see Figure 1a).

2. Identify silhouette edges. We identify the silhouette
edges of the blockers with respect to the light source in ob-
ject space. Since we assume that blockers are represented as
closed triangle meshes, a silhouette edge is simply an edge
such that one of its triangles faces towards the light and the
other triangle faces away.

Silhouette detection algorithms have been developed for
many applications in computer graphics, including non-
photorealistic rendering and illustrations18, 28. We use a sim-
ple brute-force algorithm, looping over all the edges and
performing the above test for each edge. For static models,
Sander at al.30 describe a more efficient algorithm using hi-
erarchical search trees. Hartner et al.15 compare the perfor-
mance of a number of object-space silhouette extraction al-
gorithms.

3. Construct smoothies. We construct a smoothie edge
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Figure 4: Computing smoothie alpha values. Diagram (a) shows a smoothie with the original, linearly interpolated alpha. (b)
The resulting soft shadow edge has a fixed thickness and also has an obvious discontinuity at the contact point between the
box and the floor. In diagram (c) we have remapped the alpha values as described in Equation 1. (d) The remapping fixes the
contact problem and also creates a soft shadow edge that more closely resembles a penumbra.

for each silhouette edge and a smoothie corner for each sil-
houette vertex, as shown in Figure 2. A smoothie edge is
obtained by extending the silhouette edge away from the
blocker to form a rectangle of a fixed width t in the screen
space of the light source. A smoothie corner connects adja-
cent smoothie edges. The variable t is a user parameter that
controls the size of the smoothies. As we will see later, larger
values of t can be used to simulate larger area light sources.

Arbitrary closed meshes may have silhouette vertices with
more than two adjacent silhouette edges. We treat this situ-
ation as a special case. First, we average the adjacent face
normals to obtain a shared vertex normal ~n whose projec-
tion in the screen space of the light source has length t. Then
we draw triangles that connect ~n with each of the adjacent
smoothie edges.

4. Render smoothies. We render each smoothie from the
light’s viewpoint. This is similar to generating the shadow
map in Step 1, but this time we draw only the smoothies, not
the blockers. We compute two quantities for each rendered
pixel, a depth value and an alpha value, and store them to-
gether in a smoothie buffer (see Figures 1b and 1c). We dis-
cuss how to compute alpha in Section 3.1.

5. Compute shadows with depth comparisons. We ren-
der the scene from the observer’s viewpoint and compute the
shadows. We use one or two depth comparisons to determine
the intensity value v at each image sample, as illustrated in
Figure 3:
1. If the sample’s depth value is greater than the shadow

map’s depth value, then the sample is completely in
shadow (v = 0). This is the case when the sample is
behind a blocker.

2. Otherwise, if the sample’s depth value is greater than the
smoothie buffer’s depth value, then the sample is partially
in shadow (v = α, where α is the smoothie buffer’s alpha
value). This case occurs when the sample is not behind a
blocker, but is behind a smoothie.

3. Otherwise, the sample is completely illuminated (v = 1).
For better antialiasing, we perform these depth comparisons
at the four nearest samples of the shadow map and smoothie
buffer, then bilinearly interpolate the results. This is similar

to percentage closer filtering29 using a 2 × 2 tent filter. The
filtered visibility value can be used to modulate the surface
illumination.

In summary, the smoothie algorithm involves three ren-
dering passes. The first pass generates a standard shadow
map; the second pass renders the smoothies’ alpha and depth
values into the smoothie buffer; and the final pass performs
depth comparisons and filtering to generate the shadows. To
handle dynamic scenes with multiple light sources, we fol-
low the above steps for each light source per frame.

3.1. Computing Smoothie Alpha Values
We return to the discussion of computing alpha values when
rendering smoothies in Step 4 of the algorithm. Some of
the design choices described below are motivated by current
graphics hardware capabilities.

The smoothie’s alpha is intended to simulate the gradual
variation in light intensity within the penumbra. Thus alpha
should vary continuously from 0 at one edge to 1 at the op-
posite edge, which can be accomplished using linear inter-
polation (see Figure 4a).

There are two problems with this approach, both shown
in Figure 4b. One problem occurs when two objects are
close together, because the smoothie of one object casts a
shadow that does not appear to originate from that object.
The second problem is that computing alpha values in the
manner described above with fixed-size smoothies will gen-
erate a penumbra whose thickness is also fixed, which does
not model the behavior of true penumbrae well.

The shape of a penumbra depends on many factors and is
expensive to model accurately, so we focus on its main quali-
tative feature: the ratio of distances between the light source,
blocker, and receiver (see Figure 5). The size of a smoothie,
rather than being fixed, should depend on this ratio. We can
estimate the distance from the light to the blocker by com-
puting the distance from the light to the smoothie. Further-
more, we can find the distance from the light source to the
receiver using the shadow map rendered in Step 1.

Unfortunately, using the shadow map to resize the
smoothies on graphics hardware requires texture accesses
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Figure 5: Alpha computation. The penumbra size depends
on the ratio b/r, where b is the distance between the light
and the blocker, and r is the distance between the light and
the receiver.

within the programmable vertex stage, a feature that is
not yet available. Based on the DirectX vertex shader 3.0
proposals25, however, we expect vertex textures to be imple-
mented within one or two generations of graphics hardware.

In the meantime, we can work around both of the prob-
lems discussed above by rendering the fixed-size smoothie
edges using a pixel shader that remaps the alpha values ap-
propriately. Let α be the linearly interpolated smoothie al-
pha at a pixel, b be the distance between the light source and
smoothie, and r be the distance between the light source and
receiver. We compute a new α′ using

α′ =
α

1 − b/r
(1)

and clamp the result to [0, 1]. The remapping produces a new
set of alpha values similar to alphas that would have been ob-
tained by keeping the original α and adjusting the smoothie
size. An example of remapping the alpha values is shown in
Figures 4c and 4d.

Smoothie corners must ensure a continuous transition in
alpha between adjacent smoothie edges. Figure 6 shows a
smoothie corner rooted at the silhouette vertex ~v. For a sam-
ple point ~p within the corner, we compute α = |~v − ~p|/t,
clamp α to [0, 1], and remap the result using Equation 1.
The resulting shaded corner is shown in the right image of
Figure 6.

The case where multiple smoothies overlap in the screen
space of the light source corresponds to the geometric sit-
uation where multiple blockers partially hide the extended
light source. The accurate computation of visibility can be
performed using Monte Carlo7 or backprojection5, 10 tech-
niques, both of which are expensive. Instead, we use mini-
mum blending, a simple yet effective approximation. Min-
imum blending, which Parker et al.27 refer to as threshold-
ing, just keeps the minimum of all the alpha values. This has
the effect of ensuring continuous shadow transitions with-
out making the overlapping region appear too dark. Blending
in this manner is not geometrically accurate, but it is much

t

v
t

corner geometry corner shading

p

Figure 6: Smoothie corner geometry and shading. A sample
point ~p within the corner is assigned α = |~v − ~p|/t, which
is then clamped to [0, 1] and remapped using Equation 1.

simpler, more efficient, and still gives visually acceptable re-
sults. Note that we discard smoothie pixels that lie behind a
blocker instead of blending them into the smoothie buffer.

The method for computing alpha values described above
gives a linear falloff of light intensity within the penumbra.
Parker at al.27 note, however, that the falloff due to a diffuse
spherical light source is sinusoidal, not linear. In our imple-
mentation, we follow Haines’s suggestion14 and precompute
the sinusoidal falloff into a one-dimensional texture map. We
then use the linear remapped alpha value to index into this
texture map, which yields a more realistic penumbra.

4. Implementation
We implemented the smoothie algorithm using OpenGL and
the Cg shading language23. The algorithm maps directly to
the vertex and pixel shaders of programmable graphics hard-
ware without requiring expensive readbacks across the AGP
bus. Since the hardware does not retain vertex connectivity
information, however, identifying silhouette edges must be
done on the host processor. Our code is currently optimized
for the NVIDIA GeForce FX26 and is split into four render-
ing passes:

Pass 1. We generate the shadow map by storing the block-
ers’ depth values into a 16-bit floating-point buffer. In the
OpenGL graphics pipeline, depth values are stored in screen
space and hence are non-linearly distributed over the view
frustum. We require linearly-distributed depth values, how-
ever, to find the ratio of distances between the light source,
blocker, and receiver. Thus we compute depth values in
world space using a vertex shader.

Pass 2. We draw the smoothies and store their depth val-
ues into a standard OpenGL depth buffer.

Pass 3. We redraw the smoothies and compute their alpha
values in a pixel shader, as described in Section 3.1. We ini-
tialize a separate fixed-point buffer to α = 1 and composite
the smoothies’ alpha values into this buffer using minimum
blending. This blend mode is supported in hardware through
the EXT blend minmax OpenGL extension.

c© The Eurographics Association 2003.
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Figure 7: Shadow edge comparison using different methods and shadow map resolutions. The shadow is cast by the cylinder
from Figure 1. The total rendering time per frame is shown at the lower-left of each image.

Pass 4. We render the scene from the observer’s viewpoint
and compute the shadows in a pixel shader. We accelerate
the depth comparisons and 2 × 2 filtering using the native
hardware shadow map support.

The Cg code for these rendering passes is shown in Fig-
ure 11. We first compiled the shaders to the NVIDIA vertex
and fragment OpenGL extensions19, then optimized the as-
sembly code by hand to improve performance. Most of the
per-pixel calculations use 12-bit fixed-point precision or 16-
bit floating-point precision for faster arithmetic; this choice
does not appear to affect image quality. The table at the
bottom-right of Figure 11 shows the number of shader in-
structions for each rendering pass.

Additional optimizations are possible on different hard-
ware. For example, the ATI Radeon 9700 supports multi-
ple render targets per pass. Thus the second and third passes
above could be combined into a single pass that stores the
smoothies’ depth and alpha values into separate buffers.

5. Results

All of the images presented in this section and in the accom-
panying video were generated at a resolution of 1024×1024
on a 2.6 GHz Pentium 4 system with an NVIDIA Geforce
FX 5800 Ultra graphics card.

Figure 1d shows a simple scene with 10,000 triangles ren-
dered using our method at 39 fps. The spotlight casts shad-
ows with soft edges onto the ground plane.

Figure 7 compares the quality and performance of shad-
ows generated using different methods. The images display
a close-up of the shadow cast by the cylinder in Figure 1d.
The first column of images is rendered using an ordinary
shadow map; the second column is rendered using a version
of percentage closer filtering29 with a bicubic filter; the last

two columns are rendered using our method. The rows cor-
respond to different shadow map resolutions.

These images illustrate the advantages of our approach.
First, whereas aliasing is evident when using the other meth-
ods, the smoothie algorithm helps to hide the aliasing ar-
tifacts, even at low shadow map resolutions. Second, the
smoothies give rise to soft shadow edges that resemble
penumbrae; notice that the penumbra is larger in regions
farther away from the cylinder. We can indirectly simulate
a larger area light source by making the smoothies larger,
as shown in the fourth column. Finally, the rendering times
given in Figure 7 indicate that the smoothie algorithm is
more expensive than the regular shadow map, but still much
faster than using the bicubic filter.

Figure 8 compares the shadows generated using our
method to the geometrically-correct shadows computed us-
ing a Monte Carlo ray tracer. These images show that our
method works best when simulating area light sources that
are small relative to the blockers (top row). Recall that the
smoothies only extend outwards from the blockers’ silhou-
ette edges. Like the work of Haines14 and Parker at al.27,
this construction produces shadow umbrae that do not shrink
as the size of the light source increases. Furthermore, the
construction relies on a single set of object-space silhouette
edges computed with respect to a point light source. This ap-
proximation becomes worse as the size of the light source in-
creases, since different points on the light source correspond
to different sets of silhouette edges. The resulting differences
in visual quality are noticeable at the contact point between
the cylinder and the floor in the bottom row of images.

Figure 9 illustrates the importance of remapping the al-
pha values when a shadow falls on multiple receivers. In this
scene, two boxes are arranged above a ground plane, and
a spotlight illuminates the objects from above. The left and
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Smoothie Ray Tracer

Figure 8: Comparison of soft shadow edges. The images in
the left column are rendered using the smoothie algorithm
with a buffer resolution of 1024 × 1024. The images in the
right column are rendered using a Monte Carlo ray tracer
and show the geometrically-correct soft shadows. Each suc-
cessive row shows the effect of simulating a larger area light
source.

middle images show the smoothie buffer’s alpha values in
two different cases. In the left image, alpha is linearly in-
terpolated from the silhouette edge of each smoothie to the
opposite edge. This approach does not take into account the
depth discontinuity between box 2 and the ground plane in
the region indicated by arrows. In the middle image, the al-
pha values have been remapped at each pixel using Equation
1. The remapping has the desired effect (shown in the right
image): the shadow cast by box 1 has a smaller, harder edge
on box 2 and a thicker, softer edge on the ground plane.

Figure 10 shows a common case of two blockers over-
lapping in the screen space of the light source. Recall that
when multiple smoothies overlap, we use minimum blend-
ing to composite their alpha values. Although this operation
is not geometrically accurate, the middle image shows that
the resulting overlapping penumbrae appear smooth and rea-
sonably similar to the image generated by the ray tracer.

Figure 12 (see color plates) shows four different scenes
rendered using the smoothie algorithm. The models in these
scenes vary in geometric complexity, from 5000 triangles for
the boat to over 50,000 triangles for the motorbike. The im-
ages demonstrate the ability of our algorithm to handle both
complex blockers and complex receivers. For instance, the
right image in the second row shows the shadows cast by
the flamingo’s head onto its neck, and by its neck onto its
back. Similarly, the right image in the last row shows a dif-
ficult case where the spokes of the motorbike wheel cast
shadows onto themselves and onto the ground plane. All

of these scenes run at interactive framerates; even the intri-
cate motorbike renders at 18 fps using buffer resolutions of
1024 × 1024.

Table 1 summarizes the rendering performance for the im-
ages shown in Figures 1d and 12. For most scenes, the fi-
nal rendering pass accounts for over 90% of the total run-
ning time. An exception is the motorbike scene, which con-
tains many more overlapping silhouette edges than the other
scenes; about 30% of its total rendering time is spent com-
puting the smoothies’ alpha values. Even so, increasing the
size of smoothies to simulate larger area light sources incurs
little overhead. For the scenes shown in Figure 12, we found
that enlarging the smoothies from t = 0.02 to t = 0.2 in-
creases the rendering times by about 15%.

6. Discussion

The above results illustrate the advantages of combining
smoothies with shadow maps. In summary, constructing
smoothies in object space with interpolated alpha values en-
sures smooth shadow edges, but performing the visibility
calculations in image space limits the number of depth sam-
ples we need to examine. Thus we can achieve interactive
framerates for detailed scenes.

The combination of object-space and image-space calcu-
lations is an important difference between our work and the
penumbra wedge algorithms3, 4. Since penumbra wedges are
based on shadow volumes, wedges are rendered from the
observer’s viewpoint. Thus rasterized wedges tend to oc-
cupy substantial screen area, especially in heavily shadowed
scenes. In contrast, smoothies are rendered from the light’s
viewpoint. They occupy relatively little screen area (see Fig-
ure 1b) and therefore are cheaper to render.

The geometry cost of the smoothie algorithm lies some-
where between the cost of shadow maps and shadow vol-
umes. Shadow maps require drawing the scene twice; our
method adds to this cost by also drawing the smoothies
twice, once to store the depth values and once to store the
alpha values. However, only one smoothie is needed per sil-
houette edge, and for complex models the number of silhou-
ette edges is small relative to the number of triangle faces.
The shadow volume algorithm draws the same number of
shadow polygons, but it also requires drawing all blocker tri-
angles once more to cap the shadow volumes properly. Com-
pared to shadow volumes, penumbra wedges require addi-
tional polygons to represent each wedge.

The size of the smoothies is defined in terms of an image-
space user parameter t (see Figure 2). Fortunately, t is an
intuitive parameter because it directly affects the size of the
generated penumbra. Applications such as 3D game engines
should choose t for a given environment depending on the
spatial arrangement of objects and the desired shadow soft-
ness. We have found that for scenes of size 10×10×10 units,
t values in the range of 0.02 to 0.2 (measured in normalized
screen space coordinates) give a reasonable approximation
for small area lights and yield good image quality.
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Figure 9: Scene configuration with multiple blockers and receivers. Remapping the alpha values (shown in the left and middle
images) causes the penumbra due to a single blocker to vary in thickness across multiple receivers. As a result, box 1 casts a
shadow onto box 2 and the ground plane, but the shadow edges on the ground plane are softer.

overlap smoothie ray tracer

Figure 10: Comparison of overlapping penumbrae. The left image shows how shadows may overlap due to multiple blockers.
The next two images show a close-up of the region indicated by the arrow. The middle image is rendered using the smoothie
algorithm. When multiple smoothies overlap, their alpha values are composited using minimum blending. The right image is
generated using a Monte Carlo ray tracer and shows the geometrically-correct soft shadow that results from multiple blockers.

Our work attempts to combine the best qualities of exist-
ing shadow techniques, but it also inherits some of their lim-
itations. For example, since our method uses shadow maps,
we require the light source to be a directional light or a spot-
light; additional buffers and rendering passes are needed to
support omnidirectional lights. In contrast, shadow volumes
and the penumbra wedge algorithms automatically handle
omnidirectional lights.

A second limitation is that our method, like the shadow
volume algorithm, relies on finding the blockers’ silhouette
edges in object space. Thus we assume that blockers are
represented as closed triangle meshes to simplify the com-
putations. In contrast, ordinary shadow maps trivially sup-
port any geometric representation that can be rendered into
a depth buffer. It would be nice to identify silhouette edges
and construct smoothies in image space instead of in object
space. One approach might be to find the blockers’ silhou-
ettes using McCool’s edge detection algorithm24, but it is un-
clear how to construct the smoothies directly without an ex-

pensive readback from the hardware framebuffer to the host
processor. We believe additional hardware is needed to avoid
this cost, such as a feedback path from the output of the edge
detection pixel shader to a vertex array.

Another limitation inherited from shadow maps is the use
of discrete depth buffer samples, which leads to aliasing at
the shadow edges. Although we have shown that smoothies
can hide aliasing artifacts, this approach does not work as
well when the smoothies are small or when the light source
is far away (see Figure 7, top row, third column). The rea-
son is that less shadow map resolution is available to capture
the smooth variation in alpha values. This problem can be
addressed by combining our algorithm with techniques that
increase the effective shadow map resolution, such as per-
spective shadow maps32.

6.1. Comparison to Penumbra Maps
Wyman and Hansen’s penumbra map algorithm36 is similar
to our method. Both techniques approximate soft shadows

c© The Eurographics Association 2003.



Chan and Durand / Smoothie

Pass 1 (shadow map)

Pass 2 (smoothie depth)

Pass 3 (smoothie alpha)

Pass 4 (make shadows)

5

n/a

5
5

12

1

n/a

11
13

10

(edges)
(corners)

Rendering Pass                     Vertex            Fragment

// Pass 1 (compute linear z): vertex program.
void main (float4 pObj       : POSITION,
           out float4 pClip  : POSITION,
           out float zLinear : TEXCOORD0,
           uniform float4x4 mvp,
           uniform float4x4 mv)
{
    pClip = mul(mvp, pObj);      // obj -> clip space
    zLinear = mul(mv, pObj).z;   // z in eye space
}

// Pass 1 (compute linear z): fragment program.
void main (half zLinear : TEXCOORD0,
           out half4 z  : COLOR)           
{
    z = zLinear;
}




// Pass 3 (remap alpha): vertex program.
void main (float4 pObj        : POSITION,
           out float4 pClip   : POSITION,
           out float zLinear  : TEXCOORD0,
           uniform float4x4 mvp,
           uniform float4x4 mv)   
{
    pClip = mul(mvp, pObj);      // obj -> clip space
    zLinear = mul(mv, pObj).z;   // z in eye space
}

// Pass 3 (smoothie EDGE): fragment program.
void main (half zLinear     : TEXCOORD0,
           float4 wpos      : WPOS,
           out half4 aRemap : COLOR,  
           uniform half3 v,     // silhouette vertex
           uniform half3 n,     // silhouette normal
           uniform half invT,   // 1/t (smoothie size)
           uniform samplerRECT shadowMap)
{
    // Compute linear alpha in screen space.
    half alpha = dot(wpos.xyz - v, n) * invT;

    // Compute ratio f = b/r to remap alpha values.
    // If b/r > 1, smoothie pixel is occluded.
    // Otherwise, remap alpha and clamp to [0,1].    
    half f = zLinear / texRECT(shadowMap, wpos.xy).x;
    aRemap = (f > 1) ? 1 : saturate(alpha / (1 - f));
}

// Pass 3 (smoothie CORNER): fragment program.
void main (half zLinear     : TEXCOORD0,
           float4 wpos      : WPOS,
           out half4 aRemap : COLOR, 
           uniform half3 v,      // silhouette vertex
           uniform half invT,    // 1/t (smoothie size)
           uniform samplerRECT shadowMap)
{
    // Compute linear alpha in screen space and remap.
    half alpha = saturate(length(wpos.xyz - v) * invT);
    half f = zLinear / texRECT(shadowMap, wpos.xy).x;
    aRemap = (f > 1) ? 1 : saturate(alpha / (1 - f));
}


// Pass 4 (make shadows): fragment program.
void main (float4 projRect                : TEXCOORD0,
           out half4 color                : COLOR, 
           uniform samplerRECT shadowMap  : TEXUNIT0,
           uniform samplerRECT smDepthMap : TEXUNIT1,
           uniform samplerRECT smAlphaMap : TEXUNIT2,
           uniform sampler1D sinFalloff   : TEXUNIT3)

{
    // Use hardware shadow map depth comparison and
    // 2x2 filtering support (ARB_shadow).  All
    // textures set to GL_LINEAR filter mode.
    fixed u = texRECTproj(shadowMap, projRect).x;
    fixed p = texRECTproj(smDepthMap, projRect).x;
    fixed a = texRECTproj(smAlphaMap, projRect).x;

    // Are we in shadow?
    fixed v = 1;         // assume not in shadow
    if (p < 1) v = a;    // if in penumbra, use alpha
    if (u < 1) v = 0;    // if in umbra, all shadow

    // Add sinusoidal falloff.
    v = tex1D(sinFalloff, v);
    
    // ... optional shading calculations go here ...
    
    color = v; // in practice, modulate shading by v
}

// Pass 4 (make shadows): vertex program.
void main (float4 pObj          : POSITION,
           out float4 pClip     : POSITION,
           out float4 projRect  : TEXCOORD0,
           uniform float4x4 mvp,
           uniform float4x4 mv,
           uniform float4x4 lightClip)
{
    pClip = mul(mvp, pObj);        // obj -> clip space
    float4 pEye = mul(mv, pObj);   // obj -> eye space

    // Compute RECT projective texture coordinates.
    // lightClip maps camera's eye space to light's
    // clip space, and multiplies x and y by shadow
    // map resolution to yield texRECT coordinates.
    float4 projCoords = mul(lightClip, pEye);
}



Figure 11: Cg vertex and fragment shader code. We compiled the shaders and optimized the resulting assembly code by hand.
The table at the bottom-right shows the number of assembly instructions for each rendering pass after optimization.

by attaching geometric primitives to the objects’ silhouette
edges and rendering alpha values into a buffer. There are two
important differences, however.

The first difference lies in the geometric primitives them-
selves. The penumbra map algorithm builds cones at the
silhouette vertices and draws sheets to connect the cones.
These primitives must be tesselated finely enough to ensure
smooth shadow corners and to avoid Gouraud shading arti-
facts. Thus each silhouette vertex introduces multiple cone
vertices, and each silhouette edge introduces at least four
new vertices.

In contrast, our method constructs smoothie edges as rect-
angles in screen space, which avoids Gouraud shading ar-
tifacts. Instead of drawing cones at the silhouette vertices
to create round soft shadow corners, we draw quadrilaterals
with sharp corners and rely on pixel shaders to interpolate
the alpha values. Since we do not tesselate the smoothies,
each silhouette vertex and edge introduces exactly four new
vertices. Although more shading is required for the smoothie
corners, the corner geometry occupies little screen area. Our
approach, however, requires a special case for vertices with
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Scene Boat Primitives Flamingo Elephant Motorbike
(Fig. 12, 1st row) (Fig. 1d) (Fig. 12, 2nd row) (Fig. 12, 3rd row) (Fig. 12, 4th row)

Geometry
Triangles 5664 9424 26,370 39,290 50,648
Edges 8488 14,124 39,460 59,039 76,287
Silhouette Edges 1677 150 1554 2861 10,600

Rendering times
256 × 256 20 ms 20 ms 21 ms 26 ms 37 ms
512 × 512 22 ms 22 ms 22 ms 27 ms 50 ms
1024 × 1024 26 ms 26 ms 25 ms 32 ms 53 ms

Table 1: Performance measurements for each scene. Timings per frame are given for different buffer resolutions.

more than two adjacent silhouette edges, as described in Sec-
tion 3.

The second difference is that the penumbra map algo-
rithm stores the depth values of the blockers but not the
depth values of the cones and sheets. In contrast, our method
keeps track of the depth values of both the blockers and the
smoothies; thus we require an additional depth comparison
in the final rendering pass. The smoothie’s depth value is
useful, however, in cases where some objects in the scene are
specified as shadow receivers but not shadow blockers. Ap-
plications such as 3D video games often restrict the number
of blockers in a scene for performance reasons; for instance,
blockers may be limited to characters and other dynamic ob-
jects. The second depth value ensures that soft shadow edges
are cast properly on all receivers, including non-blockers.
Fortunately, the penumbra map algorithm can be extended
easily to store depth values of the cones and sheets.

7. Conclusions

We have described the smoothie algorithm, a simple exten-
sion to shadow maps for rendering soft shadows. Our ex-
periments show that while the soft shadow edges are not
geometrically accurate, they resemble penumbrae and help
to hide aliasing artifacts. The algorithm is also efficient and
can be implemented using programmable graphics hardware
to achieve real-time performance.

Current research in real-time shadow algorithms is closely
tied to the programmable features of graphics hardware. In
particular, many multipass algorithms exploit the hardware’s
ability to compute and store arbitrary data values per-pixel at
high precision. For example, recent work has shown how to
simulate subsurface scattering effects by keeping additional
data in a shadow map9. Similarly, it may be possible to ex-
tend our work to generate more accurate shadow penumbrae
by storing extra silhouette data.

Ongoing OpenGL and DirectX 9 proposals25, 22, 2 indicate
that graphics hardware will soon provide per-vertex texture
accesses, floating-point blending, and the ability to render
directly to vertex attribute arrays. We expect that new hard-
ware features such as these will continue to influence the
design of shadow algorithms in the future.
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Flamingo

Elephant

Motorbike

Scene Close-up (shadow map) Close-up (smoothie)

Figure 12: Scenes rendered using the smoothie algorithm, arranged in order of increasing geometric complexity. These images
show the interaction between complex blockers and receivers. For instance, the elephant’s tusk casts a shadow onto its trunk,
and the spokes of the motorbike wheel cast shadows onto themselves. The middle and right columns compare the shadow quality
produced by ordinary shadow maps and our method, respectively.
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