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Abstract

Embedding algorithms search for low dimensional structure in complex
data, but most algorithms only handle objects of a single type for which
pairwise distances are specified. This paper describes a method for em-
bedding objects of different types, such as images and text, into a single
common Euclidean space based on their co-occurrence statistics. The
joint distributions are modeled as exponentials of Euclidean distances in
the low-dimensional embedding space, which links the problem to con-
vex optimization over positive semidefinite matrices. The local struc-
ture of our embedding corresponds to the statistical correlations via ran-
dom walks in the Euclidean space. We quantify the performance of our
method on two text datasets, and show that it consistently and signifi-
cantly outperforms standard methods of statistical correspondence mod-
eling, such as multidimensional scaling and correspondence analysis.

1 Introduction

Embeddings of objects in a low-dimensional space are an important tool in unsupervised
learning and in preprocessing data for supervised learning algorithms. They are especially
valuable for exploratory data analysis and visualization by providing easily interpretable
representations of the relationships among objects. Most current embedding techniques
build low dimensional mappings that preserve certain relationships among objects and dif-
fer in the relationships they choose to preserve, which range from pairwise distances in
multidimensional scaling (MDS) [4] to neighborhood structure in locally linear embedding
[12]. All these methods operate on objects of a single type endowed with a measure of
similarity or dissimilarity.

However, real-world data often involve objects of several very different types without a
natural measure of similarity. For example, typical web pages or scientific papers contain
varied data types such as text, diagrams, images, and equations. A measure of similarity
between words and pictures is difficult to define objectively. Defining a useful measure of
similarity is even difficult for some homogeneous data types, such as pictures or sounds,
where the physical properties (pitch and frequency in sounds, color and luminosity distri-
bution in images) do not directly reflect the semantic properties we are interested in.



The current paper addresses this problem by creating embeddings from statistical associ-
ations. The idea is to find a Euclidean embedding in low dimension that represents the
empirical co-occurrence statistics of two variables. We focus on modeling the conditional
probability of one variable given the other, since in the data we analyze (documents and
words, authors and terms) there is a clear asymmetry which suggests a conditional model.
Joint models based on similar principles can be devised in a similar fashion, and may be
more appropriate for symmetric data. We name our method CODE for Co-Occurrence
Data Embedding.

Our cognitive notions are often built through statistical associations between different in-
formation sources. Here we assume that those associations can be represented in a low-
dimensional space. For example, pictures which frequently appear with a given text are
expected to have some common, locally low-dimensional characteristic that allows them to
be mapped to adjacent points. We can thus rely on co-occurrences to embed different en-
tity types, such as words and pictures, genes and expression arrays, into the same subspace.
Once this embedding is achieved it also naturally defines a measure of similarity between
entities of the same kind (such as images), induced by their other corresponding modality
(such as text), providing a meaningful similarity measure between images.

Embedding of heterogeneous objects is performed in statistics using correspondence anal-
ysis (CA), a variant of canonical correlation analysis for count data [8]. These are related
to Euclidean distances when the embeddings are constrained to be normalized. However, as
we show below, removing this constraint has great benefits for real data. Statistical embed-
ding of same-type objects was recently studied by Hinton and Roweis [9]. Their approach
is similar to ours in that it assumes that distances induce probabilistic relations between
objects. However, we do not assume that distances are given in advance, but instead we
derive them from the empirical co-occurrence data. The Parametric Embedding method
[11], which also appears in the current proceedings, is formally similar to our method but
is used in the setting of supervised classification.

2 Problem Formulation

Let X and Y be two categorical variables with an empirical distribution p̄(x, y). No ad-
ditional assumptions are made on the values of X and Y or their relationships. We wish
to model the statistical dependence between X and Y through an intermediate Euclidean
space R

d and mappings ~φ : X → R
d and ~ψ : Y → R

d. These mappings should reflect the
dependence between X and Y in the sense that the distance between each ~φ(x) and ~ψ(y)
determines their co-occurrence statistics.

We focus in this manuscript on modeling the conditional distribution p(y|x)1, and define a
model which relates conditional probabilities to distances by

p(y|x) =
p̄(y)

Z(x)
e−d

2
x,y ∀x ∈ X,∀y ∈ Y (1)

where d2
x,y ≡ |~φ(x)− ~ψ(y)|2 =

∑d
k=1(φk(x)−ψk(y))

2 is the Euclidean distance between
~φ(x) and ~ψ(y) and Z(x) is the partition function for each value of x. This partition func-
tion equals Z(x) =

∑

y p̄(y)e
−d2

x,y and is thus the empirical mean of the exponentiated
distances from x (therefore Z(x) ≤ 1).

This model directly relates the ratio p(y|x)
p̄(y) to the distance between the embedded x and

y. The ratio decays exponentially with the distance, thus for any x, a closer y will have
1We have studied several other models of the joint rather than the conditional distribution. These

differ by the way the marginals are modeled and will be described elsewhere



Figure 1: Embedding of X, Y into the same d-dimensional space.

a higher interaction ratio. As a result of the fast decay, the closest objects dominate the
distribution. The model of Eq. 1 can also be described as the result of a random walk
in the low-dimensional space illustrated in Figure 1. When y has a uniform marginal, the
probability p(y|x) corresponds to a random walk from x to y, with transition probability
inversely related to distance.

We now turn to the task of learning ~φ, ~ψ from an empirical distribution p̄(x, y). It is natural
in this case to maximize the likelihood (up to constants depending on p̄(y))

max
~φ,~ψ

l(~φ, ~ψ) = −
∑

x,y

p̄(x, y)d2
x,y −

∑

x

p̄(x) logZ(x) , (2)

where p̄(x, y) denotes the empirical distribution over X,Y . As in other cases, maximizing
the likelihood is also equivalent to minimizing the DKL between the empirical and the
model’s distributions. The likelihood is composed of two terms. The first is (minus) the
mean distance between x and y. This will be maximized when all distances are zero. This
trivial solution is avoided because of the regularization term

∑

x p̄(x) logZ(x), which acts
to increase distances between x and y points. The next section discusses the relation of this
target function to that of Canonical Correlation Analysis [10].

To characterize the maxima of the likelihood we differentiate it with respect to the embed-
dings of individual objects ~φ(x), ~ψ(y), and obtain the following gradients

∂l(~φ, ~ψ)

∂~φ(x)
= 2p̄(x)

(

〈~ψ(y)〉p̄(y|x) − 〈~ψ(y)〉p(y|x)
)

(3)

∂l(~φ, ~ψ)

∂ ~ψ(y)
= 2p(y)

(

~ψ(y) − 〈~φ(x)〉p(x|y)
)

− 2p̄(y)
(

~ψ(y) − 〈~φ(x)〉p̄(x|y)
)

,

where p(y) =
∑

x p(y|x)p̄(x).

Equating these gradients to zero, the ~φ(x) gradient yields 〈~ψ(y)〉p(y|x) = 〈~ψ(y)〉p̄(y|x).
This characterization is similar to the one seen in maximum entropy learning. Since p(y|x)
will have significant values for Y values such that ψ(y) is close to φ(x), this condition
implies that the expected location of a neighbor of φ(x) is the same under the empirical
and model distributions.

To find the optimal ~φ, ~ψ for a given embedding dimension d, we used a conjugate gradient
ascent algorithm with random restarts. In section 4 we describe a different approach to this
optimization problem.



3 Relation to Other Methods

Embedding the rows and columns of a contingency table into a low dimensional Euclidean
space is related to statistical methods for the analysis of heterogeneous data. Fisher [6]
described a method for mapping X and Y into φ(x), ψ(y) such that the correlation coeffi-
cient between φ(x), ψ(y) is maximized. His method is in fact the discrete analogue of the
more widely known Canonical correlation analysis (CCA) [10]. Another closely related
method is Correspondence analysis [8], which uses a different normalization scheme, and
aims to model χ2 distances between rows and columns of p̄(x, y).

The goal of all the above methods is to maximize the correlation coefficient between the
embeddings of X and Y . We now discuss their relation to our distance based method.
First, note that the correlation coefficient is invariant under affine transformations and we
can thus focus on centered solutions with a unity covariance matrix (〈φ(x)〉 = 0 and
COV (φ(x)) = COV (ψ(y)) = I) solutions. In this case, the correlation coefficient is
given by the following expression (we focus on d = 1 for simplicity)

ρ(φ(x), ψ(y)) =
∑

x,y

p̄(x, y)φ(x)ψ(y) = −
1

2

∑

x,y

p̄(x, y)d2
x,y + 1 . (4)

Maximizing the correlation is therefore equivalent to minimizing the mean distance across
all pairs. This clarifies the relation between CCA and our method: Both methods aim
to minimize the average distance between X and Y embeddings. However, CCA forces
both embeddings to be centered and with a unity covariance matrix, whereas our method
introduces a global regularization term related to the partition function.

Our method is additionally related to exponential models of contingency tables, where the
counts are approximated by a normalized exponent of a low rank matrix [7]. The current
approach can be understood as a constrained version of these models where the expression
in the exponent is constrained to have a geometric interpretation.

A well-known geometric oriented embedding method is multidimensional scaling
(MDS) [4], whose standard version applies to same-type objects with predefined distances.
MDS embedding of heterogeneous entities was studied in the context of modeling ranking
data (see [4] section 7.3). These models, however, focus on specific properties of ordi-
nal data and therefore result in optimization principles and algorithms different from our
probabilistic interpretation.

4 Semidefinite Representation

The optimal embeddings ~φ, ~ψ may be found using unconstrained optimization techniques.
However, the Euclidean distances used in the embedding space also allow us to reformu-
late the problem as constrained convex optimization over the cone of positive semidefinite
(PSD) matrices [14].

We start by showing that for embeddings with dimension d = |X|+ |Y |, maximizing (2) is
equivalent to minimizing a certain convex non-linear function over PSD matrices. Consider
the matrix A whose columns are all the embedded vectors ~φ and ~ψ. The matrix G ≡ ATA
is the Gram matrix of the dot products between embedding vectors. It is thus a symmetric
PSD matrix of rank ≤ d. The converse is also true: any PSD matrix of rank ≤ d can be
factorized asATA, whereA is an embedding matrix of dimension d. The distance between
two columns in A is linearly related to the Gram matrix via d2

ij = gii + gjj − 2gij .

Since the likelihood function depends only on the distances between points in X and in Y ,



we can write the optimization problem in (2) as

min
G

∑

x

p̄(x) log
∑

y

p̄(y)e−d
2
xy +

∑

x,y

p̄(x, y)d2
xy (5)

Subject to G � 0 , rank(G) ≤ d, d2
xy = gxx + gyy − 2gxy

where gxy denotes the element in G corresponding to specific values of x, y.

Thus, our problem is equivalent to optimizing a nonlinear objective over the set of PSD
matrices of a constrained rank. The minimized function is convex, since it is the sum of a
linear function of G and functions log

∑

exp of an affine expression in G, which are also
convex (see Geometric Programming section in [2]). Moreover, when G has full rank, the
set of constraints is also convex. We conclude that when the embedding dimension is of
size d = |X| + |Y | the optimization problem of Eq. (5) is convex. Thus there are no local
minima, and solutions can be found efficiently.

The PSD formulation allows us to add non-trivial constraints. Consider, for example, con-
straining the p(y) marginal to its empirical values, i.e.

∑

x p(y|x)p̄(x) = p̄(y). To in-
troduce this as a convex constraint we take two steps. First, we note that we can relax
the constraint that distributions normalize to one, and require that they normalize to less
than one. This is achieved by replacing logZ(x) with a free variable a(x) and writing the
problem as follows (we omit the dependence of d2

xy on G for brevity)

min
G

∑

x

p̄(x)a(x) +
∑

x,y

p̄(x, y)d2
xy (6)

Subject to G � 0 , rank(G) ≤ d, log
∑

y

p̄(y)e−d2
xy−a(x) ≤ 0 ∀x

It can be shown that the optimum of 6 will be obtained for solutions normalized to one, and
it thus coincides with the optimum of 5. The constraint

∑

x p(y|x)p̄(x) = p̄(y) can now

be relaxed to the inequality
∑

x p̄(y)p̄(x)e
−d2

xy
−a(x) ≤ p̄(y), which defines a convex set.

Again, the optimum will be obtained when the constraint is satisfied with equality.

Embedding into a low dimension requires constraining the rank, but this is difficult since
the problem is no longer convex in the general case. One approach to obtaining low rank
solutions is to optimize over a full rank G and then project it into a lower dimension via
spectral decomposition as in [14] or classical MDS. However, in the current problem, this
was found to be ineffective. Instead, we penalize high-rank solutions by adding the trace
of G [5] weighted by a positive factor, λ, to the objective function in (5). Small values
of Tr(G) are expected to correspond to sparse eigenvalue sets and thus penalize high rank
solutions. This approach was tested on subsets of the databases described in section 5
and yielded similar results to those of the gradient based algorithm. We believe that PSD
algorithms may turn out to be more efficient in cases where relatively high dimensional
embeddings are sought. Furthermore, under the PSD formulation it is easy to introduce
additional constraints, for example on distances between subsets of points (as in [14]), and
on marginals of the distribution.

5 Applications

We tested our approach on a variety of applications. Here we present embedding of words
and documents and authors and documents. To provide quantitative assessment of the
performance of our method, that goes beyond visual inspection, we apply it to problems
where some underlying structures are known in advance. The known structures are only
used for performance measurement and not during learning.
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Figure 2: CODE Embedding of 2483 documents and 2000 words from the NIPS database (the 2000
most frequent words, excluding the first 100, were used). The left panel shows document embeddings
for NIPS 15-17, with colors to indicate the document topic. Other panels show embedded words
and documents for the areas specified by rectangles. Figure (b) shows the border region between
algorithms and architecture (AA) and learning theory (LT) (bottom rectangle in (a)). Figure (c)
shows the border region between neuroscience (NS) and biological vision (VB) (upper rectangle in
(a)). Figure (d) shows mainly control and navigation (CN) documents (left rectangle in (a)).

(a) (b) (c) (d)

pac
sv

regularized

shawe

rational

corollary

proposition

smola

dual

ranking hyperplane
generalisation

svms

vapnik

lemma norm

lambda

regularization

proof

kernels

machines

margin

loss

Shawe−Taylor Scholkopf

Opper

Meir
Bartlett

Vapnik

bellman

vertex

player

plan

mdps

games

rewards

singh

agents

mdp

policies

planning

game

agent

actions

policy

Singh Thrun

Moore

Tesauro

Barto

Gordon

Sutton

Dietterich

conductance
pyramidal

iiii

neurosci
oscillatory

msec

retinal

ocular

dendritic

retina

inhibition

inhibitory

auditory
cortical

cortex

Koch

Mel

Li

Baird

Pouget

Bower

Figure 3: CODE Embedding of 2000 words and 250 authors from the NIPS database (the 250
authors with highest word counts were chosen; words were selected as in Figure 2). Left panel shows
embeddings for authors (red crosses) and words (blue dots). Other panels show embedded authors
(only first 100 shown) and words for the areas specified by rectangles. They can be seen to correspond
to learning theory, control and neuroscience (from left to right).

5.1 NIPS Database

Embedding algorithms may be used to study the structure of document databases. Here we
used the NIPS 0-12 database supplied by Roweis 2, and augmented it with data from NIPS
volumes 13-17 3. The last three volumes also contain an indicator of the document’s topic
(AA for algorithms and architecture, LT for learning theory, NS for neuroscience etc.).

We first used CODE to embed documents and words into R
2. The results are shown in

Figure 2. It can be seen that documents with similar topics are mapped next to each other
(e.g. AA near LT and NS near Biological Vision). Furthermore, words characterize the
topics of their neighboring documents.

Next, we used the data to generate an authors-words matrix (as in the Roweis database). We
could now embed authors and words into R

2, by using CODE to model p(word|author).
The results are shown in Figure 3. It can be seen that authors are indeed mapped next to
terms relevant to their work, and that authors dealing with similar domains are also mapped
together. This illustrates how co-occurrence of words and authors may be used to induce a
metric on authors alone.

2See http://www.cs.toronto.edu/∼roweis/data.html
3Data available at http://robotics.stanford.edu/∼gal/
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Figure 4: (a) Document purity measure for the embedding of newsgroups crypt, electronics and
med, as a function of neighborhood size. (b) The doc−doc measure averaged over 7 newsgroup sets.
For each set, the maximum performance was normalized to one. Embedding dimension is 2. Sets are
atheism, graphics, crypt; ms-windows, graphics; ibm.pc.hw, ms-windows; crypt, electronics; crypt,
electronics, med; crypt, electronics, med, space; politics.mideast, politics.misc. (c) The word − doc

measure for CODE and CA algorithms, for 7 newsgroup sets. Embedding dimension is 2.

5.2 Information Retrieval

To obtain a more quantitative estimate of performance, we applied CODE to the 20 news-
groups corpus, preprocessed as described in [3]. This corpus consists of 20 groups, each
with 1000 documents. We first removed the 100 most frequent words, and then selected the
next k most frequent words for different values of k (see below). The resulting words and
documents were embedded with CODE, Correspondence Analysis (CA), SVD, IsoMap
and classical MDS 4. CODE was used to model the distribution of words given documents
p(w|d). All methods were tested under several normalization schemes, including document
sum normalization and TFIDF. Results were consistent over all normalization schemes.

An embedding of words and documents is expected to map documents with similar seman-
tics together, and to map words close to documents which are related to the meaning of the
word. We next test how our embeddings performs with respect to these requirements. To
represent the meaning of a document we use its corresponding newsgroup. Note that this
information is used only for evaluation and not in constructing the embedding itself.

To measure how well similar documents are mapped together we define a purity measure,
which we denote doc− doc. For each embedded document, we measure the fraction of its
neighbors that are from the same newsgroup. This is repeated for all neighborhood sizes,
and averaged over all sizes and documents.

To measure how documents are related to their neighboring words, we use a measured de-
noted byword−doc. For each document dwe look at its n nearest words and calculate their
probability under the document’s newsgroup, normalized by their prior. This is repeated
for neighborhood sizes smaller than 100 and averaged over documents . The word − doc
measure was only compared with CA, since this is the only method that provides joint
embeddings.

Figure 4 compares the performance of CODE with that of the other methods with respect
to the doc − doc and word − doc measures. CODE can be seen to outperform all other
methods on both measures.

4CA embedding followed the standard procedure described in [8]. IsoMap implementation was
provided by the IsoMap authors [13]. We tested both an SVD over the count matrix and SVD over
log of the count plus one, only the latter is described here because it was better than the former. For
MDS, the distances between objects were calculated as the dot product between their count vectors
(we also tested Euclidean distances)



6 Discussion

We presented a method for embedding objects of different types into the same low dimen-
sion Euclidean space. This embedding can be used to reveal low dimensional structures
when distance measures between objects are unknown. Furthermore, the embedding in-
duces a meaningful metric also between objects of the same type, which could be used, for
example, to embed images based on accompanying text, and derive the semantic distance
between images.

Co-occurrence embedding should not be restricted to pairs of variables, but can be extended
to multivariate joint distributions, when these are available. It can also be augmented to use
distances between same-type objects when these are known.

An important question in embedding objects is whether the embedding is unique. In other
words, can there be two non isometric embeddings which are obtained at the optimum
of the problem. This question is related to the rigidity and uniqueness of embeddings on
graphs, specifically complete bipartite graphs in our case. A theorem of Bolker and Roth
[1] asserts that for such graphs with at least 5 vertices on each side, embeddings are rigid,
i.e. they cannot be continuously transformed. This suggests that the CODE embeddings
for |X|, |Y | ≥ 5 are unique (at least locally) for d ≤ 3.

We focused here on geometric models for conditional distributions. While in some cases,
such a modeling choice is more natural in others joint models may be more appropriate. In
this context it will be interesting to consider models of the form p(x, y) ∝ p(x)p(y)e−d

2
x,y

where p(x), p(y) are the marginals of p(x, y). Maximum likelihood in these models is a
non-trivial constrained optimization problem, and may be approached using the semidefi-
nite representation outlined here.
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