
Distributed Latent Variable Models of Lexical Co-occurrences

John Blitzer
Department of Computer
and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Amir Globerson
Interdisciplinary Center
for Neural Computation
The Hebrew University
Jerusalem 91904, Israel

Fernando Pereira
Department of Computer
and Information Science

University of Pennsylvania
Philadelphia, PA 19104

Abstract

Low-dimensional representations for lex-
ical co-occurrence data have become in-
creasingly important in alleviating the
sparse data problem inherent in natural lan-
guage processing tasks. This work presents
a distributed latent variable model for in-
ducing these low-dimensional representa-
tions. The model takes inspiration from
both connectionist language models [1, 16]
and latent variable models [13, 9]. We give
results which show that the new model sig-
nificantly improves both bigram and trigram
models.

1 Introduction

Data sparseness is a central problem in machine learn-
ing for natural-language processing tasks such as pars-
ing, language modeling, machine translation, and au-
tomatic summarization [5, 10, 3]. All these tasks use
sparse data to estimate lexical co-occurrence probabil-
ities. One example is modeling the probability p(w|h)
that a wordw occurs in the context of some other word
or words h.

The most common way of dealing with the sparse data
problem is to interpolate the full context with shorter
contexts, combining the full and shortened statistics
into a smoother overall estimate (see [4]). Interpola-
tion models are simple and reasonably effective, but
they fail to take into account useful regularities across
contexts.

An effective approach to capturing those regularities
is to map contexts into low-dimensional representa-

tions, and then use those representations to predict w.
Two lines of work which have used these ideas are
latent variable models and distributed connectionist
models.

In latent variable models, one introduces an unob-
served discrete random variable with low cardinality,
which represents an underlying class of contexts, and
separates the context from the word w. The parame-
ters of the model are then estimated via EM or related
algorithms [13, 9].

Distributed models map contexts to continuous low
dimensional vectors g(h) ∈ <n. The distribution
p(w|h) is then modeled as a non linear function of
g(h). Recent work by Bengio et al. [1] and by Xu et
al. [16] has shown that this approach yields state of
the art performance.

The multidimensional representation of distributed
models is attractive, since it can be thought of as rep-
resenting different, possibly independent, properties
of the context. On the other hand, in latent models
the intermediate representation has a clear probabilis-
tic interpretation.

In this work, we suggest a model that combines the
advantages of the above approaches by using a vector
of discrete latent variables. Our latent variable model
can be nicely described as a directed graphical model,
which also encompasses single latent variable models
such as the aggregate Markov model (AMM) of Saul
and Pereira [13]. Because it uses a vector of latent
variables, it also extends naturally to more general n-
grams. We show empirically that our model signifi-
cantly outperforms the AMM on a verb-object bigram
modeling task, and we further demonstrate improved
performance over a standard baseline for trigram lan-

guage modeling.

The rest of the paper is organized as follows. Section
2 reviews the AMM and introduces the distributed la-
tent variable model. Section 3 describes the EM algo-
rithms for optimizing the model. Section 4 describes
our experimental procedures and results. We conclude
in Section 6.

2 Distributed Latent Variable Models

In what follows, we describe a model for the proba-
bility of observing a word w given a history of previ-
ous words h. We begin with a single word history, in
order to compare to standard latent models, and then
discuss extensions to multivariate histories. The sim-
plest, non-distributed, latent model assumes the ex-
istence of a low cardinality hidden variable z which
separates w and h in the sense that it makes them con-
ditionally independent

p(w, h|z) = p(w|z)p(h|z) .

The corresponding graphical model is the Bayes net
in Figure 1. The conditional probability of w given h
is obtained by marginalizing over z:

p(w|h) =
∑

z

p(z|h) · p(w|z) .

The parameters of this model are p(z|h) and p(w|z).
The expression for the conditional distribution sug-
gests that z can be thought of as a clustering of h,
from which w is then predicted.

Saul and Pereira [13] used this model for language
modeling, where they called it the aggregate Markov
model (AMM). Hofmann and Puzicha [9] studied it as
a special case of what they call “aspect” models. The
AMM also falls under the rubric of mixture models.
The distribution p(w|h) can be thought of as a mixture
of |z| low-dimensional distributions, p(w|z), each of
which has mixing weight p(z|h). We will make use of
this view of the latent variable model in our analysis.

To use the advantages of a distributed model, we now
assume that the latent variable is a vector of m binary
latent variables (bits)1

b = (b1, . . . , bm). As in the
previous latent variable model, the latent variables are
assumed to separate h and w.

1Using binary latent variables simplifies the notation, exposi-
tion, and implementation without real loss of generality.

h

w

z

Figure 1: AMM graphical model

A desired property of a distributed model is that its
vector elements model independent properties of their
inputs. This can be achieved in our model by con-
straining the variables bi to be conditionally indepen-
dent given h. The above requirement can be repre-
sented graphically using the Bayes net of Figure 2. To
further exploit the distributed nature of b, we use the
following multinomial logistic (also known as condi-
tional maximum entropy) model for p(w|b)

p(w|b) =
1

Z(b)
exp

m
∑

i=1

ψ(bi, w) (1)

with separate interaction potentials ψ(bi, w) for each
variable bi. As in standard condtional maximum en-
tropy models, we assume ψ(bi, w) is an arbitrary, real-
valued function of bi and w.

We refer to the above model as the distributed Markov
model (henceforth DMM). The distribution it induces
is specified as follows:

p(w|h) =
∑

b

p(b|h) · p(w|b)

=
∑

b

m
∏

i=1

p(bi|h) ·
1

Z(b)
exp

m
∑

i=1

ψ(bi, w) .

The parameters of the model are the binomial param-
eters p(bi|h), and the real-valued functions ψ(bi, w).

The distribution p(w|h) can be seen to be a mixture of
2m components. However, the DMM has only O(m)
parameters. This should be contrasted with the AMM
which needs O(2m) parameters to model a mixture
of the same size. When the latent variable has a dis-
tributed nature, we expect the DMM model to outper-
form the standard mixture model, since its fewer pa-

h

b1 b2 bm

w

. . .

Figure 2: Graphical model corresponding to the distributed latent
variable model.

h1 h2

b1 b2 bm cn c2 c1

w

.

Figure 3: Graphical model corresponding to the multivariate his-
tory DMM

rameters make it less likely to overfit. This is indeed
seen in the experiments described later.

2.1 Multivariate Histories

The distributed model is easily extended to multi-
word histories. For ease of exposition, we discuss here
the two-word history (trigram) case. Each word in the
history is encoded with a separate vector of latent vari-
ables as shown in the graphical model of of Figure 3.

We denote latent variables encoding h1 and h2 by
b = (b1, . . . , bm) and c = (c1, . . . , cn) respectively.
The distribution p(w|b, c) is assumed to factor with
respect to the latent variables as in Equation 1. The in-
teraction potentials for c will be denoted by ψ(ci, w).
The resulting distribution p(w|h1, h2) is a mixture of
2m+n elements, with O(m+n) parameters. The vec-
tors b and c might have different lengths, allowing us
to use more latent variables for more recent history
elements, for example.

3 Learning Distributed Models

We now discuss the estimation of the parameters spec-
ifying the distributed model, from a given training
set. We focus on the two-word history case. Since
the model is a mixture distribution, its parameters
may be estimated using the expectation-maximization
algorithm [7]. Applications of EM to learning sin-
gle latent variable models are described by Saul and
Pereira [13], and Hofmann and Puzicha [9].

In what follows we denote by Θ(t) the full pa-
rameter set at the iteration t of the EM algo-
rithm. Recall that the free parameters are the bino-
mial parameters p(bi|h1), p(cj |h2) and the functions
ψ(bi, w), ψ(cj , w). We denote all parameters at time
t with a superscript t.

In the E step of the algorithm, posterior probabilities
of the latent variables are calculated given the model
Θ(t). For the DMM, this posterior is 2

p(t+1)(b, c|w, h,Θ(t)) ∝

p(t)(w|b, c)p(t)(b|h1)p
(t)(c|h2)

Observe that, because of the DMM’s factored form,
the posterior can be computed as a normalized prod-
uct of mixture weights and mixture components. Be-
cause of this, the histories h and predicted words w
decouple, and we can compute the partition function
Z(b, c) independently of h. Thus the E step for the
model requires O(L · 2m+n) time, where L refers to
the total number of training instances. This can be
significantly smaller than the required time for other
distributed models.

From this, we construct the joint distribution
p(t+1)(h,w,b, c) over the observed and latent vari-
ables

p(t+1)(h,w,b, c) ∝ p(t+1)(b, c|h,w,Θ(t))p0(h,w)

where p0(h,w) is the empirical distribution of the ob-
served variables.

The M step uses the above posteriors to estimate a new
parameter set Θ(t+1). The parameters p(t+1)(bi|h1)
and p(t+1)(cj |h2) are easily obtained by marginaliza-
tion and conditionalization from p(t+1)(h,w,b, c).

The parameters ψ(bi, w), ψ(cj , w) have no closed-
form expression, due to the dependencies between

2We use h to denote (h1, h2) for brevity

the latent variables induced by the partition function
Z(b, c). However, as is standard for conditional max-
imum entropy models like that of Equation 1, the ex-
pected complete data log-likelihood is maximized for
the values of the parameter vector ψ(t+1) that satisfy
the marginal constraints

q(w, bi) = p(t+1)(w, bi)

q(w, cj) = p(t+1)(w, ci)

where

q(w,b, c) = p(w|b, c, ψ(t+1))p(b, c)

is the model-expected marginal count of w and b, c.
The above equations can be solved iteratively for
ψ(t+1)(w, bi) with generalized iterative scaling (GIS)
[6], which uses the following parameter update

∆ψ(t+1)(w, bi) =
1

C
log

p(t+1)(w, bi)

q(w, bi)

where C is an upper bound on the number of terms in
the exponent in Equation 1. Similar updates are used
for ψ(w, ci).

3.1 Overrelaxed Updates and Regularization

In this section we discuss briefly two practical issues
related to the learning algorithm.

First, both GIS and EM are known to be slow to con-
verge, so that the doubly-iterative EM algorithm pro-
posed in the previous section is impractically slow
without modification. To make the algorithm practi-
cal, we use only a few GIS steps per EM step and
then apply an adaptive, overrelaxed update [12]. For
large models, this modified update gives convergence
in under 75 iterations, whereas the standard EM up-
date does not.

Secondly, while both latent variable models are in-
tended to smooth a conditional distribution, they can
also overfit their training data, in particular when the
number of mixture components is large. Because of
this, we sometimes use a deterministic annealing vari-
ant of EM [9, 14], where a free parameter correspond-
ing to temperature is optimized on heldout data.

4 Experimental Evaluations

To evaluate our distributed latent variable model we
first apply it to modeling bigrams, in order to compare

it to single latent variable models. We then apply it to
the more complex task of trigram modeling.

4.1 Modeling Verb Object Association

We begin with modeling the co-occurrence of bigrams
composed of verbs followed by objects. The task is to
obtain a model of the conditional distribution p(o|v)
of seeing an object given the preceding verb.

Our data come from a subset of the Penn Treebank
Wall Street Journal Corpus [11]. This is a set of one
million words of Wall Street Journal text, where each
sentence is annotated with its syntactic structure in
the form of a parse tree. The data are extracted from
the parse trees by finding all right branching parent-
modifier pairs where the parent is tagged as a verb
and the child is tagged as a noun. Instances of the
data then correspond roughly to verbs and objects,
both direct and indirect, but also can include other
nouns such as predicate nominals and the subjects in
subject-verb inversions. The data contain 50,205 such
verb-object pairs, and there are 5191 unique verbs and
8470 unique nouns, so the matrix is quite sparse. In
order to avoid the problem of unseen words, we col-
lapsed all low-count words into a single token. The
count threshold for this normalization also affects the
sparseness of the matrix, and we performed experi-
ments which varied it.

The dataset was divided into 9-1 training-test splits,
and we further divided the training set to give us held-
out data on which to optimize model free parameters.

We use a bigram model smoothed by deleted interpo-
lation as a baseline. This model gives the probability
of an object given a verb as:

p
interp
BG (o|v) = λ1pML(o|v) + λ2pML(o) + λ3pU (2)

Here the weights λi are positive and sum to 1. The
three distributions interpolated are the maximum like-
lihood bigram, unigram, and uniform distributions.
Following Jelinek [10], we bin the histories based on
frequency and set the weights to maximize the likeli-
hood of heldout data.

Given a distributed model pDM (o|v) we interpolate it
with the baseline by adding the term λ4pDM(o|v) to
Equation 2 and determining the weights as above.

The baseline and distributed models are evaluated us-
ing data predictive perplexity. For a model p(o|v),

8 32 64 128 512
1450

1500

1550

1600

1650

1700

1750
Unknown Threshold = 5

Number of Mixture Components

P
er

pl
ex

ity

BG
AMM
DMM

8 32 64 128 512
1400

1450

1500

1550

1600

1650
Unknown Threshold = 2

Number of Mixture Components

P
er

pl
ex

ity

BG
AMM
DMM

Figure 4: Perplexity Results for all three latent variable models for varying numbers of mixture components with two unknown word
thresholds. An AMM with k mixture components has a latent class variable that takes on k values. A DMM with k mixture components
has log(k) binary latent variables

Table 1: Percentage improvement over the baseline smoothed bi-
gram model for the best latent variable models of each type. UNK
refers to the unknown word threshold.

% Improve
over BG UNK=2 UNK=5

AMM 8.6% 7.6%
DMM 12.8% 12.5%

the perplexity on a test set of verbs and objects is

Ptest = exp
[

− 1
n

∑

v,o c(o, v) log p(o|v)
]

.

Here c(o, v) refers to the count of a verb-object bi-
gram, and n is the total number of bigrams in the cor-
pus.

Figure 4 gives perplexity results for the latent vari-
able models with varying numbers of mixture com-
ponents. The latent variable models are trained with
annealed EM as described in Section 3.1, and the per-
plexities reported are for interpolated models as de-
scribed above.

While the single latent variable model (AMM) does
give better results for 8 mixture components, the dis-
tributed model consistently outperforms it for all other
numbers of mixture components. It is also worthwhile
to note that the AMM overfits its training data, even
when annealed, while the distributed model shows no
sign of overfitting, even when the number of mixture
components becomes quite large. This is because the
distributed model has a much more compact represen-
tation for the same number of mixture components.
As mentioned before, the number of parameters in the

distributed model scales logarithmically in the num-
ber of mixture components, but it scales linearly for
the AMM.

As Table 1 shows, the best distributed models can im-
prove the baseline by nearly 13%. In the next section,
we examine the kinds of lexical “clusterings” discov-
ered by the AMM and DMM.

4.1.1 Analysis of Lexical Co-occurrence
Clusterings

One way to analyze the latent variable models is to
examine the distributions p(z|v), p(o|z) for the AMM
and p(b|v), p(o|b) for the DMM. In the AMM, verbs
v for which p(ẑ|v) is high can be thought of as be-
longing to the ẑ cluster. Similarly, objects o for which
p(o|ẑ) is high can be thought of as belonging to the
ẑ cluster. Since the latent variable models here are
mixture models, analyzing verbs and objects as be-
longing to one single cluster can hide some subtleties.
Nonetheless, examining the parameters in this way
provides us with useful insight into their representa-
tions of lexical co-occurrences

Table 2 shows one such “clustering” of the 200 most
frequent verbs and 200 most frequent objects induced
by the 32-class AMM on the verb-object data. For
verbs and objects v and o, we assign them to the
cluster ẑ corresponding to ẑ = argmax

z
p(z|v) and

ẑ = argmax
z

p(o|z) respectively. We display the top

8 clusters, sorted by the highest p(z|v) value for verbs
in the cluster.

Class p(z|v) p(o|z)
1 named chairman, president
2 been, become, told, asked issue
3 put, build funds, system
4 did, do it, business, something
5 are, used issues
6 called, find, know what
7 consider, approved, following plan, bid, program, changes, proposal, bill
8 give, gives, giving, given, lost support, right, money

Table 2: 8 classes induced by the 32 class AMM. The first column shows the verbs for which this class is the most probable. The second
column shows the nouns which are most probable given this class.

Class p(b|v) p(o|b)
1 said, says, were executive
2 held, dropped, yield, rose, grew point, %, cents, points
3 ended, ending, began, sent, reached Nov., report, March, agreement, June
4 is, be, been, named, become director, chairman, president, part, reason
5 closed year, Tuesday, week, Wednesday, yesterday
6 set, consider, begin, rejected, made acquisition, sale, plan, plans
7 told, asked, help, called, tell us, investors, people, him, me
8 did, does, do, play, call, know you, what, work, role, something

Table 3: 8 classes induced by the 5 variable DDM. The first column shows the verbs for which this class is the most probable. The
second column shows the nouns which are most probable given this class.

Table 3 gives a similar clustering induced by the 5-
variable DMM. The 8 clusters are chosen in the same
fashion. Both models find some reasonable clusters
of verbs and objects, but the AMM clusters are a little
less sharply defined, and it induces some clusters that
seem quite counterintuitive. The word “issue” is in a
separate cluster from “issues,” for instance.

4.2 Trigram Language Modeling

In this section, we evaluate our distributed latent vari-
able model on trigram language modeling. Trigram
models are widely used in speech recognition because
they are easy to build and efficient to apply. Trigram
language models also usually generalize in a straight-
forward way to longer contexts. Our data for this ex-
periment also come from the treebank portion of the
Wall Street Journal restricted to 10,000 distinct words.
The dataset is described more completely in [17] and
contains sections for training, optimizing free parame-
ters parameters and testing. For these experiments, we
do not anneal either model. Instead we regularize the
models by stopping the EM algorithm when the mod-
els begin to overfit development data. For this data,
annealing is not effective at regularizing the AMM,
and annealing the DMM did not make a significant
difference after interpolation.

Figure 5(a) gives perplexity results for distributed

models with varying numbers of latent variables per
word. It is natural to suppose thatw2 is the more effec-
tive predictor of w3, and this is indeed shown in these
experiments. In fact for all but the 10-bit case, it is
always better to allocate all of them to the most recent
word in the history. Even then, the models show little
sign of saturating the amount of information present
in either of the histories.

We also compared our model with an interpolated
Kneser-Ney trigram model. The interpolated Kneser-
Ney model is one of the most effective trigram lan-
guage models, and Chen and Goodman demonstrate
that a variant of this model consistently outperforms
all other interpolation and backoff smoothing tech-
niques [4] 3. We use the Good-Turing estimate of the
parameters of the Kneser-Ney model and we combine
the AMM and DMM with it by linearly interpolating
the two trained models. As before, we set the weights
to maximize the likelihood of heldout data.

Figure 5(c) shows learning curves for the distributed
model when interpolated with the trigram baseline de-
scribed above. Again we compare with an aggregate
Markov model. This time, the AMM is used only
to smooth the distribution p(w3|w2). As with the
verb-object bigram results, we compare two models

3This variant, modified Kneser-Ney, can achieve a perplexity
of 143.9 on this dataset.

(a) Perplexities of models with different
numbers of latent variables

c(w1)
b(w2) 0 1 2 3 4

3 379 361 346 343 344
4 336 329 317 321 316
5 315 310 300 299 296
6 295 292 285 283 X
7 283 280 277 273 X
8 274 273 270 X X
9 269 261 X X X

10 263 X X X X 8 16 32 64 128 256 512 1024
134

136

138

140

142

144

146

Number of Mixture Components

P
er

pl
ex

ity

Trigram Model Smoothing Results

Kneser−Ney
AMM
DMM

(c) Learning curves for DMM and AMM models
with varying numbers of mixture components

Figure 5: Results of trigram language modeling experiments

with identical numbers of mixture components. For
each bit count, we choose the DMM with the low-
est heldout data perplexity. For all but 10 bits (1024
mixture components), this corresponds to allocating
all bits to the most recent word. While the DMM
slightly outperforms the AMM for larger numbers of
mixture components, both models improve similarly
(6.6 versus 6.8%) on the Kneser-Ney baseline. One
explanation for the difference between these results
and the verb-object bigram results is the difference in
data sparseness. The AMM quickly overfits the verb-
object data, but it is much harder to overfit the 10,000-
word vocabulary trigram data.

5 Related Work and Discussion

Aside from Saul and Pereira [13], there is also other
work on applying ideas similar to ours to language
modeling. Wang et al. [15] investigate a language
model based on what they call the latent maximum
entropy principle. Like our distributed models, latent
maximum entropy models are mixture models. Sim-
ilarly, like our factored form from Equation 1, latent
maximum entropy models are maximum entropy for
a fixed posterior distribution over their hidden fea-
tures. However, unlike our model, the Wang et al.
[15] model is not distributed and uses a single latent
variable.

The models which are most similar in spirit to ours
are the connectionist models of Bengio [1] and Xu
[17]. These models combine a neural network with a
softmax output for probabilities. They are not sparse,

and because of this, they must use O(H · V) time per
epoch, where H refers to the number of unique histo-
ries and V refers to the vocabulary size. For most cor-
pora, this number is prohibitively large. Finally, we
recently introduced a much faster model which com-
bines dimensionality reduction for continuous embed-
ding of histories with a hierarchical mixture of experts
for faster normalization [2].

Our distributed latent variable model is fully proba-
bilistic, and its factored form allows it to avoid the
prohibitively large O(H · V) calculation of the earlier
connectionist models. Recall that the DMM requires
time O(L ·2m+n). Since L is typically close to H (for
our trigram data, L is 1 million andH is 600,000), this
results in much faster training times when m and n
are small. When m and n are large, though, the DMM
also faces speed issues. The coupling of the latent
variables forces us to sum over all mixture compo-
nents when computing the expectations in the E-step.
While this is possible for 1024-component mixtures,
it becomes too large for more mixture components on
larger corpora.

In terms of model form and inference, our model is
closely related to the factorial hidden Markov model
[8]. The factors of the factorial HMM correspond to
our latent bits, but there are two major differences be-
tween the two models: The factorial HMM is a gener-
ative model in which the observed variables at a time
slice are generated from the factors. By contrast, our
DMM assumes that the the latent bits are distributed
conditioned on a history. Furthermore, the factorial

HMM explicitly models the dependencies between
hidden variables at different time slices, whereas we
do not. Ghahramani and Jordan give a mean-field ap-
proximation to the posterior for their factorial HMM.
Unfortunately, the introduction of the mean field pa-
rameters in our model recouples h and w, resulting
in exactly the O(H · V) computation we avoided by
specifying its factored form.

6 Conclusion

We presented a distributed latent variable model for
lexical co-occurrence data. Using the framework of
graphical models, we derived an EM algorithm and
compared the learned models with the single latent
variable aggregate Markov model [13]. The result
was that the distributed latent variable model signif-
icantly outperforms the single latent variable AMM
and is able to improve significantly on both bigram
and trigram baselines.

As mentioned in the previous section, our model re-
quires time exponential in the number of latent vari-
ables in order to perform exact inference. For 9 bi-
nary latent variables, this is not large, but for models
with many variables, this number quickly becomes too
large. This is due to the directed nature of our graphi-
cal model. It is worth mentioning that it is also possi-
ble to use undirected graphical models to represent the
essential conditional independences expressed in this
model. We are currently investigating such models to-
gether with approximate inference techniques [18] to
make learning and inference practical.

Acknowledgements

We would like to thank Lawrence Saul and Naftali
Tishby for valuable discussions throughout the course
of this work. We thank Peng Xu for help preprocess-
ing the data for the trigram language modeling exper-
iments. Blitzer and Pereira are partially supported by
DARPA under SRI subcontract NBCHD030010.

References

[1] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural
probabilistic language model. Journal of Machine Learning
Research, 3:1137–1155, 2003.

[2] J. Blitzer, K. Weinberger, L. Saul, and F. Pereira. Hierarchi-
cal distributed representations for statistical language mod-
eling. In Advances in Neural Information Processing Sys-
tems 17, 2004.

[3] P. Brown, S. A. D. Pietra, V. J. D. Pietra, and R. L. Mercer.
The mathematics of statistical machine translation. Compu-
tational Linguistics, 19(2):263–311, 1993.

[4] S. Chen and J. Goodman. An empirical study of smoothing
techniques for language modeling. In Proceedings of ACL,
1996.

[5] M. Collins. Head-driven Statistical Models for Natural Lan-
guage Parsing. PhD thesis, University of Pennsylvania,
1999.

[6] J. Darroch and D. Ratcliff. Generalized iterative scaling
for log-linear models. The Annals of Mathematic Statistics,
43:1470–1480, 1972.

[7] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood
from incomplete data via the EM algorithm. Journal of the
Royal Statistical Society, 39:1–38, 1977.

[8] Z. Ghahramani and M. I. Jordan. Factorial hidden markov
models. Mach. Learn., 29(2-3):245–273, 1997.

[9] T. Hofmann and J. Puzicha. Statistical models for co-
occurrence data. Technical Report AIM-1625, MIT, 1998.

[10] F. Jelinek. Statistical Methods for Speech Recognition. The
MIT Press, 1997.

[11] M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
Building a large annotated corpus of english: The penn tree-
bank. Computational Linguistics, 19(2):313–330, 1994.

[12] R. Salakhutdinov and S. Roweis. Adaptive overrelaxed
bound optimization methods. In Proceedings of ICML,
2003.

[13] L. Saul and F. Pereira. Aggregate and mixed-order Markov
models for statistical language processing. In Proceedings
of EMNLP, 1997.

[14] N. Ueda and R. Nakano. Deterministic annealing variant
of the EM algorithm. In Advances in Neural Information
Processing Systems 7, 1995.

[15] S. Wang, D. Schuurmans, F. Peng, and Y. Zhao. Semantic n-
gram language modeling with the latent maximum entropy
principle. In Proceedings of AISTATS, 2003.

[16] P. Xu, A. Emami, and F. Jelinek. Training connectionist
models for the structured language model. In Proceedings
of EMNLP, 2003.

[17] P. Xu and F. Jelinek. Random forests in language modeling.
In Proceedings of EMNLP, 2004.

[18] J. Yedidia, W. Freeman, and Y. Weiss. Understanding belief
propagation and its generalizations. In IJCAI 2001 Distin-
guished Lecture track.

