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Abstract

As science enters the 21st century, the study of complex systems is increasingly gaining

importance. Complex systems are characterized by an extremely large number of units

(many millions) which cooperate to produce complex observable behavior. Perhaps

the most striking example of such a system is the human brain, a network of 1010

nerve cells whose simultaneous activity results in all human functions, from locomotion

to emotion. Understanding the brain involves several extremely difficult paradigmatic

and experimental challenges. At the current point of time, it is impossible to observe

the activity of more than a few hundred cells simultaneously. Furthermore, even if

one could obtain such a ”Brain TV” which reports the simultaneous activity of all

nerve cells in the brain, it is not clear that such a device would lead to a satisfactory

explanation as to how the brain operates.

These conceptual difficulties are not unique to brain research. They are manifested

in the study of other complex systems such as biological networks (i.e., metabolic

pathways), weather forecasting, and huge document databases such as the world wide

web. Machine learning is an important field of research which studies fundamental

theoretic and algorithmic aspects of extracting rules from empirical measurements of

such systems. We make frequent use of machine learning concepts throughout the

dissertation.

It is clear that any empirical measurement of complex systems is bound to be

partial, in the sense that only a subset of its units may be measured at a given time 1.

Furthermore, experimental procedures typically limit the duration for which one can

observe a given unit 2. We are thus faced with the following fundamental question: what

can one say about a system, given such a set of partial observations? An immediate

extension of this question is how to choose the observations which would be most

beneficial for studying a system. These two questions, and their various extensions are

the focus of this dissertation.

One of the central formal tools in the current thesis is Information Theory, intro-

duced by Claude Shannon in the 1940’s as a comprehensive mathematical theory of

1Perhaps with the exception of the world wide web.
2This state of affairs may be considerably enhanced in the future, with the improvement of chroni-

cally implanted electrodes [39].



communications. Information Theory allows one to quantify information transmission

in systems and is thus an attractive tool for studying information processing systems

like the brain. Substantial literature exists on estimating information between neural

activity and the external wold, in an effort to understand how the world is encoded in

cortical activity.

However, information theoretic methods also face two difficulties when applied to

complex system analysis: one is the partial measurement problem described above,

and the other is the need to understand which properties of the system are impor-

tant for its function (for example: what is the information in single neuron responses

as compared to information in neuronal correlations). The current dissertation deals

with these methodological issues by designing tools for measuring information under

partial measurement and in specific properties of the system. The new Minimum Mu-

tual Information (MinMI) principle , developed here, quantifies information in these

scenarios by considering all possible systems with a given property, and returning the

minimum information in this set of systems. The resulting number captures the infor-

mation in the given property, since systems with higher information necessarily contain

additional, information enhancing properties. Furthermore, it is a lower bound on the

information in the system whose partial properties were measured.

The first chapter of the thesis covers previous approaches to the problem of inference

from partial measurements. This problem was previously addressed in the framework

of the Maximum Entropy (MaxEnt) principle, developed by Maxwell and Jaynes [73],

and more recently in the machine learning [34], and neural coding [122] literature.

MaxEnt is similar to MinMI, in that it addresses all systems with a given property.

However, unlike MinMI, MaxEnt returns the system that maximizes entropy, which is

an information theoretic measure of uncertainty. The MinMI principle is the natural

extension of MaxEnt methods to information processing systems, since it is targeted

at information measurement. The relation between these two principles is discussed

in Chapters 2 and 3. Chapter 1 also covers basic concepts in information theory and

geometry of distributions, which will be used throughout the thesis.

The MinMI principle is presented in Chapter 2. The general form of its solu-

tion is derived, and several algorithms are given for calculating its parameters. The

algorithms are based on geometric projections of distributions (I-projections), and con-
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vergence proofs are given. MinMI may also be used as a classification algorithm. The

chapter describes this approach, and provides upper bounds on its generalization error.

Furthermore, we prove a theorem showing that the MinMI classifier is optimal in a

game theoretic sense, since it minimizes the worst case loss in a game which we de-

fine. The proof of the theorems uses concepts from convex duality. We conclude with

empirical results on classification tasks, where MinMI outperforms other methods on

a subset of the databases.

Chapter 3 discusses the application of MinMI to studying the neural code, and

analyzing data obtained in neuro-physiological experiments. We show how MinMI

may be used to measure information in properties of the neural response, such as

single cell responses. The results demonstrate that MinMI can differentiate between

populations where neurons have similar codes and those in which their codes differ. A

similar analysis is performed for pairwise responses. Finally, we show that MinMI can

quantify the information in the neuronal temporal response profiles. This allows us

to detect neurons whose temporal response provides information about the stimulus,

increasing the number of informative neurons by 35% for data recorded in the motor

cortex of behaving monkeys. MinMI extends current information theoretic methods in

neuroscience, by yielding a measure of information in various scenarios which are not

covered by currently available methods. We discuss its various advantages over existing

approaches.

In Chapters 2-3 we assume that the partial measurements are determined in ad-

vance (e.g., the responses of single cells). Interestingly, the method can be extended

(under some assumptions) to finding the optimal set of measurements, i.e. those which

contain the maximum amount of information. In Chapter 4 we introduce this maxi-

mization problem and its algorithmic solution, also based on geometric projections of

distributions. The method is named Sufficient Dimensionality Reduction (SDR), due

to its close link to the concept of sufficient statistics. We apply SDR to several text

analysis tasks, and show how it can be used to extract meaningful features in large

datasets. In Chapter 5, SDR is extended to the case where data about the noise struc-

ture is available, so that one can learn to disregard features which describe the noise

(e.g., illumination conditions in a face recognition task). Experimental results show

that the method improves performance in image recognition tasks.
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Another key question with respect to information processing is the tradeoff between

accurate representation of the external world, and the complexity of this representation.

The theoretical aspects of this tradeoff have been studied in the context of information

theory, and more recently using the Information Bottleneck approach [135]. In Chapter

6, we present an analytical characterization of this tradeoff for the case of Gaussian

variables. The analysis demonstrates how the representation dimension is a natural

outcome of this tradeoff: more accurate representations require more dimensions than

the less accurate ones, and the dimension is increased in a continuous manner. Fi-

nally, we provide an algorithm for finding the most accurate representation for a given

complexity level.

We apply our novel tools to a wide array of applications, from studying the neural

code to analyzing documents and images, and discuss their advantages in such cases.

Taken together, our results serve to illustrate the utility and importance of informa-

tion theoretic concepts, and specifically mutual information minimization, in machine

learning and in analyzing data measured in complex systems.
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Chapter 1

Introduction

The human brain is one of the most complex machines in the universe. Using a network

of 1010 nerve cells, the brain generates all aspects of human behavior from moving in the

environment to deciphering the laws of nature and composing symphonies or literary

masterpieces. We are still far from a reasonable understanding of how the brain achieves

all these, although much progress has been made over the last century.

The difficulties encountered by the brain researcher are numerous. The first is the

technical difficulty of measuring physical activity in the brain. It is currently possible

to record currents from hundreds of cells simultaneously using chronically implanted

electrodes [22] and to measure large scale activity of brain regions using Magnetic

Resonance Imaging (MRI). However, with all these methods we are still far from a

complete characterization of the activity of all neurons in a small brain patch.

The second difficulty is a conceptual one. Even if we had access to a complete

description of neural activity, it is far from obvious that this would endow us with an

understanding of how the brain generates behavior. A useful metaphor comes from

statistical physics: imagine we could measure the location of each gas molecule in a

container. Would this yield understanding of the properties of the gas? Thus, ex-

perimental measurements must be supplemented with appropriate conceptual tools in

order to achieve understanding. The search for the basic mechanisms underlying the

transformation between neural activity and behavior is often referred to as the problem

of studying the neural code [116].

A theoretical tool which has proven useful in studying the neural code is infor-

mation theory. Introduced by Claude Shannon in 1948 as a mathematical theory of

communication [123], information theory formally quantified such notions as compres-

sion, transmission over noisy channels and information processing. Since the brain may

be interpreted as a complex information processing machine whose input is sensual ex-

perience and output is behavior, it was only natural for neuro-scientists to be interested

in this general theory.

One of the first uses of information theory in neuroscience was in Miller’s famous

1



“Magic Number 7” paper [93], where information theoretic concepts were used to quan-

tify the limits on short term memory. In later years, information theoretic studies were

used to study different properties of neural coding from temporal aspects [101] to pop-

ulation coding [113].

While the information theoretic approach has advanced our understanding of neural

coding principles, its application is still limited in several important aspects. The first,

technical limitation, is the typical need for many repetitions of an experiment in order

to calculate information theoretic measures. The second, explanatory limitation, is that

although we may know information exists in a given neural activity, it is not always

clear what properties of the activity carry that information.

One of the goals of the current dissertation was to help in developing a theory to

approach these two problems, and study its various extensions. The current chapter

introduces basic concepts to be used throughout the thesis.

1.1 General Setup

We shall consider systems which can be generally divided into two observed random

variables, X and Y , whose interrelationship we are interested in studying.

For example, Y can be a stimulus presented to the brain, and X the neural response.

Alternatively, Y can be the motor output of the brain. Another setup which will

be considered extensively in what follows is the classification problem where Y is a

class variable and X is the value of a set of object features. Common applications in

this scenario include speech recognition, face recognition, document categorization etc.

Thus, in the face recognition example X could be an image of a person 1, and Y the

identity of that person.

In what follows, we assume that X and Y are discrete variables, unless otherwise

specified (see Chapter 6). Since X and Y are random variables, their dependence can

be described by a joint distribution p(X = x, Y = y), which we abbreviate by p(x, y).

A central motivation for the approach presented in this thesis is that the distribution

p(x, y) cannot be reliably estimated in many cases. For example consider a population

of 100 neurons whose individual responses are denoted by Xi (i = 1 . . . 100). The

total response is then X = [X1, . . . , X100], a random variable with 2100 possible values.

It is clear that the distribution p(x, y) cannot be reliably estimated via any feasible

experiment.

Even when p(x, y) can be reliably estimated, it may be advantageous to have a

description with more explanatory power than merely stating |X||Y | numbers, where

|X| is the number of different values the variable X can take. One such option is to use

a parametric model with a small set of parameters, preferably one which is motivated

1Represented by the grey level of pixels in the image for example.
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by a model of the system. However, in many domains there is no natural parametric

model.

1.2 Information Theory

Information theory was introduced by Claude Shannon in 1948 [123] as a mathemat-

ical theory of communication. The fundamental problem addressed by Shannon was

how to transmit a source over a noisy channel such that it can be reconstructed with

acceptable error, while making minimum use of the channel. Shannon showed that

such transmission can in fact be carried out, and characterized the performance of the

optimal coding schemes.

Shannon’s theorems were not constructive in the sense that they only showed the

limits on communication but not how they may be achieved in practice. This prompted

decades of research into channel coding mechanisms, which is still going on to this day.

One of Shannon’s basic insights was that most communication channels can be

broken into two components. The first is the source X, which one wants to transmit

(e.g., a set of images). The distribution of the source is denoted by p(x) (low p(x)

indicates that x will only rarely be sent). The second component is a noisy channel,

over which the transmission is carried out. A message X sent over a channel usually

undergoes some degradation as a result of noise (e.g., a low-quality telephone line).

Thus the output Y of the channel is usually a stochastic function of the input, and its

behavior can be described via a distribution p(y|x). Shannon realized that the physical

properties of the source and channel are of no importance, given the two distributions

p(x) and p(y|x). Thus the entire theory of communication relies on the properties of

univariate and bivariate distributions.

Two functionals of distributions play a central role in information theory: the

entropy and the mutual information.

Definition 1 The entropy of a distribution p(x) is defined as 2 3

H[p(x)] = −
∑

x

p(x) log p(x) . (1.1)

It will alternatively be written as H(X) when the distribution p(x) is clear from the

context.

The entropy can be shown to be the answer to the following question: imagine a

20 questions like game, where one player generates a value of X and the other needs

2The base used in the log changes the entropy by a multiplicative factor, and is of importance
only in defining units. Here we will typically use the natural logarithm except when otherwise noted.
Information is measured in bits when using base 2 in the log, and in nats when using the natural
logarithm.

3Values of p(x) = 0 do not contribute to the sum since 0 log 0 = 0 in the limit.
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to discover this value by asking yes/no questions. The second player naturally seeks

to minimize the number of questions asked. It turns out that the minimum number of

questions that can be asked on average 4 is bounded between H(X) and H(X)+1 [27] 5.

In a communication setting this scenario can be described as: given a random variable

X, the minimum average number of bits needed to encode X is bounded between H(X)

and H(X) + 1. These properties suggest that entropy is the degree of uncertainty one

has about the variable X before observing it. Furthermore, Shannon [123] also showed

that entropy is, in some sense, the only possible measure of uncertainty. He stated

three properties which one should expect any measure of uncertainty to satisfy, and

showed that entropy is the only measure satisfying them.

Although the definition of entropy forms the basis of Shannon’s presentation, the

more fundamental measure used in his coding theorems is the mutual information

defined next.

Definition 2 The mutual information between two random variables X, Y with joint

distribution p(x, y) is defined as I[p(x, y)] =
∑

x,y p(x, y) log2
p(x,y)

p(x)p(y) . It will alterna-

tively be written as I(X; Y ) when the distribution p(x, y) is clear from the context.

It is easy to prove [27] that the mutual information is non-negative (with equality

if and only if X, Y are independent) and that I(X; Y ) = H(X) + H(Y )−H(X, Y ) =

H(X)−H(X|Y ). Thus the mutual information measures the reduction in uncertainty

about X which results from knowledge of Y , and is therefore a measure of dependence

between the two variables. One of the important advantages of mutual information

as such a measure is that it does not make any modeling assumptions about p(x, y)

(e.g., it does not assume any parametric form). It can therefore capture information

in any property of the joint distribution, and not only in its first and second moments

for example. It is this aspect of the mutual information that makes it an attractive

tool in studying coding systems, such as the brain, where complex properties of the

system potentially contribute to its coding power. However, this advantage comes with

two disadvantages: one is the need to obtain an estimate of p(x, y), and the other is

the need to understand which properties of the system carry the information. We will

address these issues throughout the thesis.

Most of the key theorems of information theory involve finding a distribution which

minimizes or maximizes information subject to some constraints. The next section

present one such theorem, which is closely tied to the current work.

1.2.1 Rate Distortion Theory

Voice communication devices such as cellular phones are designed to transfer speech

signals from one end to the other while transmitting as little data as possible, in order

4Where averaging is w.r.t the random variable X.
5Here we use log2.
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to minimize the related costs (e.g. energy, storage, bandwidth). While the received

signal should be audible, it by no means needs to be an identical copy of the sent

signal, since the human ear can recognize speech under a wide array of distortions and

interferences. The principle of transmission with some allowed distortion is common to

many communication systems, and is also known as the problem of “lossy compression”

as opposed to “lossless compression”.

In his Rate Distortion Theory, Shannon analyzed the limits of such communication.

We next give a brief outline of his approach. Many details are left out, since the

main purpose is to provide intuition. Denote by X, X̂ the sent and received signals

(assume a noiseless channel for convenience), and by d(x, x̂) some measure of distortion

between them. Thus if X, X̂ are speech signals, d(x, x̂) would be low if they seem

similar to the human ear. The communication system is defined as follows: n signals

X1, . . . , Xn are represented using a sequence of nR bits, which are to be sent to the

receiver. The factor R is referred to as the rate of the code. This is done via a

mapping f : X n → {1, . . . , 2nR}. The nR bits are then decoded at the receiver using

a mapping g : {1, . . . , 2nR} → X̂ . The average distortion of this system is defined as

D(f, g) ≡
∑

xn d(xn, g(f(xn)))p(xn).

Shannon showed [27] that if the maximum distortion allowed is D0, then one can

design a system with distortion at most D0, which uses the following rate

R(I)(D0) ≡ min
p(x̂|x):

∑

x p(x)p(x̂|x)d(x,x̂)≤D0

I[p(x, x̂)] . (1.2)

He furthermore showed that no system can achieve a lower rate.

The function R(I)(D0) is known as the Rate Distortion function, since it describes

the tradeoff between allowed distortion and the rate of the code. For our purposes,

it is important to note that R(I)(D0) is calculated via constrained minimization of

the mutual information functional, where the constraints are given by some linear

functional of the distribution p. A related information minimization problem will be

described in detail in Chapter 2.

1.2.2 Information and Prediction Error

Mutual information quantifies dependence between variables. A different quantifier is

the minimum possible error incurred in predicting Y from X. It is easy to see that

the optimal predictor of Y from X is the “Maximum a Posteriori” (MAP) predictor

defined as g(x) = arg maxy p(y|x). The error incurred by this predictor is called the

Bayes error and is denoted by e∗p.

Since the Bayes error and the mutual information both quantify the dependence

between X and Y , it is natural to expect that they are related. The following two

theorems give some information about their interrelationships. The first, known as

Fano’s inequality (see [27]) provides a lower bound on the Bayes error.
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Theorem 1 h(e∗p) + e∗plog(|Y | − 1) ≥ H(Y |X), where h(e∗p) = −e∗p log e∗p − (1 −
e∗p) log (1− e∗p)

The second result, proved in [67], and stated below, yields an upper bound on the

Bayes error.

Theorem 2 [67] The Bayes error is upper bounded by the conditional entropy e∗p ≤
1
2H(Y |X) 6.

The upper and lower bounds are illustrated in Figure 1.1, for the |Y | = 2 case. It

can be seen that the range of possible prediction errors is small for extremal mutual

information values. For a value of 0.5 bits, the prediction error lies in a range of

approximately 0.1.

Machine learning algorithms often seek distributions which minimize prediction

error subject to constraints on the structure of p(x, y) (for example p(x, y) is limited to

some parametric family [36]). Since prediction error is a non-smooth function of p(x, y),

it is typically hard to minimize directly. Mutual information on the other hand, is a

smooth function of p(x, y) and thus it is sometimes easier to construct machine learning

algorithms that attempt to maximize it rather that minimize the prediction error [136].

An illustration of this approach appears in the current work (Section 2.3).
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Figure 1.1: Upper and lower bounds on the Bayes error as a function of the Mutual
Information. A value of H(Y ) = 0.5 is used in calculating H(Y |X) from I(X; Y ).
Information values are calculated in bits (using base 2 in the log).

1.3 Information in Measurements

A key question in what follows is what can one say about a system from partial mea-

surements of it. Before explicitly defining this notion, we give a brief example. Consider

6Entropy here is measured in bits.
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again the network of 100 neurons described in Section 1.1. Now assume we can reliably

estimate the individual response of each neuron p(xi|y) under the different stimuli Y .

This constitutes what we shall call a partial measurement of the system.

To give a more formal definition, we begin with distributions over a single variable

X. In subsequent chapters, we will discuss the generalization to bivariate distributions.

Consider a vector function !φ(x) : X → &d. We shall say that the measurement of !φ(x)

under a distribution p̂(x) is the set of d expected values 〈!φ(x)〉p̂(x), where 〈〉 is the

expectation operator defined as: 〈f(x)〉p(x) =
∑

x p(x)f(x). A given measurement

value !a does not generally uniquely specify an underlying distribution, and may in

fact be obtained from a large set different distributions (e.g. there are infinitely many

distributions over & with zero mean). We next define the set of distributions which

share a given measurement value as

Px(!φ(x),!a) ≡
{

p̂(x) : 〈!φ(x)〉p̂(x) = !a
}

. (1.3)

A simple extension of the above set is to the case where expectations are not known

with certainty but are rather known to lie within some range of values. This is often

the case since expectations are commonly calculated from finite samples, which leaves

some uncertainty regarding the true underlying values 7. The set of distributions which

share a given set of measurement ranges are defined by

Px(!φ(x),!a, !β) ≡
{

p̂(x) : !a− !β ≤ 〈!φ(x)〉p̂(x) ≤ !a + !β
}

, (1.4)

where !β is an element-wise positive vector reflecting the uncertainty about the mea-

surement value. What can one say about the underlying distribution p(x) given only

partial measurement values? A possible approach is described in the next section.

1.3.1 The Maximum Entropy Principle

Suppose one knows that a distribution p(x) has the expected value 〈!φ(x)〉p(x) = !a,

what can be said about the values of p(x) for all x? A simple illustration of this

problem, due to Boltzmann, is a dice whose expected outcome is known, but not the

individual probabilities of each its faces. The above problem is of course ill posed,

since the only thing one can say with certainty about p(x) is that it is in the set

Px(!φ(x),!a). However, we shall see that there are specific distributions in this set which

may constitute a reasonable answer.

One of the key approaches to this problem has been the Maximum Entropy principle

(MaxEnt) introduced in statistical mechanics in the 19th century and later expanded

by Jaynes [73] . The MaxEnt principle simply states that if a distribution p(x) is known

7A likely range of values may be calculated using concentration bounds such as Chernoff’s. See
more on this in Section 2.8.1.
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to have an expected value 〈!φ(x)〉p(x) = !a, then the best guess at p(x) is the distribution

in Px(!φ(x),!a) with maximum entropy. Formally, the MaxEnt distribution is given by:

pME = arg max
p∈Px(!φ(x),!a)

H[p(x)] . (1.5)

The MaxEnt distribution is intuitively the distribution with the highest degree of un-

certainty in Px(!φ(x),!a) and as such reflects no additional knowledge above that given

in the observations (it is sometimes referred to as the distribution least committed to

unseen data). An alternative justification of the principle is related to the asymptotic

equipartition theorem, and states that the MaxEnt distribution has the largest number

of characteristic samples (see [27] page 266).

A different argument, given in [63], suggests a game theoretic interpretation. Sup-

pose you are to choose a distribution q(x) such that any time x is drawn, you pay

− log q(x). Your goal is to minimize your loss −
∑

x p(x) log q(x). It can be shown that

the MaxEnt distribution minimizes the worst case loss in this game. Formally

pME = arg min
q(x)

max
p∈Px(!φ(x),!a)

−
∑

x

p(x) log q(x) . (1.6)

We shall return to this interpretation in the next chapter (Section 2.3).

Finally, MaxEnt has been successfully used as a modeling tool in a wide range of

applications, from Natural Language Processing [12, 34, 98] and spectral estimation

(see Chapter 11 in [27]) to ecological modeling [109].

1.4 Generalizing MaxEnt: I-projections

We now define a problem which generalizes MaxEnt, and discuss its algorithmic so-

lutions. We begin with defining the Kullback Liebler (KL) divergence between two

distributions (see e.g. [27]) 8:

DKL[p(x)|q(x)] ≡
∑

x

p(x) log
p(x)

q(x)
. (1.7)

The KL divergence is a non-negative, non-symmetric measure of similarity between two

distributions over a random variable X. Although it is not a metric, it does have some

metric properties, such as being zero if and only if the two distributions are identical
9.

Given a distribution q(x) and a set of distributions F , we may ask what is the

distribution in F that is closest to q(x), in the KL divergence sense. Since the divergence

is not symmetric this can be defined in two ways. We shall focus on one possibility,

8We will mostly use the natural logarithm in what follows.
9When x is continuous, p(x), q(x) may differ over a countable set of points.
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and following Csiszar [30], define the I-projection of q(x) on F as 10

IPR(q,F) ≡ arg min
p∈F

DKL[p|q] . (1.8)

In what follows we shall use the notation p∗(x) = IPR(q,F) for brevity. When q(x)

is the uniform distribution, the KL divergence is the negative entropy of p(x) (up to

an additive constant), and thus I-projection is equivalent to MaxEnt in the set F .

The distribution q(x) can be interpreted as supplying some prior knowledge about the

distribution of X. When none is given, q(x) is taken to be uniform. Thus I-projection

offers a geometric interpretation of MaxEnt and extends it (see [34] for the use of

I-projections in Natural Language Processing).

An interesting and useful property of the I-projection is the so called Pythagorean

property. When F is a convex set, it can be shown [30] that the following inequality is

satisfied for all p(x) ∈ F and all distributions q(x)

DKL[p|q] ≥ DKL[p|p∗] + DKL[p∗|q] .

Furthermore, when F is defined via expectation constraints as in Equation 1.3, the

above becomes an equality. We shall make repeated use of this property in proving

convergence of algorithms later.

When the set of distributions F is given by expectation constraints Px(!φ(x),!a)

the general form of the distribution p∗(x) may be found explicitly. Using Lagrange

multipliers, we obtain

p∗(x) =
q(x)

Z
e
!φ(x)·!ψ∗

, (1.9)

where Z =
∑

x q(x)e
!φ(x)·!ψ∗

is the partition function, and !ψ∗ should be chosen such that

p∗(x) satisfies the expectation constraints (i.e., p∗ ∈ Px(!φ(x),!a)). The parameters !ψ∗

do not have a closed form solution, and need to be solved using iterative procedures as

shown in the next section.

1.4.1 Calculating I-projections

There are several approaches to finding the parameters !ψ∗. To describe the first, we

note that the optimization problem in Equation 1.8 is convex. This is due to the fact

that the KL divergence is a convex functional in q(x) for fixed p(x) (see [27] page 30),

and that the set Px(!φ(x),!a) is convex. The theory of convex duality (see Appendix

A.1.2) asserts that any convex problem has a convex dual which is equivalent to the

original (primal) problem 11. For the current problem, this dual can be shown to be

10In some contexts the I-projection is called the minimum relative entropy problem [71].
11An equivalent dual requires that the primal problem be strictly feasible (Slater’s condition). If the

expected values are obtained from an empirical distribution, the empirical distribution is then itself a
feasible point, although not strictly so, since some of the probabilities may be zero. However, there
always exists an exponential distribution with the same expected values [34], which is strictly feasible,
since it has no zero values.
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the following unconstrained problem (see e.g. [26])

!ψ∗ = arg min
!ψ

!a · !ψ + log Z . (1.10)

This convex unconstrained minimization problem can be solved using any general

purpose optimization method (such as the Conjugate Gradient or Broyden-Fletcher-

Goldfarb-Shanno (BFGS) procedures; see [88] for a comparison of these methods for

the MaxEnt problem). The solution is guaranteed to be unique due to convexity.

The above dual problem can also be interpreted in terms of maximum likelihood.

Suppose that the value !a was obtained by averaging !φ(x) over a sample x1, . . . , xn gen-

erated by a distribution of the exponential form 1.9. Then the expression in Equation

1.10 is the negative-likelihood of the sample, and thus its minimizer is the maximum

likelihood parameter.

An alternative approach to finding !ψ∗ is an elegant procedure introduced by Darroch

and Rattcliff in [32]. Their Generalized Iterative Scaling (GIS), is an iterative algorithm

which generates a sequence of parameters !ψ which converges to the optimal one. The

idea is simple: given the parameter !ψ after the tth iteration, construct an exponential

distribution as in Equation 1.9. Now calculate the expected value of !φ(x) according

to this distribution, and use the ratio between it and the desired expected values to

update !ψ. The algorithm is depicted in Figure 1.2. Note that the algorithm requires the

functions !φ(x) to be non-negative and to sum up to some constant M for all x values.

These two requirements can be easily fulfilled for any general function !φ(x) using the

following procedure: add a constant to make all functions positive, and construct

an additional function φd+1(x) which complements the original d functions such that
∑

i φi(x) = M . The description of the algorithm shows how to obtain the distribution

p∗. It is straightforward to derive the corresponding updates of the parameter !ψ.

Input: Distribution q(x). A set of d positive functions !φ(x) such that
!φ(x) ≥ 0 for all x, and

∑

i φi(x) = M for all x. A set of expected values !a.

Output: IPR(q(x),Px(!φ(x),!a))

Initialize: p0(x) = q(x)

Iterate:

• Set pt+1(x) = 1
Zt

pt(x) exp
[

1
M

∑d
i=1 φi(x) log ai

〈φi(x)〉pt(x)

]

, where Zt

is a normalization constant

• Halt on small enough change in pt(x)

Figure 1.2: The Generalized Iterative Scaling Algorithm.
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1.4.2 I-projections for Uncertain Expectations

As mentioned in Section 1.3, it is often the case that the expected value of !φ(x) is

known up to some uncertainty !β. In this case, one is interested in I-projecting on the

set of distributions defined in Equation 1.4, a problem which was addressed in a recent

work [41].

It can be shown that the I-projection in this case has the same exponential form as

in Equation 1.9. However, since the constraints are different from the standard !β = !0

case, the resulting parameters !ψ∗ will also be different.

The dual problem in this case can be shown to be the following:

!ψ∗ = arg min
!ψ

!a · !ψ + log Z + |!ψ| · !β . (1.11)

It thus turns out that the dual in the uncertain expectations case has an L1 regulariza-

tion element in addition to elements which appear in the original dual. This problem is

again convex and unconstrained, and may be minimized using standard optimization

machinery 12.

1.5 The Machine Learning Perspective

Machine learning is a wide field of research whose goal is to build algorithms that learn

rules from examples, and to understand the theoretical properties of these algorithms.

As such, it is intimately connected to several disciplines such as statistics, combina-

torics, artificial intelligence, and cognitive sciences (see [64, 40, 138] for a thorough

introduction). A common machine learning task is the supervised learning scenario.

Here, one is given a set of pairs (xi, yi), i = 1 . . . n, where X is some set of features and

Y is a class variable (e.g. X is an image of a face, and Y is the identity of a person).

The goal is then to learn a function ŷ = f(x) such that it can predict the value of Y

for values of X which did not appear in the training set (e.g. a new image of one of the

people in the training set). In unsupervised learning, one is given a dataset x1, . . . , xn

without explicit class structure, and the goal is generally to construct a simple model

which approximates the statistical behavior of X.

Much progress has been made over the last 40 years in designing supervised learning

algorithms that can understand speech [114], language [89], and images [9] among many

other tasks. Such algorithms have also been recently used in analyzing biomedical data,

with applications such as predicting cancer types from gene expression profiles [115].

All the above applications, involving very different domains, often employ similar or

12Although the absolute value function is not differentiable, it may be optimized using a simple trick:
introduce two non negative parameter sets ψ+ ≥ 0 and ψ− ≥ 0 such that ψ ≡ ψ+−ψ−. Then it can be
shown that one of them will be zero at the optimum. Thus |ψ| = ψ+ +ψ−, and we have a differentiable
problem, with non-negativity constraints, which can be solved using constrained conjugate gradient for
example. See further details in Section A.1.3.
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related algorithms. The reason is that the basic rule learning problems that underlie all

of them are similar, and can thus be approached using a similar toolbox. On the other

hand, it is commonly accepted that a good machine learning algorithm must work with

an appropriate representation of the data. Thus, for example, representing an image

by the grey level of its pixels is not a very good idea since images which appear similar

to the human eye may have very different pixel representation because of translation

effects for example.

Indeed, all machine learning algorithms will fail miserably if given an inadequate

representation of their inputs. In some sense, this state of affairs is theoretically insol-

uble, as manifested in the so called No Free Lunch theorems [142].

The problem of finding the correct representation of a given data set has attracted

considerable interest in the machine learning community, and will also be dealt with

in the current dissertation. Although, as mentioned above, no comprehensive solution

can be found to this problem, real world data often have structure that allows some

progress. For instance, in complex systems much information can be gained from

considering contributions of single units, disregarding their correlations and higher

order statistics (this will become relevant in Chapters 2-3). We shall be interested in

ways of using such features to learn about a system.

Information theoretic tools have been widely used in machine learning, in different

contexts. One concept which has had a very large impact on Natural Language Pro-

cessing has been that of maximum entropy (MaxEnt) models, covered in the previous

sections. MaxEnt models were successfully used to model distributions in several do-

mains of NLP such as language modeling and translation (see e.g. [34]). Information

theoretic concepts were also exploited in many studies of efficient compression of data,

which aims to preserve relevant information. One such model, which we analyze here,

is the Information Bottleneck method [135], which suggests a way of clustering data in

a maximally informative manner.

The mutual information function has often been used as a measure of independence

between variables, in order to build representation of data which contain independent

components. A well known example of this approach is the Independent Component

Analysis (ICA) algorithm [10].

The current dissertation will use both machine learning and information theoretic

concepts in order to study methods of meaningful feature extraction.

1.6 Outline and Novel Contributions

The problem of learning from partial measurements as presented in the introduction

occupies a large part of the thesis. The first novel contribution to this question is to

treat it in the context of input-output systems, where mutual information, rather than

entropy is the appropriate information theoretic measure.
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In Chapter 2 we introduce the minimum mutual information (MinMI) principle, as

an extension of the MaxEnt principle to such systems. The MinMI principle considers

the distribution which minimizes mutual information, rather than maximizing entropy,

subject to a set of partial measurements. We characterize the solution to the MinMI

problem, and provide several algorithms for obtaining it. We also show how this dis-

tribution may be used in classification and provide generalization bounds and game

theoretic interpretations of its performance. Finally, the performance of the MinMI

classifier is demonstrated on classification problems, where it is shown to outperform

other methods in some cases.

Since the brain may be interpreted, on some level, as an information processing

system, we can use MinMI to study its properties of the neural code given partial mea-

surements. Chapter 3 discusses the application of MinMI to studying the neural code,

and analyzing data obtained in neuro-physiological experiments. We show how MinMI

may be used to measure information in properties of the neural response, such as single

cell responses. The results demonstrate that MinMI can differentiate between popula-

tions where neurons have similar codes and those in which their codes differ. A similar

analysis is performed for pairwise responses. Finally, we show that MinMI can quan-

tify the information in the neuronal temporal response profile. This allows us to detect

neurons whose temporal response provides information about the stimulus, increasing

the number of informative neurons by 35%, for data recorded in the motor cortex of

behaving monkeys. MinMI extends current information theoretic methods in neuro-

science, by yielding a measure of information in various scenarios which are not covered

by present methods. We discuss its various advantages over existing approaches.

When using information in measurements, a natural question that arises is which

measurements are more informative. In other words, what properties of the system

provide more insight into its information processing capabilities? Chapter 4 formalizes

this question and introduces its formal and algorithmic solution. The resulting novel

method, which we name Sufficient Dimensionality Reduction (SDR), is described, and

an algorithm for finding the optimal features is provided. The algorithm uses the notion

of I-projections described in the current chapter, and is proved to converge. SDR is

then applied to several text analysis tasks and is shown to find useful features of the

data. Chapter 5 presents an extension of SDR to cases where the structure of the noise

is known, so that one can avoid finding irrelevant features.

The final chapter tackles the question of feature dimension. When analyzing data,

one typically aspires to find a small set of features which characterize it. Ideally, this

should be done without compromising the accuracy of the description. This tradeoff

between dimensionality and accuracy is formally treated in Chapter 6. We use the

information bottleneck formalism [135] to show that feature dimensionality arises nat-

urally when describing feature extraction in an information theoretic context, where a

tradeoff between information minimization and maximization is performed.
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Taken together, our results serve to illustrate the utility of information theoretic

concepts, and specifically mutual information minimization, in machine learning and

in analyzing data measured in complex systems. The material in this thesis is partly

covered in the following publications 13 [24, 53, 54, 55, 56, 57].

13In [24], A.G. had a contribution equal to that of the first author.
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Chapter 2

The Minimum Information

Principle

Some of the greatest challenges to science today involve complex systems, such as the

brain and gene regulatory networks. Such systems are characterized by a very large

number of interacting units that potentially cooperate in complex ways to produce

ordered behavior. Some of the more interesting systems may be viewed, to a certain

degree, as input-output systems. The brain, for example, receives multiple inputs from

the environment and processes them to generate behavior. Such processing is often ac-

companied by highly complex communication between the different cortical areas [117].

In order to obtain insight into such systems, this processing of information needs to

be quantified. An attractive mathematical tool in this context is Information Theory,

discussed in the previous chapter. Information theory has been used in neuroscience

ever since its introduction [93], yielding insights into design principles in neural coding

[4, 11, 85], and offering new methods for analyzing intricate data obtained in neuro-

physiological experiments [116]. Such experimental works employ information theory

by calculating the mutual information between aspects of the external world (e.g. mo-

tor activity [65] or a visual stimulus [14]) and aspects of the neuronal response (e.g.

spike counts [49] and precise spike times [31] among others).

Empirical studies of complex systems in general and information theoretic analyses

in particular are fundamentally limited by the fact that the space of possible system

states is extremely large. Thus any measurement of the system is bound to be partial

and reveal only a subset of its possible states.

For example, it is not practical to fully characterize the statistics of a 100 ms spike

train of even a single neuron, because of its high dimensionality (2100) and the relatively

limited number of experimental trials. The problem of partial measurements is even

more acute for multiple neuron recording due to two reasons. First, the dimension of

the response space grows exponentially with the number of neurons. Second, neurons

are often not recorded simultaneously but rather over several recording sessions, so that
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their joint statistics are not accessible.

Here, we present a new principle and framework for extending information theo-

retic analysis to handle partial measurements of complex systems. At the basis of our

approach is the assumption that the partial measurements hold for the true under-

lying system, whose complete characterization cannot be accessed. We next consider

all hypothetical systems that are consistent with the observed partial measurements.

Clearly, there is a large set of such systems, each with its own value of mutual informa-

tion between input and output. Our goal is to find the value of information that can

be attributed only to the given measurements. Intuitively, the systems with relatively

high mutual information in the hypothetical set have some additional structure which

cannot be inferred based on the given partial measurements. However, the system with

minimum information in this set cannot be simplified further (in the mutual informa-

tion sense) and its information can thus be taken to reflect the information available

in the given measurements.

Our minimum information (MinMI) principle thus states that given a set of mea-

surements of a system, the mutual information available in these measurements is the

minimum mutual information between input and output in any system consistent with

the given measurements. An immediate implication of the above construction is that

this minimum information is a lower bound on the mutual information in the true

underlying system.

Another conceptual tool which has previously been used to tackle partial measure-

ments is the Maximum Entropy (MaxEnt) principle [73, 122] discussed in the previous

chapter. The MinMI principle is more appropriate for handling input-output systems,

since in the latter, mutual information, rather than entropy is the measure of interest.

This is further strengthened by the fact that MinMI offers a bound on the information

in the true system, whereas MaxEnt does not. We shall point to the main practical dif-

ferences between the approaches in the text. One important technical difference which

will become evident is that since MinMI minimizes a difference between entropies, it

results in a substantially different solution. The MinMI formalism also extends the

well known, and frequently used data processing inequality, and allows the estimation

of information in scenarios where this was not previously possible.

In what follows, we formalize this approach, and show how the minimum mutual

information can be calculated. We shall also be interested in using the MinMI formalism

for constructing an algorithm that predicts Y from X (e.g. predict movement from

neural response, or class variables from features in machine learning applications). A

bound on the error incurred by such an algorithm will be given, along with a game

theoretic interpretation of its performance. We shall also discuss the relation between

the MinMI classification algorithm and two well known approaches to classification:

generative and discriminative modeling.

In this chapter we demonstrate the applicability of the approach to machine learning
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applications in various domains. The next chapter discusses its applications to studying

the neural code. Some of the material in this chapter was published in [55].

2.1 Problem Formulation

We now define the minimum information problem, and characterize its solution.

To simplify presentation, we assume we have n independently identically distributed

(IID) samples (xi, yi) (i = 1, . . . , n) drawn from an underlying distribution p(x, y). We

use those to calculate our partial measurements. The partial measurements may be

obtained in other ways, for example by measuring different properties from different

samples, as in neurons recorded on different days.

We assume that the marginal of Y can be reliably estimated from the data. This

is often the case when Y is a stimulus or some behavioral condition whose frequency is

governed by the experimentalist, or when it is a class variable and there are relatively

few classes. The empirical marginal of Y is

p̄(y) ≡ 1

n

∑

i

δyi,y . (2.1)

Let !φ(x) : X → &d be a given function of X. The conditional means of !φ(x) are

then

!a(y) ≡ 1

np̄(y)

∑

i:yi=y

!φ(xi) . (2.2)

In what follows we assume that the expected values are exact, i.e., !a(y) = 〈!φ(x)〉p(y|x),

where p(x, y) is the true underlying distribution. This occurs when n →∞. For finite

sample sizes, there will be a divergence between these two values, which can be con-

trolled using concentration bounds such as Chernoff’s. In Section 2.8.1 we show how

MinMI may be extended to handle imprecise measurements.

We now consider the distribution which has minimum mutual information while

agreeing with the sample on both the expected values of !φ(x) , and the marginal p̄(y).

Define the set of distributions agreeing with the sample by

Px|y

(

!φ(x),!a(y), p̄(y)
)

≡
{

p̂(x, y) :
〈!φ(x)〉p̂(x|y) = !a(y) ∀y

p̂(y) = p̄(y)

}

. (2.3)

The information minimizing distribution is then given by

pMI(x, y) ≡ arg min
p̂(x,y)∈Px|y

(

!φ(x),!a(y),p̄(y)
)

I[p̂(x, y)] , (2.4)

where I[p̂(x, y)] denotes the mutual information between X and Y under the distribu-

tion p̂(x, y). Note that since the marginal p̂(y) is constrained, we are actually optimizing

over p̂(x|y).
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This minimization problem is convex since the mutual information is a convex

function of p(x|y) for a fixed p(y) [27] and the set of constraints is also convex. It thus

has no local minima.

We also define

Imin

[

!φ(x),!a(y), p̄(y)
]

≡ min
p̂(x,y)∈Px|y

(

!φ(x),!a(y),p̄(y)
)

I[p̂(x, y)] , (2.5)

as the minimum mutual information in any distribution agreeing with the constraints.

It is clear from the definition that this information is a lower bound on the information

in the true distribution p(x, y) since the latter is also in the set Px|y

(

!φ(x),!a(y), p̄(y)
)

.

Using Lagrange multipliers to solve the constrained optimization in Equation 2.4

we obtain the following characterization of the solution

pMI(x|y) = pMI(x)e
!φ(x)·!ψ(y)+γ(y) , (2.6)

where !ψ(y) are the Lagrange multipliers corresponding to the constraints, and γ(y) is

set to normalize the distribution. Note that this does not provide an analytic characteri-

zation of pMI(x|y) since pMI(x) itself depends on pMI(x|y) through the marginalization

pMI(x) =
∑

y

pMI(x|y)p̄(y) . (2.7)

The minimum mutual information has the following simple expression

Imin

[

!φ(x),!a(y), p̄(y)
]

≡ I[pMI(x, y)] = 〈!ψ(y) · !a(y) + γ(y)〉p̄(y) , (2.8)

where the operator 〈〉p̄(y) denotes expectation with respect to p̄(y).

2.1.1 Using pMI(x, y) to Predict Y from X

Since pMI(x, y) is in some sense a model of p(x, y), it seems reasonable to use it in order

to predict Y from X. This is indeed a common strategy in machine learning where a

model p̂(y|x) is constructed from data, and is used to predict Y [97]. We shall later

want to analyze the prediction power of our classifier (Section 2.5).

Principally, in order to obtain pMI(y|x) from pMI(x|y) one needs to use Bayes law,

i.e., multiply by p̄(y) and divide by pMI(x). However, pMI(x) may well be zero for a

large number of x values (see Section 2.2), resulting in pMI(y|x) being undefined. We

thus consider the expression that would have been obtained for pMI(x) ,= 0, but note

that it may not be a legal distribution.

fMI(y|x) = p̄(y)e
!φ(x)·!ψ(y)+γ(y) . (2.9)

Note that this distribution has a form similar to logistic regression as in [79]. However,

there are two main differences between pMI(y|x) and the standard logistic regression.
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One is that pMI(y|x) does not have a normalization function dependent on x. This

is a common property of information minimizing distributions, and is also seen in

Rate Distortion Theory [27] and the Information Bottleneck method [135]. The second

difference is that the optimal parameters of pMI(y|x) are not those obtained via (condi-

tional) maximum likelihood, but rather those which satisfy the conditions in Equation

2.6. This constitutes another difference between our formalism and that of MaxEnt,

which is known to be equivalent to Maximum Likelihood estimation in exponential

models [34].

The Information in kth Order Marginals: I(k)

Models of distributions over large sets of variables often focus on the marginal properties

of subsets of these variables. Furthermore, maximum likelihood estimation over Markov

fields is known to be equivalent to matching the empirical marginals of the cliques in

the graph [76]. We now define the MinMI version of the marginal matching problem.

Denote by X ≡ (X1, . . . , XN ) an N dimensional feature vector, and by {XC} a set

of subsets of variables of X (e.g., all singletons or pairs of Xi). Assume we are given

the empirical conditional marginals p(XC |Y ). In our notation, this is equivalent to

choosing the following functions to measure

φxC
(x̂) = δx̂C ,xC

, (2.10)

which (with some abuse of notation) are the indicator functions for a specific assignment

to the variables in xC (the number of functions is the total number of assignments to

variables in the sets xC). The function defined above can be seen to have the expected

value p(xC |y), i.e., the conditional marginal of the set xC .

The MinMI distribution in this case would have the following form

pMI(x|y) = pMI(x)e
∑

xC
ψ(xC ,y)+γ(y) . (2.11)

In what follows, and especially in the next chapter, we will often be interested in

measuring all the kth order marginals of a distribution and calculating the respective

minimum information. We shall denote the minimum information under the set of all

kth order marginals by I(k). For example, the information available from the marginals

p(xi|y) will be denoted I(1), and that from p(xi, xj |y) by I(2).

The I(k) measure allows us to write the full information I(X1, . . . , XN ; Y ) as a sum

of positive terms which reflect interactions on different orders (see [122] for a different,

MaxEnt based factorization). Define ∆k ≡ I(k) − I(k−1), and I(0) ≡ 0. The difference

∆k is always positive, and measures the information available in kth order marginals

not available in orders lower than k. The full information can then be written as the

sum I(X1, . . . , XN ; Y ) =
∑

k ∆k. It is thus decomposed into the contributions of the

different statistical orders. It is important to note that when the true distribution is

19



conditionally independent, ∆k will generally not be zero, since conditional indepen-

dence increases information with respect to the minimum information scenario (see

Section 3.3.1). In Section 3.1 we introduce measures which study the departure from

conditional independence.

2.2 Duality and Sparsity

The constrained information minimization in Equation 2.4 is a convex optimization

problem, and therefore has an equivalent convex dual (see Section A.1.2 for a brief

introduction to duality). The dual for a similar problem - finding the Rate Distortion

function, was recently shown to be a geometric program [26].

Using similar duality transformations to those in [26], we obtain the following geo-

metric program (in convex form), which is equivalent to the MinMI problem in Equation

2.4,

maximize 〈!ψ(y) · !a(y) + γ(y)〉p̄(y)

subject to log
∑

y p̄(y)e
!φ(x)·!ψ(y)+γ(y) ≤ 0 ∀x

, (2.12)

where the optimization is over the variables (!ψ(y), γ(y)). The duality proof is given in

Appendix A.1.3. Note that the definition of fMI(y|x) (Equation 2.9) implies that the

constraint can be written as
∑

y fMI(y|x) ≤ 1. In the dual problem, optimization is

over the variables (!ψ(y), γ(y)), and there are |X| constraints. By convex duality (see

A.1.2), the maximum of Equation 2.12 is equal to the minimum information obtained

in Equation 2.4. Furthermore, the value of the maximized dual function in Equation

2.12 at any feasible point yields a lower bound on the minimum information. We shall

use this property later in designing algorithms for calculating Imin.

It is interesting to study when the dual constraint is not achieved with equality. The

duality proof implies that this will happen only if λxy > 0 for some y (see Appendix

A.1.3 for the definition of λxy > 0), which by the Kuhn-Tucker conditions ([18], page

243) implies that pMI(x|y) = 0. Due to the structure of pMI(x|y) (Equation 2.6), it

follows that pMI(x) = 0 (ignoring the anomalous case of infinite parameters). Thus,

we conclude that if the dual constraint is not achieved with equality, then pMI(x) = 0.

To see why this implies that pMI(x) is a sparse distribution, note that there are |X|
inequalities in the dual problem, but only |Y |(d+1) variables (where d is the dimension

of !φ(x)). In the general case, not all of these can be satisfied with equality, implying

that if |X| >> |Y |(d + 1), most of pMI(x) will be set to zero 1.

The structure of pMI(x) is illustrated in Figure 2.1, which also demonstrates that

indeed
∑

y fMI(y|x) < 1 implies pMI(x) = 0, as claimed above.

1It will be interesting to obtain a more quantitative estimate of this sparsity ratio. There are cases
when all constraints are satisfied with equality, for example when all "ψ(y) are zero. However, these are
not likely to be the optimal parameters in the general case.
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Figure 2.1: Sparsity of the distribution pMI(x) and strict inequality in the dual con-
straints. The minimum information distribution was calculated for first order con-
straints drawn randomly for X = X1, . . . , X15. Each Xi was binary and Y was also
binary. Left figure shows the values of pMI(x). Right figure shows the values of pMI(x)
as a function of

∑

y fMI(y|x). It can be seen that whenever
∑

y fMI(y|x) < 1, we have
pMI(x) = 0. Note that there is a high overlap for points where

∑

y fMI(y|x) < 1 since
apparently only a discrete set of values is obtained for this sum.

In Section 2.7 we discuss algorithmic solutions to both the primal and the dual

problems.

2.3 A Game Theoretic Interpretation

In [63] Grünwlad gives a game theoretic interpretation of the MaxEnt principle (see

Section 1.3.1). We now describe a similar interpretation which applies to the MinMI

principle. The proof of the result is similar to that in [63] and is given in Appendix

A.1.4.

Proposition 1 Let A be the set of all functions f(y|x) such that
∑

y f(y|x) ≤ 1 for

all x. Then the minimum information function fMI(y|x) satisfies

fMI(y|x) = arg min
f(y|x)∈A

max
p̂(x,y)∈Px|y

(

!φ(x),!a(y),p̄(y)
)

−〈log f(y|x)〉p̂(x,y) .

The above proposition implies that fMI(y|x) is obtained by playing the following game:

Nature chooses a distribution p̂(x, y) from Px|y

(

!φ(x),!a(y), p̄(y)
)

. The player, who does

not know p̂(x, y) then chooses a predictor f(y|x) aimed at predicting Y from X. The

loss incurred in choosing f(y|x) is given by −〈log f(y|x)〉p̂(x,y). The proposition states

that fMI(y|x) corresponds to the strategy which minimizes the worst case loss incurred

in this game.
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To see how the above argument is related to classification error, we focus on the

binary class case, and take the class variable to be y = ±1. In this case, a classifier

based on f(y|x) will decide y = 1 if f(y = 1|x) ≥ ax
2 , where ax =

∑

y f(y|x). The

zero-one loss is thus

czo(x, y, f) = Θ
[

− y
(

f(y = 1|x)− ax

2

)]

, (2.13)

where Θ is the step function 2, and y is the true label for x. It can be seen that for

f(y|x) ∈ A, the zero-one loss is bounded from above by the loss function − log2 f(y|x)

czo(x, y, f) ≤ − log2 f(y|x) . (2.14)

as illustrated in Figure 2.2.
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czo(x,y=1,f)

−log2(f(y=1|x))

Figure 2.2: Demonstration of the log bound on the zero one loss in Equation 2.14. The
bound is illustrated for y = 1. A similar picture is obtained for y = −1. Here ax = 0.8
so that the decision boundary is at f(y = 1|x) = 0.4.

The classification error incurred by f(y|x) is thus bounded from above by the ex-

pected loss

〈czo〉p̂(x,y) ≤ 〈− log2 f(y|x)〉p̂(x,y) . (2.15)

Note that for the information minimizing distribution pMI(y|x) the above loss is the

familiar logistic loss.

We thus have the following elegant formulation of MinMI: the predictor fMI(y|x)

is the one which minimizes the worst case upper bound on classification error.

Interestingly, there have been recent works [70, 80] which minimize the worst case

error itself (rather than a bound, as done here). However, this was done only for the

case of first and second order moment constraints.
2The step function is 0 for x < 0 and 1 for x ≥ 0.
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2.3.1 Relation to Minimum Description Length

The minimum information principle is intuitively related to a parsimonious description

of the system. A seemingly related approach is the Minimum Description Length

(MDL) principle which suggests that a good model of data is one which can be described

using the minimum number of bits (see e.g. [5]). We now discuss the relation between

these two approaches, using the game theoretic results above.

The Kraft-McMillan theorem states that any code for an alphabet {x1, . . . xn} with

codeword lengths of {l1, . . . ln} is a uniquely decodable binary prefix code if and only

if
∑

i 2
−li ≤ 1. In the previous section we posed the constraint

∑

y f(y|x) ≤ 1 over

the predictor functions. This suggests that − log f(y|x) may be interpreted as a code

length for the variable Y . Indeed, if we define ly ≡ -−log2f(y|x). then

∑

y

2−ly =
∑

y

2−'− log f(y|x)( ≤
∑

y

2log f(y|x) =
∑

y

f(y|x) ≤ 1 . (2.16)

Thus ly may be interpreted as the lengths of a (prefix) code for Y . The loss function

in the game of Proposition 1 satisfies

〈ly〉p̂(x,y) − 1 ≤ −〈log2 f(y|x)〉p̂(x,y) ≤ 〈ly〉p̂(x,y) . (2.17)

When |Y | is large (as in block coding) we expect the log2 f(y|x) to be large so the

difference of one becomes insignificant and −〈log2 f(y|x)〉p̂(x,y) ≈ 〈ly〉p̂(x,y).

Comparison of the result in Equation 2.17 with Proposition 1 implies that the loss

in the minimax game may be interpreted as the length of a code. We can now give a

description length interpretation of Proposition 1: For each value of x, describe a code

for Y such that its expected length is minimal in the worst case.

This proposition is indeed reminiscent of those proved for MDL. However, we do

not know of a similar result in the literature, for the current setting.

2.4 MinMI and Joint Typicality

The rationale for the MaxEnt principle, as given by Boltzmann, Jaynes and others, is

based on the fact that samples with atypical empirical histograms - hence with lower

empirical entropy - are exponentially (in the sample size) unlikely to occur. Thus we

can assert by a histogram counting argument that out of all histograms consistent with

observed expectation values, those with maximum entropy are the most likely to be

observed among all consistent histograms in the absence of any other knowledge.

When dealing with classification or regression problems, the issue is predictions of

Y from X, and it is the notion of joint typicality of the two sequences that replaces

the simple typicality and Asymptotic Equipartition Property (AEP) in the MaxEnt

case. Here we are asking for the most uncommitted distribution of x, given that we

know the marginal distribution of y, p(y), together with a set of empirical conditional
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expectations. For this case a similar histogram counting argument is supplied through

the notion of joint typicality, as stated e.g. in [27] page 359.

Let Y n = Y1, Y2, ..., Yn be drawn IID from p(y). Then for any sequence xn =

x1, x2, ..., xn, the probability that (xn, Y n) are jointly drawn IID from p(x, y) is 0
2−nI(X;Y ), via the standard AEP property. In other words, if we partition all the

possible empirical histograms of xn into equivalent classes according their (empirical)

mutual information with Y n, I(X; Y ), the relative volume of such a class is exponential

in its mutual information and proportional to 2−nI(X;Y ).

Without any other constraints the (overwhelmingly) largest joint-histogram of xn

and Y n is the one with I(X; Y ) = 0, i.e., independent X and Y . Otherwise, with addi-

tional empirical constraints on the joint distribution, the overwhelming large fraction

among the xn histograms is occupied by the one with the minimal empirical mutual

information. This is the distribution selected by our proposed MinMI procedure.

2.5 Generalization Bounds

The Minimum Information principle suggests a parsimonious description of the data,

and therefor one would expect it to have generalization capabilities. We discuss several

generalization related results below. To simplify the discussion, we focus on the binary

class case. Denote by p(x, y) the true distribution underlying the data. Also, denote

by e∗p the optimal Bayes error associated with p(x, y) (see Section 1.2.2), and by eMI

the generalization error when using fMI(y|x) for classification.

The Bayes error e∗p is the minimum classification error one could hope for, when

predicting Y from X under p(x, y). In Section 1.2.2 we quote a result bounding the

Bayes error via the mutual information [67]

e∗p ≤
1

2
(H(Y )− I[p(x, y)]) . (2.18)

In what follows we assume, as before, that the empirical constraints !a(y) and p̄(y)

correspond to their true values, i.e., p(x, y) ∈ Px|y

(

!φ(x),!a(y), p̄(y)
)

. Since p(x, y) ∈
Px|y

(

!φ(x),!a(y), p̄(y)
)

, its information must be larger than or equal to that of pMI(x, y),

and thus

e∗p ≤
1

2
(H(Y )− I[pMI(x, y)]) . (2.19)

We thus have a model free bound on the Bayes error of the unknown distribution

p(x, y). An obvious shortcoming of the above bound is that it does not relate to

the classification error under when using the classifier fMI(y|x) as the class predictor.

Denote this error by eMI . Then using Equation 2.15 with f(y|x) = fMI(y|x) we have

eMI ≤ −
∑

p(x, y)log2 fMI(y|x) . (2.20)
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But the special form of fMI(y|x) implies that we can replace expectation over p(x, y)

with expectation over pMI(x, y). We can then replace log2 fMI(y|x) with log2 pMI(y|x),

since pMI(y|x) = fMI(y|x) when pMI(x) > 0. Thus

−
∑

p(x, y)log2 fMI(y|x) = −
∑

pMI(x, y)log2 fMI(y|x) = −
∑

pMI(x, y)log2 pMI(y|x) .

The right hand side is the conditional entropy H[pMI(y|x)], which implies the fol-

lowing bound

Proposition 2 The generalization error of the classifier based on fMI(y|x) satisfies

eMI ≤ H(Y )− I[pMI(x, y)] . (2.21)

Note that the bound on the optimal Bayes error of the true distribution is tighter

than the above bound by a factor of 2. It will be interesting to see whether these

bounds can be improved.

2.6 Relation to Other Methods

The current section studies the relations between MinMI and other methods in the

literature. We will be interested in two aspects of MinMI. The first is that it calculates

a lower bound on the information in a system, where the bound is given by Imin. The

other is that the function fMI(y|x) can be used to predict Y from X. Below we present

different approaches to these two tasks, and also discuss the relation to rate distortion

theory.

2.6.1 Information Estimation

The information theoretic literature in neuroscience describes several approaches to

calculating mutual information. All suggest ways of handling the inherent small sample

problem encountered in experimental data. To stress that this is always a problem,

consider a recording of 100ms from a single cell. Assuming a single spike can be fired

at most in each millisecond, the possible set of responses has 2100 elements. Again it

is impractical to estimate response probabilities over this space. Thus every method

which tackles the information estimation problem must consider this difficulty.

The Data Processing Inequality

A very common approach to the problem mentioned above is to consider not the entire

response space X but rather some function of it f(X). For example one can characterize

a 100ms spike train not by its spike firing times, but rather by the total number of

spikes that were fired (i.e., the spike count). There are two advantages to this approach.

The first is that the distribution p(f(x), y) is much more practical to estimate, since

|f(X)| (i.e., the number of different values f(x) can take) is often considerably less

25



than |X|. The second is that f(x) is often some physiologically meaningful property of

the response (e.g. spike count), so that the question “What is the information in f(X)

about Y ?” is meaningful on its own.

There still remains the question of how I[p(f(x), y)] is related to I[p(x, y)]. It would

seem like a problem if the former may be larger than the latter. However, as intuitively

expected, this is not the case. The theorem which guarantees this is known as the data

processing inequality (see [27], page 32) which states that I[p(f(x), y)] ≤ I[p(x, y)] with

equality if and only if X → f(X) → Y forms a Markov chain.

We would now like to claim that the above approach constitutes a specific example

of the MinMI principle. The data processing approach assumes that we can estimate

the distribution p(f(x), y). This is equivalent to having access to the expected values

of the functions φk(x) = δf(x),k, since 〈φk(x)〉p(x|y) = p(f(x) = k|y). The following

proposition states that the minimum information subject to constraints on the expected

values of φk(x) is in fact that calculated via the data processing inequality.

Proposition 3 Imin[!φ(x), p(f(x)|y), p̄(y)] = I[p(f(x), y)]

Proof: We prove the claim by explicitly defining the distribution q(x, y) which mini-

mizes the information, and showing that its information is equal to that of p(f(x), y).

Denote by nk the number of value of x such that f(x) = k. Now consider the con-

ditional distribution q(x|y) ≡ p(f(x)|y)
nf(x)

, and the joint distribution q(x, y) ≡ q(x|y)p̄(y).

Note that q(x) =
∑

y p̄(y)p(f(x)|y)
nf(x)

= p(f(x))
nf(x)

It is easy to see that q(x, y) ∈ P
(

!φ(x), p(f(x)|y), p̄(y)
)

, i.e., it has the desired ex-

pected values of !φ(x), and is thus in the set we are minimizing over. Next, observe that

the information I[q(x, y)] is equal to I[p(f(x), y)] since

I[q(x, y)] =
∑

y

p̄(y)
∑

x

q(x|y) log
q(x|y)

q(x)
=
∑

y

p̄(y)
∑

k

nk
p(f(x) = k|y)

nk
log

p(f(x) = k|y)

p(f(x) = k)

=
∑

y

p̄(y)
∑

k

p(f(x) = k|y) log
p(f(x) = k|y)

p(f(x) = k)
= I[p(f(x), y)] .

Finally, the data processing inequality guarantees that I[p(f(x), y)] ≤ I[r(x, y)] for any

distribution r(x, y) ∈ P
(

!φ(x), p(f(x)|y), p̄(y))
)

, and thus

I[p(f(x), y)] ≤ Imin[!φ(x), p(f(x)|y), p̄(y)] . (2.22)

Since we have found a distribution in P
(

!φ(x), p(f(x)|y), p̄(y)
)

where this is an equality,

it must be that I[p(f(x), y)] = Imin[!φ(x), p(f(x)|y), p̄(y)].

We can thus conclude that use of the data processing inequality can be understood

as minimizing information subject to knowledge of the quantized distribution p(f(x)|y).
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Information via Classification

Mutual information is closely related to prediction error as described in Section 1.2.2.

It thus seems natural that an estimate of prediction error should lead to an estimate

of the mutual information. Indeed, assume one has access to some prediction function

ŷ = f(x). Then, using the data processing inequality described above, we can deduce

that I(Ŷ ; Y ) ≤ I(X; Y ). The distribution p(ŷ, y) is simply the error matrix of the

classifier f(x), where the element p(ŷ|y) is the probability that the classifier would

predict class ŷ given that the real class is y. This classification approach is used

in a recent work by [95] and in [116], among others. While these methods may be

efficient in estimating the true value of the information, it is not clear what property

(e.g. statistical interaction order) of the stimulus-response statistics generates this

information. MinMI on the other hand, provides an estimate of the information that is

directly related to some given statistical property. Note also that since the classification

approach is an instance of the data processing inequality, it is related to the MinMI

procedure, as described in the section above.

Maximum Entropy and Other Approaches

An approach which is closer in spirit to ours appears in [122, 90]. As in the current

work, these consider the case when partial measurements are given (e.g. first or second

order marginals) and consider models of the data which fit those. The approach they

take is that of Maximum Entropy, as described in Section 1.3.1. Namely, they consider

the distribution over the entire response space which maximizes entropy. The entropy in

this distribution is taken as a measure of the correlation strength in the given statistics.

The above two approaches differ from ours in that they do not consider mutual

information directly, but rather only properties (e.g. entropy) of the response itself.

They can thus not be used directly to obtain a bound on information.

In [21], the information in a binary event was addressed. The authors introduced

a method for calculating the information content of events such as single spikes, pairs

of spikes etc. Their approach differs from ours in that the response is characterized by

the event alone, whereas MinMI considers distributions over the entire response space.

It will be interesting to further study the relations between these two approaches.

2.6.2 Rate Distortion Theory

In contradistinction with other information theoretic methods in neuroscience, MinMI

does not aim to estimate the underlying distribution directly, but rather uses the dis-

tribution as a variable to be optimized over. This in fact is the mathematical structure

of the central coding theorems in information theory [28], where information is either

minimized (as in the Rate Distortion theorem) or maximized (as in the Channel Ca-

pacity theorem) under some constraints on the joint distribution p(x, y). Our approach
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is most closely related to Rate Distortion Theory (RDT) (see Section 1.2.1) which sets

the achievable limits on “lossy” compression, i.e., compression which results in some

distortion of the original signal. The RDT compression bound is obtained by min-

imizing information with respect for a fixed p(y), and a constraint on the expected

distortion. In MinMI, we also fix p(y) but introduce additional constraints on p(x|y)

via its expected values. This can be understood as searching for a distribution p(x|y)

as in RDT, but with the single distortion constraint replaced by multiple constraints

on expected values of several functions.

2.6.3 Classification Algorithms

As seen previously, MinMI provides a model for fMI(y|x) which can be used as a class

predictor. The literature on building classification algorithms is vast and will not be

covered here. The algorithms closest to ours are those which build some probabilistic

model p(y|x) of the data, which is then used as a predictor. It is customary to divide

such methods into two classes: Generative and Discriminative. Generative methods

approximate the joint distribution p(x, y) and use Bayes rule to obtain p(y|x). Often

p(y) is assumed to be known and the class conditional distributions p(x|y) are estimated

separately. On the other hand, Discriminative models approximate p(y|x) directly. The

latter have the clear advantage of solving the classification problem directly. In what

follows, we show how our approach is related to both these schemes.

Maximum Entropy of the Joint Distribution

The joint entropy of X and Y is related to the mutual information via

I(X; Y ) = H(X) + H(Y )−H(X, Y ) . (2.23)

Thus, if both marginals are assumed to be known, the problems of Maximum Entropy

and Minimum Mutual Information coincide. The joint distribution which optimizes

the above problem has the following form

pME(x, y) =
1

Z
e
!φ(x)·!ψ(y)+A(x)+B(y) . (2.24)

where A(x), B(y) are free parameters which are adjusted so that pME(x, y) has the

desired marginals over X and Y .

The resulting conditional model is then

pME(y|x) =
1

Zx
e
!φ(x)·!ψ(y)+A(x)+B(y) . (2.25)

When the marginal p(x) is not known, but p(y) is, maximizing the joint entropy

is equivalent to maximizing H(X|Y ), which is equivalent to maximizing H(X|Y = y)

for each value of y independently. Note that under this approach, changing the values
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of !a(y) for a given value of y will not change p(x|y) for other values of y. This does

not seem to be a desirable property, as it does not consider the class structure of the

problem. MinMI, on the other hand, considers all values of !a(y) simultaneously and

therefore does not have the property mentioned above. One example of maximizing

joint entropy is the Naive Bayes model which results from maximizing H(X|Y ) subject

to a constraint on conditional singleton marginals, and the class marginals [97].

Conditional Random Fields and Logistic Regression

Conditional Random Fields (CRF) are models of the conditional distribution [79]

pλ(y|x) =
1

Zλ(x)
e
∑d

k=1 λkfk(x,y) , (2.26)

where Zλ(x) is a partition function dependent on x. In CRFs, both Y and X are

typically multivariate. When Y is a single categorical variable, CRFs become the

standard logistic regression model [64].

The d functions fk(x, y) are assumed to be known in advance, or are chosen from

some large set of possible functions. This becomes similar to our setting if one chooses

functions

fi,yj (x, y) = δy,yjφi(x) . (2.27)

In fact, the MinMI formalism could be equally applied to general functions of X and

Y as in CRFs. We focus on functions of X for ease of presentation.
CRFs are commonly trained by choosing the parameters λi which maximize the

conditional maximum likelihood [79] given by

∑

x,y

p̄(x, y) log pλ(y|x) = −〈log Zλ(x)〉p̄(x) +
d

∑

k=1

λk〈fk〉p̄(x,y) ,

where p̄(x, y) is the empirical distribution.

This target function can be seen to depend on the empirical expected values of

fk but also on the empirical marginal p̄(x). This is of course true for all conditional

logistic regression models, and differentiates them from MinMI, which has access only

to the expected values of !φ(x). It thus seems logical that MinMI may outperform these

models for small sample sizes, where expected values are reliable, but p̄(x) is not. This

can indeed be seen in the experimental evaluation in Section 2.9.2.

2.7 MinMI Algorithms

In order to find the information minimizing distribution pMI(x|y), the optimization

problem in Equation 2.4 or its dual in Equation 2.12 need to be solved. This section

describes several algorithmic approaches to calculating pMI(x|y). When |X| is small
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enough to allow O(|X|) operations, exact algorithms can be used. For the large |X|
case we present an approximate algorithm, which uses the primal and dual problems

to obtain upper and lower bounds on Imin.

2.7.1 Solving the Primal Problem

The characterization of pMI(x|y) is similar to that of the Rate Distortion channel [27] or

the related Information Bottleneck distribution in [135]. There are iterative procedures

for finding the optimal distributions in these cases, although usually as a function of

the Lagrange multipliers (i.e., !ψ(y)) rather than of the value of the constraints. In

what follows we outline an algorithm which finds pMI(x|y) for any set of empirical

constraints.

The basic building block of the algorithm is the I-projection [30] described in Section

1.4. Recall that when we I-project a distribution q(x) on a set of expectation constraints

of a function !φ(x), the projection has the form

p∗(x) =
1

Zλ
q(x)e

!φ(x)·!λ . (2.28)

The similarity between the form of the projection in Equation 2.28 and the character-

ization of pMI(x|y) in Equation 2.6, implies that pMI(x|y) is an I-projection of pMI(x)

on the set Px(!φ(x),!a(y)) (see Equation 1.3). The fact that pMI(x) is dependent on

pMI(x|y) through marginalization implies an iterative algorithm where marginaliza-

tion and projection are performed. This procedure is described in Figure 4.1. It can be

shown to converge using the Pythagorean property of the I-projection. The convergence

proof is given in Appendix A.1.1.

The above algorithm cannot be implemented in a straightforward manner when |X|
is large, since it involves an explicit representation of pt(x). Section 2.7.3 addresses a

possible approach to this scenario.

2.7.2 Solving the Dual Problem

The dual problem as given in Equation 2.12 is a geometric program and as such can

be solved efficiently using interior point algorithms [26]. When |X| is too large to

allow O(|X|) operations, such algorithms are no longer practical. However, oracle

based algorithms such as the Ellipsoid algorithm or Cutting Plane Methods [59] are

still applicable. The above algorithms require an oracle which specifies if a given point

is feasible, and if not, specifies a constraint which it violates. For the constraints in

Equation 2.12 this amounts to finding the x maximizing the constrained function

xmax ≡ arg max
x

f(x)

f(x) ≡
∑

y

p̄(y)e
!φ(x)·!ψ(y)+γ(y) .
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Input: Set of functions "φ(x) and their class
conditional empirical means "a(y).

Output: The distribution pMI(x|y).

Initialization:

• Initialize p0(x) randomly.

Iterate:

• For all y set pt+1(x|y) to be the I-projection

of pt(x) on Px("φ(x),"a(y))

pt+1(x|y) = pt(x)e
"φ(x)·"ψt+1(y)+γt+1(y) .

(2.29)

• Set pt+1(x) =
∑

y pt+1(x|y)p̄(y)

• Halt on convergence.

Figure 2.3: An algorithm for solving the primal problem.

The point (γ(y), !ψ(y)) is then feasible if f(xmax) ≤ 1. Since f(x) may be interpreted as

an unnormalized distribution over x, finding xmax is equivalent to finding its maximum

probability assignment. This is known as the MAP problem in the AI literature. When

|X| is large, it typically cannot be solved exactly, but can be tackled using random

sampling techniques as in [106] 3.

2.7.3 An Approximate Primal Algorithm with Dual Bounds

Although the dual algorithm presented above may be applied to the large |X| case, we

have found it converges very slowly. In this section we present an approximation of the

primal algorithm which can be used in the large |X| case. To derive an approximate

algorithm for the large system case, we first note that after t iterations of the iterative

algorithm, the distribution pt(x) is a mixture of the form

pt(x) =

|S|t
∑

k=1

ck

Zk
e
!φ(x)·!ψk(y) , (2.30)

where every iteration increases the number of components by a factor of |S|. For the

approximate algorithm, we limit the number of elements in this mixture to some con-

stant c by clustering its components after each iteration using a K-means algorithm

3We found it useful to start with the maximum likelihood (ML) assignment as an initial guess,
followed by Gibbs sampling.
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[40] 4. The resulting mixture is represented using its mixing probabilities ck and pa-

rameters !ψk(y) (resulting in O(c) parameters). We denote the resulting approximate

distribution p̂t(x).

For the I(1) case (see Section 2.1.1) it is straightforward to calculate the I-projection

of p̂t(x) on the relevant constraints. Thus we can calculate the parameters at time t+1,

namely (!ψt+1(y), γt+1(y)), and the corresponding distribution at iteration t + 1

pt+1(x|y) = p̂t(x)e
!φ(x)·!ψt+1(y)+γt+1(y) ,

where the parameters are calculated to satisfy the expectation and normalization con-

straints.

For the higher order cases, such as I (2), the marginals of the mixture do not have

a closed form solution, and require approximate methods such as Monte Carlo [76]

or loopy belief propagation [147]. For the applications presented here, we used the

approximate algorithm only for the I (1) case.

To measure the progress of the algorithm, we would have liked to calculate I[pt+1(x, y)].

However, this is typically impractical for the large |X| case, since mixtures do not have

a closed form expression for information. The following proposition gives an easily

calculable upper bound on I[pt+1(x, y)]

Proposition 4 The information in the distribution at time t + 1 satisfies

I[pt+1(x, y)] ≤ 〈!ψt+1(y) · !a(y) + γt+1(y)〉p̄(y) . (2.31)

Proof:

I[pt+1(x, y)] =
∑

y

p̄(y)
∑

x

pt+1(x|y) log
pt+1(x|y)

pt+1(x)

=
∑

y

p̄(y)
∑

x

pt+1(x|y) log
p̂t(x)

pt+1(x)

+
∑

y

p̄(y)
∑

x

pt+1(x|y)
(

!φ(x) · !ψt+1(y) + γt+1(y)
)

=
∑

x

pt+1(x) log
p̂t(x)

pt+1(x)

+
∑

y

p̄(y)γt+1(y) +
∑

y

p̄(y)!ψt+1(y) ·
∑

x

pt+1(x|y)!φ(x)

= −DKL[pt+1(x)|p̂t(x)] + 〈!ψt+1(y) · !a(y) + γt+1(y)〉p̄(y)

≤ 〈!ψt+1(y) · !a(y) + γt+1(y)〉p̄(y) ,

where in the last two steps we used the fact that pt+1(x|y) satisfies the expectation

constraints and the non-negativity of the KL divergence.

4For the I(1) case, we cluster the vectors e
!ψ(xi,y) using an L2 norm based algorithm, where each

vector is weighted by ck.
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The proposition shows that we can bound I[pt+1(x, y)] using a simple function of the

current dual parameters. Although this bound may not be decreasing, we have found

that it does decrease in the general case, when c (the number of mixture components)

is large enough. Furthermore, as the algorithm converges DKL[pt+1(x)|p̂t(x)] will typ-

ically decrease, and thus a tighter bound will be obtained.

To obtain a lower bound on Imin we use the duality result. Since any dual feasible

point provides a lower bound on the optimal value, we use the current set of dual pa-

rameters (!ψt+1(y), γt+1(y)) (which are not necessarily feasible) to obtain a dual feasible

point.

In principle we could find the dual feasible point that is closest to our current

set of parameters in the Euclidean sense. An algorithm for projecting a point on an

intersection of constraints was introduced by Boyle and Dykstra [19]. However, it is

hard to apply it to the case where the number of constraints is large. We therefore

choose a less accurate approach described in Figure 2.5. We start with the current

set of parameters and perform alternating projections on the set of constraints. This

procedure is guaranteed to yield a feasible point [20] although possibly not the one

closest to the point we started from. When the initial point is feasible, the algorithm

will not change its value.

The projection algorithm involves checking if a point (γ(y), !ψ(y)) violates any of the

dual constraints. As mentioned in Section 2.7.2 there are methods which approximate

this check for the large |X| case. The other element of the projection algorithm is a

Euclidean projection on a set of points (!ψ(y), γ(y)) which satisfy

log
∑

y

p(y)e
!φ(x)·!ψ(y)+γ(y) ≤ 0 . (2.32)

Since this set is convex in (γ(y), !ψ(y)) and so is the Euclidean distance, we have a

simple convex problem with O(d × |Y |) parameters, which can be solved easily using

an interior point algorithm for example.

The iterations of the algorithm are repeated until the upper and lower bound are

sufficiently close (in the results reported here, we stop on a 1% difference). Figure 2.4

shows the bounds obtained by the algorithm, and illustrates their convergence to a

single value.

2.8 Extensions

The MinMI principle can be extended in several ways to accommodate different varia-

tions on the setup introduced above. We discuss two interesting extensions below.
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Figure 2.4: Lower and upper bounds on the minimum information obtained using the
algorithm of Section 2.7.3. Results are for the I (1) case. We used a binary Y and
X = (X1, . . . , X5). The distributions p(xi|y) were generated randomly.

2.8.1 Uncertainty in Expectation Values

In the presentation of MinMI, we assumed that the expected values !a(y) were known

exactly. In other words, the true underlying distribution was assumed to have these

expected values for !φ(x). Since these expected values are often calculated from finite

samples, they cannot be expected to be exact, but rather to converge to their true

values for large enough samples. This concentration around the true means may be

quantified using measure concentration theorems such as Chernoff or Markov [36]. This

will result in statements such as: “The expected value of !φ(x) is expected to be in the

range !a(y) ± !β(y) at a certainty of 0.95” 5.

In this new setup, we replace the exact knowledge of !a(y) with some range of

possible values. The straightforward extension of MinMI to this case is to consider all

distributions which have expected values lying in the given range, and returning the

one with minimum information. Define

Px|y

(

!φ(x),!a(y), !β(y), p̄(y)
)

≡
{

p̂(x, y) :
!a(y)− !β(y) ≤ 〈!φ(x)〉p̂(x|y) ≤ !a(y) + !β(y) ∀y

p̂(y) = p̄(y)

}

.

(2.33)

Then the minimizing information is defined via

Imin ≡ min
p̂(x,y)∈Px|y

(

!φ(x),!a(y),!β(y),p̄(y)
)

I[p̂(x, y)] . (2.34)

5There is still a probability of 0.05 that the values are outside this range. But this level of certainty
may be decreased arbitrarily, of course at the cost of increasing the range of uncertainty.
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Input: Set of dual parameters ("ψ0(y), γ0(y)) (possibly
infeasible).

Output: A dual feasible point.

Iterate:

• Given current dual parameters ("ψt(y), γt(y)),
check for a violated constraint, i.e., look for a

value of x such log
∑

y p̄(y)e
"φ(x)·"ψt(y)+γt(y) > 0.

If non exists, current point is feasible, return it.

• Set ("ψt+1(y), γt+1(y)) to be the point in the set

log
∑

y p̄(y)e
"φ(x)·"ψ(y)+γ(y) ≤ 0 which minimizes

the Euclidean distance to ("ψt(y), γt(y)).

Figure 2.5: An algorithm for obtaining dual feasible points from a possibly non-feasible
dual set of parameters.

It is easy to see that the constraints on p̂(x, y) are still linear, and therefore the problem

is still convex. To obtain the form of the minimizing distribution we follow a procedure

similar to [41]. In principle one needs two sets of Lagrange multipliers !ψ(y)+, !ψ(y)− ≥
0 to enforce the two inequality constraints on expectations. However, as shown in

Appendix A.1.3, these turn out to be equivalent to one set of multipliers !ψ(y) as in the

original problem. Thus, the information minimization problem in Equation 2.34 turns

out to have the exponential form given in Equation 2.6. Of course, the expectation

values are different and thus will result in a different solution for the values of !ψ(y).

An interesting difference is in the dual problem for the current case, which turns

out to be

Maximize 〈!ψ(y) · !a(y) + γ(y)− |!ψ(y)| · !β(y)〉p̄(y)

Subject to log
∑

y p̄(y)e
!φ(x)·!ψ(y)+γ(y) ≤ 0 ∀x

. (2.35)

The only difference between this and the original dual in Equation 2.12 is the

addition of the L1 regularization term |!ψ(y)| · !β(y).

The optimization algorithm in this case turns out to be identical to that of the

equality constraints, with one difference: I-projection is on the set Px(!φ(x),!a, !β) in-

stead of Px(!φ(x),!a). Such a projection can be easily calculated, as described in Section

1.4.2.

An illustration of Imin values in the above case is shown in Figure 2.6. It can be

seen that, as expected, information drops off as the range of possible expectation values

increases.
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Figure 2.6: Minimum information value for uncertain expectation values, as a function
of the uncertainty range β(y), which in this case is uniform for all y values. In the
simulation we calculated I(1) for X1, . . . , X10 binary variables with random expectation
values. As expected, information drops as β increases since the constraint set increases.
Eventually the information drops to zero, since the constraint set includes distributions
where p(x|y) is identical for all y values, yielding zero information at the minimum.

2.8.2 Entropy Regularization

The MinMI algorithm yields a lower bound on the information in the underlying dis-

tribution. However, as seen in Section 2.2 the information minimizing distribution is

highly sparse, and it is not likely to be the true underlying distribution. There are two

possible ways around this situation. One is to add more constraints (i.e., increase the

dimensionality of !φ(x) so that the constrained set of distribution is smaller). The other

is to enforce smoothness constraints on the distribution. Since smooth distributions

are closely related to high entropy distributions, we may consider the following target

function to be minimized subject to expectation constraints

f(λ) ≡ I(X; Y )− λH(X) = (1− λ)H(X)−H(X|Y ) , (2.36)

where λ ≥ 0 is some tradeoff parameter. Note that the minimum here will no longer

yield a bound on the true information, but should yield a smoother distribution. It

also has the advantage of creating a continuous parameterization of the range between

minimum information (λ = 0) and maximum entropy (λ = 1).

The above function is still convex (since I(X; Y ) is convex and H(X) is concave),

and thus the resulting problem may be solved via convex optimization as long as |X|
is not too large. Currently, we do not have an approximate algorithm in this case for

large |X|.
Using Lagrange multipliers, we may also obtain the following characterization of

the minimizing distribution: p(x|y) = p(x)1−λe
!φ(x)·!ψ(y)+γ(y). The role of the parameter

λ can be seen to be an exponential weighting of the prior p(x). This weighting is
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Figure 2.7: Application of MinMI to the first and second moment problem. Here
!φ(x) = [x, x2], !a(y1) = [−0.5, 1.75], !a(y2) = [0.5, 1.25] and p̄(y) is uniform. The x range
was 500 equally spaced points between −5 and 5. a. The conditional distributions
pMI(x|y1) (red dashed line), pMI(x|y2) (blue solid line) . b. The MaxEnt solution for
the given problem.

similar to that seen in the Chernoff bound (see [27] page 312). Algorithmically, the

regularized problem seems more complex than MinMI, and we do not currently have

approximate algorithms for it. Since it is a convex problem one can always use standard

convex optimization algorithms [18] when O(|X|) resources are available. It will be

interesting to explore this problem further, and when algorithms are available, compare

its performance to that of MaxEnt and MinMI.

2.9 Applications

2.9.1 Moment Matching

To demonstrate some properties of the MinMI solution, we applied it to the well known

problem of constraints on the first and second moments of a distribution. The MaxEnt

solution to the above problem would be a Gaussian model of p(x|y) with the appropriate

mean and variance. The MinMI solution to this problem is shown in Figure 2.7, and

is quite different from a Gaussian 6. The two distributions pMI(x|y1), pMI(x|y2) are

structured to obey the moment constraints imposed by !a(y) while keeping as little

information as possible about the identity of Y . It can be seen that the solutions

concentrate most of their joint mass around two points, while trying to maximize their

overlap, thereby reducing information content.

6The exact solution may be closer to two delta functions, but due to numerical precision issues the
algorithm converges to the distribution shown here.
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2.9.2 Classification Experiments

We tested the MinMI classification scheme on 12 datasets from the UCI repository [94].

Only the discrete features in each database were considered. The algorithm of Section

2.7.3 was used to calculate the fMI(y|x) prediction function. We have found empirically

that early stopping of the algorithm after 15 iterations improves classification results.

A similar phenomenon is seen in MaxEnt implementations [98], where early stopping

seems to prevent over fitting the training data. The features used as input to the

MinMI algorithm were the singleton marginal distributions of each of the features, as

described in Section 2.1.1. Classification performance was compared to that of Naive

Bayes 7 and the corresponding first order conditional Log-Linear model 8. The Naive

Bayes model is obtained from the empirical singleton marginals p̄(xi|y) simply by

p(y|x1, . . . , xn) =
p̄(y)

Zx

∏

i

p̄(xi|y) . (2.37)

The log linear model is given by

p(y|x1, . . . , xn) =
1

Zx
e
∑

i ψ(xi,y) , (2.38)

where the function ψ is found by maximizing conditional likelihood. Recall also that

the MinMI prediction function is given by (see Equation 2.11)

fMI(y|x1, . . . , xn) = p̄(y)e
∑

i ψ(xi,y) . (2.39)

All models thus have a similar parametric shape, but their parameters are obtained

via different optimization schemes and principles. A comparison of Naive Bayes and

Logistic Regression was also carried out in [97].

The results for all the datasets are shown in Figure 2.8. Both MinMI and Naive

Bayes can be seen to outperform the Log-Linear model on small sample sizes as de-

scribed previously in [97] for Naive Bayes. This result is intuitively plausible (and is

also justified rigorously in [97]), since both MinMI and Naive Bayes use only first order

statistics, which can be reliably estimated from small samples, whereas the Log-Linear

model uses the raw data (see Section 2.6.3). MinMI outperforms Naive Bayes on three

databases 9, and is outperformed by it on four 10. On the other databases, performance

is similar. In databases where MinMI does not perform as well as Naive Bayes, it is

likely that the conditional independence assumption is valid, and therefore Naive Bayes

7Marginals used for Naive Bayes and MinMI were estimated using Laplace smoothing with a pseudo-
count of 1, as in [97].

8In the linearly separable case the conditional model solution is not unique. As in [97] we ran-
domly sample separating hyperplanes, by carrying out a random walk in version space. The reported
performance is the average generalization error over the sampled hyperplanes.

9voting-records,credit and hypo
10heart-disease,lymphography, promoters and splice
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Figure 2.8: Classification error as a function of the number of samples used in train-
ing, for several UCI datasets. MinMI is blue line and squares, Naive Bayes is red
line and circles, Log-Linear model is green line and diamonds. For each sample size,
1000 random splits of the data were performed. The samples sizes in the plots are
20, 30, . . . , 100. The marker sizes are larger than the standard errors.

may use it to average out noise in the features, whereas MinMI will not. On the other

hand, MinMI is likely to outperform Naive Bayes in databases where there is a large

set of correlated features, and the conditional independence assumption fails.

In the current experiments we used only singleton statistics. It would be interesting

to explore the use of higher order statistics in classification. However, using all feature

combinations is likely to result in over-fitting, so the method should be augmented with

a feature selection mechanism, as in [43].

2.10 Discussion

We introduced the principle of minimum mutual information (MinMI) as a fundamen-

tal method for inferring a joint distribution in the presence of empirical conditional

expectations. This principle replaces Maximum Entropy for such cases and in general

is not equivalent to a maximum likelihood estimation of any parametric model.

It is interesting to note that the MinMI solution for a multivariate X does not sat-

isfy the conditional independence properties which the corresponding graphical model

possesses. This is clear already when singleton marginals are used as constraints. The

resulting pMI(x|y) may in fact contain elaborate dependencies between the variables.
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To see why this comes about consider the extreme case where all the conditional single-

ton marginals are constrained to be equal. It is easy to see that under pMI(x|y) the vari-

ables X1, . . . , XN will be completely dependent (i.e., pMI(x1, . . . , xN |y) = pMI(x1|y)).

It is important to stress that pMI(x) is not argued to be a model of the true under-

lying distribution. Rather, as the game theoretic analysis shows, it represents a worst

case scenario with respect to prediction.

Although we did not address the case of continuous X domain directly, our formal-

ism applies there as well. Consider a vector of continuous variables, with constraints

on the means and covariances of subsets of its variables. The MinMI distribution in

this case will be related to the corresponding Gaussian Markov field.

Another natural extension of the current work is feature induction [34]. As will be

shown in the Chapter 4, one can look for features !φ(x) which maximize the minimum

mutual information calculated in the current chapter, assuming both marginals are

known. The extension to unknown marginals should provide a powerful tool for feature

induction over variables sets, and will be an interesting subject for future research.
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Chapter 3

Application of MinMI to

Studying the Neural Code

The previous chapter presented the MinMI formalism as a method for calculating

information given partial measurements of a system. In the current chapter we illustrate

how this concept may be used to study questions related to neural coding under various

scenarios. The structure of the neural code has been extensively studied over the last

50 years, with information theory playing an important methodological and conceptual

role [116]. The first step in an information theoretic study is to calculate mutual

information between a behavioral variable (e.g., movement [65], visual stimulus [14]

etc) and some property of the neural response (e.g., spike counts of single neurons [49],

joint statistics of pairs of neurons [113] and precise spike times [31] among others).

Significant information values indicate that the given neural property may be used

to predict the behavioral variable, and is thus likely to be physiologically involved in

generating it (in the case of movement) or processing it (in case of external stimuli).

One caveat in the above paradigm is that even if a given neural response carries

information about behavior, it is not clear exactly which property of the neural response

is informative. To illustrate this, suppose one measures the information between 100

neurons X1, . . . , X100 and a stimulus Y and finds it is relatively high [95]. It is still not

clear which properties of the response convey the information: single neuron statistics,

pairwise statistics, or precise firing patterns. To approach this difficulty, numerous

information theoretic measures have been proposed to quantify information in higher

order interactions [121, 100, 95, 23]. We discuss those in Section 3.1 and illustrate their

relation to the MinMI principle.

The MinMI formalism allows several important extensions of information measure-

ment in neural systems, which we demonstrate in this chapter. One advantage of our

method is that it allows information estimation in scenarios where limited statistics

are given. For example it allows one to ask questions about information in a large

population of neurons even if no joint statistics can be estimated. Another advantage
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is that because of its definition, the minimum information quantifies only the infor-

mation available in the given statistics and does not assume any unnecessary coding

mechanisms (e.g., independent coding by different neurons).

In what follows, we apply MinMI to several properties of neural codes, showing how

it can be used to reveal properties which are not accessible by standard methods.

3.1 Synergy and Redundancy Measures

A central issue in neural coding is the importance of higher order statistics, and their

contribution with respect to lower order statistics. A possible way of quantifying this

contribution is to calculate the difference between higher order information and that in

some model based on lower order statistics. A positive difference indicates synergy: in-

formation in higher order interactions, while a negative difference indicates redundancy.

One so called synergy/redundancy measure has been suggested in [49, 121]

SynSum(X1, . . . , XN , Y ) = I(X1, . . . , XN ; Y )−
∑

i

I(Xi; Y ) , (3.1)

which measures the difference between full information and the sum of individual in-

formations. One shortcoming of the above measure is that the second term becomes

dominant as N grows (the first is always bounded by H(Y )). Thus, large populations

will always appear redundant.

Another possible measure of synergy compares the full information to the informa-

tion in the case where neurons are conditionally independent (CI) given the stimulus

SynCI(X1, . . . , XN , Y ) = I(X1, . . . , XN ; Y )− ICI(X1, . . . , XN ; Y ) , (3.2)

where ICI is the information under the distribution pCI(x|y) ≡
∏n

i=1 p(xi|y) (this

measure was denoted by ∆Inoise in [121]). Note that this measure does not necessarily

grow with N and will equal zero when the neurons are CI. Another related measure

based on the CI case, but not directly using information, was introduced in [100].

Both SynSum and SynCI compare the full information to that in first order statis-

tics. Moreover, the typical implementation of these measures is for the two neuron case,

where the only statistics less than full order are first order.

The generalization of synergy measures for higher order statistics, and N > 2

populations poses an important challenge. The SynSum measure has been generalized

to this scenario in [122], where it was decomposed into elements measuring synergy

in kth order correlations. The authors used the MaxEnt approach to estimate the

expected entropy given only kth order correlations.

MinMI offers an elegant approach for generalizing the SynCI measure to higher

orders. We first illustrate this for second order statistics in an N > 2 population. The

I(2) measure quantifies the information available in a population given only its (first
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and) second order statistics. To turn it into a synergy measure, we need to subtract the

expected second order information in the CI model. If the neurons are CI, the pairwise

statistics are expected to be p(xi, xj |y) = p(xi|y)p(xj |y). We denote the minimum

information in these pairwise statistics by I (2)
CI . A natural measure of synergy is then

the difference

SynI(2)(X1, . . . , XN , Y ) = I(2) − I(2)
CI . (3.3)

When the true population is conditionally independent, SynI (2) = 0, as expected.

Furthermore, when N = 2, we have that SynI (2) = SynCI. Thus MinMI generalizes

SynCI to the study of pairwise interactions in large populations.

The SynI(2) measure may be generalized to studying kth order correlations in large

populations. The conditionally independent distribution in this case needs to be re-

placed with its kth order equivalent. A possible candidate is the maximum entropy

distribution for (k − 1)th constraints [90, 122], which yields the CI distribution for

k = 2.

3.2 Methods

The applications discussed in this chapter include both simulated and experimental

data. In all cases, we calculate the I (1), I(2) information measures and show how they

can be used to study coding mechanisms. The current section describes the experimen-

tal data briefly, and discusses some methodological issues in calculating the information

quantities.

3.2.1 The Experimental Paradigm

The data presented here was obtained in experiments studying motor control in mon-

keys. The experiments were conducted by Ron Paz in the laboratory of Prof. Vaadia.

Monkeys were trained to perform unimanual movements by operating two X-Y manip-

ulanda. The movements were standard center-out reaching tasks with eight movement

directions [51], and a delayed GO signal 1. For comprehensive experimental details, see

[107].

In each trial, the monkey was first presented with a signal indicating which hand

will perform the movement (Laterality Cue). After a hold period (1000 − 1500 ms),

a signal (Target Onset) was given indicating the direction to move to (one of eight).

This was followed by an additional hold period (1000 − 1500 ms). During the hold

periods, the monkey was instructed to hold the cursor in a circle located at the center

of the screen. After the second hold period, the circle disappeared (Go Signal), and

1The complete behavioral paradigm included other components such as learning visuomotor trans-
formations, but these are not relevant for our analysis
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Figure 3.1: The center out movement task performed by behaving monkeys. The
monkey is initially presented with a laterality cue, followed by the target location, and
a go signal. These three signals are separated by hold periods of 1− 1.5 seconds.

the monkey was instructed to move to the specified target. The trial flow is illustrated

in Figure 3.1.

During task performance, single-unit activity was recorded extra-cellularly from

the primary and supplementary motor areas of the cortex. The data presented here is

taken from 827 neurons in the primary motor cortex (MI). The number of successful

repetitions per movement direction varied in the range 5− 20, resulting in 40− 160 for

each laterality cue.

3.2.2 Quantization and Bias Correction

Spike trains were represented using the total number of spikes (i.e., spike count) in

windows of different sizes (depending on the application), with a maximum size of

600ms. Due to the low number of repetitions, we could not estimate the response

distribution reliably from the raw spike count. To clarify why, consider for example

a case where the spike counts vary in the range 0 − 20 spikes, and the number of

repetitions per y is 20. Then each spike count will be appear one time on average,

precluding reliable estimate of its appearance probability.

To overcome this difficulty, we chose to quantize the spike counts into a small

number of bins. There are several possible binning strategies, for example uniform

(i.e., 1, 2, 3, 4, . . . , 19, 20), equal number of samples per bin, log scale etc. We chose

a different, greedy scheme, where one searches for the binning which maximizes the

mutual information. Because the number of possible binning schemes is exponential in

the maximum spike count, we used a suboptimal search algorithm which unified bins

that increased information. In calculating information we applied the Panzeri-Treves

bias correction term [105] (see also [103] for a comprehensive survey of bias estimation.).

This partly compensated for the increase of information with the number of bins. A

similar quantization scheme was recently used in [96].

The above quantization algorithm was used to determine the bin sizes to be used

in calculating the observed marginals, and the associated minimum information val-

ues. As in any mutual information estimation from finite samples, the minimum in-
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formation statistic has a positive bias 2. To overcome this bias, we used a bootstrap

scheme: the entire information calculation (including quantization) was repeated N

times, where each repetition was on a new sample which was generated by drawing

trials uniformly with repetitions from the original set of trials. This resulted in N

bootstrapped information values I(1), . . . , I(N). An estimate of the bias was then

given by I(0)− 1
N

∑N
k=1 I(k) where I(0) is the information calculated from the original

sample. This resulted in an effective removal of the bias term as verified on simulated

data.

All information values in this section are calculated in bits.

3.3 Results

Neural population codes may be studied at several levels, corresponding to different

coding strategies. The basic level is the single neuron code. Next is the relation be-

tween the codes of different single neurons. Higher order interactions between neurons

constitute yet another level. Finally, temporal structure may also be used to enhance

coding efficiency. In the applications below, we show how the MinMI principle may be

applied to the study of various neural coding schemes and quantify the level to which

different populations use these schemes.

3.3.1 Two Binary Neurons and a Binary Stimulus

We begin with an illustration of MinMI calculation for the case of two artificial binary

neurons X1, X2 so that each neuron has two possible responses. The stimulus Y is

also taken to be binary. We assume that the two neurons were measured separately,

so that only p(x1|y), p(x2|y), p(y) are known and p(x1, x2|y) is not known. We are

interested in the minimum information available in a distribution p̂(x1, x2, y) satisfying

the first order constraints p̂(xi|y) = p(xi|y), i = 1, 2. Note that any such distribution is

completely defined by two numbers p̂(xi = 1|y), since for each value of S, p̂(x1, x2|y) has

four free parameters and has to satisfy three constraints (two first order constraints

and one normalization constraint,
∑

x1,x2
p̂(x1, x2|y) = 1). In this specific case, the

space of possible distributions p̂(x, y) can be visualized in two dimensions, as shown in

Figure 3.2. The figure shows the value of the MI for each possible distribution in p̂(x, y)

satisfying the constraints above. This is done for two different pairs of neurons, with

different response distributions. The location of the MinMI distribution pMI(x1, x2|y) is

also shown. A different distribution p̂(x, y), which yields more information, is the one in

which the neurons are conditionally independent (CI) given the stimulus: p̂(x1, x2|y) =

p̂(x1|y)p̂(x2|y). In such a case, averaging over the responses of the neurons will reduce

2To see why, consider a distribution with zero mutual information. Since information is non-negative,
any estimation from finite samples will generate a non-negative value, and therefore the mean estimate
will be strictly positive, yielding a biased estimate.
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(a)
y p(x1 = 1) p(x2 = 1)
1 0.2 0.2
2 0.6 0.6

(b)
y [0,0] [0,1] [1,0] [1,1]
1 0.8 0 0 0.2
2 0.4 0 0 0.6

(d)
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Figure 3.2: Illustration of I(1) for two binary neurons and a binary stimulus (p(s) = 0.5).
Only the first order statistics of each neuron are assumed to be known. The results
for two different neuronal responses are shown. Panel (a) gives the probability of each
neuron firing for each of the two stimuli. Panel (b) shows the minimum information
distribution pMI(x|y) for the statistics in (a). Panel (c) shows the information in
all distributions satisfying with the given first order statistics. The yellow dot shows
the location of the MinMI distribution in this information plane, and the white cross
shows the CI distribution. The X and Y axes measure the probability of both neurons
firing for stimuli s = 1, 2. Note that these two parameters specify the entire response
distribution. Panels (d-f) follow the same conventions as panels (a-c).

noise, and thus yield more information about Y than in the MinMI distribution. The

CI distribution is also shown (Figure 3.2c,f) and always yields more information than

the MinMI one.

In the first example (Figure 3.2a-c) the two neurons have the same response dis-

tributions p(x1|y) = p(x2|y). The MinMI distribution shown in the figure is the one

in which the neurons are completely correlated, and thus lies on the boundary of the

space of possible distributions. It is intuitively clear why this is the minimum: the two

neurons are equivalent to a single neuron.

In contrast, when the two neurons differ in their response distributions (Figure 3.2d-

f), they cannot be completely correlated. Thus, the information minimizing distribution

will not lie on the boundary as in the previous example (compare Figure 3.2c with

Figure 3.2f).
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3.3.2 Coding Redundancy in Single Neurons

We next illustrate the use of MinMI in the study of single neuron codes and their

combination in a population. An important question is this context is whether all

neurons respond to similar stimulus properties, or do they provide complementary

information. As an example, consider a population of neurons where each neuron is

tuned to some preferred direction (PD) in the stimulus (i.e., movement direction in

motor neurons, or orientation in visual neurons). The question now is how the PDs

themselves are distributed among the neurons. In one extreme, all neurons have the

same PD, while in the other extreme PDs are uniformly distributed among neurons.

It is intuitively clear that the second scenario is advantageous in terms of stimulus

coding. However, it is not clear how to quantify this intuition in terms of information,

especially when the joint distribution of the population cannot be estimated.

The MinMI principle provides a natural framework for tackling the above prob-

lem. Ideally, in studying information in populations we are interested in the quantity

I(X1, . . . , XN ; Y ). More specifically, we are interested in the contribution of single neu-

ron codes to this information. Our I (1) measure provides precisely that. To illustrate

how I(1) differentiates between different single neurons coding schemes, we simulate

data from three hypothetical neuronal populations, with different degrees of overlap

between single neuron codes 3. Figure 3.3 shows the code structure for these popula-

tions and the respective I(1) values. The results correspond to the intuition mentioned

above: low I(1) values correspond to populations with high overlap between single neu-

ron codes, and high values correspond to low overlap. Note that the MinMI calculation

is model-free, and thus does not use the concept of direction tuning or preferred direc-

tion. It can thus detect differences in population coding in considerably more complex

scenarios, which could be very hard to visualize.

Dependence on Population Size

One of the overwhelming properties of the brain the enormous number of neurons

comprising it (roughly 1010). It is intuitively clear that this setup carries significant

information processing potential. However, it is not always straightforward to analyt-

ically state how information depends on population size. Several works have studied

this dependence, both from a theoretical [120], and practical [140] viewpoint. It is thus

interesting to study how the MinMI measure grows with population size.

We applied I(1) calculation to the experimental data described in Section 3.2. In-

formation about movement direction was calculated for two behavioral epochs: Target

Onset and Go Signal. In both cases, we considered an epoch of 600 ms after the

behavioral signal, and calculated I (1) for populations of increasing size 4. Figure 3.4

3Parameters used in the tuning function are physiologically plausible, as verified on real data.
4In both cases we took only neurons that had significant mutual information when considered in
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shows that I(1) grows monotonously with population size, with a steeper increase for

smaller population sizes 5. Moreover, it is clearly seen that movement related activity

(after the Go Signal) is more informative than preparatory activity (after the Target

Onset) for all population sizes, although this becomes more apparent for larger pop-

ulations. This is not surprising since motor cortical neurons are typically less tuned

during preparatory activity (see e.g. [107] for results on the current data).

The shape of the information curve here is similar to results in [140, 120]. Note,

however that here, unlike in [120], no assumption is made about independence between

neurons, and the only source of information is the individual neuronal responses. It

is also interesting to note that under the conditional independence assumption, infor-

mation will typically saturate its maximum value [66] as population size grows. This

will occur since the system can eliminate all the noise in the responses by averaging.

The MinMI measure, on the other hand, does not have this property. For example in

the case where all neurons have identical responses, increasing population size will not

increase information (see Section 3.3.1). This is clearly an advantage for discriminating

between large populations. Considering the above observations, it is interesting to note

that the information during movement (Go Signal) nearly saturates its full value of 3

bits 6. This may be taken to indicate that the preferred directions of neurons are dis-

tributed in a manner which covers space efficiently, as in the rightmost panel in Figure

3.3.

3.3.3 Pairwise Coding in Populations

Second order statistics between neurons have been shown to play a part in neural

coding, in the sense that their joint activity provides more information about a stimulus

than their individual responses [65, 137]. Most research has been devoted to studying

pairs of neurons, mostly due to sampling problems (but see [95]). It is clear, however,

that if the second order statistics between all pairs in a population provide information

about the same property of the stimulus, this should result in less information than

if different pairs encode different stimulus properties. This situation is the pairwise

equivalent of the single neuron coding issue discussed in the previous section.

The information available from the grouped pairwise responses in a population

can be quantified using the I(2) measure. Figure 3.5 shows two toy populations, four

neurons each, with identical pairwise statistics and therefore identical synergy values:

the set of SynSum(Xi, Xj , Y ) (i, j ∈ {1, . . . , 4}) values is identical in both populations.

Furthermore, in this case SynSum = SynCI since I(Xi; Y ) = 0 for all neurons. In

isolation from the population. This resulted in 115 units for Target Onset, and 360 units for the Go
Signal.

5The values for higher population sizes may be slightly positively biased since bootstrapped values
sometimes reached the maximal values of 3 bits and thus the actual bias may be higher.

6For the Target Onset case, more neurons will be needed to determine the maximum information
value.
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I(1)=1.5−1.7 I(1)=2.1−2.4 I(1)=2.5

Figure 3.3: The information I(1) for different population coding schemes. We consider
three populations of eight neurons responding to eight stimuli. The stimuli correspond
to eight equally spaced directions on the circle (s = {0◦, 45◦, . . . , 315◦}). All neurons are
cosine tuned with PDs given in the polar plots (p(xi|y) = Poiss (xi|5 + 5 cos (y − θi)),
where Poiss(r|λ) is probability of count r under a Poisson distribution with rate λ ,
and θi is the PD of neuron i. Responses above 15 spikes were clipped to a value of 15).
Left panel shows overlapping tuning where all neurons have similar PDs (directions
were drawn uniformly in the range ±22.5◦). Middle panel shows tuning to random
directions. In the right panel, neurons are tuned to equally spaced directions. I (1)

values are given for each scenario (values for the overlapping and random tunings were
obtained by drawing PDs 1000 times and calculating a 95% confidence interval).
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Figure 3.4: The information I(1) for increasing population sizes. The figure shows I (1)

about movement direction as a function of population size for two behavioral epochs:
Target Onset (blue dotted line) and Go Signal (red solid line). Values were generated
by drawing random subsets of n neurons randomly, and calculating their I (1) values.
Fifty subsets were generated and the average information values are shown.
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Figure 3.5: Information in populations from pairwise statistics. We consider the re-
sponses of four toy neurons x1, . . . , x4 to four stimuli y = {1, . . . , 4} (p(y) = 0.25).
Neurons x1, x2 are conditionally independent from x3, x4. Panel (a) defines the re-
sponse distributions of two pairs of neurons. Note that the information in any single
neuron is zero. Panels (b) and (c) give the response of the four neurons under two
different scenarios by specifying the response of each pair. In both scenarios, pairwise
synergy values (SynSum and SynCI, which are equal in this case) are 0.7 for pairs
(x1, x2) and (x3, x4) and zero for the other four pairs. However, the SynI (2) values for
each distribution are different, as shown above panels (b) and (c).

one population, all synergistic coding provides information about the same property of

the stimulus, whereas in the other the pairwise codes are designed to provide disparate

information. The difference between these two populations is clearly seen in their I (2)

values. Thus the MinMI principle can be used to differentiate between populations

with different pairwise code designs.

3.3.4 Temporal Coding

Temporal response profiles of single neurons may transmit information about behav-

iorally relevant variables [101, 102]. Intuitively, one could argue that if different be-

havioral parameters induce different response profiles, as measured by a Peri-Event

Time Histogram (PETH, [108]), then the temporal response carries information about

the variable. Our MinMI formalism allows us to make this statement explicit and to

calculate the resulting information.

The response function of a neuron can be given by its response in a series of time

bins p(xt|y), t = 1 . . . T . A PETH is an example of such a profile where xt is a binary

variable, and one plots the rate function p(xt = 1|y) (usually scaled to spikes per

second). The responses p(xt|y) are merely a set of first order statistics (disregarding

correlations between bins) and thus we can calculate I (1) for these statistics, in order

to obtain a measure of information in a PETH.

Figure 3.6 illustrates the application of MinMI to temporal coding in recordings

from the primary motor cortex of behaving monkeys (see Section 3.2 for experimental
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Figure 3.6: Analysis of temporal coding using MinMI. Panel (a) shows the PETHs of
the response to the laterality signal (left hand - red, right hand - green), for a neuron
recorded in the primary motor cortex. The I (1) measure was significant for window
size 200 ms and below but not for 300 ms or 600 ms. Panel (b) shows the number of
neurons with significant I(1) (p < 0.05) as a function of the window size.

methods and data analysis). We consider the response to the binary laterality cue,

which instructs the monkey which hand to move. Figure 3.6 shows a PETH of a

neuron, where the spike count over a period of 600 ms is similar for both conditions.

However, the temporal profiles differ between the two conditions. To analyze this coding

using I(1) we partitioned the 600 ms period into 600, 300, 200, 150, 100 ms windows, and

calculated p(xt|y) and the corresponding I(1) for each partition. We then shuffled the

trials between laterality signals and compared the shuffled values to the raw I (1) in order

to test if the raw information was significantly different from zero. For the neuron in

Figure 3.6a, we found that it was not significant for window sizes of 300 ms and above,

but was significant for all lower sized windows. This indicates that MinMI may be used

to detect information related to temporal structure.

We repeated the above procedure for the entire population of 827 neurons, and

counted the number of significant neurons for each window size. Figure 3.6b shows this

number as a function of window size. A large increase can be seen when moving from

600 ms to 200 ms, indicating relevant temporal structure at these time constants. The

number then flattens for lower window sizes, suggesting no temporal information on

these scales. Note that the number of significant neurons increases from 125 to 170, an

increase of 35%.

3.4 Discussion

The current chapter illustrated the application of the MinMI principle to studying

the neural code. In this context, the principle has three attractive properties. The
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first is the ability to obtain a bound on information from a wide array of statistical

observations and experimental scenarios. The second is that we can extend standard

information measures (such as information in single neurons or pairs of neurons) to

large populations, allowing the detection of complex coding schemes not evident when

analyzing a small number of neurons (one or two) individually. The third is that our

formalism allows us to measure information in specific aspects of the response such

as first, second, and higher order responses. These advantages improve on current

IT applications in neuroscience and provide a comprehensive framework for tackling

fundamental issues in neural coding.

While the results presented here applied to neural coding, the MinMI principle is

general and may be used in studying a wide array of complex systems. For instance,

it may be used to estimate the information in a set of gene expression profiles about

external conditions [47], and thus help in analyzing their functional role, and comparing

different gene regulatory networks.

The MinMI measure is fundamentally different from maximum entropy (MaxEnt)

based measures [90, 122]. This can be seen already at the single neuron level, where

maximizing the entropy H(X|Y ) would yield a conditionally independent (CI) distribu-

tion. The MinMI distribution in this case is less informative (Figure 3.2), and illustrates

that CI is an overly optimistic assumption with respect to information content.

Information in populations may be estimated without explicitly calculating the full

joint statistics. A possible method for doing so, is via the reconstruction method which

uses X to generate an approximation Ŷ of Y [17]. A lower bound on the true informa-

tion is then obtained from I(Y ; Ŷ ) [14, 95]. While these methods may be efficient in

estimating the true value of the information, it is not clear what property (e.g. statisti-

cal interaction order) of the stimulus-response statistics generates this information. In

contradistinction, the MinMI framework allows us to calculate information in a given

statistical order embedded in a population of any size.

MinMI may also be used to study synergy in a given statistical order embedded

in a population. For example, in Section 3.1 we extend pairwise synergy measures to

populations with N > 2, using only pairwise statistics. This synergy measure is a

single number which reflects the interaction of pairwise codes in the population. This

approach differs from the common practice of analyzing pairs independently [31, 49,

65, 99], since the latter ignores population related effects (Section 3.3.3). Specifically

interesting in this context is the question of interaction between pairwise codes (i.e.,

pairwise codes embedded in a population) is of considerable interest, and has received

some attention in recent literature [113, 104] but is still largely unresolved. MinMI is

an attractive tool in addressing this question, and could hopefully aid in understanding

this aspect of the neural code.
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Chapter 4

Sufficient Dimensionality

Reduction

In the previous chapters we introduced the principle of Minimum Mutual Information

as a method of characterizing the information available in statistical measurements.

Throughout our discussion we assumed that the functions !φ(x), whose expected values

we measured, were given in advance. Indeed, in many cases there are natural choices

for such functions (e.g. responses of single cells or pairs etc.). However, in the general

case it is interesting to ask what are the functions whose measurements provide the

maximum information. The current chapter introduces a method for obtaining these

functions. Due to its close link to the notion of statistical sufficiency we call our method

Sufficient Dimensionality Reduction (SDR).

The starting point of our approach is the Minimum Mutual Information available

in the measurement of a function !φ(x) under a distribution p̄(x, y). We denote this

information by Ixy
min[!φ(x), p̄] 1. The quantity Ixy

min[!φ(x), p̄] captures the amount of infor-

mation available in measuring the expected value of !φ(x). We next look for a function
!φ(x) which maximizes this information. This results in a Max-Min problem whose

unknown is the function !φ(x).

This problem will be shown to be equivalent to finding a model of a special expo-

nential form which is closest to the empirical distribution (contingency table) in the

KL-divergence (or Maximum Likelihood) sense. We then present an iterative algorithm

for solving these problems and prove its convergence to a solution. An interesting in-

formation geometric formulation of our algorithm is then suggested, which provides

a covariant formulation of the extracted features. It also provides interesting sample

complexity relations via the Cramer-Rao inequalities for the selected features. We con-

clude by demonstrating the performance of the algorithm, first on artificial data and

then on a real-life document classification and retrieval problem.

1Although Ixy
min["φ(x), p̄] is very similar to Imin defined in the previous chapter, they are not equiv-

alent due to the marginal constraints on p(x) as will be seen later.
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Most of the material in the current chapter was published in [56].

4.1 Problem Formulation

To illustrate our motivation, consider a die with an unknown outcome distribution.

Suppose we are given the mean outcome of a die roll. What information does it provide

about the probability to obtain 6 in rolling this die? One possible “answer” to this

question was suggested by Jaynes [73] in his “Maximum Entropy (MaxEnt) principle”.

Denote by X = {1, . . . , 6} the possible outcomes of the die roll, and by !φ(x) an

observation, feature, or function of X. In the example of the expected outcome of

the die, the observation is !φ(x) = x, the specific outcome. Given the result of n rolls

x1, . . . xn, the empirical expected value is !a = 1
n

∑n
i=1

!φ(xi). MaxEnt argues that the

“most probable” outcome distribution p̂(x) is the one with maximum entropy among

all distributions satisfying the observation constraint, 〈!φ(x)〉p̂(x) = !a. This distribution

depends, of course, on the actual value of the observed expectation, !a.

The MaxEnt principle is considered problematic by many since it makes implicit

assumptions about the distribution of the underlying “micro-states”, that are not al-

ways justified. In this example there is in fact a uniform assumption on all the possible

sequences of die outcomes that are consistent with the observations. MaxEnt also does

not tell us what are the features whose expected values provide the maximal information

about the desired unknown - in this case the probability to obtain 6. This question is

meaningful only given an additional random variable Y which denotes (parameterizes)

a set of possible distributions p(x|y), and one measures feature quality with respect

to this variable. In the die case we can consider the Y parameter as the probability

to obtain 6. The optimal measurement, or observation, in this case is obviously the

expected number of times 6 has occurred, namely, the expectation of the single feature

φ(x) = δ(6− x). The interesting question is what is the general procedure for finding

such features.

An important step towards formulating such a procedure is to quantify the infor-

mation in a feature function !φ(x). This was exactly the goal of the previous chapter,

which defined this information as the minimum information available in any distribu-

tion agreeing with empirically measured values of !φ(x). Here we use a nearly identical

definition, but with the additional assumption of knowledge of the marginal of X. In

the previous chapter we were interested in cases where |X| may be extremely large, so

that p(x) may not be feasibly measured or even stored. Here we will limit the discus-

sion to the setup where p(x) can be measured. As we shall see, this will considerably

simplify the analysis and algorithm,

Formally, we define Ixy
min[!φ(x), p̄], the information in the measurement of !φ(x) on
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p̄(x, y) as:

Ixy
min[!φ(x), p̄] ≡ min

p̂(x,y)∈Fxy(!φ(x)),p̄)
I[p̂(x, y)] . (4.1)

The set Fxy(!φ(x), p̄) is the set of distributions that satisfy the constraints, defined by

Fxy(!φ(x), p̄) ≡
{

p̂(x, y) :
〈!φ(x)〉p̂(x|y) = 〈!φ(x)〉p̄(x|y)

p̂(x) = p̄(x)
p̂(y) = p̄(y)

}

.

The desired most informative features !φ∗(x) are precisely those whose measurements

provide the maximal information about Y . Namely,

!φ∗(x) = arg max
!φ(x)

Ixy
min[!φ(x), p̄] .

Plugging in the definition of Ixy
min we obtain the following Max-Min problem:

!φ∗(x) = arg max
!φ(x)

min
p̂(x,y)∈Fxy(!φ(x),p̄)

I[p̂(x, y)] . (4.2)

Notice that this variational principle does not define a generative statistical model

and is in fact a model independent approach. As we show later, however, the resulting

distribution p̂(x, y), is necessarily of a special exponential form and can be interpreted

as a generative model in that class. There is no need, however, to make any assumption

about the validity of such a model for the empirical data. The data distribution p̄(x, y)

is in fact needed only in order to estimate the expectations 〈!φ(x)〉p̄(x|y) for every y (be-

sides the marginals), given the candidate features !φ(x). In practice these expectations

are estimated from finite samples and empirical distributions. From a machine learn-

ing view our method thus requires only “statistical queries” on the underlying joint

distribution [78].

In the next section we show that the problem of finding the optimal functions !φ(x)

is dual to the problem of extracting the optimal features for Y that capture information

on the variable X, and in fact the two problems are solved simultaneously.

4.2 The Nature of the Solution

We first show that the problem as formulated in Equation 4.2 is equivalent to the

problem of minimizing the KL divergence between the empirical distribution p̄(x, y)

and a special family of distributions of an exponential form. To simplify notation, we

sometimes omit the suffix of (x, y) from the distributions. Thus pt stands for pt(x, y)

and p̄ for p̄(x, y)

Minimizing the mutual information in Equation 4.1 under the linear constraints on

the expectations 〈!φ(x)〉p̄(x|y) is equivalent to maximizing the joint entropy:

H[p̂(x, y)] = −
∑

x,y

p̂(x, y) log p̂(x, y) ,
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under these constraints, with the additional requirement that the marginals are not

changed, p̂(x) = p̄(x) and p̂(y) = p̄(y). Due to the concavity of the entropy and the

convexity of the linear constraints, there exists a unique maximum entropy distribution

(for compact domains of x and y) which has the exponential form2 3[27]:

p̂φ(x, y) =
1

Z
exp

(

!φ(x) · !ψ(y) + A(x) + B(y)
)

, (4.3)

where Z, the normalization (partition) function is given by:

Z ≡
∑

x,y

exp
(

!φ(x) · !ψ(y) + A(x) + B(y)
)

,

and the functions !ψ(y), A(x), B(y) are uniquely determined as Lagrange multipliers

from the expectation values 〈!φ(x)〉p̄(x|y) and the marginal constraints. It is important

to notice that while the distribution in Equation 4.3 which maximizes the entropy is

unique, there is freedom in the choice of the functions in the exponent. This freedom

is however restricted to linear transformations of the vector-functions !ψ(y) and !φ(x)

respectively, as long as the original variables X and Y remain the same, as we show

later on.

The distributions of the form in Equation 4.3 can also be viewed as a distribution

class parameterized by the continuous family of functions Θ = [ !ψ(y), !φ(x), A(x), B(y)]

(note that we treat ψ and φ symmetrically). We henceforth denote this class by PΘ.

The discussion above shows that for every candidate feature !φ(x), the minimum

information in Equation 4.2 is the information in the distribution p̂φ. As argued before,

this is precisely the information in the measurement of !φ(x) about the variable Y . We

now define the set of information minimizing distributions PΦ ⊂ PΘ, as follows:

PΦ ≡
{

p̂ ∈ PΘ : ∃!φ(x) : p̂ = p̂φ
}

.

It can be easily shown that p̂φ is the only distribution in PΘ satisfying the constraints

in Fxy(!φ(x), p̄) (see [34]). Thus, PΦ can alternately be defined as:

PΦ =
{

p̂ ∈ PΘ : ∃!φ(x) : p̂ ∈ Fxy(!φ(x), p̄)
}

. (4.4)

Finding the optimal (most informative) features !φ∗(x) amounts now to finding the

distribution in PΦ which maximizes the information:

p̂∗ = arg max
p̂∈PΦ

I[p̂] .

The optimal !φ∗(x) will then be the φ parameters of p̂∗, as in Equation 4.2.

2Note that the unique distribution can actually be on the closure (boundary) of the set of such
exponential forms. We do not address this point here in details.

3We explicitly state the dependence on "φ(x), since we will be varying it in the optimization.
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For every p̂ ∈ PΦ one can easily show that

I[p̂] = I[p̄]−DKL[p̄|p̂] . (4.5)

Equation 4.5 has two important consequences. First, it shows that maximizing I[p̂] for

p̂ ∈ PΦ is equivalent to minimizing DKL[p̄|p̂] for p̂ ∈ PΦ:

p̂∗ = arg min
p̂∈PΦ

DKL[p̄|p̂] . (4.6)

Second, Equation 4.5 shows that the information in I[p̂∗] cannot be larger than the

information in the original data (the empirical distribution). This supports the intuition

that the model p̂∗ maintains only properties present in the original distribution that

are captured by the selected features !φ∗(x).

A problem with Equation 4.6 is that it is a minimization over a subset of PΘ, namely

PΦ. The following proposition shows that this is in fact equivalent to minimizing the

same function over all of PΘ. Namely, the closest distribution to the data in PΘ satisfies

the conditional expectation constraints, and is thus in PΦ.

Proposition 1

arg min
p̂∈PΦ

DKL[p̄|p̂] = arg min
p̂∈PΘ

DKL[p̄|p̂]

Proof: We need to show that the distribution which minimizes the right hand side

is in PΦ. Indeed, by taking the (generally functional) derivative of DKL[p̄|p̂] w.r.t. the

parameters Θ in p̂, one obtains the following conditions:

∀y 〈!φ(x)〉p̂(x|y) = 〈!φ(x)〉p̄(x|y)

∀x 〈!ψ(y)〉p̂(y|x) = 〈!ψ(y)〉p̄(y|x)

∀x p̂(x) = p̄(x)
∀y p̂(y) = p̄(y) .

(4.7)

Clearly, this distribution satisfies the constraints in Fxy(!φ(x), p̄) and from the definition

in Equation 4.4 we conclude that it is in PΦ.

Our problem is thus equivalent to the minimization problem:

p∗ = arg min
p̂∈PΘ

DKL[p̄|p̂] . (4.8)

Equation 4.8 is symmetric with respect to φ and ψ, thus removing the asymmetry

between X and Y in the formulation of Equation 4.2.

Notice that this minimization problem can be viewed as a Maximum Likelihood fit

to the given p̄(x, y) in the class PΘ, known as an association model in the statistical

literature (see [61]), though the context there is quite different. It is also interesting to

write it as a matrix factorization problem (Matrix exponent here is element by element)

P =
1

Z
eΦΨ , (4.9)
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where P is the distribution p(x, y), Φ is a |X|×(d+2) matrix whose (d+1)th column is

ones, and Ψ is a d + 2× |Y | matrix whose (d + 2)th row is ones (the vectors A(x), B(y)

are the (d + 2)th column of Φ and (d + 1)th row of Ψ). While the vectors A(x), B(y)

are clearly related to the marginal distributions p(x) and p(y), it is in general not

possible to eliminate them and absorb them completely in the marginals. We therefore

consider the more general form of PΘ. In the maximum-likelihood formulation of the

problem, however, nothing guarantees the quality of this fit, nor justifies the class PΘ

from first principles. We therefore prefer the information theoretic, model independent,

interpretation of our approach. As will be shown, this interpretation provides us with

powerful geometric structure and analogies as well.

4.3 Link to Statistical Sufficiency

A classic scenario in machine learning and statistics is that of identifying a source

distribution from an IID sample generated by it. Given a sample xn = [x1, . . . , xn]

generated IID by an unknown distribution p(x|y), a basic task in statistical estimation

is to infer the value of y from the sample. It is commonly assumed that the source

distribution belongs to some parametric family p(x|y) where distributions’ “indices”,

or “parameters” y ∈ Y may take an infinite set of values 4.

A useful approach to this problem is to extract a small set of statistics or features,

which are functions of the samples and use only their values for inferring the source

parameters. Such statistics are said to be sufficient if they capture all the “relevant

information” in the sample about the identity of y ∈ Y . As is well known, under certain

regularity assumptions non-trivial sufficient statistics exist if and only if p(x|y) belongs

to an exponential family [110]. The structure of the exponential family is similar to

that in Equation 4.3

p(x|y) =
1

Zy
exp

(

!φ(x) · !ψ(y) + A(x) + B(y)
)

, (4.10)

where !φ(x) are the sufficient statistics. Since SDR approximates the empirical distribu-

tion via an exponential form, it can be understood as a method for finding the function
!φ(x) which best approximates a sufficient statistic for the given data.

4.4 An Iterative Projection Algorithm

The previous section showed the equivalence of the Max-Min problem, Equation 4.2 to

the KL divergence minimization problem in Equation 4.8. We now present an iterative

algorithm which provably converges to a local minimum of Equation 4.8, and hence

4Our notation differs from that of the statistical literature, where y is commonly denoted by θ and
is usually a continuous parameter.
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solves the Max-Min problem as well. This minimization problem can be solved by a

number of optimization tools, such as gradient descent or such iterative procedures

as described by [60]. In what follows, we demonstrate some information geometric

properties of this optimization procedure, thus constructing a general framework from

which more general convergent algorithms can be generated.

The algorithm is described using the information geometric notion of I-projections

described in Section 1.4 and used in the previous chapters. Recall that the I-projection

of a distribution q(x) on a set of distributions F is defined as the distribution in F
which minimizes the KL-divergence DKL[p|q]. We denote this distribution here by

IPR(q,F):

IPR(q,F) ≡ arg min
p∈F

DKL[p|q] .

We now focus on the case where the set F is determined by expectation values.

Given a d dimensional feature function !φ(x) and a distribution p̄(x), we consider the

set of distributions which agree with p̄(x) on the expectation values of !φ(x), and denote

it by Fx(!φ(x), p̄(x)). Namely,

Fx(!φ(x), p̄(x)) ≡
{

p̂(x) : 〈!φ(x)〉p̂(x) = 〈!φ(x)〉p̄(x)

}

,

which is clearly convex due to the linearity of expectations. The I-projection in this

case has the exponential form

IPR(q(x),Fx(!φ(x), p̄(x))) =
1

Z∗
q(x) exp

(

!λ∗ · !φ(x)
)

,

where !λ∗ is a vector of Lagrange multipliers corresponding to the expectation 〈!φ(x)〉p̄(x)

constraints. In addition, for this special exponential form, the Pythagorean inequality

is tight and becomes an equality [30]. This property is further linked to the notion of

“geodesic lines” on the curved manifold of such distributions.

Before describing our algorithm, some additional notations are needed:

• pt(x, y) - the distribution after t iterations.

• !ψt(y) - the !ψ(y) functions for pt(x, y).

• !φt(x) - the !φ(x) functions for pt(x, y).

• Θt - the full parameter set for pt(x, y).

The iterative projection algorithm is outlined in Figure 4.1 and described graphically

in Figure 4.2. I-projections of (exponential) distributions are applied iteratively: Once

for fixed !ψ(y) and their expectations, and then for fixed !φ(x) and their expectations.

Interestingly, during the first projection, the functions !φ(x) are modified as Lagrange

multipliers for 〈!ψ(y)〉p̂(y|x), and vice-versa in the second projection. The iterations
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Input: Joint (empirical) distribution p̄(x, y).

Output: 2d feature functions: "ψ(y) and "φ(x), that result from p̂∗, a solu-
tion of the variational problem Equation 4.2 and a (local) minimum of Equation
4.8 and the matrix factorization of Equation 4.9.

Initialization:

• Initialize p0(x, y) ∈ PΘ randomly, by choosing random "φ(x),"ψ(y),A(x) and
B(y).

Iterate:

• For all x, set:

pt+1(y|x) = IPR(pt(y|x),Fx("ψt(y), p̄(y|x)))

pt+1(x, y) = pt+1(y|x)p̄(x).

• For all y, set:

pt+2(x|y) = IPR(pt+1(x|y),Fx("φt+1(x), p̄(x|y)))

pt+2(x, y) = pt+2(x|y)p̄(y).

• Halt on convergence (when small enough change in pt(x, y) is achieved).

Figure 4.1: The iterative projection algorithm.

can thus be viewed as alternating mappings between the two sets of d-dimensional

functions, !ψ(y) and !φ(x). This is also the direct goal of the variational problem.

We proceed to prove the convergence of the algorithm. We first show that every

step reduces DKL[p̄(x, y)|pt(x, y)].

Proposition 2 DKL[p̄|pt+1] ≤ DKL[p̄|pt] .

Proof: For every x, the following holds:

1. pt+1(y|x) is the I-projection of pt(y|x) on the set Fx(!ψt(y), p̄(y|x)) .

2. p̄(y|x) is also in Fx(!ψt(y), p̄(y|x)) .

Using the Pythagorean property, (which is an equality here) we have:

DKL[p̄(y|x)|pt(y|x)] = DKL[p̄(y|x)|pt+1(y|x)] + DKL[pt+1(y|x)|pt(y|x)] .

Multiplying by p̄(x) and summing over all x values, we obtain:

DKL[p̄|pt]−DKL[p̄(x)|pt(x)] = DKL[p̄|pt+1] + DKL[pt+1|pt]−DKL[p̄(x)|pt(x)] .

where we used pt+1(x) = p̄(x). Elimination of DKL[p̄(x)|pt(x)] from both sides gives:

DKL[p̄|pt] = DKL[p̄|pt+1] + DKL[pt+1|pt] . (4.11)
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Figure 4.2: The iterative projection algorithm: The dual roles of the projections that
determine !ψ(y) and !φ(x) as dual Lagrange multipliers in each iteration. These iterations
always converge and the diagram becomes commutative.

Using the non-negativity of DKL[pt+1|pt] the desired inequality is obtained:

DKL[p̄|pt] ≥ DKL[p̄|pt+1] .

Note that equality is obtained if and only if DKL[pt+1|pt] = 0.

An analogous argument proves that:

DKL[p̄|pt+2] ≤ DKL[p̄|pt+1] . (4.12)

The following easily provable proposition states that the stationary points of the

algorithm coincide with extremum points of the target function, DKL[p̄|pΘ]. Its proof

uses the properties of the I-projections in the algorithm and the characterization of the

extremum point in Equation 4.7.

Proposition 3 If pt = pt+2 then the corresponding Θt satisfies ∂DKL[p̄|pΘ]
∂Θ Θ=Θt = 0 .

In order to see that the algorithm indeed converges to a (generally local) minimum of

DKL[p̄|pΘ], note that DKL[p̄|p2t] is a monotonously decreasing bounded series, which

therefore converges. Its difference series (see Equation 4.11,4.12),

DKL[p̄|pt]−DKL[p̄|pt+2] = DKL[pt+1|pt] + DKL[pt+2|pt+1] ,

therefore converges to zero. Taking t to infinity, we get pt+2 = pt+1 = pt. Thus, the

limit is a stationary point of the iterations, and from proposition 3 it follows that it is

indeed a local minimum of DKL[p̄|pΘ]. 5

5In order to take this limit, we use the fact that pt+1 and pt+2 are continuous functions of pt because
the I-projection is continuous in its parameters.
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4.4.1 Implementation Issues

The description of the iterative algorithm assumes the existence of a module which

calculates I-projections on linear (expectation) constraints. Because no general closed

form solution for such a projection is available, it is found by successive iterations which

asymptotically converge to the solution.

In this work, IPR was implemented using the Generalized Iterative Scaling (GIS)

procedure [32], described in Figure 1.2.

We now briefly address the computational complexity of our algorithm. The overall

time complexity naturally depends on the number of iterations needed till convergence.

In the experiments described in this work we ran the algorithm for up to 100 iterations,

which produced satisfactory results. The I-projection steps, which are performed using

GIS, are iterative as well. We used 100-200 GIS iterations for each I-projection with a

stopping condition when the ratio between empirical and model expectations was close

enough to 1. Each step of the GIS has linear complexity in |X|d, where |X| is the size

of the X variable and d the number of features. Since in each SDR iteration we perform

I-projections for all X’s and Y ’s, each iteration performs O(|X||Y ||d|) operations.

The run-time of the algorithm is most influenced by the implementation of the I-

projection algorithm. GIS is known to be slow to converge, but was used in this work

for the simplicity of the presentation and implementation. Other methods that can

speed this calculation by a factor of 20 have been suggested in the literature [88] and

should be used to handle large datasets and many features. This is expected to make

SDR comparable to SVD based algorithms in computational complexity.

The parameters were always initialized randomly, but different initial conditions did

not affect the results noticeably. Initializing the parameters using the SVD of the log

of p̄(x, y) generated a better initial distribution but did not improve the final results,

nor convergence time.

4.5 Information Geometric Interpretation

The iterative algorithm and the exponential form provide us with an elegant informa-

tion geometric insight and interpretation of our method. The values of the variable X

are mapped into the d-dimensional differential manifold described by !φ(x), while values

of the variable Y are mapped into a d-dimensional manifold described by !ψ(y). Em-

pirical samples of these variables are mapped into the same d-dimensional manifolds

through the empirical expectations 〈!φ(x)〉p̄(x|y) and 〈!ψ(y)〉p̄(y|x) respectively. These

geometric embeddings, generated by the feature vectors Φ and Ψ, are in fact curved

Riemannian differential manifolds with conjugate local metrics (see [2]).

The differential geometric structure of these manifolds is revealed through the nor-

malization (partition) function of the exponential form, Z(φ;ψ). We note the following
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relations:

δ log Z

δφ
= 〈!ψ(y)〉p̄(y|x) (4.13)

δ log Z

δψ
= 〈!φ(x)〉p̄(x|y) , (4.14)

and the second derivatives,

δ2 log Z

δφiδφj
= 〈(ψi(y)− 〈ψi(y)〉)(ψj(y)− 〈ψj(y)〉)〉p̄(y|x) (4.15)

δ2 log Z

δψiδψj
= 〈(φi(x)− 〈φi(x)〉)(φj(x)− 〈φj(x)〉)〉p̄(x|y) . (4.16)

The last two matrices, which are positive definite, are also known as the Fisher in-

formation matrices for the two sets of parameters Φ and Ψ. Using the Information

Geometry formalism of Amari, one can define the natural coordinates of those mani-

folds, as well as the geodesic projections, which are equivalent to the previously defined

I-projections. The natural coordinates of the manifold are those that diagonalize the

Fisher matrices locally, i.e. are locally uncorrelated. Moreover, the intrinsic geometric

properties of these manifolds, such as their local curvature and geodesic distances are

invariant with respect to transformations (including nonlinear) of the coordinates φ

and ψ. Since our iterative algorithm can be formulated through covariant projections,

its fixed (convergence) point is also invariant to local coordinate transformations, as

long as the above coupling between the two manifolds is preserved.

This formulation suggests that the SDR reduced statistical description in terms of

Φ and Ψ can be characterized in a way that is invariant to any (1−1) transformation of

X and Y . In particular it should be invariant to permutations of the rows and columns

of the original co-occurrence matrix. This fact is illustrated in the next section. The

information geometric formulation of the algorithm and its application to the study of

geometric invariants requires further analysis.

4.5.1 Cramer-Rao Bounds and Uncertainty Relations

The special exponential form provides us with an interesting uncertainty relation be-

tween the conjugate manifolds Ψ and Φ and a way to deal with finite sample effects.

For a general parametric family, p(x|θ), with θ the parameter vector, the Fisher

information matrix,

Ji,j(θ) = 〈
(

∂ log p(x|θ)
∂θi

∂ log p(x|θ)
∂θj

)

〉x = 〈−∂
2 log p(x|θ)
∂θi∂θj

〉x ,

provides bounds on the covariance matrix of any estimator of the parameter vector

from a sample. Denoting such an estimator from an IID sample of size n, x(n), by

θ̂(xn), the covariance matrix of the estimators, Cov(θ̂i, θ̂j) is symmetric definite (if the
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parameters are linearly independent) and can be diagonalized together with the Fisher

information matrix. In particular, the diagonal elements of the two matrices satisfy

the Cramer-Rao bound,

Ji,i(θ)V ar(θ̂i(x
n)) ≥ 1

n
.

For our special exponential form this inequality yields a particularly nice uncertainty

relation between finite sample estimates of the feature vectors !φ(x) and !ψ(y), since for

the exponential form the Fisher information matrices are dual as well,

Ji,j(ψ) = Cov(φ̂(xn))

Ji,j(φ) = Cov(ψ̂(xn)) ,

and the Cramer-Rao inequalities, for the diagonal terms, become

V ar(ψ)V ar(φ̂(xn)) ≥ 1

n
(4.17)

V ar(φ)V ar(ψ̂(xn)) ≥ 1

n
, (4.18)

as the Fisher information of the φ feature is just the variance of its adjoint ψ variable,

and vice versa. In fact we know that this bound is tight precisely for exponential

families, and Equations 4.17,4.18 are equalities.

These intriguing “uncertainty relations” between the conjugate features are strictly

true only for the exponential form p̂∗ and hold only approximately for the true variances.

Yet they provide a way to analyze finite sample fluctuations in the estimates of the

features.

The information-geometric structure of the problem allows us to interpret our al-

gorithm as alternating (geodesic) projections between the two Riemannian manifolds

of Ψ and Φ. These manifold allow an invariant formulation of the feature extraction

problem through geometric quantities that do not depend on the choice of local co-

ordinates, namely the specific choice of the functions φ(x) and ψ(y). Among these

invariants, the metric tensors of the manifolds provide us with the way to define and

measure the geodesic projections. On the other hand, since these tensors are just the

Fisher information matrices for the exponential forms, they provide us with bounds on

the finite sample fluctuations of our feature functions.

4.6 Applications

The derivation of the SDR features suggests that they should be efficient in identifying

a source distribution Y given a sample X1, . . . , Xn by using just the empirical expec-

tations 1
n

∑n
i=1

!φ(xi). We next show how the SDR algorithm can extract non-trivial

structure from both artificial data, and real-life problems.
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4.6.1 Illustrative Problems

In this section, some simple scenarios are presented where regression, either linear or

non-linear, does not extract the information between the variables. SDR is then shown

to find the appropriate regressors and uncover underlying structures in the data.

The construction of the SDR features is based on the assumption that only the

knowledge of the function !φ(x) and its expected values 〈!φ(x)〉p̄(x|y) is required for es-

timating Y from X. Thus, assuming the SDR approximation is valid, we can replace

p̄(x, y) with the above two functions. However, it is clear that one can use the Lagrange

multipliers !ψ(y) instead of the expected values, since there is a one to one correspon-

dence between these two functions of Y . Finally, because the problem is symmetric

w.r.t X and Y , we are also interested in the regressor averages 〈 !ψ(y)〉p̄(y|x), which to-

gether with !ψ(y) should provide optimal information about X. Figure 4.3 depicts these

plots for running SDR with d = 1 for the distribution:

p1(y|x) ∼ N (0, 0.2 + 0.4| sin 2x|) ,

where N (µ,σ) is a normal distribution with mean µ and standard deviation σ. This

distribution is of an exponential form and has a single sufficient statistic: y2. The

SDR single feature ψ(y) turns out to be nearly identical to y2, up to scaling and

translation. The averages 〈ψ(y)〉p̄(y|x) and the corresponding φ(x) indeed reveal the

periodic structure in the data, and are thus appropriate regressors for this problem.

In Figure 4.3, the numerical value of x, y was used for plotting the SDR features.

However, variables often cannot be assigned meaningful numerical values (e.g. terms

in documents), and this approach cannot be used. One can still extract a description

invariant representation in these cases by plotting the points !φ(x),!ψ(y) in &d. This al-

lows the analysis of the functional relation between the two statistics, without assuming

any order on the x or y domains. To illustrate this, consider a scrambled version of the

distribution:

p2(y|x) = N (2π sinx, 0.8 + 0.1x) ,

where both variables have undergone a random permutation. The scrambled distribu-

tion is shown in Figure 4.4, along with scatter plots of !ψ(y) and !φ(x). These plots

illustrate the structure of the differential manifolds described in the previous section.

Since both scatter plots are clearly one dimensional curves, the correct order of x and y

was recovered by traversing the curves, and the resulting ”unscrambled distribution” is

shown in Figure 4.4. It clearly demonstrates that the original continuous ordinal scale

has been recovered.

Similar procedures can be used for recovering continuous structure from distribu-

tions with more than two statistics. Figure 4.5 shows the distribution:

p3(y|x) =
1

Zx
e
− (y−sin 2πx)2

2(0.8+0.1x)2
− (y−cos 2πx)4

(0.8+0.1x)4 .
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Figure 4.3: SDR feature extracted for the distribution p1(y|x) ∼ N (0, 0.2+0.4| sin 2x|).
Middle: The distribution p1. Left: The SDR feature for y: !ψ(y) in blue, and a scaled
and translated y2 in red dots. Bottom: Expected value 〈!ψ(y)〉p̄(y|x) as a function of x.

Top: The SDR feature for x: !φ(x). Right: Expected value 〈!φ(x)〉p̄(x|y) as a function
of y.
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Figure 4.4: Reordering X and Y using SDR. From left to right: 1: The scrambled
version of p2(y|x) = N (2π sinx, 0.8+0.1x) 2: Scatter plot of φ2(x) vs. φ1(x) - the !φ(x)
curved manifold. 3: Scatter plot of ψ2(y) vs. ψ1(y) - the !ψ(y) manifold. 4: Reordering
of p2 according to the !φ(x) and !ψ(y) curves.
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This distribution has four sufficient statistics, namely y, y2, y3, y4. However, SDR can

still be used with d = 2 to represent both X and Y as two dimensional curves, as

shown in Figure 4.5. Although two statistics do not capture all the information in the

distribution, the two curves still reveal the underlying parameterization. Specifically,

the original order in the X and Y domains can be reconstructed.

x

y φ 2(x
)

φ1(x)

ψ
2(y

)

ψ1(y)

Figure 4.5: SDR analysis of p3(x, y). Left The distribution p3(x, y). Middle: Scatter
plot for the manifold !φ(x). Right: Scatter plot for the manifold !ψ(y).

4.6.2 Document Classification and Retrieval

The analysis of large databases of documents presents a challenge for machine learning

and has been addressed by many different methods (for a recent review see [146]).

Important applications in this domain include text categorization, information retrieval

and document clustering.

Several works use a probabilistic and information theoretic framework for this anal-

ysis [68, 129], whereby documents and terms are considered stochastic variables. The

probability of a term w ∈ {w1, . . . , w|W |} appearing in a document doc ∈ {doc1, . . . , doc|doc|}
is denoted p(w|doc) and is obtained from the normalized term count vector for this doc-

ument:

p(w|doc) =
n(doc, w)

∑

w n(doc, w)
,

where n(doc, w) is the number of occurrences of term w in document doc. The joint

distribution p(w, doc) is then calculated by multiplying by a document prior p(doc)

(e.g. uniform or proportional to document size). This stochastic relationship is then

analyzed using an assumed underlying generative model, e.g. a linear mixture model

as in [68], or a maximum entropy model as in [98]. An optimal model is found, and

used for predicting properties of unseen documents.

In the current work, SDR is used for finding term features !φ(w) such that using their

mean values alone we can infer information about document identity. This approach is

nonlinear and thus significantly differs from linear based approaches such as LSI [33]

or PLSI [68].

Our approach extends the works on maximum entropy in NLP [12, 34]. In these

works, the set of features !φ(w) was predetermined, or was algorithmically chosen from
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Figure 4.6: Left: KL between the original distribution and the model, for different d
values. Right: Information in the model. The horizontal line marks the information in
the original distribution.

a large set of predefined features. SDR does not make assumptions about the feature

space (e.g. positivity, range etc.) and performs a completely unsupervised search for

the optimal !φ(w).

Document Indexing Using SDR

The output of the SDR algorithm can be used to represent every document by an index

in &d. This transformation reduces the representation of a document from |W |, the

number of terms in the corpus, to d dimensions. Such a dimensionality reduction serves

two purposes: First, to extract relevant information and eliminate noise. Second, low

dimensional vectors can allow faster, more efficient information retrieval, an important

feature in real world applications. The resulting indices can be used for document

retrieval or categorization.

A natural index is the expected value of !φ(w) for the given document: φ̂(doc) ≡
〈!φ(w)〉p(w|doc). Since the SDR formulation assumes only knowledge of expected values

can be used, it is sensible to represent a document using this set of values. Alternatively,

one can use the set of Lagrange multipliers !ψ(doc) for each document in the training

data. Given a new document, not in the training data, one can find !ψ(doc) using a

single I-projection of p(w|doc) on the linear constraints imposed by !φ(w).

Document Classification Application

We used the 20Newsgroups database [81] to test how SDR can generate small features

sets for document classification.

We start with an illustrative example, which shows how SDR features capture

information about document content. We chose two different newsgroups with subjects:

”alt.atheism” and ”comp.graphics”, and preselected 500 terms and 500 documents per

subject, using the information gain criterion [146]. The projection algorithm was then

run on the resulting p(w, doc) matrix, for values of d = 1, 2, 4, 8, . . . , 256. Figure 4.6

shows DKL[p|p∗], I[p∗] as a function of d. It can be seen that as larger values of d
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Figure 4.8: Terms with high (right) and low (left) φ1(w) values

are used, the original distribution is approached in the KL sense and in the mutual

information sense (as in Equation 4.5).

To gain insight into the nature of the SDR features, we look at !φ(w) obtained for

the d = 1 case. A histogram of the values of !φ(w) is shown in Figure 4.7. It can be seen

that the values are roughly symmetrical about 0. Figure 4.8 shows the 5 terms with

the highest and lowest !φ(w) values. Clearly, the terms with high !φ(w) correspond to

the ”comp.graphics” subject, and the ones with low !φ(w) correspond to ”alt.atheism”.

This single feature thus maps the terms into a continuous scale through which it assigns

positive weights to one class, negative weights to the other, and negligible weights to

terms which are possibly irrelevant to the classes.

We next performed classification on eight different pairs of newsgroups. The φ̂(doc)

index was used as input to a support vector machine SVM-Light [75], which was trained

to classify documents according to their subjects. Baseline results were obtained by

running the SVM classifier on the original p(w|doc) vectors. The training and testing

sets consisted of 500 documents per subject, and 500 terms. We experimented with

values d = 1, 2, 4, 8, . . . , 256, 500 to test how well we can classify with relatively few

features. Figure 4.9 shows the fraction of the baseline performance that can be achieved

using a given number of features. It can be seen that even when using only four features,

98% of the baseline performance can be achieved.

Thus, classification based on the SDR index achieves performance comparable to

that of the baseline, even though it uses significantly less features (compared to the

500 features used by the baseline classifier). Importantly, the features were obtained
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in a wholly unsupervised manner, and have still discovered the document properties

relevant for classification.

Information Retrieval Application

Automated information retrieval is commonly done by converting both documents and

queries into a vector representation, and then measuring their similarity using the

cosine of the angle between these vectors [33].

SDR offers a natural procedure for converting documents into d dimensional indices,

namely φ̂(doc). Retrieval can then be performed using the standard cosine similarity

measure, although this is not necessarily the optimal procedure.

The following databases were used to test information retrieval: MED(1033 docu-

ments, 5381 terms), CRAN (1400 documents, 4612 terms) and CISI (1460 documents,

5609 terms).6 For each database, precision was calculated as a function of recall at

levels 0.1, 0.2, . . . , 0.9. The performance was then summarized as the mean precision

over these 9 recall levels (see [68]).

We compared the performance of the SDR based indices with that of indices gen-

erated using the following algorithms:

• RAW-TF: Uses the original normalized term count vector p(w|doc) as an index.

The dimension of the index is the number of terms.

• Latent Semantic Indexing (LSI): LSI is, like SDR, a dimensionality reduction

mechanism, which uses the Singular Value Decomposition (SVD) to obtain a low

rank approximation of the term-frequency matrix: p(doc, w) ≈ USV , where U is

a |doc|× d matrix , S is d× d and V is d× |w|. A new document vector !x is then

represented by the d dimensional vector S−1V !x.

6The list of terms used can be obtained from www.cs.utk.edu/∼lsi/corpora.html
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Figure 4.10: Mean precision as a function of index dimension for four indexing algo-
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three databases (from left to right: MED,CRAN,CISI). Horizontal line is the mean
precision of the RAW-TF algorithm.

• Log LSI: Since SDR is related to performing a low rank approximation of the log

of p(w, doc), we also tried to perform LSI where the input matrix is log p(w, doc).

In order to avoid taking a log of zero, we thresholded the matrix to 10−7.

• Locally Linear Embedding (LLE) [118]: LLE performs a non linear approximation

of the manifold on which the vectors p(w|doc) lie. It maps these vectors into a d

dimensional space, while preserving the neighborhood structure in the original,

high-dimensional, space. LLE has been shown to perform well for image, as

well as document data. For the experiments described here, we followed the

procedure used by [118],7 using the dot product between document vectors as

the neighborhood metric, and taking 10 nearest neighbors (other values were

experimented with, but 10 gave optimal performance). The version of LLE used

here cannot index new vectors (although such an extension was given by [119]),

so document and query data were indexed simultaneously. Note that this gives

LLE an advantage over the other indexing algorithms, since the test data (i.e.

the queries) is used in the training procedure.

For each of the databases, indexing dimensions of d = 8, 16, 32, 48, . . . , 128 were used.

Figure 4.10 shows the mean precision as a function of index dimension for the four

indexing algorithms. Table 4.1 gives the peak performance on each of the databases

for each of the algorithms (LogLSI is not included since it was inferior to LSI). It

can be seen that SDR performs uniformly better than the other algorithms for most

index sizes. Moreover, SDR achieves high performance for a small number of features,

where other methods perform poorly. This suggests that SDR succeeds at capturing

the low dimensional manifold on which the documents reside. The fact that LogLSI

performs poorly shows that SDR is not equivalent to an SVD low rank approximation

of log p(w, doc).

7Code available from http://www.cs.toronto.edu/∼roweis/lle/code.html, with minor changes.
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Raw TF LSI LLE SDR

MED 47.18 (5381) 54.25 (80) 58.25(32) 58.1 (96)

CRAN 35.63 (4612) 28.95 (128) 36.13(128) 40.28 (112)

CISI 13.54 (5609) 13.1 (128) 13.79(64) 18.72 (80)

Table 4.1: Mean precision results for information retrieval for several databases and
different indexing algorithms. Numbers in brackets are the number of features for which
the optimal performance is obtained

4.7 Discussion

The current work suggests an information theoretic feature extraction mechanism,

where the features are used for calculating means over empirical samples, and these

means are in turn used for inferring an unknown “variable” or other “relevant property”

of the statistical data. The main goal of this procedure is to reveal possible continuous

low-dimensional underlying structure that can “explain” the dependencies among the

variables. Yet our applications suggest that the extracted continuous features can be

used successfully for prediction of the relevant variable. An interesting question is in

what sense is this resulting prediction close to optimal? In other words, how well can

one infer using the extracted features compared the optimal inference procedure? The

prediction error of an optimal procedure is the Bayes error [36]. When the true un-

derlying distribution is of an exponential form with the correct dimensionality SDR is

equivalent to maximum likelihood estimation of its parameters/features, and as such

is consistent [36] and achieves asymptotically the optimal error in this case.

In the more interesting case, where the source distribution is not in the special expo-

nential form, SDR should be interpreted as an induction principle, similar - but better

motivated - than the maximum entropy principle. In fact it solves an inverse problem

to that of MaxEnt, by finding the optimal set of constraints - or observables - that

capture the mutual information in the empirical joint distribution. It is obvious that

methods that exploit prior knowledge about the true distribution can do better in such

cases. However, assuming that only empirical conditional expectations of given single

variable functions are known about the source joint distribution (similar to “statistical

queries” in machine learning, see [78]) our Max-Min mutual information principle is a

most reasonable induction method.

We briefly address several other important issues that our procedure raises.
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4.7.1 Information in Individual Features

The low rank decomposition calculated using SVD suggests a clear ordering on the

features using their associated singular values. Moreover, the SVD solutions are nested

(i.e. the optimal features for d = 2 are a subset of those for d = 3). Due to its non-

linear nature, the SDR solution is not necessarily nested (this is also true for solutions

of linear based methods like those in [68, 84]).

However, given a set of optimal SDR features !φ∗(x), the information in a single fea-

ture can be quantified in several ways. The simplest measure is Ixy
min[φ∗i (x)] (as defined

in Equation 4.1), which reflects the information obtained when measuring only φ∗
i (x).

Another measure is Ixy
min[!φ∗(x)] − Ixy

min[φ∗1(x), . . . ,φ∗i−1(x),φ∗i+1(x),φ∗d(x)] which is the

information lost as a result of not measuring φ∗
i (x). The two measures reflect different

properties of the feature, and further research is required to test their usefulness, for

example in assigning confidence to the measurement of different features.

4.7.2 Finite Samples

The basic assumption behind our problem formulation is that we have access to the

true expectation values 〈!ψ(y)〉 and 〈!φ(x)〉. These can be estimated uniformly well from

a finite sample under the standard uniform convergence conditions. In other words,

standard learning theoretical techniques can give us the sample complexity bounds,

given the dimensions of X and Y and the reduced dimension d. For continuous X

and Y further assumptions must be made, such as the fat-shattering dimension of the

features.

When the source distribution is close to the exponential form - most of the mutual

information is captured by the features - the Cramer-Rao bounds provide a much

simpler method for analyzing the finite sample effects, as we discussed in section 5.1.

We can then bound the prediction errors in terms of the empirical covariance matrices

of the obtained features.

4.7.3 Diagonalization and Dimensionality Reduction

The optimal features are not unique in the following sense: since only the dot-product
!φ(x) · !ψ(y) appears in the distribution p̂(x, y), any invertible matrix R can be applied

such that !φ(x)R−1 and R!ψ(y) are equivalent to !φ(x) and !ψ(y). Note, however, that

although the resulting functions !ψ(y) and !φ(x) may depend on the initial point of the

iterations, the information extracted does not (for the same optimum).

One can remove this ambiguity by orthogonalization and scaling of the feature func-

tions, for example by applying Singular Value Decomposition (SVD) to log p̂(x, y) (for

additional normalization schemes see [6]). Another option is to de-correlate !φ(x) using

an appropriate linear transformation. By de-correlation, we mean a transformation on
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!φ(x) such that the new functions satisfy
∑

x

p(x)φi(x)φj(x) = δij .

To calculate such a transformation, define C ≡ Φ ∗ diag(p(x)) ∗ ΦT ( where Φ is a

matrix whose rows are the original functions), calculate V, D the eigen-decomposition

of C (i.e. C = V DV −1), define the transformation A ≡ D−0.5V −1, and apply it to the

original functions to obtain the transformed ones ΦTrans ≡ AΦ.

Notice, however, that our procedure is very different from direct application of SVD

to log p̄(x, y). These two coincide only when the original joint distribution is already of

the exponential form of Equation 4.3. In all other cases SVD based approximations (LSI

included) will not preserve information as well as our features at the same dimension

reduction.

4.7.4 Information Theoretic Interpretation

Our information MaxMin principle is close in its formal structure to the problem of

channel capacity with some channel uncertainty (see e.g. [82]). This suggests the

interesting interpretation for the features as channel characteristics. If the channel

only enables the reliable transmission of d expected values, then our !ψ(y) exploit this

channel in an optimal way. The channel decoder of this case is provided by the vector
!φ(x) and the decoding is performed through a dot-product of these two vectors. This

intriguing interpretation of our algorithm obviously requires further analysis.

4.7.5 Relations to Other Methods

Dimension reduction and clustering algorithms have become a fundamental component

in unsupervised large scale data analysis. SDR is a dimension reduction method in

that it reduces the description of the distribution p(x, y) from |X||Y | components to

(d + 1)(|X|+ |Y |). There is a large family of algorithms with a similar purpose, which

are based on a linear factorization of p(x, y). For example [68] and [84] suggest finding

positive matrices Q of size |X| × d and R of size d × |Y | such that p = QR. Their

procedure relies on the fact that the rows (or columns) of p lie on a d dimensional

plane. The SVD based LSI method [33] also performs a linear factorization of p, but

it is not required to be positive.

Our approach is equivalent to approximating p (in the KL-divergence sense) by
1
Z eQR where Q and R are matrices of size |X|× (d + 2) and (d + 2)× |Y | respectively.

Since the exponent can be written as eQR = I + QR + (QR)2

2! + . . ., (matrix powers are

element by element) the above linear methods can be said to approximate its first two

terms. However, it is important to note that the two methods (linear and exponential)

assume different models of the data, and their success or failure is application de-

pendent. The information retrieval experiments in the current work have shown that
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even in document analysis, where linear methods have been successful, exponential

factorization can improve performance.

An information theoretic approach to feature selection is also used by [148], in

the context of texture modeling in vision. Their approach is similar to ours in that

they arrive at a min-max entropy formulation. However, in contradistinction with the

current work, they assume a specific underlying parametric model, and also define a

finite feature set from which features are chosen using a greedy procedure. In this sense,

their algorithm is more similar to the feature selection mechanism of [34]. There are

also several works which search for approximate sufficient statistics (see [141, 50]) by

directly calculating the information between the statistic and the parameter of interest.

This results in a formalism different from ours, and usually necessitates some modeling

assumptions to make computation feasible.

Since SDR finds a mapping from the X and Y variables into d dimensional space,

it can be considered an embedding algorithm. As such, it is related to non-linear em-

bedding algorithms, notably multi-dimensional scaling [29], Locally Linear Embedding

[118] and IsoMAP [132]. Such algorithms try to preserve properties of points in high di-

mensional space (e.g. distance, neighborhood structure) in the embedded space. SDR

is not formulated in such a way, but rather requires that the original points can be

reconstructed optimally from the embedded points, where the quality of reconstruction

is measured using the KL-divergence.

Relations to the Information Bottleneck

A closely related idea is the Information Bottleneck (IB) Method (originated in [135])

which aims at a clustering of the rows of p(x, y) that preserves information. In a well

defined sense, the IB method can be considered as a special case of SDR, when the

features functions are restricted to a finite set of values that correspond to the clusters.

However, clustering may not be the correct answer for many problems where the re-

lationship between the variables comes from some hidden low dimensional continuous

structures. In such cases clustering tends to quantize the data in a rather arbitrary

way, while low dimensional features are simpler and easier for interpretation.

On the other hand, the motivation behind SDR is essentially the same as that of

the IB, to find low-dimensional/complexity representations of one variable that preserve

the mutual information about another variable. The algorithm in that case is however

quite different and it solves in fact a more symmetric problem - find low dimensional

representations of both variables (X and Y ) such that the mutual information between

them is captured as good as possible. This is closely related to the symmetric version

of the information bottleneck that is discussed by [44]. As in the IB, the quality of

the procedure can be described in terms of the “information curve” - the fraction of

the mutual information that can be captured as a function of the reduced dimension.
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An interesting open question, at this point, is if we can extend the SDR algorithm to

deal with different dimensions simultaneously. One would like to move continuously

through more and more complex representations, as done in the IB through a mutual

information constraint on the complexity of the representation. There are good reasons

to believe that such an extension, that may “soften” the notion of the dimension, is

possible also with SDR.

4.8 A Euclidean Extension: Joint Embedding

The SDR algorithm results in two sets of informative features: !φ(x) and !ψ(y). An

interesting question in this context is what can be said about two values x, y such

that !φ(x) and !ψ(y) are close in the d dimensional space. Due to non-uniqueness of

SDR solutions under affine transformations, distances between x and y features are

apparently meaningless.

In order to obtain a meaningful distance measure between X and Y features we

modified the SDR method to directly address Euclidean distances between feature

functions [53]. We used a distribution model similar to that in Equation 4.3, but with

Euclidean distance replacing the dot product 8:

p̂(y|x) =
p̄(y)

Z(x)
e−d2

x,y ∀x ∈ X,∀y ∈ Y . (4.19)

where d2
x,y ≡ |!φ(x)− !ψ(y)|2 =

∑d
k=1(φk(x)−ψk(y))2 is the Euclidean distance between

!φ(x) and !ψ(y) and Z(x) is the partition function for each value of x.

The optimal features !φ(x), !ψ(y) are obtained by maximizing the likelihood of the

empirical data with respect to the model above. Since the model explicitly uses the

Euclidean distance between features, and is not invariant to affine transformation, we

can expect x, y with high p̂(y|x) values to yield !φ(x), !ψ(y) values which are close in

the Euclidean sense. We name the above method Co-Occurrence Data Embedding

(CODE).

Figure 4.11 shows the application of the CODE algorithm to papers from the NIPS

conference database 9. We used the data to generate an authors-words matrix (as

in the Roweis database). We could now embed authors and words into R
2, by using

CODE to model p(word|author). The results are shown in Figure 4.11. It can be

seen that authors are indeed mapped next to terms relevant to their work, and that

authors dealing with similar domains are also mapped together. This illustrates how

co-occurrence of words and authors may be used to induce a metric on authors alone.

8Here we use a conditional model, and also insert the empirical Y marginal explicitly. Various
alternative models are possible, but this one was found to outperform the others).

9Data for NIPS 1-12 are from http://www.cs.toronto.edu/∼roweis/data.html . These were aug-
mented with data from NIPS volumes 13-17 Data available at http://robotics.stanford.edu/∼gal/
.
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Figure 4.11: CODE Embedding of 2000 words and 250 authors from the NIPS database (the
250 authors with highest word counts were chosen; words selection criterion described in [53]).
Left panel shows embeddings for authors (red crosses) and words (blue dots). Other panels
show embedded authors (only first 100 shown) and words for the areas specified by rectangles.
They can be seen to correspond to learning theory, control and neuroscience (from left to right).

The CODE algorithm was tested on several other text databases and provided

features which were shown to outperform those obtained by other methods. We have

also recently applied CODE to gene expression data, yielding interpretable results.

4.9 Conclusions and Further Research

We have presented a feature extraction method based on an information theoretic ac-

count of the notion of measurement. Our proposed method is a new dimensionality

reduction technique. It is nonlinear, and aims directly at preserving mutual information

in a given empirical co-occurrence matrix. This is achieved through an information vari-

ation principle that enables us to calculate simultaneously informative feature functions

for both random variables. In addition we obtain an exponential model approximation

to the given data which has precisely these features as dual sets of sufficient statistics.

We described an alternating projection algorithm for finding these features and proved

its convergence to a (local) optimum. This is in fact an algorithm for extracting optimal

sets of constraints from statistical data.

Our experimental results show that our method performs well on language related

tasks, and does better than other linear models, which have been used extensively in

the past. Performance is enhanced both in using smaller feature sets, and in obtaining

better accuracy. Initial experiments on image data also show promising results. Taken

together, these results suggest that the underlying structure of non-negative data may

often be captured better by SDR than using linear mixture models.

One immediate extension of our work is to the multivariate case. The natural mea-

sure of information in this case is the multi-information [44]. One can then generalize

the bivariate SDR optimization principle, thus defining an optimal measurement on a

large set of variables.
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Chapter 5

Sufficient Dimensionality

Reduction with Irrelevance

Statistics

The previous chapter showed how the SDR method may be used to learn functions

over a variable X which are useful for predicting a variable Y . However, it is often the

case that Y has several different features, all of which may be relevant under different

circumstances. Thus for instance, spoken utterances can be labeled by their contents or

by the speaker’s identity; face images can be categorized by either a person’s identity or

expression; protein molecules can be classified by their physical structure or biological

function. All are valid alternatives for analyzing the data, but the question of the

“correctness” or “relevance” depends on the task. The “noise” in one analysis is the

“signal” for another.

The current chapter addresses this problem by utilizing additional irrelevance data

as “side information”. Such irrelevance information is very often available in terms

of joint statistics of our variables in another context, but the irrelevant attributes are

usually not explicit. A typical example is the analysis of gene expression data for some

pathology, where the irrelevance information can be given in terms of the expression of

control, healthy tissues. In this case it is essentially impossible to isolate the irrelevant

variables, though they are implicitly expressed in the expression patterns and statistics.

The goal of the new unsupervised learning algorithm is to identify structures which are

characteristic to the relevant dataset, but do not describe well the irrelevance data.

The idea of using such “side information” to enhance learning algorithms previously

appeared in [25] and [145], which looked for relevant clusters in data.

The method presented in the current chapter, SDR with Irrelevance Statistics (SDR-

IS), seeks features which are maximally informative about one, relevant, variable Y +,

while being minimally informative about another one Y − provided as irrelevance in-

formation. Once the question is properly posed using information theoretic measures
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the SDR formulation yields the solution to the new problem.

Features (i.e. statistics of empirical data) that carry no information about a pa-

rameter are known as ancillary statistics [42]. These are mainly used for estimating

precision of standard estimators. SDR-IS extracts features that are approximately suf-

ficient for the relevant variable Y +, and at the same time approximately ancillary for

Y −. The quantitative nature of the approximation is determined by a trade-off between

the information that the extracted features carry about Y + and the information they

maintain about Y −.

The next two sections formalize the problem of continuous feature extraction with

irrelevance information using the previously introduced notion of “information in a

measurement”. We then derive its formal and algorithmic solutions, relate them to

likelihood ratio maximization , and demonstrate their operation on synthetic and real

world problems.

Most of the material in the current chapter was published in [54].

5.1 Problem Formulation

To formalize the above ideas, consider a scenario where two empirical joint distributions

are given for three categorical random variables X, Y + and Y −. The first is the main

data, p̄+ ≡ P (X, Y +), which describes the joint distribution of Y + and X . The

second is the irrelevance data, p̄− ≡ P (X, Y −), which is assumed to contain irrelevant

structures in the main data. Our goal is to identify features of X that characterize its

probabilistic relation to Y + but not its relation to Y −. Note that Y + and Y − need

not come from the same space, or have the same size and dimension. Potentially, one

may be continuous and the other discrete, although we do not treat the continuous

case here.

We seek a d dimensional continuous feature of X which we denote !φ(x) : X → &d,

such that only its expected values 〈!φ(x)〉p(x|y+) characterize the stochastic dependence

between X and Y +, while the corresponding values for Y −, namely 〈!φ(x)〉p(x|y−), do

not characterize the dependence of Y − on X. For example, the mean number of words

in some semantic set may reveal a document’s writing style, but tell us nothing of its

content. Here, Y + would be a set of documents of different writing styles, and Y − a

set of documents with the same style but varying contents. X will represent the set of

words.

The idea of using expected values of features to describe a distribution stands in

the basis of the Maximum-Entropy (MaxEnt) approach [72, 34]. On one hand, these

descriptions provide a natural way to efficiently estimate and represent distributions

using parametric representations. Furthermore, the extracted parameters often provide

compact description of the data in terms of interpretable features. While in standard

MaxEnt the features are predetermined (or greedily optimized over a given set as in
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[34]), the previous chapter presented the SDR method for finding features which are

optimal for a given set of distributions over X, thus solving an Inverse Maximum

Entropy problem. The continuous features !φ(x) can be any d dimensional function of

a discrete variable X. To evaluate the “goodness” of !φ(x), we used the notion of

measurement information Ixy
min[!φ(x), p̄], defined in Section 4.1. Given this measure for

the quality of !φ(x), the goal of relevant feature extraction is to identify features that

are maximally informative about Y + while minimally informative about Y −. This dual

optimization task can be approached by minimizing the weighted difference

L[!φ(x)] = Ixy
min[!φ(x), p̄+]− λIxy

min[!φ(x), p̄−] (5.1)

over !φ(x), where λ is a positive tradeoff parameter reflecting the weight to be assigned

to the irrelevance data.

Using the definition of Ixy
min, the optimization problem in Equation 5.1 thus becomes:

!φ∗(x) = arg maxL[!φ(x)] (5.2)

= arg max
!φ(x)

min
p̂+∈P(!φ,p̄+)

I[p̂+]− λ min
p̂−∈P(!φ,p̄−)

I[p̂−]

5.2 Solution Characterization

In order to characterize the solution of the variational problem in Equation 5.2, we

now calculate its gradient and observe its vanishing points. We start by characterizing

the form of the distribution p̂φ(X, Y ) that achieves the minimum of Ixy
min[!φ(x), p̄±]

(Equation 4.1). Since I[p̂(X, Y )] = H[p̂(X)]+H[p̂(Y )]−H[p̂(X, Y )], and the marginals

p̂(X), p̂(Y ) are kept constant by the definition of P(!φ(x), p̄), we have I[p̂(X, Y )] =

const−H[p̂(X, Y )]. This turns Equation 4.1 into a problem of entropy maximization

under linear constraints

p̂φ(X, Y ) = max
p̂(X,Y )∈P(!φ(x)),p̄)

H[p̂(X, Y )] , (5.3)

whose solutions are known to be of exponential form [34]

p̂φ(x, y) =
1

Z
exp

(

!φ(x) · !ψφ(y) + Aφ(x) + Bφ(y)
)

. (5.4)

The !ψφ(y),Aφ(x) and Bφ(y) are complex functions of !φ(x) that play the role of Lagrange

multipliers in the maximum entropy problem derived from Equation 5.3. We explicitly

note their dependence on !φ(x), to avoid confusion in describing the algorithm.

While H[p̂φ(X, Y )] is a complex function of !φ(x), its gradient can be derived analyt-

ically using the fact that p̂φ has the exponential form of Equation 5.4. In the appendix,

section A.2.1, we show that this gradient is

∂H[p̂φ(X, Y )]

∂!φ(x)
= p̄(x)

(

〈!ψφ〉p̂φ(y|x) − 〈!ψφ〉p̄(y|x)

)

(5.5)
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It is now straightforward to calculate the gradient of the functional in Equation 5.2.

Denote by p̂+
φ and p̂−φ the information minimizing distributions obtained in Ixy

min[φ, p̄+]

and Ixy
min[φ, p̄−], and by !ψ+

φ and !ψ−
φ their corresponding Lagrange multipliers. The

gradient is then

∂L
∂!φ(x)

= p̄+(x)
(

〈!ψ+
φ 〉p̄+(y+|x) − 〈!ψ+

φ 〉p̂+
φ (y+|x)

)

(5.6)

−λp̄−(x)
(

〈!ψ−
φ 〉p̄−(y−|x) − 〈!ψ−

φ 〉p̂−φ (y−|x)

)

Setting it to zero we obtain the characterization of the extremum point

p̄+(x)∆〈!ψ+
φ 〉 = λp̄−(x)∆〈!ψ−

φ 〉 (5.7)

where ∆〈ψ〉 is the difference in the expectation of ψ taken according to the model and

the true distribution.

To obtain some intuition into the last equation consider the following two obser-

vations. First, note that maximizing the information Ixy
min[φ, p̄+] requires to minimize

the absolute difference between the expectancies of !ψ+
φ , as can be seen when taking

λ = 0. Second, it can be shown that when minimizing Ixy
min[φ, p̄−] alone, some elements

of !φ(x) must diverge. In these infimum points ∆〈!ψ−
φ 〉 does not generally vanish. Taken

together, these facts imply that for the λ > 0 case, the difference ∆〈 !ψ+
φ 〉 should gener-

ally be different from zero. This implies, as expected, that the resulting !φ(x) conveys

less information than the λ = 0 solution. The optimal !φ(x) is thus bound to provide

an inaccurate model for those aspects of p̄+ that also improve the model of p̄−.

An additional interesting interpretation of !ψ+
φ , !ψ−

φ is that they reflect the relative

importance of !φ(x) in p̂+
φ , p̂−φ for a given y. This view is prevalent in the boosting

literature, where such coefficients function as the weights of the weak learners (see e.g.

[83]). However, SDR-IS also optimizes the weak learners, searching for a small but

optimal set of learners.

5.3 Algorithmic Considerations

Unlike the case of λ = 0 for which an iterative algorithm was described in the previous

chapter, the λ > 0 case poses a special difficulty in developing such an algorithm. One

could supposedly proceed by calculating !ψ+
φ , !ψ−

φ assuming a constant value of !φ(x) and

then calculate the resulting !φ(x) assuming !ψ+ and !ψ− are constant. However, as was

shown in [56], updating !ψ−
φ will increase Ixy

min[!φ(x), p̄−] thereby decreasing the target

function. Thus, such a procedure is not guaranteed to improve the target function.

Possibly, an algorithm guaranteed to converge for a limited range of λ values can be

devised, as done for IBSI [25], but this remains to be studied.

Fortunately, the analytic characterization of the gradient derived above allows one

to use a gradient ascent algorithm for finding the optimal features !φ(x), for any given
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value of λ. This requires to calculate a Maximum Entropy distribution on each of

its iterations, namely, to calculate numerically the set of Lagrange multipliers !ψφ(y),

Aφ(x) and Bφ(y) which appear in the gradient expression in Equation 5.5. This convex

problem has a single maximum, and well studied algorithms exist for finding Maximum

Entropy distributions under linear constraints 1. These include GIS [32], IIS [34], or

gradient based algorithms (see [88] for a review of different algorithms and their relative

efficiency). In all the results described below we used the GIS algorithm.

5.4 Relation to Other Methods

5.4.1 Likelihood Ratio Maximization

Further intuition into the functional of Equation 5.2 can be obtained, using the result

of [56] yielding that it equals up to a constant to

L[!φ(x)] = −DKL[p̄+||p̂+
φ ] + λDKL[p̄−||p̂−φ ] , (5.8)

where DKL[p||q] ≡
∑

pi log(pi/qi) is the Kullback-Leibler divergence. When p̄+ and

p̄− share the same marginal distribution p̄(x), a joint distribution p̄(X, Y +, Y −) can be

defined that coincides with the pairs-joint distributions p̄+(X, Y +) and p̄−(X, Y −),

p̄(x, y+, y−) ≡ p̄+(y+|x)p̄−(y−|x)p̄(x) . (5.9)

The above distribution has the quality that Y − and Y + are conditionally independent

given X. In many settings, this is indeed a reasonable assumption. In this case

L = −
∑

x,y+,y−

p̄(x, y+, y−) log

(

p̄+(x, y+)

p̂+
φ (x, y+)

)

(5.10)

+λ
∑

x,y+,y−

p̄(x, y+, y−) log

(

p̄−(x, y−)

p̂−φ (x, y−)

)

= −
〈

log

(

p̄+(x, y+)

p̄−(x, y−)λ
p̂−φ (x, y−)λ

p̂+
φ (x, y+)

)〉

p̄(x,y+,y−)

=

〈

log

(

p̂+
φ (x, y+)

p̂−φ (x, y−)λ

)〉

p̄(x,y+,y−)

+ const

This suggests that in the special case of λ = 1, SDR-IS operates to maximize the

expected log likelihood ratio, between the maximum entropy models p̂+
φ and p̂−φ . In the

general case of λ > 0 a weighted log likelihood ratio is obtained. For vanishing λ, the

irrelevance information is completely ignored and the problem reduces to unconstrained

likelihood maximization of the maximum entropy model p̂+
φ .

1Note that all the constraints in P("φ(x), p̄) are indeed linear.
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5.4.2 Weighted vs. Constrained Optimization

The trade-off optimization problem of Equation 5.1, is related to the following con-

strained optimization problem

!φ∗(x) = arg max
!φ(x):Ixy

min[!φ(x),p̄−]≤D
Ixy
min[!φ(x), p̄+] . (5.11)

Although the Lagrangian for this problem is identical to the SDR-IS target functional

of Equation (5.1), these two problems are not necessarily equivalent, since a constrained

optimization problem like (5.11) may in principle be solved by the minimum point of

Equation 5.1. However, under certain convexity conditions such problems can be shown

to be equivalent. While we do not present a similar proof here, we found numerically

in all the data described below, that the maximum points of Equation 5.11 were always

achieved at the maximum of Equation (5.1) rather than at its minima.

5.4.3 Related Methods

Several methods previously appeared in the literature, which make use of auxiliary

data or additional sources of information to enhance learning features of a main data

set. The method of Oriented-PCA [37] uses a main data set with covariance S+ and an

irrelevance data set with covariance S− to find features w that maximize the Signal to

Noise Ratio wT S+w
wT S−w

. Constrained-PCA [37] finds principal components of the main data

which are orthogonal to the irrelevance data. While these methods implicitly assume

Gaussian distributions in input space, a kernelized version of OPCA was described in

[92].

A. B. C. D.
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Figure 5.1: Demonstration of SDR-IS operation. A. A joint distribution P (X, Y +)
that contains two distinct and conflicting structures (see text) B. Extracting a one-
dimensional feature with λ = 0 identifies the top-to-bottom gradient. C. A joint
distribution P (X, Y −) that contains a single structure similar to the right structure of
P (X, Y +). D. Extracting a one-dimensional feature with λ = 1 successfully ignores
the top-to-bottom gradient and extracts the weaker structure of P (X, Y +).
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Another line of work uses auxiliary information in the form of equivalence con-

straints. The auxiliary data here is a set of relations that enforce similarity between

the elements of the main data. These relations are used to improve dimensionality

reduction [125], or to improve the distance metrics used for clustering [145].

Separating several conflicting structures in the data has also been addressed in [133]

where a bilinear model was used to separate style from content. This model does not use

auxiliary information, but rather assumes that the two structures can be represented

by a linear model.

SDR-IS differs from the above methods in that it is a non-linear method for ex-

tracting continuous features, which are least informative about the irrelevance data.

The relative importance of the irrelevance data is determined throught the tradeoff

parameter λ.

5.5 Applications

We first illustrate the operation of SDR-IS on a synthetic example that demonstrates its

main properties. Then, we describe its application to the problem of feature extraction

for face recognition.

5.5.1 A Synthetic Example

To demonstrate the ability of our approach to uncover weak but interesting hidden

structures in data, we designed a co-occurrence matrix that contains two competing

sub-structures (see figure 5.1A). The right half of the matrix contains a top-to-bottom

gradient, while its left half contains large variance at the middle values of X. The right

structure was hand-crafted to be stronger in magnitude than the left one.

When SDR-IS is applied with no irrelevance information (λ = 0) and d = 1, it

extracts the top-to-bottom gradient (Figure 5.1B). This φ(x) follows from the strong

structure on the right part of 5.1A.

We now created a second co-occurrence matrix P (X, Y −) that contains a top-to-

bottom structure similar to that of P (X, Y +) (Figure 5.1C). Applying SDR-IS with

λ = 1 on both matrices now successfully ignores the strong top-to-bottom structure

in P (X, Y +) and retrieves the weaker structure that emphasizes the mid values of X

(Figure 5.1D). Importantly, this is done in an unsupervised manner, without explicitly

pointing to the strong but irrelevant structure.

Further understanding of the operation of SDR-IS is gained by tracing its output

as a function of the tradeoff parameter λ. Figure 5.2A plots the optimal features
!φ(x) extracted for various λ values, revealing a phase transition around a critical value

λ = 0.26. The reason for this behavior is that at the critical λ, the top-to-bottom

feature !φ(x) bears larger loss (due to the information Ixy
min[!φ(x), p̄−] conveyed about

Y −) than gain. Figure 5.2B traces the values of Ixy
min[!φ(x), p̄+] and Ixy

min[!φ(x), p̄+],
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Figure 5.2: Operation of SDR-IS on the synthetic example of Figure 1 for various values
of λ. A. The optimal !φ(x) extracted with SDR-IS. B. The information conveyed about
Y + (crosses) and Y − (squares), by the optimal !φ(x)’s of the left panel. A phase
transition around 0.26 is observed both in the information values and the !φ(x)’s. The
inset shows the spinodal metastable points of Ixy

min[!φ(x), p̄+] around the phase transition
point (black box).

again revealing a pronounced phase transition, and an S shaped (spinodal) curve of

Ixy
min[!φ(x), p̄+], indicating the co-existence of three local maxima and the metastable

region (inset of Figure 5.2B). Such spinodal curves are typical to phase transition

phenomena obeserved in numerous physical systems. Plotting the SDR-IS functional

of Equation 5.1 as a function of λ (not shown) also reveals a discontinuity in its first

derivative, indicating a first order phase transition. These discontinuities reflect the

removal of “irrelevant” features from !φ(x), and can thus be used to select interesting

values of λ.

The irrelevant structures in the above example were hand crafted to be strongly

and cleanly manifested in p(x, y−). The next section studies the application of SDR-IS

to real data, in which structures are much more covert.

0 1 1.45 1.46

2 4 8 9
Figure 5.3: Extracting a single feature using SDR-IS, for various λ values. An apparent
phase transition is observed around λ = 1.45. p̄+ was created by taking images of all
men in the AR database with neutral face expressions and light either from the right
or the left (a total of 100 images). p̄− was similarly created with 100 female images.
Positive λ values reveal features that differentiate between men but not between women.

85



5.5.2 Face Images

Face recognition poses a challenge to relevant features extraction since these must be

invariant to various interfering structures, such as face expression and light conditions.

Such nuisance structures are often more pronounced in the data than the subtle features

required to recognize a person.

We tested SDR-IS on this task using the AR database [91], a collection of faces with

various face expressions, light conditions and occlusions. Each image was translated

into a joint probability matrix, by considering the normalized grey levels of the pixel x

in the image y as the probability p(x|y), and setting p(y) uniform. This normalization

scheme views every image y as a distribution p(x|y) which stands for the probability of

observing a photon at a given pixel x. To demonstrate the operation of SDR-IS on this

data we first trained it to extract a single feature, for various λ values. The experiment

details and resulting !φ(x) are given in Figure 5.3. When λ is low (small weight for irrel-

evance information) the main structure captured is the direction of light source (right

vs. left). As λ increases the optimal !φ(x) first changes only slightly, but then a phase

transition occurs around λ = 1.45, and a second structure emerges. This phase transi-

tion can be well observed when tracing the values of Ixy
min[!φ(x), p̄+] and Ixy

min[!φ(x), p̄−]

as a function of λ (Figure 5.4), and results from the same reasons discussed in the

synthetic example described above. This result suggests that such information curves

can be used to identify “interesting” values of λ and their corresponding features even

for high dimensional and complex data. As λ further increases, the algorithm focuses

on minimizing information about the irrelevance information, disregarding information

about the main data. This results in the noisy features seen in Figure 5.3 for high λ

values.
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10−1
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λ

I m
in
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[p

± ]
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Figure 5.4: Normalized information about the main data Ixy
min[!φ(x), p̄+] and the irrele-

vance data Ixy
min[!φ(x), p̄−], as a function of λ, for the data of Figure 5.3. Note the phase

transition in both information levels for λ = 1.45.

To quantify the performance of SDR-IS in a comparative manner, we used it in a
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difficult task of unsupervised feature extraction for face recognition, and compared its

performance with three methods: PCA - the most widely used dimensionality reduction

method; Constrained PCA (CPCA); and oriented PCA (OPCA) - two methods that

utilize the same irrelevance data as SDR-IS [37]. We created p(X, Y +) with images

of five different men, under all the different conditions of face expression and light

conditions (a total of 26 images per person). As irrelevance data we used all 26 images of

another randomly chosen man. The task of clustering these images into the five correct

sets is hard since the nuisance structures are far more dominant than the relevant

structure of inter subject variability, in face of light and face expression invariances.

All methods were used to reduce the dimensionality of the images. PCA repre-

sentations were obtained by projecting on the principal components. The SDR-IS

representation was obtained by replacing each image y with its expected SDR-IS fea-

ture values 〈!φ(x)〉p(x|y). This follows our motivation of using expected values alone to

represent y.

To quantify the effectiveness of the reduced representations in preserving person

identity, we calculated the number of same-class (same-person) neighbors out of the

k nearest neighbors of each image2. This was averaged over all images and k’s and

normalized, yielding the precision index 3.

Optimal parameters (dimensionality and λ) for all methods, were chosen to maxi-

mize the precision index for a training set. Reported results were obtained on a separate

testing set. This entire procedure was repeated 10 times on randomly chosen subsets of

the database. Figure 4 compares the effectiveness of SDR-IS with the one obtained with

PCA based methods. SDR-IS was found to achieve more than 30 percent improvement

over the second best method.

We further compared the performance of the four methods for each predefined

dimensionality d. Figure 5.6 shows that SDR-IS dominates the other methods over all

d values. This is more pronounced for low values of d, which agrees with the intuition

that the irrelevance data allows SDR-IS to focus on the more relevant features.

5.6 Discussion

The method introduced in this chapter addresses the fundamental problem of extracting

relevant structure in an unsupervised manner, a problem for which only few principled

approaches were suggested. We focused on continuous features of categorical variables

2As a metric for measuring distances between images, we tested both the L2 norm and the Ma-
halanobis distance in the reduced representation. We report the Mahalanobis results only, since L2
results were considerably worse for PCA.

3We also evaluated the methods by clustering the low dimensional vectors into five groups and
comparing the resulting clusters with the true ones. This resulted in qualitatively similar result, albeit
noisier. We prefer the method presented here since it does not depend on a noisy second phase of
clustering.
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normalized between 0 (obtained with random neighboring) and 1 (all nearest neighbors
are of the same class). The average over ten cross validation sets is shown. SDR-IS
achieves 30 percent improvement over the second best method (OPCA).
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Figure 5.6: Performance of SDR-IS compared with other methods as a function of di-
mensionality d for the AR data. The mean performance over 10 testing sets is reported,
and bars denote standard error of the mean over these sets. In SDR-IS, a value of λ
was chosen for each d, to maximize performance over the training set

and used the information theoretic notion of information in the expectation value of a

measurement, to derive algorithms that extract the most informative features, by uti-

lizing information about irrelevant properties. Such an information theoretic approach

makes no assumptions about the origin of the empirical data and is thus different from

the more common generative modeling methodology.

Our formalism can be extended to the case of multiple relevance and irrelevance

variables (Y +
1 , ..., Y +

n+) and (Y −
1 , ..., Y −

n−), with joint distributions p̄+
i ≡ p̄(x, y+

i ) and

p̄−i ≡ p̄(x, y−i ). Following a similar weighted optimization problem we write the La-

grange form of the functional L =
∑n+

i=1 λiI
xy
min[!φ(x), p̄+

i ]−
∑n−

i=1 λiI
xy
min[!φ(x), p̄−i ], which

can be maximized as in the two variables case.

An interesting property that is revealed when applying SDR-IS both to synthetic
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and real life data, is the emergence of phase-transitions. These are discontinuous

changes in the information values, that occur at specific values of λ. They are paralleled

by abrupt changes in the features !φ(x) and thus provide a natural way to focus on im-

portant values of λ that characterize the inherent features of the data. As demonstrated

in Figure (5.4), we were able to follow the metastable region of the phase transition,

which appears to behave like a first-order transition in thermodynamics.

An interesting algorithmic problem, not fully answered at this point, is to design

an iterative-projection algorithm, similar to the SDR, for solving the implicit equations

for the optima. This can improve time complexity and convergence of the algorithm,

making it even more practical.
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Chapter 6

Information Minimization and

Dimension - The Gaussian

Information Bottleneck

The previous chapters addressed the problem of finding features whose measurements

provide useful information. However, they did not address at depth the question of the

dimensionality of the feature function !φ(x) 1.

The current chapter addresses the question of the interaction between dimension-

ality reduction and preservation of information. This will be done by analyzing di-

mensionality reduction of Gaussian variables via the Information Bottleneck approach

[135].

Extracting relevant aspects of complex data is a fundamental task in machine learn-

ing and statistics. The problem is often that the data contains many structures, which

make it difficult to define which of them are relevant and which are not in an unsuper-

vised manner. For example, speech signals may be characterized by their volume level,

pitch, or content; pictures can be ranked by their luminosity level, color saturation or

importance with regard to some task.

This problem was addressed in a principled manner by the information bottleneck

(IB) approach [135]. Given the joint distribution of a “source” variable X and another

“relevance” variable Y , IB operates to compress X, while preserving information about

Y . The variable Y thus implicitly defines what is relevant in X and what is not.

Formally, this is cast as the following variational problem

min
p(t|x)

L : L ≡ I(X; T )− βI(T ; Y ) , (6.1)

where T represents the compressed representation of X via the conditional distributions

p(t|x), while the information that T maintains on Y is captured by the distribution

p(y|t). This formulation is general and does not depend on the type of the X, Y

1Although suggestions for choice of dimension were given in Section 4.7.3.
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distribution. The positive parameter β determines the tradeoff between compression

and preserved relevant information, as the Lagrange multiplier for the constrained

optimization problem minp(t|x) I(X; T )− β (I(T ; Y )− const). Since T is a function of

X it is independent of Y given X, thus the three variables can be written as the Markov

chain Y −X −T . From the information inequality we thus have I(X; T )−βI(T ; Y ) ≥
(1 − β)I(T ; Y ), and therefore for all values of β ≤ 1, the optimal solution of the

minimization problem is degenerated I(T ; X) = I(T ; Y ) = 0. As we will show below,

the range of degenerated solutions is even larger for Gaussian variables and depends

on the eigen spectrum of the variables covariance matrices.

The rationale behind the IB principle can be viewed as model-free “looking inside

the black-box” system analysis approach. Given the input-output (X, Y ) “black-box”

statistics, IB aims to construct efficient representations of X, denoted by the variable T ,

that can account for the observed statistics of Y . IB achieves this using a single tradeoff

parameter to represent the tradeoff between the complexity of the representation of X,

measured by I(X; T ), and the accuracy of this representation, measured by I(T ; Y ).

The choice of mutual information for the characterization of complexity and accuracy

stems from Shannon’s theory, where information minimization corresponds to optimal

compression in Rate Distortion Theory, and its maximization corresponds to optimal

information transmission in Noisy Channel Coding.

From a machine learning perspective, IB may be interpreted as regularized gener-

ative modeling. Under certain conditions I(T ; Y ) can be interpreted as an empirical

likelihood of a special mixture model, and I(T ; X) as penalizing complex models [130].

While this interpretation can lead to interesting analogies, it is important to emphasize

the differences. First, IB views I(X; T ) not as a regularization term, but rather corre-

sponds to the distortion constraint in the original system. As a result, this constraint

is useful even when the joint distribution is known exactly, because the goal of IB is to

obtain compact representations rather than to estimate density. Interestingly, I(T ; X)

also characterizes the complexity of the representation T as the expected number of

bits needed to specify the t for a given x. In that role it can be viewed as an expected

“cost” of the internal representation, as in MDL. As is well acknowledged now source

coding with distortion and channel coding with cost are dual problems [see for example

124, 112]. In that information theoretic sense, IB is self dual, where the resulting source

and channel are perfectly matched [as in 48].

The information bottleneck approach has been applied so far mainly to categorical

variables, with a discrete T that represents (soft) clusters of X. It has been proved

useful for a range of applications from documents clustering [128] through neural code

analysis [38] to gene expression analysis [44, 126] (for a more detailed review of IB clus-

tering algorithms see [127]). However, its general information theoretic formulation is

not restricted, both in terms of the nature of the variables X and Y , as well as of the

compression variable T . It can be naturally extended to nominal, categorical, and con-
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tinuous variables, as well as to dimension reduction rather than clustering techniques.

The goal of this chapter is to apply the IB for the special, but very important, case of

Gaussian processes which has become one of the most important generative classes in

machine learning. In addition, this is the first concrete application of IB to dimension

reduction with continuous compressed representation, and as such exhibits interesting

dimension related phase transitions.

The general solution of IB for continuous T yields the same set of self-consistent

equations obtained already in [135], but solving these equations for the distributions

p(t|x), p(t) and p(y|t) without any further assumptions is a difficult challenge, as it

yields non-linear coupled eigenvalue problems. As in many other cases, however, we

show here that the problem turns out to be analytically tractable when X and Y are

joint multivariate Gaussian variables. In this case, rather than using the fixed point

equations and the generalized Blahut-Arimoto algorithm as proposed in [135], one can

explicitly optimize the target function with respect to the mapping p(t|x) and obtain

a closed form solution of the optimal dimensionality reduction.

The optimal compression in the Gaussian Information Bottleneck (GIB) is defined

in terms of the compression-relevance tradeoff (also known as the “Information Curve”,

or “Accuracy-Complexity” tradeoff), determined by varying the parameter β. The op-

timal solution turns out to be a noisy linear projection to a subspace whose dimen-

sionality is determined by the parameter β. The subspaces are spanned by the basis

vectors obtained as in the well known Canonical Correlation Analysis (CCA) [69], but

the exact nature of the projection is determined in a unique way via the parameter β.

Specifically, as β increases, additional dimensions are added to the projection variable

T , through a series of critical points (structural phase transitions), while at the same

time the relative magnitude of each basis vector is rescaled. This process continues

until all the relevant information about Y is captured in T . This demonstrates how

the IB principle can provide a continuous measure of model complexity in information

theoretic terms.

The idea of maximization of relevant information was also taken in the Imax frame-

work of Becker and Hinton [8, 7], which followed Linsker’s idea of information maxi-

mization [85, 86]. In the Imax setting, there are two one-layer feed forward networks

with inputs Xa, Xb and outputs neurons Ya, Yb; the output neuron Ya serves to define

relevance to the output of the neighboring network Yb. Formally, the goal is to tune the

incoming weights of the output neurons, such that their mutual information I(Ya; Yb)

is maximized. An important difference between Imax and the IB setting, is that in

the Imax setting, I(Ya; Yb) is invariant to scaling and translation of the Y ’s since the

compression achieved in the mapping Xa → Ya is not modeled explicitly. In contrast,

the IB framework aims to characterize the dependence of the solution on the explicit

compression term I(T ; X), which is a scale sensitive measure when the transformation

is noisy. This view of compressed representation T of the inputs X is useful when
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dealing with neural systems that are stochastic in nature and limited in their responses

amplitudes and are thus constrained to finite I(T ; X).

The current chapter starts by defining the problem of relevant information extrac-

tion for Gaussian variables. Section 3 gives the main result of the chapter: an analytical

characterization of the optimal projections, which is then developed in Section 4. Sec-

tion 5 develops an analytical expression for the GIB compression-relevance tradeoff -

the information curve. Section 6.5 shows how the general IB algorithm can be adapted

to the Gaussian case, yielding an iterative algorithm for finding the optimal projec-

tions. The relations to canonical correlation analysis and coding with side-information

are discussed in Section 6.8.

Most of the material in the current chapter was published in [24].

6.1 Gaussian Information Bottleneck

We now formalize the problem of Information Bottleneck for Gaussian variables. Let

(X, Y ) be two jointly multivariate Gaussian variables of dimensions nx, ny and denote

by Σx,Σy the covariance matrices of X,Y and by Σxy their cross-covariance matrix 2.

The goal of GIB is to compress the variable X via a stochastic transformation into

another variable T ∈ Rnx , while preserving information about Y . The dimension of T

is not explicitly limited in our formalism, since we will show that the effective dimension

is determined by the value of β.

It is shown in [57] that the optimum for this problem is obtained by a variable

T which is also jointly Gaussian with X. The formal proof uses the entropy power

inequality as in [13], and is rather technical, but an intuitive explanation is that since

X and Y are Gaussians, the only statistical dependencies that connect them are bi-

linear. Therefore, a linear projection of X is sufficient to capture all the information

that X has on Y . The Entropy-power inequality is used to show that a linear projection

of X, which is also Gaussian in this case, indeed attains this maximum information.

Since every two centered random variables X and T with jointly Gaussian dis-

tribution can be presented through the linear transformation T = AX + ξ, where

ξ ∼ N(0,Σξ) is another Gaussian that is independent of X, we formalize the problem

using this representation of T , as the following minimization,

min
A,Σξ

L ≡ I(X; T )− βI(T ; Y ) (6.2)

over the noisy linear transformations of A, Σξ

T = AX + ξ; ξ ∼ N(0,Σξ) . (6.3)

Thus T is normally distributed T ∼ N(0,Σt) with Σt = AΣxAT + Σξ.

2For simplicity we assume that X and Y have zero means and Σx,Σy are full rank. Otherwise X
and Y can be centered and reduced to the proper dimensionality.
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Interestingly, the term ξ can also be viewed as an additive noise term, as commonly

done in models of learning in neural networks. Under this view, ξ serves as a regular-

ization term whose covariance determines the scales of the problem. While the goal of

GIB is to find the optimal projection parameters A,Σξ jointly, we show below that the

problem factorizes such that the optimal projection A does not depend on the noise,

which does not carry any information about Y .

6.2 The Optimal Projection

The first main result of this chapter is the characterization of the optimal A,Σξ as a

function of β

Theorem 6.2.1 The optimal projection T = AX + ξ for a given tradeoff parameter β

is given by Σξ = Ix and

A =



















[

0T ; . . . ;0T
]

0 ≤ β ≤ βc
1

[

α1v
T
1 ,0T ; . . . ;0T

]

βc
1 ≤ β ≤ βc

2
[

α1v
T
1 ;α2v

T
2 ;0T ; . . . ;0T

]

βc
2 ≤ β ≤ βc

3
...



















(6.4)

where {vT
1 ,vT

2 , . . . ,vT
nx
} are left eigenvectors of Σx|yΣ

−1
x sorted by their corresponding

ascending eigenvalues λ1,λ2, . . . ,λnx, β
c
i = 1

1−λi
are critical β values, αi are coeffi-

cients defined by αi ≡
√

β(1−λi)−1
λiri

, ri ≡ vT
i Σxvi, 0T is an nx dimensional row vector

of zeros, and semicolons separate rows in the matrix A.

This theorem asserts that the optimal projection consists of eigenvectors of Σx|yΣ
−1
x ,

combined in an interesting manner: For β values that are smaller than the smallest

critical point βc
1, compression is more important than any information preservation

and the optimal solution is the degenerated one A ≡ 0. As β is increased, it goes

through a series of critical points βc
i, at each of which another eigenvector of Σx|yΣ

−1
x

is added to A. Even though the rank of A increases at each of these transition points,

A changes continuously as a function of β since at each critical point βc
i the coefficient

αi vanishes. Thus β parameterizes a sort of “continuous rank” of the projection.

To illustrate the form of the solution, we plot the landscape of the target function

L together with the solution in a simple problem where X ∈ R2 and Y ∈ R. In this

case A has a single non-zero row, thus A can be thought of as a row vector of length 2,

that projects X to a scalar A : X → R, T ∈ R. Figure 6.1 shows the target function

L as a function of the (vector of length 2) projection A. In this example, the largest

eigenvalue is λ1 = 0.95, yielding βc
1 = 20. Therefore, for β = 15 (Figure 6.1A) the zero

solution is optimal, but for β = 100 > βc (Figure 6.1B) the corresponding eigenvector

is a feasible solution, and the target function manifold contains two mirror minima. As
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Figure 6.1: The surface of the target function L calculated numerically as a function
of the optimization parameters in two illustrative examples with a scalar projection
A : R2 → R. Each row plots the target surface L both in 2D (left) and 3D (right) as a
function of the (two dimensional) projections A. A. For β = 15, the optimal solution is
the degenerated solution A ≡ 0. B. For β = 100, a non degenerate solution is optimal,
together with its mirror solution. The Σx|yΣ

−1
x - eigenvector of smallest eigenvalue, with

a norm computed according to theorem 6.2.1 is superimposed, showing that it obtains
the global minimum of L. Parameters’ values Σxy = [0.1 0.2], Σx = I2, Σξ = 0.3I2×2.
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β increases from 1 to ∞, these two minima, starting as a single unified minimum at

zero, split at βc, and then diverge apart to ∞.

We now turn to prove theorem 6.2.1.

6.3 Deriving the Optimal Projection

We first rewrite the target function as

L = I(X; T )− βI(T ; Y ) = h(T )− h(T |X)− βh(T ) + βh(T |Y ) (6.5)

where h is the (differential) entropy of a continuous variable

h(X) ≡ −
∫

X
f(x) log f(x) dx .

Recall that the entropy of a d dimensional Gaussian variable is

h(X) =
1

2
log
(

(2πe)d|Σx|
)

where |x| denotes the determinant of x, and Σx is the covariance of X. We therefore

turn to calculate the relevant covariance matrices. From the definition of T we have

Σtx = AΣx, Σty = AΣxy and Σt = AΣxAT + Σξ. Now, the conditional covariance

matrix Σx|y can be used to calculate the covariance of the conditional variable T |Y ,

using the Schur complement formula [see e.g., 87]

Σt|y = Σt − ΣtyΣ
−1
y Σyt = AΣx|yA

T + Σξ

The target function can now be rewritten as

L = log(|Σt|)− log(|Σt|x|)− β log(|Σt|) + β log(|Σt|y|) (6.6)

= (1− β) log(|AΣxAT + Σξ|)− log(|Σξ|) + β log(|AΣx|yA
T + Σξ|)

Although L is a function of both the noise Σξ and the projection A, Lemma A.3.1 in

Appendix A shows that for every pair (A,Σξ), there is another projection Ã such that

the pair (Ã, I) obtains the same value of L. This is obtained by setting Ã =
√

D−1V A

where Σξ = V DV T , which yields L(Ã, I) = L(A,Σξ)3. This allows us to simplify the

calculations by replacing the noise covariance matrix Σξ with the identity matrix Id.

To identify the minimum of L we differentiate L w.r.t. to the projection A using

the algebraic identity δ
δA log(|ACAT |) = (ACAT )−12AC which holds for any symmetric

matrix C.

δL
δA

= (1− β)(AΣxAT + Id)
−12AΣx + β(AΣx|yA

T + Id)
−12AΣx|y (6.7)

Equating this derivative to zero and rearranging, we obtain necessary conditions for an

internal minimum of L, which we explore in the next two sections.

3Although this holds only for full rank Σξ, it does not limit the generality of the discussion since
low rank matrices yield infinite values of L and are therefore suboptimal.
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6.3.1 Scalar Projections

For clearer presentation of the general derivation, we begin with a sketch of the proof

by focusing on the case where T is a scalar, that is, the optimal projection matrix A

is a now a single row vector. In this case, both AΣxAT and AΣx|yA
T are scalars, and

we can write
(

β − 1

β

)

(

AΣx|yA
T + 1

AΣxAT + 1

)

A = A
[

Σx|yΣ
−1
x

]

. (6.8)

This equation is therefore an eigenvalue problem in which the eigenvalues depend on

A. It has two types of solutions depending on the value of β. First, A may be iden-

tically zero. Otherwise, A must be the eigenvector of Σx|yΣ
−1
x , with an eigenvalue

λ = β−1
β

AΣx|yAT +1

AΣxAT +1

To characterize the values of β for which the optimal solution does not degenerate,

we find when the eigenvector solution is optimal. Denote the norm of Σx w.r.t. A

by r = AΣxAT

||A||2 . When A is an eigenvector of Σx|yΣ
−1
x , Lemma A.3.2 shows that r is

positive and that AΣx|yΣ
−1
x ΣxAT = λr||A||2. Rewriting the eigenvalue and isolating

||A||2, we have

0 < ||A||2 =
β(1− λ)− 1

rλ
. (6.9)

This inequality provides a constraint on β and λ that is required for a non-degenerated

type of solution

λ ≤ β − 1

β
or β ≥ (1− λ)−1 , (6.10)

thus defining a critical value βc(λ) = (1− λ)−1. For β ≤ βc(λ), the weight of compres-

sion is so strong that the solution degenerates to zero and no information is carried

about X or Y . For β ≥ βc(λ) the weight of information preservation is large enough,

and the optimal solution for A is an eigenvector of Σx|yΣ
−1
x . The feasible regions for

non degenerated solutions and the norm ||A||2 as a function of β and λ are depicted in

Figure 6.2.

For some β values, several eigenvectors can satisfy the condition for non degenerated

solutions of equation (6.10). Appendix A.3.3 shows that the optimum is achieved by

the eigenvector of Σx|yΣ
−1
x with the smallest eigenvalue. Note that this is also the

eigenvector of ΣxyΣ−1
y ΣyxΣ−1

x with the largest eigenvalue. We conclude that for scalar

projections

A(β) =

{
√

β(1−λ)−1
rλ v1 0 < λ ≤ β−1

β

0 β−1
β ≤ λ ≤ 1

(6.11)

where v1 is the eigenvector of Σx|yΣ
−1
x with the smallest eigenvalue.
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Figure 6.2: A. The regions of (β,λ) pairs that lead to the zero (red) and eigenvector
(blue) solutions. B. The norm ||A||2 as a function of β and λ over the feasible region.

6.3.2 The High-Dimensional Case

We now return to the proof of the general, high dimensional case, which follows the

same lines as the scalar projection case. Setting the gradient in equation (6.7) to zero

and reordering we obtain

β − 1

β

[

(AΣx|yA
T + Id)(AΣxAT + Id)

−1
]

A = A
[

Σx|yΣ
−1
x

]

. (6.12)

Equation (6.12) shows that the multiplication of Σx|yΣ
−1
x by A must reside in the

span of the rows of A. This means that A should be spanned by up to nt eigenvectors

of Σx|yΣ
−1
x . We can therefore represent the projection A as a mixture A = WV where

the rows of V are left normalized eigenvectors of Σx|yΣ
−1
x and W is a mixing matrix

that weights these eigenvectors. The form of the mixing matrix W , that characterizes

the norms of these eigenvectors, is described in the following lemma, which is proved

in Appendix A.3.4.

Lemma 6.3.1 The optimum of the cost function is obtained with a diagonal mixing

matrix W of the form

W = diag





√

β(1− λ1)− 1

λ1r1
; . . . ;

√

β(1− λk)− 1

λkrk
; 0; . . . ; 0



 (6.13)

where {λ1, . . . ,λk} are k ≤ nx eigenvalues of Σx|yΣ
−1
x with critical β values βc

1, . . . ,β
c
k ≤

β. ri ≡ vT
i Σxvi as in theorem 6.2.1.

The proof is presented in appendix A.3.4.

We have thus characterized the set of all minima of L, and turn to identify which

of them achieve the global minima.
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Corollary 6.3.2

The global minimum of L is obtained with all λi that satisfy λi < β−1
β

The proof is presented in appendix A.3.4.

Taken together, these observations prove that for a given value of β, the optimal

projection is obtained by taking all the eigenvectors whose eigenvalues λi satisfy β ≥
1

1−λi
, and setting their norm according to A = WV with W determined as in Lemma

6.3.1. This completes the proof of Theorem 6.2.1.

6.4 The GIB Information Curve

The information bottleneck is targeted at characterizing the tradeoff between infor-

mation preservation (accuracy of relevant predictions) and compression. Interestingly,

much of the structure of the problem is reflected in the information curve, namely, the

maximal value of relevant preserved information (accuracy), I(T ; Y ), as function of the

complexity of the representation of X, measured by I(T ; X). This curve is related to

the rate-distortion function in lossy source coding, as well as to the achievability limit in

source coding with side-information [143, 27]. It was shown to be concave under general

conditions [52], but its precise functional form depends on the joint distribution and

can reveal properties of the hidden structure of the variables. Analytic forms for the

information curve are known only for very special cases, such as Bernoulli variables and

some intriguing self-similar distributions. The analytic characterization of the Gaus-

sian IB problem allows us to obtain a closed form expression for the information curve

in terms of the relevant eigenvalues.

To this end, we substitute the optimal projection A(β) into I(T ; X) and I(T ; Y )

and rewrite them as a function of β

Iβ(T ; X) =
1

2
log
(

|AΣxAT + Id|
)

(6.14)

=
1

2
log
(

|(β(I −D)− I)D−1|
)

=
1

2

n(β)
∑

i=1

log

(

(β − 1)
1−λi

λi

)

Iβ(T ; Y ) = I(T ; X)− 1

2

n(β)
∑

i=1

log β(1−λi) ,

where D is a diagonal matrix whose entries are the eigenvalues of Σx|yΣ
−1
x as in ap-

pendix A.3.4, and n(β) is the maximal index i such that β ≥ 1
1−λi

. Isolating β as

a function of Iβ(T ; X) in the correct range of nβ and then Iβ(T ; Y ) as a function of

Iβ(T ; X) we have

I(T ; Y ) = I(T ; X)− nI

2
log

(

nI
∏

i=1

(1−λi)
1

nI + e
2I(T ;X)

nI

nI
∏

i=1

λi

1
nI

)

(6.15)
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Figure 6.3: GIB information curve obtained with four eigenvalues λi = 0.1,0.5,0.7,0.9.
The information at the critical points are designated by circles. For infinite β, curve is
saturated at the log of the determinant

∑

log λi. For comparison, information curves
calculated with smaller number of eigenvectors are also depicted (all curves calculated
for β < 1000). The slope of the un-normalized curve at each point is the corresponding
β−1. The tangent at zero, with slope β−1 = 1−λ1, is super imposed on the information
curve.

where the products are over the first nI = nβ(I(T ;X)) eigenvalues, since these obey the

critical β condition, with cnI
≤ I(T ; X) ≤ cnI+1 and cnI

=
∑nI−1

i=1 log
λnI
λi

1−λi
1−λnI

.

The GIB curve, illustrated in Figure A.1, is continuous and smooth, but is built

of several segments: as I(T ; X) increases additional eigenvectors are used in the pro-

jection. The derivative of the curve, which is equal to β−1, can be easily shown to be

continuous and decreasing, therefore the information curve is concave everywhere, in

agreement with the general concavity of information curve in the discrete case [143, 52].

Unlike the discrete case where concavity proofs rely on the ability to use a large num-

ber of clusters, concavity is guaranteed here also for segments of the curve, where the

number of eigenvectors are limited a-priori.

At each value of I(T ; X) the curve is bounded by a tangent with a slope β−1(I(T ; X)).

Generally in IB, the data processing inequality yields an upper bound on the slope at

the origin, β−1(0) < 1, in GIB we obtain a tighter bound: β−1(0) < 1 − λ1. The

asymptotic slope of the curve is always zero, as β →∞, reflecting the law of diminish-

ing return: adding more bits to the description of X does not provide higher accuracy

about T . This relation between the spectral properties of the covariance matrices raises

interesting questions for special cases where the spectrum can be better characterized,

such as random-walks and self-similar processes.
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6.5 An Iterative Algorithm

The GIB solution is a set of scaled eigenvectors, and as such can be calculated using

standard techniques. For example gradient ascent methods were suggested for learning

CCA [7, 16]. An alternative approach is to use the general iterative algorithm for

IB problems [135]. This algorithm that can be extended to continuous variables and

representations, but its practical application for arbitrary distributions leads to a non-

linear generalized eigenvalue problem whose general solution can be difficult. It is

therefore interesting to explore the form that the iterative algorithm assumes once it

is applied to Gaussian variables. Moreover, it may be possible to later extend this

approach to more general parametric distributions, such as general exponential forms,

for which linear eigenvector methods may no longer be adequate.

The general conditions for the IB stationary points were presented by [135] and can

be written for a continuous variable x by the following self consistent equations for the

unknown distributions p(t|x), p(y|t) and p(t):

p(t) =

∫

X
dx p(x)p(t|x) (6.16)

p(y|t) =
1

p(t)

∫

X
dx p(x, y)p(t|x)

p(t|x) =
p(t)

Z(β)
e−βDKL[p(y|x)|p(y|t)]

where Z(β) is a normalization factor (partition function) and is independent of x. It

is important to realize that those conditions assume nothing about the representation

variable T and should be satisfied by any fixed point of the IB Lagrangian. When X,

Y and T have finite cardinality, those equations can be iterated directly in a Blahut-

Arimoto like algorithm,

p(tk+1|x) =
p(tk)

Zk+1(x,β)
e−βDKL[p(y|x)|p(y|tk)] (6.17)

p(tk+1) =

∫

X
dx p(x)p(tk+1|x)

p(y|tk+1) =
1

p(tk+1)

∫

X
dx p(x, y)p(tk+1|x) .

where each iteration results in a distribution over the variables Tk, X and Y . The second

and third equations calculate p(tk+1) and p(y|tk+1) using standard marginalization,

and the Markov property Y −X − Tk. These iterations were shown to converge to the

optimal T by [135].

For the general continuous T such an iterative algorithm is clearly not feasible. We

show here, how the fact that we are confined to Gaussian distributions, can be used

to turn those equations into an efficient parameter updating algorithm. We conjec-

ture that algorithms for parameters optimizations can be defined also for parametric
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Figure 6.4: The norm of projection on the four eigenvectors of Σx|yΣ
−1
x , as evolves

along the operation of the iterative algorithm. Each line corresponds to the length of
the projection of one row of A on the closest eigenvector. The projection on the other
eigenvectors also vanishes (not shown). β was set to a value that leads to two non
vanishing eigenvectors. The algorithm was repeated 10 times with different random
initialization points, showing that it converges within 20 steps to the correct values αi.

distribution other than Gaussians, such as other exponential distributions that can be

efficiently represented with a small number of parameters.

In the case of Gaussian p(x, y), when p(tk|x) is Gaussian for some k, so are p(tk),

p(y|tk) and p(tk+1|x). In other words, the set of Gaussians p(t|x) is invariant under

the above iterations. To see why this is true, notice that p(y|tk) is Gaussian since

Tk is jointly Gaussian with X. Also, p(tk+1|x) is Gaussian since DKL[p(y|x)|p(y|tk)]
between two Gaussians contains only second order moments in y and t and thus its

exponential is Gaussian. This is in agreement with the general fact that the optima

(which are fixed points of 6.17) are Gaussian [57]. This invariance allows us to turn the

IB algorithm that iterates over distributions, into an algorithm that iterates over the

parameters of the distributions, being the relevant degrees of freedom in the problem.

Denote the variable T at time k by Tk = AkX + ξk, where ξk ∼ N (0,Σξk
). The

parameters A and Σ at time k + 1 can be obtained by substituting Tk in the iterative

IB equations. As shown in Appendix A.3.5, this yields the following update equations

Σξk+1
=

(

βΣ−1
tk|y

− (β − 1)Σ−1
tk

)−1
(6.18)

Ak+1 = βΣξk+1
Σ−1

tk|y
Ak

(

I − Σy|xΣ
−1
x

)

where Σtk|y,Σtk are the covariance matrices calculated for the variable Tk.

This algorithm can be interpreted as repeated projection of Ak on the matrix

I − Σy|xΣ
−1
x (whose eigenvectors we seek) followed by scaling with βΣξk+1

Σ−1
tk|y

. It
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thus has similar form to the power method for calculating the dominant eigenvectors of

the matrix Σy|xΣ
−1
x [35, 58]. However, unlike the naive power method, where only the

single dominant eigenvector is preserved, the GIB iterative algorithm maintains several

different eigenvectors, and their number is determined by the continuous parameter β

and emerges from the iterations: All eigenvectors whose eigenvalues are smaller than

the critical β vanish to zero, while the rest are properly scaled. This is similar to

an extension of the naive power method known as Orthogonal Iteration, in which the

projected vectors are renormalized to maintain several non vanishing vectors [74].

Figure 6.4 demonstrates the operation of the iterative algorithm for a four dimen-

sional X and Y . The tradeoff parameter β was set to a value that leads to two vanishing

eigenvectors. The norm of the other two eigenvectors converges to the correct values,

which are given in Theorem 6.2.1.

The iterative algorithm can also be interpreted as a regression of X on T via Y .

This can be seen by writing the update equation for Ak+1 as

Ak+1 = Σξk+1
Σ−1

tk|y

(

ΣytkΣ
−1
y

) (

ΣyxΣ
−1
x

)

. (6.19)

Since ΣyxΣ−1
x describes the optimal linear regressor of X on Y , the operation of Ak+1

on X can be described by the following diagram

X
ΣyxΣ−1

x−−−−−→ µy|x
Σytk

Σ−1
y−−−−−→ µtk|µy|x

Σξk+1
Σ−1

tk|y−−−−−−−→ Tk+1 (6.20)

where the last step scales and normalizes T .

6.6 Relation To Other Works

6.6.1 Canonical Correlation Analysis and Imax

The GIB projection derived above uses weighted eigenvectors of the matrix Σx|yΣ
−1
x =

I−ΣxyΣ−1
y ΣyxΣ−1

x . Such eigenvectors are also used in Canonical correlations Analysis

(CCA) [69, 134, 15], a method of descriptive statistics that finds linear relations between

two variables. Given two variables X, Y , CCA finds a set of basis vectors for each

variable, such that the correlation coefficient between the projection of the variables

on the basis vectors is maximized. In other words, it finds the bases in which the

correlation matrix is diagonal and the correlations on the diagonal are maximized.

The bases are the eigenvectors of the matrices Σ−1
y ΣyxΣ−1

x Σxy and Σ−1
x ΣxyΣ−1

y Σyx,

and the square roots of their corresponding eigenvalues are the canonical correlation

coefficients. CCA was also shown to be a special case of continuous Imax [8, 7], when

the Imax networks are limited to linear projections.

Although GIB and CCA involve the spectral analysis of the same matrices, they

have some inherent differences. First of all, GIB characterizes not only the eigenvectors

but also their norm, in a way that that depends on the trade-off parameter β. Since
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CCA depends on the correlation coefficient between the compressed (projected) versions

of X and Y , which is a normalized measure of correlation, it is invariant to a rescaling

of the projection vectors. In contrast, for any value of β, GIB will choose one particular

rescaling given by theorem 6.2.1.

While CCA is symmetric (in the sense that both X and Y are projected), IB is non

symmetric and only the X variable is compressed. It is therefore interesting that both

GIB and CCA use the same eigenvectors for the projection of X.

6.6.2 Multiterminal Information Theory

The Information Bottleneck formalism was recently shown [52] to be closely related to

the problem of source coding with side information [143]. In the latter, two discrete

variables X, Y are encoded separately at rates Rx, Ry, and the aim is to use them to

perfectly reconstruct Y . The bounds on the achievable rates in this case were found in

[143] and can be obtained from the IB information curve.

When considering continuous variables, lossless compression at finite rates is no

longer possible. Thus, mutual information for continuous variables is no longer inter-

pretable in terms of the actual number of encoding bits, but rather serves as an optimal

measure of information between variables. The IB formalism, although coinciding with

coding theorems in the discrete case, is more general in the sense that it reflects the

tradeoff between compression and information preservation, and is not concerned with

exact reconstruction.

Lossy reconstruction can be considered by introducing distortion measures as done

for source coding of Gaussians with side information by [144] and by [13] [see also

111], but these focus on the region of achievable rates under constrained distortion

and are not relevant for the question of finding the representations which capture the

information between the variables. Among these, the formalism closest to ours is that

of [13] where the distortion in reconstructing X is assumed to be small (high-resolution

scenario). However, their results refer to encoding rates and as such go to infinity as the

distortion goes to zero. They also analyze the problem for scalar Gaussian variables,

but the one-dimensional setting does not reveal the interesting spectral properties and

phase transitions which appear only in the multidimensional case discussed here.

6.6.3 Gaussian IB with Side Information

When handling real world data, the relevance variable Y often contains multiple struc-

tures that are correlated to X, although many of them are actually irrelevant. The

information bottleneck with side information (IBSI) [25] alleviates this problem using

side information in the form of an irrelevance variable Y − about which information is

removed. IBSI thus aims to minimize

L = I(X; T )− β
(

I(T ; Y +)− γI(T ; Y −)
)

(6.21)
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This formulation can also be extended to the Gaussian case, in a manner similar to

the original GIB functional. Looking at its derivative w.r.t. to the projection A yields

δL
δA

= ( 1− β + βγ )(AΣxAT + Id)
−12AΣx

+ β (AΣx|y+AT + Id)
−12AΣx|y+

− βγ (AΣx|y−AT + Id)
−12AΣx|y− .

While GIB relates to an eigenvalue problem of the form λA = AΣx|yΣ
−1
x , GIB with

side information (GIBSI) requires to solve of a matrix equation of the form λ′A +

λ+AΣx|y+Σ−1
x = λ−AΣx|y−Σ−1

x , which is similar in form to a generalized eigenvalue

problem. However, unlike standard generalized eigenvalue problems, but as in the GIB

case analyzed in this chapter, the eigenvalues themselves depend on the projection A.

6.7 Practical Implications

The GIB approach can be viewed as a method for finding the best linear projection of

X, under a constraint on I(T ; X). Another straightforward way to limit the complexity

of the projection is to specify its dimension in advance. Such an approach leaves open

the question of the relative weighting of the resulting eigenvectors. This is the approach

taken in classical CCA, where the number of eigenvectors is determined according to a

statistical significance test, and their weights are then set to
√

1− λi. This expression

is the correlation coefficient between the ith CCA projections on X and Y , and reflects

the amount of correlation captured by the ith projection. The GIB weighting scheme is

different, since it is derived to preserve maximum information under the compression

constraint. To illustrate the difference, consider the case where β = 1
1−λ3

, so that

only two eigenvectors are used by GIB. The CCA scaling in this case is
√

1− λ1, and√
1− λ2. The GIB weights are (up to a constant) α1 =

√

λ3−λ1
λ1r1

,α2 =
√

λ3−λ2
λ2r2

,, which

emphasizes large gaps in the eigenspectrum, and can be very different from the CCA

scaling.

This difference between CCA scaling and GIB scaling may have implications on

two aspects of learning in practical applications. First, in applications involving com-

pression of Gaussian signals due to limitation on available band-width. This is the case

in the growing field of sensor networks in which sensors are often very limited in their

communication bandwidth due to energy constraints. In these networks, sensors com-

municate with other sensors and transmit information about their local measurements.

For example, sensors can be used to monitor chemicals’ concentrations, temperature

or light conditions. Since only few bits can be transmitted, the information has to

be compressed in a relevant way, and the relative scaling of the different eigenvectors

becomes important [as in transform coding 62]. As shown above, GIB describes the

optimal transformation of the raw data into information conserving representation.
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The second aspect where GIB becomes useful is in interpretation of data. Today,

canonical correlation analysis is widely used for finding relations between multi-variate

continuous variables, in particular in domains which are inherently high dimensional

such as meteorology [139] chemometrics [3] and functional MRI of brains [45]. Since

GIB weights the eigenvectors of the normalized cross correlation matrix in a different

way than CCA, it may lead to very different interpretation of the relative importance

of factors in these studies.

6.8 Discussion

We applied the information bottleneck method to continuous jointly Gaussian vari-

ables X and Y , with a continuous representation of the compressed variable T . We

derived an analytic optimal solution as well as a new general algorithm for this problem

(GIB) which is based solely on the spectral properties of the covariance matrices in the

problem. The solutions for GIB are characterized in terms of the trade-off parameter

β between compression and preserved relevant information, and consist of eigenvec-

tors of the matrix Σx|yΣ
−1
x , continuously adding up vectors as more complex models

are allowed. We provide an analytic characterization of the optimal tradeoff between

the representation complexity and accuracy - the “information curve” - which relates

the spectrum to relevant information in an intriguing manner. Besides its clean ana-

lytic structure, GIB offers a way for analyzing empirical multivariate data when only

its correlation matrices can be estimated. In that case it extends and provides new

information theoretic insight to the classical Canonical Correlation Analysis.

The most intriguing aspect of GIB is in the way the dimensionality of the representa-

tion changes with increasing complexity and accuracy, through the continuous value of

the trade-off parameter β. While both mutual information values vary continuously on

the smooth information curve, the dimensionality of the optimal projection T increases

discontinuously through a cascade of structural (second order) phase transitions, and

the optimal curve moves from one analytic segment to another. While this transition

cascade is similar to the bifurcations observed in the application of IB to clustering

through deterministic annealing, this is the first time such dimensional transitions are

shown to exist in this context. The ability to deal with all possible dimensions in

a single algorithm is a novel advantage of this approach compared to similar linear

statistical techniques as CCA and other regression and association methods.

Interestingly, we show how the general IB algorithm which iterates over distribu-

tions, can be transformed to an algorithm that performs iterations over the distribu-

tions’ parameters. This algorithm, similar to multi-eigenvector power methods, con-

verges to a solution in which the number of eigenvectors is determined by the parameter

β, in a way that emerges from the iterations rather than defined a-priori.

For multinomial variables, the IB framework can be shown to be related in some
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limiting cases to maximum-likelihood estimation in a latent variable model [130]. It

would be interesting to see whether the GIB-CCA equivalence can be extended and

give a more general understanding of the relation between IB and statistical latent

variable models.

While the restriction to a Gaussian joint distribution deviates from the more gen-

eral distribution independent approach of IB, it provides a precise example to the way

representations with different dimensions can appear in the more general case. We

believe that this type of dimensionality-transitions appears for more general distribu-

tions, as can be revealed in some cases by applying the Laplace method of integration

(a Gaussian approximation) to the integrals in the general IB algorithm for continuous

T .

The more general exponential forms, can be considered as a kernelized version of IB

[see 92] and appear in other minimum-information methods [such as SDR, 56]. these

are of particular interest here, as they behave like Gaussian distributions in the joint

kernel space. The Kernel Fisher-matrix in this case will take the role of the original

cross covariance matrix of the variables in GIB.

Another interesting extension of our work is to networks of Gaussian processes.

A general framework for that problem was developed in [44] and applied for discrete

variables. In this framework the mutual information is replaced by multi-information,

and the dependencies of the compressed and relevance variables are specified through

two Graphical models. It is interesting to explore the effects of dimensionality changes

in this more general framework, to study how they induce topological transitions in the

related graphical models, as some edges of the graphs become important only beyond

corresponding critical values of the tradeoff parameter β.
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Chapter 7

Discussion and Concluding

Remarks

Information theory offers an elegant and systematic approach to analyzing the informa-

tion one variable conveys about the other. As such, it is not surprising that it has made

a significant impact on fields like machine learning and neural coding. However, due to

its very general scope, it has not been straightforward to turn it into a practical tool in

these fields. The current dissertation advances the use of information theory in these

fields by combining its use with the notion of partial measurements. In the previous

chapters we presented several methods which show how information may be efficiently

measured in various scenarios that have not been addressed by existing methods. This

idea was shown to result in a novel classification algorithm, and to aid in the analysis of

the neural code. The SDR method, which combines maximization and minimization of

information, was shown to yield excellent practical results in extracting useful features

from large databases. Finally, by analyzing the information theoretic tradeoff between

complexity and accuracy via the Gaussian Information Bottleneck, we have obtained

insight into the emergence of dimensionality in the representation of data.

It will be interesting to see if the insight obtained in the GIB analysis may be trans-

ferred to SDR-like methods. Since Gaussian distributions have an exponential form, as

do the SDR models, it seems like there could be a formalism which incorporates these

two approaches. However, since SDR is not a clustering method like the Information

Bottleneck, this would require a novel information theoretic notion of compression in

the SDR case, which is yet to be found. One option could involve the number of bits

needed to specify the SDR function, or a related measure of complexity.

The MinMI method is specifically designed to handle multivariate scenarios (e.g.,

a population of neurons), and approximate algorithms were presented for such cases.

The SDR method, on the other hand, assumes that the size of X is small enough, since

O(|X|) computational resources are needed to run it. This results from focusing on

features !φ(x) which depend on all of X. SDR can be modified to look for features
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of subsets of X, i.e. φ(xi) or φ(xi, xj). This should allow practical algorithms for

the multivariate case, and will make the method applicable to tasks such as language

modeling [89].

The methods presented here have used the mutual information between two vari-

ables X and Y 1. While this partition into two variables is appropriate in many cases,

one may sometimes be interested in the dependence between larger sets of variables.

The measure which generalizes mutual information to such cases is known as the multi-

information [131]. It will be interesting to consider generalizations of the methods

presented here to this more general case. These could potentially be used to study

information flow in networks, and to find features of the network that govern this flow.

A relevant recent work in that respect is the extension of the Information Bottleneck

method to multi-information [44]. We expect some of the concepts introduced there to

be applicable to the methods in this thesis.

MinMI was shown to apply to a wide range of issues in neural coding, from single

and pairwise coding, to coding in the temporal domain. The long term goal of such a

method is of course to aid in discovering new neural coding mechanisms. We briefly

mention a few areas of research where the application of MinMI may be particularly

appropriate.

• Redundancy reduction - The concept of redundancy reduction in the brain was

introduced by Barlow [4] as a possible cortical design principle, and has been an

influential paradigm in brain research. A recent work [23] quantified redundancy

along the auditory pathway, and has found that it is indeed reduced. As illus-

trated in Chapter 3, MinMI can be used to quantify the difference in redundancy

between populations, and is thus an attractive tool in studying such problems.

The measure used in [23] assumed conditional independence between neurons.

Since MinMI does not make any such assumptions, it may result in a more sen-

sitive measure. This should especially be true for large populations where the

conditional independence assumption results in a saturation of the information

values.

• Pairwise coding in populations - The study of coding via correlations in cells

has been a very active field of research in neuroscience [100, 65, 137]. However,

most studies focused on analysis of isolated pairs, without taking into account

the relations between pairwise codes in the population (see [113, 104] for ap-

proaches which do address this case). MinMI appears to be an appropriate tool

for measuring information in this scenario, and should be a valuable instrument

for addressing this problem in analyzing experimental data.

• Temporal Coding - As shown in Chapter 3, MinMI can find a significant number

1Note that this does not limit X itself from being multivariate.
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of cells which use response profiles to encode stimulus values. This result has

already been demonstrated on neuro-physiological data from different domains

and cortical areas (ongoing work, not shown here). One immediate implication

of this analysis is that it increases the size of the population of neurons which

participate in coding, and could thus help in uncovering phenomena in which a

relatively small number of neurons participate. Furthermore, we expect it will

be helpful in understanding what time constants in the neuronal responses are

relevant for decoding stimulus values.

• Precise firing events - There is an ongoing debate in neuroscience regarding the

importance of precise firing times, and correlation between neurons in small time

windows (see e.g., [1, 31]). While we did not address this issue in the neural

coding applications, MinMI could be adapted to this case by considering partial

measurements related to precise timing (such as the mean number of coincident

spikes in a short time window). This, as in the cases mentioned above, will help

in studying this property when embedded in a population of cells.

As noted earlier, the MinMI method is closely related to the classical Rate Distor-

tion Theory. However, MinMI minimizes information subject to a set of expectation

constraints on a distribution, as opposed to the distortion constraints in rate distortion

theory. Thus, although some results may carry over from the information theoretic

literature, several new and interesting problems arise. One example is the algorithmic

challenges which one faces due to the possibly exponentials size of the X variable. It

will be interesting to study the information theoretic implications of MinMI. In other

words, find a communication problem to which MinMI is the answer.

The methods throughout this thesis made frequent use of concepts from both the

machine learning literature (such as classification error and feature extraction) and from

information theory. While this is not the first use of information theory in machine

learning, it does provide several novel connections between these two fields, among

which are an information theoretic interpretation of dimension in feature extraction

(as in GIB), and of matrix factorization (as in SDR). We would like to hope this will

stimulate research in the interface between these two important fields, in a mutually

beneficial manner.
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Appendix A

Proofs

In the current appendix, we provide proofs of various propositions given in the text.

A.1 MinMI Results

A.1.1 Convergence Proof for the MinMI Algorithm

Since pt+1(x|y) is the projection of pt(x) on F(!φ(x),!a(y)) and pt(x|y) is also in F(!φ(x),!a(y)),

by the definition of the previous iteration, we have by the Pythagorean equality for I-

projections (see Section 1.4 and [30]) that

DKL[pt(x|y)|pt(x)] = DKL[pt(x|y)|pt+1(x|y)]

+DKL[pt+1(x|y)|pt(x)] .

Averaging the above over p̄(y) and rearranging

I[pt(x, y)] = 〈DKL[pt(x|y)|pt+1(x|y)]〉p̄(y) +

+I[pt+1(x, y)] + DKL[pt+1(x)|pt(x)] .

The right hand side has I[pt+1(x, y)] plus some positive quantity. We can thus conclude

that

I[pt+1(x, y)] ≤ I[pt(x, y)] , (A.1)

and therefore the algorithm reduces the mutual information in each iteration.

To see that the algorithm indeed converges to the minimum, note that since I[pt(x, y)]

is a monotonous, lower bounded, decreasing series, its difference series converges to zero

as t goes to infinity

〈DKL[pt(x|y)|pt+1(x|y)]〉p̄(y) + DKL[pt+1(x)|pt(x)] → 0 .

The above expression is zero if and only if pt(x|y) = pt+1(x|y) and pt(x) = pt+1(x).

This implies that at the limit p∞(x) and p∞(x|y) are invariant to the MinMI iterations,

and thus the fixed point equations characterizing the minimum of the information in

Equation 2.6 are satisfied by p∞(x, y) so that p∞(x, y) = pMI(x, y)
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A.1.2 Convex Duality

Convex optimization problems have a special role in the optimization literature, due

to the effectiveness with which they can be solved (see [26] for details). Additionally,

convex duality theorems state that every convex problem has a dual problem with an

identical optimum. We shall use this property in what follows. Below we give a very

brief introduction to convex duality. We begin with some definitions

Definition 1 A function f(x) is convex if for every x1, x2 in its domain and 0 ≤ λ ≤ 1

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2) . (A.2)

A convex optimization problem is a constrained optimization problem where the

optimized function is convex, and constrained functions are also convex 1. Formally,

let x be a variable in &n, f0(x), . . . , fm(x) a set of convex functions, A a p× n matrix,

and b a vector of size p. We consider the following constrained minimization problem

minimize f0(x)
subject to fi(x) ≤ 0 i = 1 . . . m

Ax = b
, (A.3)

A common method for approaching constrained optimization is by constructing the

Lagrangian function, defined by

L(x,λ, ν) = f0(x) +
∑

i

λifi(x) + νT (Ax− b) , (A.4)

where λi ≥ 0, νi are parameters referred to as Lagrange multipliers. The vectors λ, ν

are referred to as the dual variables associated with problem A.3. It can be shown that

the set of values (x∗,λ∗, ν∗) minimizing L(x,λ, ν) yield the optimal x∗.

Following [26] (page 216) we define the Lagrange dual function g : &m,&p → & as

the minimum value of the Lagrangian over x for a given value of the multipliers λ, ν

g(λ, ν) = inf
x
L(x,λ, ν) . (A.5)

It can be shown that g(λ, ν) lower bounds the value of f0(x) for any feasible x, and

λ ≥ 0. Thus maximization of g(λ, ν) is guaranteed to give a lower bound on the

optimum of problem A.3. In fact, in most cases the maximum of g(λ, ν) achieves the

minimum of problem A.3. This is known as strong duality. A simple condition which

guarantees strong duality is Slater’s condition. It states that if there exists a strictly

feasible value of x, i.e. fi(x) < 0 i = 1 . . .m (note the strict inequality) then strong

duality holds. Formally, define c∗ as the minimum value of problem A.3, then under

Slater’s condition the following holds:

max
λ≥0,ν

g(λ, ν) = c∗ . (A.6)

1More generally, these are problems where the constraints are given by a convex set, but here, as
in [26], we focus on this more restricted setting
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The problem maxλ≥0,ν g(λ, ν) is known as the dual problem of problem A.3. This is a

very useful result since often the dual problem is more easily solved than the primal

one. Furthermore, the dual problem may yield an insight into the solution of the primal

problem, as will be shown later.

Although the dual problem seems to be unconstrained (aside from positivity of λ),

it is often written as a constrained problem, as we now explain. In many cases, the

function g(λ, ν) takes the value −∞ for a set of dual parameter values. Thus it can be

written as

g(λ, ν) =
{ ḡ(λ, ν) (λ, ν) ∈ Fdual

−∞ (λ, ν) /∈ Fdual
, (A.7)

where g̃(λ, ν) are the non infinite minima, and Fdual is a set in the domain of (λ, ν).

The dual problem can then be written as

maximize g̃(λ, ν)
subject to (λ, ν) ∈ Fdual

. (A.8)

The set Fdual is often convex, and thus the dual problem is also a constrained convex

optimization problem.

Finally, we mention another useful result, which relates the primal and dual opti-

mal assignments, rather than their optimal values. The dual parameters λ∗, ν∗ which

maximize the dual problem can be shown to be those which minimize the Lagrangian

in Equation A.4 (see [26] page 248). Thus, if the primal optimum x∗ is characterized

in terms of its Lagrange multipliers (as in the Maximum Entropy case), then the dual

solution can be used to obtain it 2.

A.1.3 Convex Duality for MinMI

Our convex duality proof is different from standard duality derivations, due to some

non-trivial properties of the current problem. We borrow on ideas used in Gallager’s

(see [46], page 462), and Chiang and Boyd [26].

The Lagrangian for the primal problem is

L(p, !ψ(y), γ(y),λxy) = I[p̂(x, y)]−
∑

y

p̄(y)!ψ(y) ·
(

∑

x

p̂(x|y)!φ(x)− !a(y)

)

−
∑

y

p̄(y)γ(y)

(

∑

x

p̂(x|y)− 1

)

−
∑

x,y

p̄(y)λxyp̂(x|y) ,

where we multiplied all dual parameters (or Lagrange multipliers) by p̄(y) for con-

venience. The dual function is defined as:

g(!ψ(y), γ(y),λxy) = min
p̂(x|y)

L(p, !ψ(y), γ(y),λxy) . (A.9)

2This theorem requires some additional technical details such as strict convexity and strong duality,
which hold in the cases we consider.
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Deriving w.r.t p̂(x|y) and equating to zero we obtain

log p̂(x|y)− log p̂(x)− !φ(x) · !ψ(y)− γ(y)− λxy = 0 . (A.10)

Thus the minimizing p̂(x|y) depends on the dual parameters in the following way

p̂(x|y) = p̂(x)e
!φ(x)·!ψ(y)+γ(y)+λxy . (A.11)

Plugging this back in to get g(λ) we have

g(!ψ(y), γ(y),λxy) =
∑

y

p̄(y)
∑

x

p̂(x|y)
(

!φ(x) · !ψ(y) + γ(y) + λxy

)

−
∑

y

p̄(y)!ψ(y) ·
(

∑

x

p̂(x|y)!φ(x)− !a(y)

)

−
∑

y

p̄(y)γ(y)

(

∑

x

p̂(x, y)− 1

)

−
∑

x,y

p̄(y)λxyp̂(x, y)

=
∑

y

p̄(y)
(

!ψ(y) · !a(y) + γ(y)
)

.

Although it seems as if we are done, this is not the case. Note that Equation A.11

is not a closed form solution for p̂(x|y) in the sense that its right hand side contains

p̂(x) =
∑

y p̂(x|y)p̄(y) which depends on p̂(x|y). Thus, given the values of the dual

parameters, we cannot calculate p̂(x|y). This should lead us to suspect that the value

we obtained for g(!ψ(y), γ(y),λxy) may not be valid for all values of dual parameters,

because in some cases the minimizing p̂(x|y) will be infinite and will not be revealed

when setting the derivative to zero. While these infinite minimizers cannot be the

solution to the primal problem (since they do not satisfy the normalization condition),

we need to make sure we do not consider their corresponding dual parameters when

maximizing g(!ψ(y), γ(y),λxy). We call these parameters bad, and those yielding a finite

minimizer good. It is easy to see that such bad parameters exist: multiply Equation

A.11 by p̄(y) and sum over all values of y. This yields

p̂(x) = p̂(x)
∑

y

p̄(y)e
!ψ(y)!φ(x)+γ(y)+λxy . (A.12)

Now, assuming p̂(x) ,= 0 (this is not a valid assumption but we use it to illustrate the

point) we may divide by it to obtain

∑

y

p̄(y)e
!ψ(y)!φ(x)+γ(y)+λxy = 1 , (A.13)

which, by the non-negativity of λxy becomes

∑

y

p̄(y)e
!ψ(y)!φ(x)+γ(y) ≤ 1 . (A.14)
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Thus we have a necessary condition characterizing the good dual parameters. This

statement however is not yet precise, since we have ignored the p̂(x) = 0 case. Our

strategy in what follows is: find a set which contains all good dual parameters (Propo-

sition 1), although it may also contain some bad ones. Then show that the value of

g(!ψ(y), γ(y),λxy) for dual parameters in this set still lower bounds the primal problem

(Proposition 2) , and therefore we lose nothing by considering the extra bad values.

We begin with a necessary condition for a set dual parameters to be good.

Proposition 1 If a dual parameter set is good, then
∑

y p̄(y)e
!ψ(y)!φ(x)+γ(y) ≤ 1 for all

x values.

Proof: The proof follows the arguments used in Gallager’s proof (see [46], page 462) in

analyzing the rate distortion function. Denote by p(x|y) the minimizer of Equation A.9

for a given set of dual parameters. If there is no x such that p(x) = 0, the argument in

the previous paragraph holds, and Equation A.14 then shows that the required condition

holds. Now, assume that there exist an x̂ such that p(x̂) = 0. We will show that the

Equation A.14 holds for this x̂. For every y there must exist x̂(y) such that p(x̂(y)|y)

is finite, and thus achieves a zero gradient.

We now define a new distribution p′(x|y) using the minimizer p(x|y). For a small

ε > 0 define

p′(x̂|y) = ε · e!ψ(y)!φ(x)+γ(y)+λx̂(y)y ∀y

p′(x̂(y)|y) = p(x̂(y)|y)− p′(x̂|y) ∀y

p′(x|y) = p(x|y) ∀y, x ,= x̂(y) .

If ε is small enough then the above will be a valid conditional distribution for all y.

Define Lx(!ψ(y), γ(y),λxy) as the part of the Lagrangian that depends on x, namely (we

ignore factors which do not depend on p(x|y) and suppress the dependency on the dual

parameters for brevity)

Lx(p) =
∑

y

p̄(y)p(x|y)

[

log
p(x|y)

p(x)
− !φ(x) · !ψ(y)− γ(y)− λxy

]

. (A.15)

Note that L(p) =
∑

x Lx(p) (again, up to constants which do not depend on p(x|y)).

Then

L(p′)− L(p) = Lx̂(p′)− Lx̂(p) +
∑

x.=x̂

[Lx(p′)− Lx(p)] = Lx̂(p′) +
∑

x.=x̂

[Lx(p′)− Lx(p)] ,

where we have used the fact that p(x̂|y) is zero for all y since p(x̂) = 0. Since ∂Lx(p)
∂p(x̂(y)|y) =

0, the sum over x ,= x̂ in Equation A.16 has no first-order variation in ε, so that to

first order in ε
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L(p′)− L(p) =
∑

y

p̄(y)p(x̂|y) log
ε

∑

y p̄(y)p′(x̂|y)

=
∑

y

p̄(y)p(x̂|y) log
1

∑

ŷ p̄(ŷ)e!ψ(ŷ)!φ(x)+γ(ŷ)

= −c · log
∑

ŷ

p̄(ŷ)e
!ψ(ŷ)!φ(x)+γ(ŷ) ,

where c ≡
∑

y p̄(y)p(x̂|y) is some positive constant. Since p(x|y) minimizes L(p), the

above expression must be negative, implying that
∑

ŷ

p̄(ŷ)e
!ψ(ŷ)!φ(x)+γ(ŷ) ≤ 1 . (A.16)

This is the condition we set out to prove.

The above proposition implies that we lose nothing by restricting the set of dual

parameters to those satisfying the given constraints. That is, the optimal set of dual

parameters is contained in this constrained set. However, it may still be that a set of

parameters satisfies the above constraint, but is not a valid minimizer of Equation A.9.

Although this may be possible, the following proposition implies that the value of g in

that case is always below the optimal value of the primal problem, and thus duality is

conserved.

Proposition 2 For every primal feasible distribution p̂(x|y) ∈ F(!φ(x),!a(y)) and set

of dual parameters which satisfy the conditions in Proposition 1, the following holds:

I[p] ≥ g(!ψ(y), γ(y),λxy)

Proof: We look at the difference I[p]− g(!ψ(y), γ(y),λxy)

I[p]− g(!ψ(y), γ(y),λxy) =
∑

x,y

p̄(y)p̂(x|y) log
p̂(x|y)

p̂(x)
−
∑

y

(!ψ(y)!a(y) + γ(y))

=
∑

x,y

p̄(y)p̂(x|y) log
p̂(x|y)

p̂(x)
−
∑

y

(!ψ(y)
∑

x

!φ(x)p̂(x|y) + γ(y))

=
∑

x,y

p̄(y)p̂(x|y) log
p̂(x|y)

p̂(x)
−
∑

x,y

p̄(y)p̂(x|y)(!ψ(y)!φ(x) + γ(y))

=
∑

x,y

p(y)p(x|y) log
p(x|y)

p(x)e!ψ(y)!φ(x)+γ(y)
.

Now use the inequality log x ≤ x− 1.

g(!ψ(y), γ(y),λxy)− I[p] =
∑

x,y

p̄(y)p̂(x|y) log
p̂(x)e

!ψ(y)!φ(x)+γ(y)

p̂(x|y)

≤
∑

x,y

p̄(y)(p̂(x)e
!ψ(y)!φ(x)+γ(y) − 1)

= 0 .
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Putting it all together, we have the following: Any dual parameter set which satisfies

the constraints in Proposition 1 lower bounds I[p] for any feasible primal parameters.

Furthermore the optimal dual parameters satisfy the constraints of Proposition 1 (since

they are minimizers of Equation A.9). Since convex duality guarantees that the maxi-

mum of g(!ψ(y), γ(y),λxy) coincides with the minimum of the primal problem, we have

the desired result 3.

MinMI with Inequality Expectation Constraints

Here we briefly cover some results for the MinMI problem where the expectations

may lie in the range !a(y) ± !β(y). The Lagrangian in this case needs to include two

multipliers: !ψ+(y) for the inequality 〈!φ(x)〉p̂(x|y) ≤ !a(y) + !β(y) and !ψ−(y) for the

inequality 〈!φ(x)〉p̂(x|y) ≥ !a(y)− !β(y).

The Lagrangian is then (after some algebra)

L(p, !ψ(y), γ(y),λxy) = I[p̂(x, y)] +
∑

y

p̄(y)(!ψ+(y)− !ψ−(y)) ·
(

∑

x

p̂(x|y)!φ(x)− !a(y)

)

−
∑

y

!β(y) · (!ψ+(y) + !ψ−(y))−
∑

y

p̄(y)γ(y)

(

∑

x

p̂(x|y)− 1

)

−
∑

x,y

p̄(y)λxyp̂(x|y) ,

Deriving this w.r.t. p̂(x|y) and defining !ψ(y) ≡ !ψ+(y)− !ψ−(y) yields the same form

of solution as in the standard MinMI case (although with different constraints).

To derive the dual, we substitute the minimizing p̂(x|y) into the Lagrangian, yielding

g(!ψ+(y), !ψ−(y), γ(y),λxy) =
∑

y

p̄(y)
(

(!ψ+(y)− !ψ−(y)) · !a(y) + γ(y)− !β(y) · (!ψ+(y) + !ψ−(y))
)

To simplify this function, we use a trick from [41]. We claim that the maximum

of g is obtained with at most one of the multipliers !ψ+(y), !ψ−(y) being non zero for

all values of y. To see this, assume we have a y where both are non zero. Then we

can decrease them both by the same amount, until the lower one becomes zero. We

have not changed the term depending on !ψ+(y) − !ψ−(y), but have decreased the one

depending on !ψ+(y) + !ψ−(y) thus yielding a higher value of g 4.

3This of course is true only when Slater’s condition holds. As long as the expected values are
obtained from some empirical data, Slater’s condition will hold, as explained in the footnote in Section
1.4.1 regarding duality in MaxEnt

4To make this argument exact, one needs to show that this decrease in values does not change the
dual feasibility of the parameters. This is in fact true since the dual constraints can be shown only to
depend on "ψ+(y) − "ψ−(y)
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Using the above insight and defining !ψ(y) ≡ !ψ+(y)− !ψ−(y), we obtain the following

expression for the dual function:

g(!ψ(y), !ψ(y), γ(y),λxy) =
∑

y

p̄(y)
(

!ψ(y) · !a(y) + γ(y)− !β(y)|!ψ(y)|
)

.

The rest of the duality proof is very similar to the one for the standard case. The main

difference is in Proposition 2, where the difference g(!ψ(y), γ(y),λxy)− I[p] turns out to

be
∑

y p̄(y)|!ψ(y)|(−|β(y)| + β(y)) which again is zero since !β(y) is positive.

A.1.4 Minimax Theorem for MinMI

We first bound the max expression from below. For any f(y|x) satisfying the sub

normalization constraint
∑

y f(y|x) ≤ 1 the following holds

max
p̂(x,y)∈P(!a)

−〈log f(y|x)〉p̂(x,y) ≥ −〈log f(y|x)〉pMI(x,y) ≥ −〈log fMI(y|x)〉pMI(x,y) = H[pMI(y|x)] .

(A.17)

The first inequality follows since pMI(x, y) ∈ Px|y

(

!φ(x),!a(y), p̄(y)
)

. The second is an

information inequality for unnormalized distribution proved in Proposition 3 below.

The equality is since fMI(y|x) = pMI(y|x) when pMI(x) > 0.

We now have a lower bound on the result of the minmax. To see that fMI(y|x)

achieves it, note that for every p̂(x, y) ∈ Px|y

(

!φ(x),!a(y), p̄(y)
)

−〈log fMI(y|x)〉p̂(x,y) = H[pMI(y|x)] (A.18)

The function fMI(y|x) thus achieves a value for the expression in the max which is the

minimum possible for this maximization, by the previous bound. Thus fMI(y|x) is the

solution to the given minmax problem.

Proposition 3 Let f(y|x) be a subnormalized function. Then

〈log fMI(y|x)〉pMI(x,y) ≤ 〈log f(y|x)〉pMI(x,y) (A.19)

Proof:

〈log fMI(y|x)〉pMI(x,y) − 〈log f(y|x)〉pMI(x,y) = 〈log fMI(y|x)

f(y|x)
〉pMI(x,y) (A.20)

We can limit the above expectation to values of x where pMI(x, y) ,= 0. In these points

fMI(y|x) is normalized to one, and we can write pMI(y|x) instead. We thus have

〈log pMI(y|x)

f(y|x)
〉pMI(x,y) = 〈log pMI(y|x)

fN (y|x)
〉pMI(x,y) − 〈log a(x)〉pMI(x)

= 〈DKL[pMI(y|x)|fN (y|x)]〉pMI(x) − 〈log a(x)〉pMI(x)

where fN (y|x) is the normalized version of f(y|x) and a(x) is the normalization factor.

Note that since f(y|x) normalized to less than 1, we have a(x) ≤ 1, and thus the

expression is positive.
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A.2 SDR-SI Results

A.2.1 Deriving the Gradient of the Joint Entropy

To calculate the gradient of the entropy H[p̂φ(x, y)], we first prove three useful proper-

ties of the distribution p̂φ. Since p̂φ is in P(!φ(x), p̄), it satisfies the marginal constraints:

p̂φ(x) =
∑

y′ p̂φ(x, y′) = p̄(x) , p̂φ(y) =
∑

x′ p̂φ(x′, y) = p̄(y), as well as the expectation

constraints
∑

x′
!φ(x′)(p̂φ(x′, y)− p̄(x′, y)) = 0. Deriving the three constraints equations

w.r.t. !φ(x) yields

∑

y′

∂p̂φ(x, y′)

∂φ(x)
= 0;

∑

x′

∂p̂φ(x′, y)

∂φ(x)
= 0 (A.21)

for the marginal constrains, and

p̂φ(x, y)− p̄(x, y) +
∑

x′

φ(x′)
∂p̂φ(x′, y)

∂φ(x)
= 0 (A.22)

for the expectation constraints.

The derivative of the entropy can now be written as

∂H[p̂φ]

∂!φ(x)
= −

∑

x′,y′

∂p̂φ(x′, y′)

∂!φ(x)
(A.23)

−
∑

x′,y′

∂p̂φ(x′, y′)

∂!φ(x)
log p̂φ(x

′, y′)

= −
∑

x′,y′

∂p̂φ(x′, y′)

∂!φ(x)
log p̂φ(x

′, y′) ,

where the last equality stems from the vanishing derivative of the marginal constraints

in Equation A.21. Plugging in the exponential form of p̂φ from Equation 5.4, and using

Equation A.21 again, we have

∂H[p̂φ]

∂!φ(x)
= −

∑

x′,y′

∂p̂φ(x′, y′)

∂!φ(x)
!φ(x′) · !ψφ(y′) .

Now using Equation A.22 for the derivative of the expectation constraints, we finally

obtain

∂H[p̂φ]

∂!φ(x)
= p(x)

(

〈!ψφ〉p̂φ(y|x) − 〈!ψφ〉p̄(y|x)

)

. (A.24)

A.3 GIB Results

A.3.1 Invariance to the Noise Covariance Matrix

Lemma A.3.1 For every pair (A,Σξ) of a projection A and a full rank covariance

matrix Σξ, there exists a matrix Ã such that L(Ã, Id) = L(A,Σξ), where Id is the

nt × nt identity matrix.
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Proof: Denote by V the matrix which diagonalizes Σξ, namely Σξ = V DV T , and by

c the determinant c ≡ |
√

D−1V | = |
√

D−1V T |. Setting Ã ≡
√

D−1V A, we have

L(Ã, I) = (1−β) log(|ÃΣxÃT +Id|)− log(|Id|) + β log(|ÃΣx|yÃ
T +Id|) (A.25)

= (1−β) log(c|AΣxAT +Σξ|c)− log(c|Σξ|c) + β log(c|AΣx|yA
T +Σξ|c)

= (1−β) log(|AΣxAT +Σξ|)− log(|Σξ|) + β log(|AΣx|yA
T +Σξ|)

= L(A,Σξ) ,

where the first equality stems from the fact that the determinant of a matrix product

is the product of the determinants.

A.3.2 Properties of Eigenvalues of Σx|yΣ−1
x and Σx

Lemma A.3.2 Denote the set of left normalized eigenvectors of Σx|yΣ
−1
x by vi (||vi|| =

1) and their corresponding eigenvalues by λi. Then

1. All the eigenvalues are real and satisfy 0 ≤ λi ≤ 1

2. ∃ri > 0 s.t. vT
i Σxvj = δijri.

3. vT
i Σx|yvj = δijλiri.

The proof is standard [see e.g 58] and is brought here for completeness.

Proof:

1. The matrices Σx|yΣ
−1
x and ΣxyΣ−1

y ΣyxΣ−1
x are positive semi definite (PSD), and

their eigenvalues are therefore positive 5.Since Σx|yΣ
−1
x = I − ΣxyΣ−1

y ΣyxΣ−1
x ,

the eigenvalues of Σx|yΣ
−1
x are bounded between 0 and 1.

2. Denote by V the matrix whose rows are vT
i . The matrix V Σ

1
2
x is the eigenvector

matrix of Σ
− 1

2
x Σx|yΣ

− 1
2

x since

(

V Σ
1
2
x

)

Σ
− 1

2
x Σx|yΣ

− 1
2

x = V Σx|yΣ
− 1

2
x =

(

V Σx|yΣ
−1
x

)

Σ
1
2
x =

DV Σ
1
2
x . From the fact that Σ

− 1
2

x Σx|yΣ
− 1

2
x is symmetric, V Σ

1
2
x is orthogonal, and

thus V ΣxV T is diagonal.

3. Follows from 2: vT
i Σx|yΣ

−1
x Σxvj = λiv

T
i Σxvj = λiδijri.

A.3.3 Optimal Eigenvector

For some β values, several eigenvectors can satisfy the conditions for non degenerated

solutions (equation 6.10). To identify the optimal eigenvector, we substitute the value

5To see why Σx|yΣ
−1
x is PSD, note that it has the same eigenvalues as Σ

− 1
2

x Σx|yΣ
− 1

2
x (Section A.4.5),

where the latter has a square root Σ
− 1

2
x Σ

1
2

x|y and is therefore PSD.
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of ||A||2 from equation (6.9) AΣx|yA
T = rλ||A||2 and AΣxAT = r||A||2 into the target

function L of equation (6.6), and obtain

L = (1− β) log

(

(1− λ)(β − 1)

λ

)

+ β log (β(1− λ)) . (A.26)

Since β ≥ 1, this is monotonically increasing in λ and is minimized by the eigenvector

of Σx|yΣ
−1
x with the smallest eigenvalue. Note that this is also the eigenvector of

ΣxyΣ−1
y ΣyxΣ−1

x with the largest eigenvalue.

A.3.4 Optimal Mixing Matrix

Lemma A.3.3 The optimum of the cost function is obtained with a diagonal mixing

matrix W of the form

W = diag





√

β(1− λ1)− 1

λ1r1
; . . . ;

√

β(1− λk)− 1

λkrk
; 0; . . . ; 0



 , (A.27)

where {λ1, . . . ,λk} are k ≤ nx eigenvalues of Σx|yΣ
−1
x with critical β values βc

1, . . . ,β
c
k ≤

β. ri ≡ vT
i Σxvi as in theorem 6.2.1.

Proof: We write V Σx|yΣ
−1
x = DV where D is a diagonal matrix whose elements are

the corresponding eigenvalues, and denote by R the diagonal matrix whose ith element

is ri. When k = nx, we substitute A = WV into equation (6.12), and eliminate V from

both sides to obtain

β − 1

β

[

(WDRW T + Id)(WRW T + Id)
−1
]

W = WD . (A.28)

Use the fact that W is full rank to multiply by W−1 from the left and by W−1(WRW T +

Id)W from the right

β − 1

β
(DRW T W + Id) = D(RW T W + Id) . (A.29)

Rearranging, we have,

W T W = [β(I −D)− I](DR)−1 , (A.30)

which is a diagonal matrix.

While this does not uniquely characterize W , we note that using properties of the

eigenvalues from lemma A.3.2, we obtain

|AΣxAT + Id| = |WV ΣxV T W T + Id| = |WRW T + Id| .

Note that WRW T has left eigenvectors W T with corresponding eigenvalues obtained

from the diagonal matrix W T WR. Thus if we substitute A into the target function in

equation (6.6), a similar calculation yields

L = (1− β)
n
∑

i=1

log
(

||wT
i ||2ri + 1

)

+ β
n
∑

i=1

log
(

||wT
i ||2riλi + 1

)

. (A.31)
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where ||wT
i ||2 is the ith element of the diagonal of W T W . This shows that L depends

only on the norm of the columns of W , and all matrices W that satisfy (A.30) yield the

same target function. We can therefore choose to take W to be the diagonal matrix

which is the (matrix) square root of (A.30)

W =
√

[β(I −D)− I](DR)−1 , (A.32)

which completes the proof of the full rank (k = nx) case.

In the low rank (k < nx) case W does not mix all the eigenvectors, but only k of

them. To prove the lemma for this case, we first show that any such low rank matrix

is equivalent (in terms of the target function value) to a low rank matrix that has only

k non zero rows. We then conclude that the non zero rows should follow the form

described in the above lemma.

Consider a nx × nx matrix W of rank k < nx, but without any zero rows. Let U

be the set of left eigenvectors of WW T (that is, WW T = UΛUT ). Then, since WW T

is Hermitian, its eigenvectors are orthonormal, thus (UW )(WU)T = Λ and W ′ = UW

is a matrix with k non zero rows and nx − k zero lines. Furthermore, W ′ obtains the

same value of the target function, since

L = (1−β) log(|W ′RW ′T + Σ2
ξ |) + β log(|W ′DRW ′T + Σ2

ξ |) (A.33)

= (1−β) log(|UWRW T UT+ UUTΣ2
ξ |) + β log(|UWDRW T UT+ UUTΣ2

ξ |)

= (1−β) log(|U ||WRW T+Σ2
ξ ||UT |) + β log(|U ||UWDRW T UT+ Σ2

ξ ||UT |)

= (1−β) log(|WRW T+ Σ2
ξ |) + β log(|WDRW T T + Σ2

ξ |) ,

where we have used the fact that U is orthonormal and hence |U | = 1. To complete

the proof note that the non zero rows of W ′ also have nx − k zero columns and thus

define a square matrix of rank k, for which the proof of the full rank case apply, but

this time by projecting to a dimension k instead of nx.

This provides a characterization of all local minima. To find which is the global

minimum, we prove the following corollary.

Corollary A.3.4

The global minimum of L is obtained with all λi that satisfy λi < β−1
β

Proof: Substituting the optimal W of equation (A.32) into equation (A.31) yields

L =
k
∑

i=1

(β − 1) log λi + log(1− λi) + f(β) . (A.34)

Since 0 ≤ λ ≤ 1 and β ≥ 1
1−λ , L is minimized by taking all the eigenvalues that satisfy

β > 1
(1−λi)

.
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A.3.5 Deriving the Iterative Algorithm

To derive the iterative algorithm in section 6.5, we assume that the distribution p(tk|x)

corresponds to the Gaussian variable Tk = AkX + ξk. We show below that p(tk+1|x)

corresponds to Tk+1 = Ak+1X + ξk+1 with ξk+1 ∼ N(0,Σξk+1
) and

Σξk+1
=

(

βΣ−1
tk|y

− (β − 1)Σ−1
tk

)−1
(A.35)

Ak+1 = βΣξk+1
Σ−1

tk|y
Ak

(

I − Σy|xΣ
−1
x

)

.

We first substitute the Gaussian p(tk|x) ∼ N(Akx,Σξk
) into the equations of (6.17), and

treat the second and third equations. The second equation p(tk) =
∫

x p(x)p(tk|x)dx,

is a marginal of the Gaussian Tk = AkX + ξk, and yields a Gaussian p(tk) with zero

mean and covariance

Σtk = AkΣxAT
k + Σξk

. (A.36)

The third equation, p(y|tk) = 1
p(tk)

∫

x p(x, y)p(tk|x)dx defines a Gaussian with mean

and covariance matrix given by:

µy|tk = µy + ΣytkΣ
−1
tk

(tk − µtk) = ΣytkΣ
−1
tk

tk ≡ Bktk (A.37)

Σy|tk = Σy − ΣytkΣ
−1
tk

Σtky = Σy −AkΣxyΣ
−1
tk

ΣyxAT
k ,

where we have used the fact that µy = µtk = 0, and define the matrix Bk ≡ ΣytkΣ
−1
tk

as

the regressor of tk on y. Finally, we return to the first equation of (6.17), that defines

p(tk+1|x) as

p(tk+1|x) =
p(tk)

Z(x,β)
e−βDKL[p(y|x)|p(y|tk)] . (A.38)

We now show that p(tk+1|x) is Gaussian and compute its mean and covariance matrix.

The KL divergence between the two Gaussian distributions, in the exponent of

equation (A.38) is known to be

2DKL[p(y|x)|p(y|tk)] = log
|Σy|tk |
|Σy|x|

+ Tr(Σ−1
y|tk

Σy|x) (A.39)

+ (µy|x − µy|tk)TΣ−1
y|tk

(µy|x − µy|tk) .

The only factor which explicitly depends on the value of t in the above expression is

µy|tk derived in equation (A.37), is linear in t. The KL divergence can thus be rewritten

as

DKL[p(y|x)|p(y|tk)] = c(x) +
1

2
(µy|x −Bktk)

TΣ−1
y|tk

(µy|x −Bktk)

Adding the fact that p(tk) is Gaussian we can write the log of equation (A.38) as a

quadratic form in t

log p(tk+1|x) = Z(x) + (tk+1 − µtk+1|x)TΣξk+1
(tk+1 − µtk+1|x)
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where

Σξk+1
=

(

βBT
k Σ−1

y|tk
Bk + Σ−1

tk

)−1
(A.40)

µtk+1|x = Ak+1x

Ak+1 = βΣξk+1
BT

k Σ−1
y|tk

ΣyxΣ
−1
x x .

This shows that p(tk+1|x) is a Gaussian Tk+1 = Ak+1x + ξk+1, with ξ ∼ N(0,Σξk+1
).

To simplify the form of Ak+1,Σξk+1
, we use the two following matrix inversion

lemmas 6, which hold for any matrices E, F, G, H of appropriate sizes when E, H are

invertible.

(E − FH−1G)−1 = E−1 + E−1F (H −GE−1F )−1GE−1 (A.41)

(E − FH−1G)−1FH−1 = E−1F (H −GE−1F )−1 .

Using E ≡ Σtk , F ≡ Σytk , H ≡ Σy, G ≡ Σytk , Bk = ΣytkΣ
−1
tk

in the first lemma we

obtain

Σ−1
tk|y

= Σ−1
tk

+ BT
k Σ−1

y|tk
Bk .

Replacing this into the expression for Σξk+1
in equation (A.40) we obtain

Σξk+1
=
(

βΣ−1
tk|y

− (β − 1)Σ−1
tk

)−1
. (A.42)

Finally, using again E ≡ Σtk , F ≡ Σtky, H ≡ Σy, G ≡ Σytk in the second matrix

lemma, we have Σ−1
tk|y

ΣtkyΣ−1
y = Σ−1

tk
ΣtkyΣ

−1
y|tk

, which turns the expression for Ak+1 in

equation (A.40) into

Ak+1 = βΣξk+1
Σ−1

tk|y
ΣtkyΣ

−1
y ΣyxΣ

−1
x (A.43)

= βΣξk+1
Σ−1

tk|y
AkΣxyΣ

−1
y ΣyxΣ

−1
x

= βΣξk+1
Σ−1

tk|y
Ak(I − Σx|yΣ

−1
x ) ,

which completes the derivation of the algorithm as described in (6.17).

A.4 Optimality of the Gaussian Solution for GIB

This section is somewhat longer and more technical than the previous ones. In Chap-

ter 6 we derived the Gaussian Information Bottleneck solution under the assumption

that the optimal distribution is itself Gaussian. While this seems like a reasonable

assumption, its proof, given here, is somewhat involved.

In order to prove the validity of the assumption we show that the information

curve achieved with the Gaussian solution (see Section 6.4) is the best possible, i.e. it

achieves the highest information I(T ; Y ) under a given level of compression I(T ; X).

6The first equation is the standard inversion lemma [see e.g., 77, page 571]. The second can be
easily verified from the first.
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This immediately implies that it yields the optimal value for the GIB minimization

problem in Equation 6.1.

Formally, define the true information curve as 7

R(Ix) = max
p(t|x):T→X→Y,I(T ;X)=Ix

I(T ; Y ) . (A.44)

The function R(Ix) is defined as the maximum information one can keep about Y when

forced to compress X by Ix.

In Chapter 6 we carry out this optimization under the limitation that p(t|x) is

Gaussian 8. Denote by G(T, X) the set of conditional Gaussian p(t|x) distributions,

then the Gaussian information curve is defined as

RG(Ix) = max
p(t|x):T→X→Y,I(T ;X)=Ix,p(t|x)∈G(T,X)

I(T ; Y ) . (A.45)

This function is calculated explicitly in section 6.4 and will be described in what follows,

since we will use a notation more convenient for the current proof.

The main result of the current section is that the optimization problems in Equa-

tions A.44 and A.45 are equivalent. This is stated below

Theorem A.4.1 R(Ix) = RG(Ix) and thus the maximum in Equation A.44 can be

achieved with a Gaussian p(t|x)

In [13] a similar problem is solved for one dimensional Gaussian variables, in the

context of lossy coding with side information. Here we treat the multi-dimensional

case, which has several interesting properties, and technical difficulties which are not

present in the scalar case.

To prove the theorem, one needs to show that RG(Ix) ≥ R(Ix) for all values of

Ix. This is proven in the remainder of the text. The section is organized as follows:

Section A.4.1 defines notations and characterizes certain covariance matrices. Section

A.4.2 describes the curve RG(Ix) which was calculated in Chapter 6. Section A.4.3

transforms the variables X, Y into a representation which is easier to work with. Finally,

Section A.4.4 gives the proof of Theorem A.4.1.

A.4.1 Notations and Matrix Properties

In what follows, we use various forms of covariance matrices, which we outline in this

section.

Notation 1 Denote by Xi the univariate Gaussian variable which is the i-th coordinate

of the multivariate random variable X. We use Yi with a similar notation.

7We explicitly state the Markov chain condition here. Of course it is also assumed in Chapter 6
8Which implies X, T are jointly Gaussian, since X itself is Gaussian
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Notation 2 Denote by X(m,d) the multivariate Gaussian of dimension d, X (m,d) ≡
(Xm, ..., Xm+d−1). Also, denote X(1,d) ≡ X(d).

Notation 3 Denote by Σxy the covariance matrix of X and Y . Thus the (i, j)th ele-

ment of Σxy is E(XiYj)−E(Xi)E(Yj). The dimensions of Σxy are (nx, ny).

Notation 4 Denote by Σx the covariance matrix of X. Thus the (i, j)th element of

Σx is E(XiXj)−E(Xi)E(Xj). The dimensions of Σx are (nx, nx).

Consider the variable W = [X, Y ] produced by concatenating X, Y . Its covariance

matrix is thus given by

Σw =

[

Σx Σxy

Σyx Σy

]

The distribution p(x|y) is known to be Gaussian as well. The covariance of this

Gaussian does not depend on the value of y conditioned on. We denote the conditional

covariance by Σx|y. Note that it is a square matrix of size nx. The following identity

expresses Σx|y as a function of the unconditional covariances [87]

Σx|y = Σx − ΣxyΣ
−1
y Σyx . (A.46)

In what follows, we make frequent use of the matrices Σx|yΣ
−1
x and Σy|xΣ

−1
y . These are

normalized conditional covariance matrices, which reflect by how much the knowledge

of Y reduces the spread of X. For one dimensional variables the scalar Σx|yΣ
−1
x will

be zero if X, Y are deterministically related, and one if X, Y are independent. In the

multidimensional case, the values of interest are the eigenvalues of the matrices. As in

the scalar case, eigenvalues close to zero reflect a deterministic relation between X and

Y , and eigenvalues close to one reflect independence.

Notation 5 Denote the eigenvalues of Σx|yΣ
−1
x by λ1, . . . ,λnx, and assume they are

sorted in an ascending order.

The following Lemma states the eigenvalues of Σx|yΣ
−1
x ,Σy|xΣ

−1
y are essentially

identical.

Lemma A.4.2 Assume nx ≥ ny. Denote by γ1, . . . , γny the sorted eigenvalues of

Σy|xΣ
−1
y . Then γi = λi for i = 1, . . . , ny. Furthermore λi = 1 for ny < i ≤ nx

Proof: Assume v is a left eigenvector of Σx|yΣ
−1
x with eigenvalue λ, then

v(I − ΣxyΣ
−1
y ΣyxΣ

−1
x ) = λv

v(ΣxyΣ
−1
y − ΣxyΣ

−1
y ΣyxΣ

−1
x ΣxyΣ

−1
y ) = λvΣxyΣ

−1
y

vΣxyΣ
−1
y (I − ΣyxΣ

−1
x ΣxyΣ

−1
y ) = λvΣxyΣ

−1
y

(

vΣxyΣ
−1
y

)

Σy|xΣ
−1
y = λ

(

vΣxyΣ
−1
y

)

.
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Thus vΣxyΣ−1
y is an eigenvector of Σy|xΣ

−1
y with eigenvalue λ, and all the eigenvalues

of Σx|yΣ
−1
x are eigenvalues of Σy|xΣ

−1
y , which shows that there is a correspondence

between the eigenvalue sets.

To see that λi = 1 for ny < i ≤ nx, note that ΣxyΣ−1
y ΣyxΣ−1

x has rank ny at most,

so it has an eigenvalue zero with multiplicity at least nx − ny. Thus the last nx − ny

eigenvalues of Σx|yΣ
−1
x are equal to 1.

A.4.2 The Structure of RG(Ix)

In Section 6.4 we derived the analytic form of RG(Ix). The matrix Σx|yΣ
−1
x discussed

in the previous section plays a central role in the derivation. We show in 6.4 that the

curve RG(Ix) is made up of a set of segments, which form a continuous curve. In order

to understand the functional form of the segments, we need the following definitions.

Define ĉ(k), n̂(I) as the functions

ĉ(k) =
{ 0 k = 1
∑k−1

i=1 log λk
λi

1−λi
1−λk

k > 1

n̂(I) = arg max
1≤k≤nx

ĉ(k) ≤ I .

Note that n̂(I) partitions the values of I into nx segments. In Section 6.4 we show that

RG(Ix) has a slightly different form for each such segment, and is given by

RG(Ix) = Ix −
n̂(Ix)

2
log





n̂(Ix)
∏

i=1

(1− λi)
1

n̂(Ix) + e
2Ix

n̂(Ix)

n̂(Ix)
∏

i=1

λ
1

n̂(Ix)

i



 . (A.47)

The function RG(Ix) can be shown to be continuous and concave in I. An example

of RG(Ix) is given in Figure A.1, showing the points Ix = ĉ(k) where n̂(Ix) switches

values.
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Figure A.1: The curve RG(Ix) obtained with four eigenvalues λi=0.01,0.4,0.8,0.9. Val-
ues of Ix corresponding to ĉ(2), ĉ(3), ĉ(4) (i.e where n̂(Ix) switches values) are marked
by vertical lines. The asymptotic value of I(X; Y ) is marked by the horizontal line.

A.4.3 Canonical Representation

Before proving the main theorem, we will transform the variables X and Y to a canon-

ical representation, which is easier to manipulate. This is done via the eigenvectors of

the matrices Σx|yΣ
−1
x and Σy|xΣ

−1
y

Notation 6 Denote Ax the eigenvector matrix of Σx|yΣ
−1
x and By that of Σy|xΣ

−1
y .

Define X̃ ≡ AxX and Ỹ ≡ ByY . The following Lemma gives some useful properties

of the new variables (see proof in section A.4.5)

Lemma A.4.3 The matrices Ax, By can be scaled so that the following properties hold

1. Ax, By are full rank

2. X̃ and Ỹ are spherized: Σx̃ = IX and Σỹ = IY

3. The (i, j)th element of the matrix Σx̃ỹ is
√

1− λiδij. Thus Xi, Yj have covariance√
1− λi if i = j, and are uncorrelated otherwise.

To illustrate the above properties, we give below the full covariance matrix between

variables with dimensions nx = 3, ny = 2

Σx̃ỹ,x̃ỹ =













1 0 0
√

1− λ1 0
0 1 0 0

√
1− λ2

0 0 1 0 0√
1− λ1 0 0 1 0

0
√

1− λ2 0 0 1













As a consequence of the above properties, we have the following corollary

128



Corollary A.4.4 For all 1 ≤ i ≤ min(nx, ny)

Ỹi =
√

1− λiX̃i + Ni with Ni ∼ N (0,
√

λi). (A.48)

Thus Y (d) = DX(d) + ξ where ξ ∼ N (0, N) and D, N are diagonal with
√

1− λi,
√
λi

on their diagonal.

This follows from the fact that two Gaussians can be presented as a noisy linear trans-

formation, and since E(X̃iỸi) =
√

1− λi and V (X̃i) = V (Ỹi) = 1 the transformation

between X̃i, Ỹi must be the one given above.

Also, since Σx̃|ỹ = Σx̃ − Σx̃ỹΣ
−1
ỹ Σỹx̃ and the matrices Σx̃|ỹ,Σx̃ have the structure

given above, we have that

Corollary A.4.5 Σx̃|ỹ is diagonal. Thus x̃ are conditionally independent given ỹ

Since Ax, By are non singular, they do not affect the mutual information between

X, Y and T

I(X̃; T ) = I(X; T ) I(Ỹ ; T ) = I(Y ; T ) .

Our optimization problem depends on X, Y only through the information values I(X; T ), I(Y ; T ),

and thus we can use X̃, Ỹ instead of X, Y . Furthermore, the variables X cannot pro-

vide any information about Ỹ (nx+1,ny) (when ny > nx), and thus we can assume that

ny ≤ nx by discarding the excess Y variables.

From this point on, we will refer to the variables X and Y as if they were given in

their canonical representation in the first place.

A.4.4 Proof of Theorem A.4.1

We start by formulating R(Ix) as a minimization problem. Using the Markov relation

T → X → Y , we have I(T ; Y ) = I(T ; X)− I(T ; X|Y ) and thus

R(Ix) = max
p(t|x):T→X→Y,I(T ;X)=Ix

I(T ; Y ) = Ix− min
p(t|x):T→X→Y,I(T ;X)=Ix

I(T ; X|Y ) .

(A.49)

This, together with the form of RG(Ix) given in Equation A.47 implies that Theorem

1 is equivalent to showing that

Theorem A.4.6 For every Markov chain T → X → Y , where I(T ; X) = Ix it holds

that

I(T ; X|Y ) ≥ n̂(Ix)

2
log





n̂(Ix)
∏

i=1

(1− λi)
1

n̂(Ix) + e
2Ix

n̂(Ix)

n̂(Ix)
∏

i=1

λ
1

n̂(Ix)

i



 (A.50)
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The following lemma, which will be proven in section A.4.5, bounds I(T ; X|Y ) for

subsets of the variable X.

Lemma A.4.7 For all d such that d ≤ nx, define k = min(ny, d). Then

I(T ; X(d)|Y ) ≥ k

2
log

(

k
∏

i=1

(1− λi)
1
k + e

2I(T ;X(d))
k

k
∏

i=1

λ
1
k
i

)

(A.51)

This of course provides a bound for I(T ; X|Y ) by selecting d = nx. However this bound

is not tight, whereas that of Theorem A.4.6 is.

We prove Theorem A.4.6 by showing by induction that it holds for all values of

n̂(Ix). The induction is over k = ny − n̂(Ix) which is the number of segments between

segment number n̂(Ix) and the last segment (note that we have at most ny segments).

When k = 0, i.e. n̂(Ix) = ny the claim follows from application of Lemma A.4.7

with d = nx.

In the induction step, we assume the theorem holds for Ix such that ny− n̂(Ix) < k

and show it holds for all Ix such that ny − n̂(Ix) = k. Thus from now on, we limit

ourselves to Ix such that n̂(Ix) = ny−k. We separate X into two sets of variables. One

contains its first ny − k elements X1 ≡ X(1,ny−k), and the other, X2 ≡ X(ny−k+1,nx)

contains the rest.

Note that

I(T ; X|Y ) = I(T ; X1, X2|Y ) (A.52)

= h(X1, X2|Y )− h(X1, X2|T, Y )

= h(X1|Y ) + h(X2|Y )− h(X1, X2|T, Y )

= h(X1|Y ) + h(X2|Y )− h(X1|T, Y )− h(X2|X1, T, Y )

≥ h(X1|Y ) + h(X2|Y )− h(X1|T, Y )− h(X2|T, Y )

= I(T ; X1|Y ) + I(T ; X2|Y )

where the first equality is the definition of mutual information, the second equality is

a result of X1, X2 being independent conditioned on Y , the third is the entropy chain

rule, and the inequality is since conditioning reduces entropy.

Now, consider two variables T 1, T 2 such that the following holds:

I(T 1; X1|Y ) = I(T ; X1|Y ) (A.53)

I(T 2; X2|Y ) = I(T ; X2|Y )

I(T 1, T 2; X1, X2) = I(T ; X)

and the Markov chains T1 → X → Y , and T2 → X → Y are satisfied. Denote the set

of variables which satisfy the above by T (note we are not placing any limitation on
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(T1, T2)). Then it immediately follows that (T 1, T 2) = (T, T ) is in T . Therefore

I(T ; X|Y ) ≥ I(T ; X1|Y ) + I(T ; X2|Y ) (A.54)

≥ min
(T 1,T 2)∈T

I(T 1; X1|Y ) + I(T 2; X2|Y ) ,

where the first inequality follows from Equation A.52 and the second from the fact that

T contains (T, T ).

Denote the eigenvalues corresponding to the variables in X2 by λ′1, . . . ,λ′k.

To use the induction step, note that X2 is nX2 = k dimensional and therefore

nX2 − n̂(I(T 2; X2)) < k. Thus we can bound I(T 2; X2|Y ) using the induction step.

Denote n′
I = n̂(I(T 2; X2)), then

I(T 2; X2|Y ) ≥ n′
I

2
log





n′
I
∏

i=1

(1− λ′i)
1

n′
I + e

2I(T2,X2)

n′
I

n′
I
∏

i=1

λ′
1

n′
I

i





We denote the function on the right hand side by f2(I(T 2; X2)). We can also use

Lemma A.4.7 to bound I(T 1; X1|Y ) so that

I(T 1; X1|Y ) ≥ ny − k

2
log





ny−k
∏

i=1

(1− λi)
1

ny−k + e
2I(T1,X1)

ny−k

ny−k
∏

i=1

λ
1

ny−k

i





We denote the function on the right hand side by f1(I(T 1; X1)). Thus we have

I(T 1; X1|Y ) + I(T 2; X2|Y ) ≥ f1(I(T 1; X1)) + f2(I(T 2; X2)) (A.55)

The right hand side of the above expression, which we want to minimize over

T involves only I(T 1; X1), I(T 2; X2). To minimize it over T , we scan all values of

I(T 1; X1), I(T 2; X2) which are obtained in T . To see what these values are, note that

since X1 and X2 are independent, the following holds

I(T ; X) = I(T 1, T 2; X1, X2) = h(X1, X2)− h(X1, X2|T 1, T 2)

= h(X1) + h(X2)− h(X1|T 1, T 2)− h(X2|X1, T 1, T 2)

≥ h(X1) + h(X2)− h(X1|T 1, T 2)− h(X2|T 1, T 2)

≥ h(X1) + h(X2)− h(X1|T 1)− h(X2|T 2)

= I(T 1; X1) + I(T 2; X2) .

The values of I(T 1; X1), I(T 2; X2) which are obtained in T thus satisfy I(T 1; X1)+

I(T 2; X2) ≤ I(T ; X). This region is depicted in Figure A.2.
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0 I(T;X)
0

I(T;X)

I(T1;X1)

I(T
2 ;X

2 )

Figure A.2: The shaded region shows the values of I(T 1; X1), I(T 2; X2) which can be
achieved in T . Note that there may be points in the region which are not achievable,
but all achievable points are included in it.

Thus the minimization in Equation A.54 satisfies

min
(T 1,T 2)∈T

f1(I(T 1; X1)) + f2(I(T 2; X2)) ≥ min
0 ≤ c̃ ≤ I(T ; X)
0 ≤ a ≤ c̃

f1(c̃− a) + f2(a)(A.56)

Where we have inequality since a given pair of values

I(T 1; X1) = c̃− a

I(T 2; X2) = a

may not be achieved by an element in T .

The minimum of Equation A.56 is given in the following lemma, which is proven in

section A.4.5

Lemma A.4.8 If n̂(I(T ; X)) = ny − k then

min
0 ≤ c̃ ≤ I(T ; X)
0 ≤ a ≤ c̃

f1(c̃− a) + f2(a) = f1(I(T ; X)) (A.57)

Thus we have that for I(T ; X) such that n̂(I(T ; X)) = ny − k the following holds

(by combining Equations A.54,A.56 and the definition of f1)

I(T ; X|Y ) ≥ ny − k

2
log





ny−k
∏

i=1

(1− λi)
1

ny−k + e
2I(T ;X)

ny−k

ny−k
∏

i=1

λ
1

ny−k

i



 (A.58)

which is what we wanted to prove in the induction. We therefore have proved Theorem

A.4.6, and its equivalent Theorem A.4.1, which is the main result of this section.
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A.4.5 Proof of Lemmas

In this section we give proofs for the Lemmas stated in the text above.

Proof of Lemma A.4.7

In what follows we use Y (d) ≡ Y for d > ny. First, we bound I(T ; X(d)|Y ) by an

expression depending only on Y (d). We have that

I(T ; X(d)|Y ) ≥ I(T ; X(d)|Y (d)) , (A.59)

which is a result of the following use of the information chain rule

I(X(d); T, Y (d+1,ny)|Y (d)) = I(X(d); Y (d+1,ny)|Y (d)) + I(X(d); T |Y )

= I(X(d); T |Y (d)) + I(X(d); Y (d+1,ny)|T, Y (d)) .

Using the fact that I(X(d); Y (d+1,ny)|Y (d)) = 0, we get the desired inequality.

To simplify Equation A.59 we use the following lemma:

Lemma A.4.9 The chain T → X(d) → Y (d) is Markov

Proof: By the Markovity of T → X → Y and using the information chain rule, we

have

0 = I(Y ; T |X) = I(Y (d), Y (d+1,ny); T |X) = I(Y (d); T |X) + I(Y (d+1,ny); T |X, Y (d)) ,

which implies

I(Y (d); T |X) = 0 . (A.60)

Using the information chain rule

I(Y (d); T, X(d+1,nx)|X(d)) = I(Y (d); T |X(d)) + I(Y (d); X(d+1,nx)|T, X(d))

= I(Y (d); X(d+1,nx)|X(d)) + I(Y (d); T |X(d+1,nx), X(d)) = 0 ,

where we have used I(Y (d); X(d+1,nx)|X(d)) = 0 and Equation A.60. We have that a

sum of two informations is zero, and therefore

I(Y (d); T |X(d)) = 0 , (A.61)

which implies the desired Markov chain.

We can now write Equation A.59 using the above Markov chain

I(T ; X(d)|Y ) ≥ I(T ; X(d)|Y (d)) = I(T ; X(d))− I(T ; Y d) (A.62)

= I(T ; X(d))− h(Y (d)) + h(Y (d)|T )

133



If d > ny we have

I(T ; X(d)|Y ) ≥ I(T ; X(d))− h(Y ) + h(Y |T ) . (A.63)

Equations A.62,A.63 involve h(Y (k)|T ) where k ≡ min(ny, d). We now bound this

conditional entropy. Using Corollary A.4.4, write h(Y (k)|T ) = h(DX(k) + N |T ). To

bound this entropy, we use the conditional form of the entropy power inequality (see e.g.

[13]), which states that if U, V, W, T are continuous random variables, and U = V + W

are n dimensional, then

e
2
n

h(U |T ) ≥ e
2
n

h(V |T ) + e
2
n

h(W |T ) . (A.64)

Corollary A.4.4 states that Y (k) = DX(k) + N and therefore

e
2
k
h(Y (k)|T ) ≥ e

2
k
h(DX(k)|T ) + e

2
k
h(N |T ) (A.65)

= e
2
k
h(X(k)|T )+ 2

k
log |D| + e

2
k
h(N)

= e
2
k
h(X(k)|T )+ 2

k
log |D| + e

1
k

log(2πe)k|N |

= e−
2
k
I(T ;X(k))+ 2

k
h(X(k))|D|

2
k + (2πe)|N |

2
k

= (2πe)e−
2
k
I(T ;X(k))|D|

2
k + (2πe)|N |

2
k

= (2πe)e−
2
k
I(T ;X(k))

k
∏

i=1

(1− λi)
1
k + (2πe)

k
∏

i=1

λ
1
k
i .

Taking the log, 2
kh(Y (k)|T ) ≥ log 2πe+log

(

e−
2
k
I(X(k);T )∏(1− λi)

1
d +

∏

λ
1
d
i

)

and sub-

tracting 2
kh(Y (k)) = log(2πe), we obtain

−2

k
I(Y (k); T ) ≥ log

(

e−
2
k
I(T ;X(k))

k
∏

i=1

(1− λi)
1
k +

k
∏

i=1

λ
1
k
i

)

. (A.66)

Substituting Equation A.66 into A.62, we finally obtain

I(T ; X(d)|Y ) =
k

2

(

2

k
I(T ; X(k))− 2

k
I(T ; Y (k))

)

(A.67)

≥ k

2
log

(

e−
2
k
I(T ;X(k))

k
∏

i=1

(1− λi)
1
k +

k
∏

i=1

λ
1
k
i

)

+
k

2
elog 2

k
I(T ;X(k))

=
k

2
log

(

k
∏

i=1

(1− λi)
1
k + e

2
k
I(T ;X(k))

k
∏

i=1

λ
1
k
i

)

.

Proof of Lemma A.4.8

We first wish to minimize the function

F (a) = f1(c̃− a) + f2(a) (A.68)
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w.r.t the variable a.

In what follows, we show that F (a) is monotonously increasing and therefore has

its minimum at a = 0. The derivative of F (a) w.r.t. a is given by

d

da
F (a) =

e
2a
n′

I
∏n′

I
i=1 λ

′
1
k
i

∏n′
I

i=1(1− λ′i)
1

n′
I + e

2a
n′

I
∏n′

I
i=1 λ

′
1
k
i

− e
2(c̃−a)
ny−k

∏ny−k
i=1 λ

1
ny−k

i

∏ny−k
i=1 (1− λi)

1
ny−k + e

2(c̃−a)
ny−k

∏ny−k
i=1 λ

1
ny−k

i

=
1

e
− 2a

n′
I
∏n′

I
i=1

(

1−λ′i
λ′i

)
1

n′
I + 1

− 1

e
− 2(c̃−a)

ny−k
∏ny−k

i=1

(

1−λi
λi

)
1

ny−k
+ 1

= e
− 2(c̃−a)

ny−k

ny−k
∏

i=1

(

1− λi

λi

)
1

ny−k

− e
− 2a

n′
I

n′
I
∏

i=1

(

1− λ′i
λ′i

)
1

n′
I

where the last equality is up to a multiplicative positive constant.

Showing that d
daF (a) > 0 is equivalent to showing

e
− 2(c̃−a)

ny−k
∏ny−k

i=1

(

1−λi
λi

)
1

ny−k

e
− 2a

n′
I
∏n′

I
i=1

(

1−λ′i
λ′i

)
1

n′
I

≥ 1 (A.69)

We develop this inequality and show that it must be true. Isolating a:

e
2a( 1

ny−k
+ 1

n′
I
)
≥ e

2c̃
ny−k

n′
I
∏

i=1

(

1− λ′i
λ′i

)
1

n′
I

ny−k
∏

i=1

(

λi

1− λi

)
1

ny−k

(A.70)

2a
ny − k + n′

I

n′
I(ny − k)

≥ 2c̃

ny − k
+

1

n′
I

n′
I
∑

i=1

log

(

1− λ′i
λ′i

)

+
1

ny − k

ny−k
∑

i=1

log

(

λi

1− λi

)

a ≥ c̃n′
I

ny − k + n′
I

+
ny − k

2(ny − k + n′
I)

n′
I
∑

i=1

log

(

1− λ′i
λ′i

)

+
n′

I

2(ny − k + n′
I)

ny−k
∑

i=1

log

(

λi

1− λi

)

=
c̃n′

I

ny − k + n′
I

+
ny − k

ny − k + n′
I

1

2

n′
I
∑

i=1

log

(

1− λ′i
λ′i

)(

λny−k+1

1− λny−k+1

)

+
n′

I

ny − k + n′
I

1

2

ny−k
∑

i=1

log

(

λi

1− λi

)(

1− λny−k+1

λny−k+1

)

=
c̃n′

I

ny − k + n′
I

+
ny − k

ny − k + n′
I

1

2

n′
I
∑

i=1

log

(

1− λ′i
λ′i

)(

λny−k+1

1− λny−k+1

)

− n′
I

ny − k + n′
I

ĉ(ny − k + 1) (A.71)
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Note that the second term above is negative since λny−k+1 is smaller than all the other

λ in the sum, and x/(1 − x) is increasing. So every item in the log is smaller than 1.

Thus, if we satisfy the inequality without the second term, we will surely satisfy it with

the second term. The inequality thus becomes

a ≥ c̃n′
I

ny − k + n′
I

− n′
I

ny − k + n′
I

ĉ(ny − k + 1) (A.72)

=
n′

I

ny − k + n′
I

(c̃− ĉ(ny − k + 1)) .

The last expression is negative, since we assumed that n̂(I(T ; X)) = ny − k and thus

c̃ ≤ I(T ; X) < ĉ(ny − k + 1). Since a ≥ 0 by definition, the last inequality is always

satisfied, which proves that F (a) is increasing.

The minimum of F (a) is thus achieved at a = 0, and its value is F (0) = f1(c̃) since

f2(0) = 0. The overall minimization thus becomes

min
0 ≤ c̃ ≤ I(T ; X)
0 ≤ a ≤ c̃

f1(c̃− a) + f2(a) = min
0≤c̃≤I(T ;X)

f1(c̃) = f1(I(T ; X)) ,

where the last transition follows from f1(c̃) being a decreasing function.

Proof of Lemma A.4.3

We first observe that if v is a left eigenvector of Σ
− 1

2
x Σx|yΣ

− 1
2

x with eigenvalue λ then

vΣ
− 1

2
x is a left eigenvector of Σx|yΣ

−1
x with the same eigenvalue. This can be seen from

vΣ
− 1

2
x Σx|yΣ

− 1
2

x = λv
(

vΣ
− 1

2
x

)

Σx|yΣ
−1
x = λvΣ

− 1
2

x

Since Σ
− 1

2
x Σx|yΣ

− 1
2

x is a symmetric matrix, it has an orthonormal (and therefore in-

dependent) set of eigenvectors, which we denote by Cx. We have just shown that

Ax = CxΣ
− 1

2
x which implies that Ax is full rank, thus proving Section 1 of the lemma.

We similarly denote Dy the eigenvector matrix of Σ
− 1

2
y Σy|xΣ

− 1
2

y and obtain a similar

result for By.

To show that the covariance of X̃ is sphered (Section 2 of the Lemma)

Σx̃ = AxΣxAT
x = CxΣ

− 1
2

x ΣxΣ
− 1

2
x CT

x = CxCT
x = I ,

and one can obtain Σỹ = ByΣyBT
y = I in a similar fashion.

To study the covariance between X̃ and Ỹ recall from Lemma A.4.2 that By can be

obtained from Ax via a transformation By = RAxΣxyΣ−1
y where R is a scaling matrix,
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of size (ny, nx) with non-zero elements only on the diagonal. To find R we use the fact

that ByΣyBT
y = I.

I = ByΣyB
T
y = RAxΣxyΣ

−1
y ΣyΣ

−1
y ΣyxAT

x RT

= RAx

(

ΣxyΣ
−1
y ΣyxΣ

−1
x

)

ΣxAT
x RT

= R(I −D)AxΣxAT
x R

= R(I −D)RT .

Thus Rii = (1− λi)
− 1

2 . We can now find the covariance Σx̃ỹ

Σx̃ỹ = AxΣxyB
T
y = AxΣxyΣ

−1
y ΣyxAT

x RT

= Ax

(

ΣxyΣ
−1
y ΣyxΣ

−1
x

)

ΣxAT
x RT

= (I −D)AxΣxAT
x RT

= (I −D)AxΣxAT
x RT

= (I −D)RT .

which implies that the (i, j)th element of Σx̃ỹ is
√

1− λiδij , as in Lemma A.4.3.
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Appendix B

Table of Symbols

MI Mutual Information
MinMI Minimum Mutual Information
MaxEnt Maximum Entropy
CI Conditionally Independent (i.e., p(x1, . . . , xn|y) =

∏

i p(xi|y))
SDR Sufficient Dimensionality Reduction
SDR-IS SDR with Irrelevance Statistics
IB Information Bottleneck
GIB Gaussian Information Bottleneck
CCA Canonical Correlation Analysis
X, Y Random variables indicating respect.: Features,Classes (in machine

learning) or Response,Stimulus (in neural coding)
|X| The number of different values the random variable X may take
p(x, y) Joint distribution of the true system
p̄, p̂ Empirical and model distributions
H(X) The entropy of a discrete variable X
I(X; Y ) The MI between two variables X and Y
I[p(x, y)] The MI between variables with a joint distribution p(x, y)
DKL[p(x)|q(x)] The KL divergence between the distributions p(x) and q(x)
!φ(x) A vector of features of X
〈f(x)〉p(x) The expected value of the function f(x) w.r.t the distribution p(x)

Px(!φ(x),!a) The set of distributions over X such that the expected value of !φ(x) is !a

Px(!φ(x),!a, !β) Same as Px(!φ(x),!a), but with the expected value in the range !a ± !β

Px|y

(

!φ(x),!a(y), p̄(y)
)

The set of distributions p(x, y) such that the conditional

expected value of !φ(x) is !a(y), and whose marginal is p̄(y)

Fxy(!φ(x), p̄) The set of distributions p(x, y) that agree with p̄(x, y)

on the expected values of !φ(x) and on its marginals

Fx(!φ(x), p̄) The set of distributions p(x) that agree with p̄(x)

on the expected values of !φ(x)

Imin

[

!φ(x),!a(y), p̄(y)
]

Minimum information in the set Px|y

(

!φ(x),!a(y), p̄(y)
)

Ixy
min[!φ(x), p̄] Minimum information in the set P(!φ(x), p̄)

I(k) Minimum information in the set of kth order marginals
IPR(q,F) The I-projection of the distribution q(x) on the set of distributions F
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