
Fast Maximum Margin Matrix Factorization
for Collaborative Prediction

Jason D. M. Rennie JRENNIE@CSAIL.MIT.EDU

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA

Nathan Srebro NATI@CS.TORONTO.EDU

Department of Computer Science, University of Toronto, Toronto, ON, CANADA

Abstract
Maximum Margin Matrix Factorization

(MMMF) was recently suggested (Srebro

et al., 2005) as a convex, infinite dimensional

alternative to low-rank approximations and

standard factor models. MMMF can be formu-

lated as a semi-definite programming (SDP) and

learned using standard SDP solvers. However,

current SDP solvers can only handle MMMF

problems on matrices of dimensionality up to

a few hundred. Here, we investigate a direct

gradient-based optimization method for MMMF

and demonstrate it on large collaborative pre-

diction problems. We compare against results

obtained by Marlin (2004) and find that MMMF

substantially outperforms all nine methods he

tested.

1. Introduction

“Collaborative prediction” refers to the task of predicting

preferences of users based on their preferences so far, and

how they relate to the preferences of other users. For exam-

ple, in a collaborative prediction movie recommendation

system, the inputs to the system are user ratings on movies

the users have already seen. Prediction of user preferences

on movies they have not yet seen are then based on patterns

in the partially observed rating matrix. The setting can be

formalized as a matrix completion problem—completing

entries in a partially observed data matrix Y . This approach

contrasts with a more traditional feature-based approach

where predictions are made based on features of the movies

(e.g. genre, year, actors, external reviews) and the users

(e.g. age, gender, explicitly specified preferences). Users

“collaborate” by sharing their ratings instead of relying on

Appearing in Proceedings of the 22
nd International Conference

on Machine Learning, Bonn, Germany, 2005. Copyright 2005 by
the author(s)/owner(s).

external information.

A common approach to collaborative prediction is to fit a

factor model to the data, and use it in order to make further

predictions (Azar et al., 2001; Billsus & Pazzani, 1998;

Hofmann, 2004; Marlin & Zemel, 2004; Canny, 2004).

The premise behind a low-dimensional factor model is that

there is only a small number of factors influencing the pref-

erences, and that a user’s preference vector is determined

by how each factor applies to that user. In a linear factor

model, each factor is a preference vector, and a user’s pref-

erences correspond to a linear combination of these factor

vectors, with user-specific coefficients. Thus, for n users

and d items, the preferences according to a k-factor model

are given by the product of an n × k coefficient matrix U

(each row representing the extent to which each factor is

used) and a k × d factor matrix V ′ whose rows are the fac-

tors. The preference matrices which admit such a factoriza-

tion are matrices of rank at most k. Thus, training such a

linear factor model amounts to approximating the observed

preferences Y with a low-rank matrix X .

The low-rank matrix X that minimizes the sum-squared

distance to a fully observed target matrix Y is given by the

leading singular components of Y and can be efficiently

found. However, in a collaborative prediction setting, only

some of the entries of Y are observed, and the low-rank

matrix X minimizing the sum-squared distance to the ob-

served entries can no longer be computed in terms of a sin-

gular value decomposition. In fact, the problem of finding

a low-rank approximation to a partially observed matrix is

a difficult non-convex problem with many local minima,

for which only local search heuristics are known (Srebro &

Jaakkola, 2003).

Furthermore, especially when predicting discrete values

such as ratings, loss functions other then sum-squared loss

are often more appropriate: loss corresponding to a spe-

cific probabilistic model (as in pLSA (Hofmann, 2004) and

Exponential-PCA (Collins et al., 2002)) or loss functions

such as hinge loss. Finding a low-rank matrix X min-

Fast Maximum Margin Matrix Factorization

imizing loss functions other then squared-error is a non-

convex optimization problem with multiple local minima,

even when the the target matrix Y is fully observed1.

Low-rank approximations constrain the dimensionality of

the factorization X = UV ′, i.e. the number of allowed fac-

tors. Other constraints, such as sparsity and non-negativity

(Lee & Seung, 1999), have also been suggested for better

capturing the structure in Y , and also lead to non-convex

optimization problems.

Recently, Srebro et al. (2005) suggested a formu-

lation termed “Maximum Margin Matrix Factorization”

(MMMF), constraining the norms of U and V instead of

their dimensionality. Viewed as a factor model, this cor-

responds to constraining the overall “strength” of the fac-

tors, rather than their number. That is, a potentially infinite

number of factors is allowed, but only a few of them are al-

lowed to be very important. For example, when modeling

movie ratings, there might be a very strong factor corre-

sponding to the amount of violence in the movie, slightly

weaker factors corresponding to its comic and dramatic

value, and additional factors of decaying importance corre-

sponding to more subtle features such as the magnificence

of the scenery and appeal of the musical score.

Mathematically, constraining the norms of U and V cor-

responds to constraining the trace-norm (sum of singular

values) of X . Interestingly, this is a convex constraint,

and so finding a matrix X with a low-norm factorization

minimizing any convex loss versus a partially (or fully)

observed target matrix Y , is a convex optimization prob-

lem. This contrasts sharply with rank-constraints, which

are not convex constraints, yielding non-convex optimiza-

tion problems as described above. In fact, the trace-norm

(sum of singular values) has also been suggested as a con-

vex surrogate for the rank (number of non-zero singular

values) in control applications (Fazel et al., 2001).

Fazel et al. (2001) show how a trace-norm constraint can

be written in terms of a linear and semi-definite constraints.

By using this form, Srebro et al. (2005) formulate MMMF

as semi-definite programming (SDP) and employ standard

SDP solvers to find maximum margin matrix factorizations.

However, such generic solvers are only able to handle prob-

lems with no more than a few tens of thousands of con-

straints, corresponding to about ten thousand observations

(observed user-item pairs), i.e. about a hundred users and a

hundred items. This is far from the size of typical collab-

orative prediction problems, with thousands of users and

items, yielding millions of observations.

1The problem is non-convex even when minimizing the sum-
squared error, but for the special case of minimizing the sum-
squared error versus a fully observed target matrix, all local min-
ima are global (Srebro & Jaakkola, 2003)

In this paper, we investigate methods for seeking a MMMF

by directly optimizing the factorization X = UV ′. That is,

we perform gradient-based local search on the matrices U

and V . Using such methods, we are able to find maximum

margin matrix factorizations for a realistically sized col-

laborative prediction data set, and demonstrate the compet-

itiveness of MMMF versus other collaborative prediction

methods.

In Section 2 we review the formulation of Maximum Mar-

gin Matrix Factorization suggested by Srebro et al. (2005).

In Section 3 we describe the optimization methods we de-

ploy, and in Section 4 we report our experiments using

these methods.

2. Maximum Margin Matrix Factorization

Before presenting Maximum Margin Matrix Factoriza-

tions, we begin by revisiting low-rank collaborative predic-

tion. We then present the MMMF formulation for binary

and ordinal rating observations.

2.1. Factor Models as Feature Learning

Consider fitting an n × d target matrix Y with a rank-k

matrix X = UV ′, where U ∈ R
n×k, V ∈ R

d×k. If one of

the matrices, say U , is fixed, and only the other matrix V

needs to be learned, then fitting each column of the target

matrix Y is a separate linear prediction problem. Each row

of U functions as a “feature vector;” each row of V is a

linear predictor, predicting the entries in the corresponding

column of Y based on the “features” in U .

In collaborative prediction, both U and V are unknown and

need to be estimated. This can be thought of as learn-

ing feature vectors (rows in U) for each of the rows of

Y , enabling good linear prediction across all of the pre-

diction problems (columns of Y) concurrently, each with

a different linear predictor (columns of V ′). The features

are learned without any external information or constraints

which is impossible for a single prediction task (we would

use the labels as features). The underlying assumption that

enables us to do this in a collaborative prediction situation

is that the prediction tasks (columns of Y) are related, in

that the same features can be used for all of them, though

possibly in different ways.

Consider adding to the loss a penalty term which is the sum

of squares of entries in U and V , i.e. ‖U‖2

Fro + ‖V ‖2

Fro

(‖·‖Fro denotes the Frobenius norm). Each “conditional”

problem (fitting U given V and vice versa) again decom-

poses into a collection of standard, this time regularized,

linear prediction problems. With an appropriate loss func-

tion, or constraints on the observed entries, these corre-

spond to large-margin linear discrimination problems. For

example, if we learn a binary observation matrix by mini-

Fast Maximum Margin Matrix Factorization

mizing a hinge loss (roughly, the distance from the classi-

fication margin) plus such a regularization term, each con-

ditional problem decomposes into a collection of support

vector machines (SVMs). As in SVMs, constraining U and

V to be low-dimensional is no longer necessary, as gener-

alization performance is guaranteed by the constraints on

the norms (Srebro & Schraibman, 2005).

2.2. Low-Norm Factorizations

Matrices with a factorization X = UV ′, where U and V

have low Frobenius norm (recall that the dimensionality of

U and V is no longer bounded!), can be characterized in

several equivalent ways:

Lemma 1. For any matrix X the following are all equal:

1. min U,V

X=UV ′

‖U‖Fro ‖V ‖Fro

2. min U,V

X=UV ′

1

2
(‖U‖2

Fro + ‖V ‖2

Fro)

3. The sum of the singular values of X , i.e. tr Λ where

X = UΛV ′ is the singular value decomposition of X .

Definition 1. The trace norm ‖X‖
Σ

of a matrix is given by

the three quantities in Lemma 1.

The trace norm is also known as the nuclear norm and the

Ky-Fan n-norm.

It is straight-forward to verify that the trace-norm is a con-

vex function: For a convex combination X = αX1 +
(1 − α)X2 consider the factorizations X1 = U1V

′
1 and

X2 = U2V
′
2 s.t. ‖X1‖Σ

= 1

2
(‖U1‖2

Fro + ‖V1‖2

Fro) and

respectively for X2. We can now consider a factoriza-

tion X = UV ′ where U, V are the block matrices U =
[√

αU1,
√

1 − αU2

]

and V =
[√

αV1,
√

1 − αV2

]

, yield-

ing:

‖X‖
Σ
≤ 1

2
(‖U‖2

Fro + ‖V ‖2

Fro)

= α
1

2
(‖U1‖2

Fro +‖V1‖2

Fro)+(1−α)
1

2
(‖U2‖2

Fro +‖V2‖2

Fro)

= α ‖X1‖Σ
+ (1 − α) ‖X2‖Σ

(1)

We can conclude that minimizing the trace-norm, com-

bined with any convex loss (e.g. sum-squared error, log-

likelihood for a binomial model, logistic loss) or constraint,

is a convex optimization problem. Here, we focus specif-

ically on hinge-loss (as in SVMs) and a generalization of

the hinge-loss appropriate for discrete ordinal ratings, as in

movie rating data sets (e.g. 1–5 “stars”).

2.3. Formulation

First consider binary labels Y ∈ {±1}n×m and hard-

margin matrix factorization, where we seek a minimum

trace norm matrix X that matches the observed labels with

a margin of one: YijXij ≥ 1 for all ij ∈ S (S is the

set of observed index pairs). By introducing slack vari-

ables ξij ≥ 0, we can relax this hard constraint, requiring

YijXij ≥ 1 − ξij , and minimizing a trade-off between the

trace-norm and the slack. Minimizing the slack variables is

equivalent to minimizing the hinge-loss h(z) = (1−z)+ =
max(0, 1 − z), and we can write the optimization problem

as:

minimize ‖X‖
Σ

+ C
∑

ij∈S

h(YijXij), (2)

where C is a trade-off constant.

As in maximum-margin linear discrimination, there is an

inverse dependence between the norm and the margin. Fix-

ing the margin and minimizing the trace norm (as in the

above formulation) is equivalent to fixing the trace norm

and maximizing the margin. As in large-margin discrim-

ination with certain infinite dimensional (e.g. radial) ker-

nels, the data is always separable with sufficiently high

trace norm (a trace norm of
√

n|S| is sufficient to attain

a margin of one).

Ratings The data sets we more frequently encounter

in collaborative prediction problem are of ordinal ratings

Yij ∈ {1, 2, . . . , R}. To relate the real-valued Xij to the

discrete Yij we use R − 1 thresholds θ1, . . . , θR−1. In a

hard-margin setting, we would require

θYij−1 + 1 ≤ Xij ≤ θYij
− 1

where for simplicity of notation θ0 = −∞ and θR = ∞.

When adding slack, we not only penalize the violation

of the two immediate constraints θYij−1 + 1 ≤ Xij and

≤ Xij ≤ θYij
− 1, but also the violation of all other im-

plied threshold constraint Xij ≥ θr + 1 for r < Yij and

Xij ≤ θr − 1 for r ≥ Yij . Doing so emphasizes the cost of

crossing multiple rating-boundaries and yields a loss func-

tion which upper bounds the mean-absolute-error (MAE—

the difference, in levels, between the predicted level and

the true level). The resulting optimization problem is:

minimize ‖X‖
Σ

+ C
∑

ij∈S

Yij−1
∑

r=1

h(Xij − θr)

+

R−1
∑

r=Yij

h(θr − Xij))

≡ minimize ‖X‖
Σ

+ C
∑

ij∈S

R−1
∑

r=1

h(T r
ij(θr − Xij)) (3)

where T r
ij =

{

+1 for r ≥ Yij

−1 for r < Yij

.

Fast Maximum Margin Matrix Factorization

The thresholds θr can be learned from the data. Further-

more, a different set of thresholds can be learned for each

user, allowing users to “use ratings differently” and allevi-

ates the need to normalize the data. The problem can then

be written as:

minimize ‖X‖
Σ

+ C
∑

ij∈S

R−1
∑

r=1

h(T r
ij(θir − Xij)) (4)

where the variables optimized over are the matrix X and

the thresholds θ. In other work, we find that such a for-

mulation is highly effective for rating prediction (Rennie &

Srebro, 2005).

Although the problem was formulated here as a single op-

timization problem with a combined objective, ‖X‖
Σ

+
C · error, it should really be viewed as a dual-objective

problem of balancing between low trace-norm and low er-

ror. Considering the entire set of attainable (‖X‖
Σ

, error)
pairs, the true object of interest is the exterior “front” of

this set, i.e. the set of matrices X for which it is not possi-

ble to reduce one of the two objectives without increasing

the other. This “front” can be found by varying the value

of C from zero (hard-margin) to infinity (no norm regular-

ization).

All optimization problems discussed in this section can be

written as semi-definite programs (Srebro et al., 2005).

3. Optimization Methods

We describe here a local search heursitic for the problem

(4). Instead of searching over X , we search over pairs of

matrices (U, V), as well as sets of thresholds θ, and attempt

to minimize the objective:

J(U, V, θ)
.
=

1

2
(‖U‖2

Fro + ‖V ‖2

Fro)

+ C

R−1
∑

r=1

∑

ij∈S

h
(

T r
ij(θir − UiV

′
j)

)

. (5)

For any U, V we have ‖UV ‖
Σ
≤ 1

2
(‖U‖2

Fro + ‖V ‖2

Fro) and

so J(U, V, θ) upper bounds the minimization objective of

(4), where X = UV ′. Furthermore, for any X , and in par-

ticular the X minimizing (4), some factorization X = UV ′

achieves ‖X‖
Σ

= 1

2
(‖U‖2

Fro + ‖V ‖2

Fro). The minimization

problem (4) is therefore equivalent to:

minimize J(U, V, θ). (6)

The advantage of considering (6) instead of (4) is that

‖X‖
Σ

is a complicated non-differentiable function for

which it is not easy to find the subdifrential. Finding good

descent directions for (4) is not easy. On the other hand, the

 0

 0.5

 1

 1.5

 2

-0.5 0 0.5 1 1.5

Lo
ss

z

Hinge
Smooth Hinge

-1.5

-1

-0.5

 0

 0.5

-0.5 0 0.5 1 1.5

D
er

iv
at

iv
e

of
 L

os
s

z

Hinge
Smooth Hinge

Figure 1. Shown are the loss function values (left) and gradients

(right) for the Hinge and Smooth Hinge. Note that the gradients

are identical outside the region z ∈ (0, 1).

objective J(U, V, θ) is fairly simple. Ignoring for the mo-

ment the non-differentiability of h(z) = (1 − z)+ at one,

the gradient of J(U, V, θ) is easy to compute. The partial

derivative with respect to each element of U is:

∂J

∂Uia

= Uia − C

R−1
∑

r=1

∑

j|ij∈S

Tij(k)h′
(

T r
ij(θir − UiV

′
j)

)

Vja

(7)

The partial derivative with respect to Vja is analogous. The

partial derivative with respect to θik is

∂J

∂θir

= C
∑

j|ij∈S

T r
ijh

′
(

T r
ij(θir − UiV

′
j)

)

. (8)

With the gradient in-hand, we can turn to gradient descent

methods for localy optimizing J(U, V, θ). The disadvan-

tage of considering (6) instead of (4) is that although the

minimization objective in (4) is a convex function of X, θ,

the objective J(U, V, θ) is not a convex function of U, V .

This is potentially bothersome, and might inhibit conver-

gence to the global minimum.

3.1. Smooth Hinge

In the previous discussion, we ignored the non-

differentiability of the Hinge loss function h(z) at z = 1.

In order to give us a smooth optimization surface, we use

an alternative to the Hinge loss, which we refer to as the

Smooth Hinge. Figure 1 shows the Hinge and Smooth

Hinge loss functions. The Smooth Hinge shares many

properties with the Hinge, but is much easier to optimize

directly via gradient descent methods. Like the Hinge, the

Smooth Hinge is not sensitive to outliers, and does not

continuously “reward” the model for increasing the output

value for an example. This contrasts with other smooth loss

functions, such as the truncated quadratic (which is sensi-

tive to outliers) and the Logistic (which “rewards” large

output values). We use the Smooth Hinge and the corre-

sponding objective for our experiments in Section 4.

Fast Maximum Margin Matrix Factorization

 0 20 40 60 80 100

O
bj

ec
tiv

e

Rank

Figure 2. Objective value after learning U and V for various reg-

ularization values on a 100x100 subset of the MovieLens data

set. The “rank” axis indicates the number of columns we used for

U and V (the value of k). Each line corresponds to a different

regularization constant (C). Each point corresponds to separate,

randomly initialized optimization.

3.2. Implementation Details

In the MMMF formulation, we use the norm of X for reg-

ularization, so the rank of the U , V decomposition of X is

effectively unbounded. However, there is no need to con-

sider rank larger than k = max(n, d). And, in practice,

we find that we can get away with much smaller values of

k. For our experiments in Section 4, we use a value of

k = 100. While using a too-small value of k may lead to a

sub-optimal solution, there tend to be a wide range of val-

ues of k that yield near-identical solutions. Figure 2 shows

the objective value for various regularization values and

rank-truncated U , V matrices on a subset of the MovieLens

data set. Although X is 100x100, values of k ∈ (20, 40)
(depending on C) achieve nearly the same objective value

as k = 100. Learning using truncated U , V is significantly

faster than using k = max(n, d).

For optimization of U , V and θ, we used the Polak-Ribière

variant of Conjugate Gradients (Shewchuk, 1994; Nocedal

& Wright, 1999) with the consecutive gradient indepen-

dence test (Nocedal & Wright, 1999) to determine when

to “reset” the direction of exploration. We used the Secant

line search suggested by (Shewchuk, 1994), which uses lin-

ear interpolation to find an approximate root of the direc-

tional derivative. We found PR-CG to be sufficiently fast,

yielding matrix completion on a 30000x1648 EachMovie

rating matrix (4% observed entries, using rank k = 100 U ,

V matrices) in about 15 hours of computation time (single

3.06Ghz Pentium 4 CPU).

10
0

10
1

10
2

10
2

10
3

γ

S
um

m
ed

 A
bs

ol
ut

e
D

iff
er

en
ce

Figure 3. Shown is an example of summed absolute difference be-

tween the X (top) and Y (bottom) matrices produced by CG solu-

tion of the SGL objective and SDP solution of the Hinge objective

as a function of γ. The matrix is 100x100 and there are 5 rating

levels, so absolute difference for Y could be as large as 40,000.

3.3. Local Minima

The direct optimization problem (6) is not convex. In fact,

U = V = 0 is a critical point that is clearly not the global

optimum. We know that there are critical points; there may

even be local minima. The important practical question is:

how likely we are to get stuck at a local minimum with

reasonable, e.g. random, initialization? We would like to

compare the solution found by our local-search Conjugate

Gradients (CG) algorithm against the global optimum. We

do not currently have the tools to find the global optimum

of the Smooth Hinge objective. But, we can solve for the

global optimum of the Hinge objective (on small problems)

using an SDP solver. Then, to evaluate our CG optimiza-

tion method, we use an upper bound on the Hinge loss func-

tion that can be made increasingly tight as we increase a pa-

rameter. We call this upper bound the shifted generalized

Logistic2 (SGL for short):

h(z) =
1

γ
log(1 + exp(γ(1 − z))). (9)

Note that as γ → ∞, this function approaches h(z) =
(1− z)+. In tests on the 100x100 subset of the MovieLens

data set, we find that CG optimization of the SGL objec-

tive finds solutions very close to those found by the SDP

solver. Figure 3 shows differences in the solution matrices

of a CG optimization of the SGL objective compared to a

SDP optimization of the Hinge objective. As γ increases,

the X and Y matrices produced by the CG optimization

grow increasingly similar to those produced by the SDP

optimization. Numerical issues made it impossible for us

to explore values of γ > 300, but the trend is clear—the

2Zhang and Oles (2001) discuss the generalized Logistic.

Fast Maximum Margin Matrix Factorization

10
0

10
1

10
2

10
0

10
1

10
2

10
3

10
4

γ

O
bj

ec
tiv

e

Figure 4. Shown is an example of objective values as a function

of γ. We subtract the Hinge objective value for the SDP solution

from all y-axis values. The top two lines show the SGL objective

values for the (top) SDP, and (middle) CG solutions. The bottom

line gives the Hinge objective value for the CG solution. In all

three cases, there is a clear trend toward zero as γ → 0.

difference tends to zero as γ → ∞. Results on a variety

of regularization parameters and randomly drawn training

sets are similar. Figure 4 shows objective values compared

to the Hinge objective of the (optimal) SDP solution. The

SGL loss of the SDP solution (top line) is uniformly greater

than SGL loss of the CG solution (middle line). This indi-

cates that the CG solution is close to the global minimum

of the SGL objective. Furthermore, the Hinge loss of the

CG solution (bottom line) tends toward zero as γ → ∞,

indicating that, in the limit, the CG solution will achive the

same global minimum that is found by the SDP solver. We

also found that CG always returned the minimum Frobe-

nius norm U , V decomposition for the X matrix. That is,

given the X matrix returned by CG, no U , V decomposi-

tion would have yielded a lower objective value.

4. Experiments

Here we report on experiments conducted on the 1M

Movielens and EachMovie data sets. We mimic the setup

used by Marlin (2004) and compare against his results. We

find that MMMF with the Smooth Hinge loss substantially

outperforms all algorithms that Marlin tested.

Marlin tested two types of generalization, “weak” and

“strong.” We conducted test on both types. “Weak general-

ization” is a single stage process which involves the learner

filling-in missing entries of a rating matrix. “Strong gener-

alization” is a two-stage process where the learner trains a

model on one set of users and then is asked to make pre-

dictions on a new set of users. The learner is given sample

ratings on the new set of users, but may not utilize those

ratings until after the initial model is constructed.

The EachMovie data set provides 2.6 million ratings for

74,424 users and 1,648 movies. There are six possible

rating values, {1, 2, . . . , 6}. As did Marlin, we discarded

users with fewer than 20 ratings. This left us with 36,656

users. We randomly selected 30,000 users for the “weak

generalization” set and used the remaining 6,656 users for

the “strong generalization” set.

The MovieLens data set provides 1 million ratings for

6,040 users and 3,952 movies. There are five possible rat-

ing values, {1, 2, . . . , 5}. All users had 20 or more ratings,

so we utilized all users. We randomly selected 5,000 users

for the “weak generalization” set and used the remaining

1,040 users for the “strong generalization” set.

As did Marlin, we repeated the selection process three

times for each data set. We randomly withheld one movie

for each user to construct the test set. To select the regular-

ization parameter for MMMF, we withheld one additional

movie per user to construct a validation set; we selected the

regularization parameter with lowest validation error. We

computed Normalized Mean Absolute Error (NMAE) as

Marlin describes. The normalization constant for Movie-

Lens (5 rating values) is 1.6; the normalization constant

for EachMovie (6 rating values) is 1.944. For both data

sets, we truncated the U and V matrices at rank k = 100.

This led to (weak generalization) U and V matrices of size

30000x100 and 1648x100 for EachMove and 6040x100

and 3952x100 for MovieLens (respectively). The U and V

matrix sizes influenced the computational time required for

optimization. We found that optimization of a single train-

ing set and regularization parameter for EachMovie took

about 15 hours on a single 3.06Ghz Pentium 4 CPU; a sin-

gle optimization run for MovieLens took about 5 hours.

Table 1 give the results of our experiments. We reproduce

the results of the two algorithms that yielded lowest errors

in Marlin’s experiments. MMMF gives lower NMAE on

both data sets and for both weak and strong generalization.

The differences are substantial—in all cases, the MMMF

errors are at least one standard deviation better than the best

result reported by Marlin. In many cases, the MMMF result

is better by a margin of multiple standard deviations.

5. Discussion

In this work, we have shown that it is possible to “scale-up”

MMMF to large problems. We used gradient descent on U ,

V and θ to find an approximate minimum to the MMMF

objective. Although J(U, V, θ) is not convex, an empiri-

cal analysis indicated that local minima are, at worst, rare.

However, there is still the need to determine whether local

minima exist and how likely it is that gradient descent will

get stuck in such minima.

Fast Maximum Margin Matrix Factorization

EachMovie

Algorithm Weak NMAE Strong NMAE

URP .4422 ± .0008 .4557 ± .0008

Attitude .4520 ± .0016 .4550 ± .0023

MMMF .4397± .0006 .4341± .0025

MovieLens

Algorithm Weak NMAE Strong NMAE

URP .4341 ± .0023 .4444 ± .0032

Attitude .4320 ± .0055 .4375 ± .0028

MMMF .4156± .0037 .4203± .0138

Table 1. MMMF results on (left) EachMovie and (right) MovieLens; we also reproduce Marlin’s results for the two best-performing

algorithms (URP and Attitude). We report average and standard deviation of Normalized Mean Absolute Error (NMAE) across the three

splits of users. For MMMF, we selected the regularization parameter based on a validation set taken from the training data; Marlin’s

results represent the lowest NMAE across a range of regularization parameters.

Acknowledgments

Jason Rennie was supported in part by the DARPA CALO

project. We thank Tommi Jaakkola for valuable comments

and ideas.

References

Azar, Y., Fiat, A., Karlin, A. R., McSherry, F., & Saia, J.

(2001). Spectral analysis of data. ACM Symposium on

Theory of Computing (pp. 619–626).

Billsus, D., & Pazzani, M. J. (1998). Learning collabora-

tive information filters. Proc. 15th International Conf.

on Machine Learning (pp. 46–54). Morgan Kaufmann,

San Francisco, CA.

Canny, J. (2004). Gap: a factor model for discrete data. SI-

GIR ’04: Proceedings of the 27th annual international

conference on Research and development in informa-

tion retrieval (pp. 122–129). Sheffield, United Kingdom:

ACM Press.

Collins, M., Dasgupta, S., & Schapire, R. (2002). A gen-

eralization of principal component analysis to the expo-

nential family. Advances in Neural Information Process-

ing Systems 14.

Fazel, M., Hindi, H., & Boyd, S. P. (2001). A rank min-

imization heuristic with application to minimum order

system approximation. Proceedings American Control

Conference.

Hofmann, T. (2004). Latent semantic models for collabo-

rative filtering. ACM Trans. Inf. Syst., 22, 89–115.

Lee, D., & Seung, H. (1999). Learning the parts of objects

by non-negative matrix factorization. Nature, 401, 788–

791.

Marlin, B. (2004). Collaborative filtering: A machine

learning perspective. Master’s thesis, University of

Toronto, Computer Science Department.

Marlin, B., & Zemel, R. S. (2004). The multiple multiplica-

tive factor model for collaborative filtering. Proceedings

of the 21st International Conference on Machine Learn-

ing.

Nocedal, J., & Wright, S. J. (1999). Numerical optimiza-

tion. Springer-Verlag.

Rennie, J. D. M., & Srebro, N. (2005). Loss functions for

preference levels: Regression with discrete ordered la-

bels. Proceedings of the IJCAI Multidisciplinary Work-

shop on Advances in Preference Handling.

Shewchuk, J. R. (1994). An introduction to the con-

jugate gradient method without the agonizing pain.

http://www.cs.cmu.edu/∼jrs/jrspapers.html.

Srebro, N., & Jaakkola, T. (2003). Weighted low rank ap-

proximation. 20th International Conference on Machine

Learning.

Srebro, N., Rennie, J. D. M., & Jaakkola, T. (2005). Max-

imum margin matrix factorization. Advances In Neural

Information Processing Systems 17.

Srebro, N., & Schraibman, A. (2005). Rank, trace-norm

and max-norm. Proceedings of the 18th Annual Confer-

ence on Learning Theory.

Zhang, T., & Oles, F. J. (2001). Text categorization based

on regularized linear classification methods. Information

Retrieval, 4, 5–31.

