6.001, Fall Semester, 2005—Quiz I 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001—Structure and Interpretation of Computer Programs

Fall Semester, 2005

Quiz I

Closed Book — one sheet of notes

Throughout this quiz, we have set aside space in which you should write your answers. Please try
to put all of your answers in the designated spaces, as we will look only in this spaces when grading.

Note that any procedures or code fragments that you write will be judged not only on correct
function, but also on clarity and good programming practice.

Also note that while there may be a lot of reading to do on a problem, there is relatively little code
to write, so please take the time to read each problem carefully.

NAME:
Section Time: Tutor’s Name:
PART | Value | Grade | Grader
1 28
2 28
3 24
4 20
Total | 100

For your reference the list of TA’s is:

o Tom Wilson
¢ I-Ting Angelina Lee
e Chang She

e J.D. Zamfirescu

6.001, Fall Semester, 2005—Quiz 1 2

Part 1: (28 points)

For each of the following expressions or sequences of expressions, state the value returned as the
result of evaluating the final expression in each set, or indicate that the evaluation results in an
error. If the result is an error, state in general terms what kind of error (e.g. you might write
“error: wrong type of argument to procedure”). If the evaluation returns a built-in procedure,
write primitive procedure. If the evaluation returns a user-created procedure, write compound
procedure.

If the expression does not result in an error, also state the “type” of the returned expression, using
the notation introduced in lecture.

You may assume that evaluation of each sequence takes place in a newly initialized Scheme system.

Question 1.

Value: _ Type:

Question 2.

1+ 3)

Value: : Type:

Question 3.

(lambda (x y)
(+ (*x x x)

«ywH

S

Value: Type:

6.001, Fall Semester, 2005—Quiz I

Question 4.

((1ambda (x y)
(+ (» x x)

« yy)))

Value:

Question 5.

(define x 5)
(define y 2)
(define (doit x)
(let ((y 1),
(list x y)))
(doit 3)

Value:

Question 6.

(((lambda (x)
(lambda (y)
(- xxx) (*yy))N)
5)
3

Value:

Question 7.

(1ist + 2 3)

Value:

Type:

Type:

__I1Type:

Type:

6.001, Fall Semester, 2005—Quiz I 4

Part 2: (28 points)

We are going to work with a simple database that represents a student’s transcript. A transcript
will consist of a sequence of terms, and each term will consist of a set of subjects and grades. We
will, for simplicity, represent subjects by their numerical value (e.g. 6.001), and we will represent
grades by their numerical values (e.g. an A isa 5, an A-is a 4.7, a B+ isa 4.3, a B is a 4, etc.).

We are going to assume some data abstractions for use in our system. Our most basic unit will
be a subject/grade pair, which we will call a subject record (or just a subjectrec for short). Our
constructor for an individual subjectrec is make-subjectrec with selectors subject and grade:

(subject (make-subjectrec 6.001 5))
6.001

(grade (make-subjectrec 6.001 5))
5

To represent a term, we will have:

¢ a procedure that creates an empty term, make-empty-term,

add-subjectrec will add a subjectrec to an existing term, and return the new term,

to get the first subjectrec in a term, we will use first-subjectrec

to get everything but the first subjectrec, we will use rest-term, and

we will test if a term is empty using end-term?.

(define ft04
(add-subjectrec
(make-subjectrecrec 6.001 5)
(add-subjectrec (make-subjectrec 18.01 4.3)
(add-subjectrec (make-subjectrec 8.01 4)
(add-subjectrec (make-subjectrec 14.001 3)
(make-empty-term))))))

Similarly, to represent a transcript, we will have:
® a proéedure that creates an empty transcript, make-empty-transcript,
e add-term will add a term to an existing transcript, and return the new transcript,
to get the first term in a transcript, we will use first-term

e to get everything but the first term, we will use rest-transcript, and

o we will test if a transcript is empty using end-transcript?.

Suppose we want to compute a term’s GPA (grade point average), which is simply the average
numerical grade for the courses during the term (don’t worry about the fact that courses might
have different units).

We are going to do this in stages.

6.001, Fall Semester, 2005—Quiz I 5

Question 8.

Write a procedure, term-sum, that takes as input a term, and returns the sum of the grades for
the subjectrecs in that term. For example:

(term-sum ft04)
16.3

Here is a template for the procedure, you need to insert the missing parts: j

(define (term-sum term)
(if INSERT-1
0
(+ INSERT-2
INSERT-3)))

INSERT-1:

INSERT-2:

INSERT-3:

6.001, Fall Semester, 2005—Quiz I 6

Question 9.

Similarly, write a procedure, term-subjects, that takes as input a term, and returns the total
number of subjectrecs in that term. For example:

(term-subjects £t04)
4

Using this, we can then create

(define (term-gpa term) ‘
(/ (term-sum term) (term-subjects term)))

so that

(term-gpa £t04)
4.075

Here is a template for the procedure, you need to insert the missing parts:

(define (term-subjects term)
(if INSERT-4
0
(+ INSERT-5
INSERT-6)))

INSERT-4: will be the same as INSERT~1 in Question 8 above.

INSERT-5:

INSERT-6:

6.001, Fall Semester, 2005—Quiz 1 7

Question 10. Now suppose we want to get the GPA for a full transcript.

You are to write a procedure, overall-sum, that takes as input a transcript, and returns the sum
of the grades for all the subjectrecs in the transcript. You should use term-sum as part of your
solution. For example:

(overall-sum test-transcript)
31.0

Once we have overall-sum, clearly we can write a very similar procedure, overall-subjects,
that takes as input a transcript, and returns the total number of subjectrecs in the transcript. For
example:

{overall-subjects test-transcript
8 .

If we assume that overall-subjects has been completed, we can then create:

(define (overall-gpa term)
(/ (overall-sum term) (overall-subjects term)))

so that

(overall-gpa test-transcript)
3.875

Write overall-sum:

6.001, Fall Semester, 2005—Quiz 1 8

Question 11.

Suppose we want to find the subjectrec for a particular subject out of a full transcript. Your job is
to write a procedure find-subjectrec-in-term that looks for the subject record in a particular
term. Your procedure will be used by:

(define (find-subjectrec subj transcript)
(if (end-transcript? transcript)
#£
(let ((temp (find-subjectrec-in~term subj (first-term tramscript))))
(if temp
temp
(find-subjectrec subj (rest-transcript tramscript))))))

>{(find-subjectrec 8.01 ft04)
(8.01 4)

You may assume that a subject appears at most once in a transcript.

Write the procedure find-subjectrec-in-term:

6.001, Fall Semester, 2005—Quiz 1 9

Part 3: (24 points)

In this part we are going to explore a different way to compute GPA’s. While we will rely on the
same data abstractions, you can otherwise treat this part as independent of Part 2.

Question 12.

A different way of computing a GPA is to first convert the information from a term into a list of
values, and then apply list operations. For example, to compute the GPA of a term, we could first
convert the term into a list of grades, then add them up, and divide by the number of subjectrecs.

The following procedure is a general purpose way of converting a data structure into a list, including
doing some processing on each element as it is added to the list. Collection is some data structure
to be processed, which has associated selectors front to get the first element, rest to get the
remaining elements, and end-test? to tell if we are at the end of the data structure. Convert is
used to do something to each element as it is extracted from the data structure.

(define (convert-to-list. convert front rest end-test? collection)
(if (end-test? collection)
()
(cons (convert (front collection))
(convert-to-list convert front rest end-test? (rest collection)))))

Using this procedure, plus the procedure foldr:

(define (foldr proc init 1st)
(if (oull? 1st)
init
(proc (car 1st) (foldr proc init (cdr 1st))})))

write a new procedure to compute a term’s GPA:

6.001, Fall Semester, 2005—Quiz I ' 10

Question 13.

Suppose we want to get a list of all of the subjects in a transcript. We can again use the concepts
of convert-to-list and foldr. You may also find the following procedure useful:

(define (append 1lstl 1st2)
(if (null? 1sti)
1st2
(cons (car 1lstl) (append (cdr 1stl) 1st2))))

Write the procedure get-all-subjectrecs that takes a transcript as input and returns a list of
all the subjectrecs, e.g.

>(define my-test (get-all-subjectrecs test-transcript))

>my-test
((6.001 5) (18.01 4.3) (8.01 4) (14.001 3) (6.002 3) (18.02 4.7) (8.02 3.7) (14.002 3.3))

6.001, Fall Semester, 2005—Quiz I 11

Question 14.

Once we have a transcript as a list of subjectrecs, we can use list operations to compute a GPA.
Using foldr and map defined as

(define (map proc 1lst)
(if (null? 1st)
0
(cons (proc (car 1lst))
(map proc {ecdr 1st)))))

complete the following procedure to compute a GPA:

(define (new-gpa transcript)
(let ((1st (get-all-subjectrecs transcript)))
INSERT-HERE))

6.001, Fall Semester, 2005—Quiz I 12

Part 4: (20 points)

Suppose that we want to sort a list of elements (e.g. a list of subjectrecs from the previous part
— although you can treat this part as independent of the previous part). Here is a procedure for
sorting:

(define (find-best best todo compare)
(if (null? todo)
best
(if (compare (car todo) best)
(find-best (car todo) (cdr todo) compare)
(find-best best (cdr todo) compare))))

(define (remove elt todo same)
(if (null? todo)
nil
(if (same elt (car todo))
(cdr todo)
(cons (car todo) (remove elt (cdr todo) same)))))

(define (sort data compare same)
(let ((trial (find-best (car data) (cdr data) compare)))
(let ((todo (remove trial data same)))
(if (null? todo)
(list trial)
(cons trial (sort todo compare same))))))

For example, to sort our data by increasing subject number, we would evaluate:

(sort (get-all-subjectrecs transcript)
(lambda (x y) (< (subject x) (subject y)))
eq?)

We are going to measure the order of growth in time (as measured by the number of primitive
operations in the compuiaticr) and in space.(as measured by the maximu:ii nuinber of deferred
operations ~ do not count in space the intermediate data structures constructed by the algorithm),
measured as a function of the size of data, denoted by n. Assume that the procedures used for
compare and same use constant time and space.

For each of the following questions, choose the description from these options that best describes
the order of growth of the process. If you select “something else”, please state why.

constant

linear
exponential
quadratic
logarithmic
something else

TEgQE >

6.001, Fall Semester, 2005—Quiz 1 13

Question 15. What is the order of growth in time of the procedure find-best?

Question 16. What is the order of growth in space of the procedure find-best?

Question 17. What is the order of growth in time of the procedure remove?

Question 18. What is the order of growth in space of the procedure remove?

Question 19. What is the order of growth in time of the procedure sort? Remember to include
the effect of find-best and remove.

Question 20. What is the order of growth in space of the procedure sort? Remember to include
the effect of find-best and remove.

