
6.001 recitation 11 3/21/07

 stack, queue problems

Dr. Kimberle Koile

2

We'll implement stacks and queues using the ADT, mutable-list, described in the accompanying
handout. Here's an example.

(let* ((e (make-element 4))
 (x (make-mutable-list e e)))
x)

(add-to-front! x 5)

stacks and queues

Using the procedures for a new data type called mutable-list, provided in the accompanying
handout, write the following procedures.

stack and queue problems

1. Define set-last! which modifies the first or last pointers of a mutable-list to point at the new elements.
 set-first! is defined for you. (Recall that the car of a mutable-list is a tag, so the first list element is actually
 the cadr.)

 (define (set-first! m-l e)
 ;; type: mutable-list, <element|null> unspecified
 (if (mutable-list? m-l)
 (set-car! (cdr m-l) e)
 (error "not a mutable list")))

 (define (set-last! m-l e)
 ;; type: mutable-list, <element|null> unspecified

stack and queue problems
2. Define set-prev! and set-next! that change the prev or next field of a mutable-element.

 (define (set-prev! element prev)
 ;; type: element, <element|null> unspecified

 (define (set-next! element next)
 ;; type: mutable-list, <element|null> unspecified

stack and queue problems
3a. Complete the definition for add-to-front! which takes any value and adds a new element to
the front of the list containing that value. Then define add-to-back! which does the same for the
back of the list.

 (define (add-to-front! lst item)
 ;; type: mutable-list A  unspecified
 (let ((e (make-element item)))
 (cond ((not (mutable-list? lst))
 (error "not a mutable list"))
 ((empty-mutable-list? lst)
 (set-first! lst e)
 (set-last! lst e))
 (else

stack and queue problems
3b. Write add-to-back! which takes any value and adds a new element containing that value to
the back of the list.

 (define (add-to-back! lst item)
 ;; type: mutable-list A  unspecified

 (let ((e (make-element item)))
 (cond ((not (mutable-list? lst))
 (error "not a mutable list"))
 ((empty-mutable-list? lst)
 (set-first! lst e)
 (set-last! lst e))
 (else (set-prev! e (last-element lst))
 (set-next! (last-element lst e)
 (set-last! lst e)))))

stack and queue problems
4a. Complete the definition for remove-from-back! which removes the last element and returns its value.
(define (remove-from-back! lst)
 ;; type: mutable-list  A
 (let ((e (make-element item)))
 (cond ((not (mutable-list? lst))
 (error "not a mutable list"))
 ((empty-mutable-list? lst)
 (error "list is empty"))
 ((single-entry? lst)

 (let ((e (last-element lst)))
 (set-first! lst '())
 (set-last! lst '())
 (element-value e))
 (else
 (let ((e (last-element lst)))
 (set-last! lst (element-prev e))
 (set-next! (last-element lst) '())
 (element-value e))))))

stack and queue problems

 (let ((e (make-element item)))
 (cond ((not (mutable-list? lst))
 (error "not a mutable list"))
 ((empty-mutable-list? lst)
 (error "list is empty"))
 ((single-entry? lst)
 (let ((e (first-element list)))
 (set-first! lst '())
 (set-last! lst '())
 (element-value e)))
 (else (let ((e (first-element lst)))
 (set-first! lst (element-next e))
 (set-prev! (first-element lst) '())
 (element-value e)))))

4b. Write remove-from-front! which removes the first element and returns its value

 (define (remove-from-front! lst)
 ;; type: mutable-list  A

stack and queue problems
5. Write push! and pop! to use the mutable list as a stack.

6. Write enqueue! and dequeue! to use the mutable list as a queue.

stack and queue problems
7. Using either a stack or a queue (or both!) define a procedure rpn-calc that takes a simple
arithmetic expression in postfix notation and evaluates it. You may assume a procedure list-
>mutable-list which takes a Scheme list and returns the corresponding doubly-linked list.

e.g. (rpn-calc '(1 2 +)  3
 (rpn-calc '(5 1 2 + - 10 + 6 / 3 *))  6

 (define (list->mutable-list lst)
 (define (helper l m-l)
 (if (null? l) m-l
 (begin (enqueue! m-l (car l))
 (helper (cdr l) m-l))))
 (helper lst (make-mutable-list)))

 (define *binary-operations*
 (list (list '+ +)
 (list '- -)
 (list '/ /)
 (list '* *)))

 (define (rpc-calc exp)
 (let ((stack (make-mutable-list))
 (instruction-queue (list->mutable-list exp)))
 (define (rpn-eval atom)
 (cond ((number? atom)
 (push! stack atom))
 ((eq? atom 'show))
 (let ((v (pop! stack)))
 (display v)
 (newline)
 (push! stack v)))
 ((assq atom *binary-operations*)
 (let ((op1 (assq atom *binary-operations*))
 (a1 (pop! stack)))
 (let ((a2 (pop! stack)))
 (push! stack ((cadr op1) a2 a1)))))
 (else (error "undefined operation"))))
 (define (helper)
 (if (empty-mutable-list? instruction-queue)
 (pop! stack)
 (begin (rpn-eval (dequeue! instruction-queue))
 (helper)))
 (helper)))

stack and queue problems
8. Can you define rpn-calc without using any mutating procedure?

 (define (rpc-calc exp)
 (define (rpn-eval stack exp)
 (cond ((null? exp) (car stack))
 ((number? (car exp))
 (rpn-eval (cons (car exp) stack) (cdr exp)))
 ((eq? (car exp 'show)
 (display (car stack))
 (newline)
 (rpn-eval stack (cdr exp)))
 ((assq (car exp) *binary-operations*)
 (let ((op (cadr (assq (car exp) *binary-operations*))))
 (rpn-eval (cons (op (cadr stack) (car stack)) stack)
 (cdr exp))))
 (else (error "undefined operation"))))
 (rpn-eval '() exp))

