
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.001 Structure and Interpretation of Computer Programs
Spring, 2007

Recitation 13, April 4
Tree Problem Solutions Dr. Kimberle Koile

Trees as Nested Lists
A conventional representation of trees is achieved using a nested list structure. Each node in the tree is represented
as a list of the children of that node, where a child may be either another tree or a leaf node. A child node that is a
tree is called a subtree. A leaf node is anything that is not a pair (e.g., a symbol or a self-evaluating value).

1. Draw a box-and-pointer structure for the following tree using this convention. How does the interpreter print this
structure?

Printed representation:

Box-and-pointer diagram:

2. Draw the interpretation of this list as a tree structure: (((1 2) 3) (4 (5 6)) 7 (8 9 10))

 Draw the box-and-pointer diagram:

1

5
4

2

3
6

3. Fill in the procedure for double-tree that returns a new tree (in the list representation) with double the value of all
leaf nodes. Recall that you check for a leaf node with this procedure:

(define (leaf? x)
 (not (pair? x)))

(define (double-tree tree)
 (cond ((null? tree) nil)
 ((leaf? tree) (* 2 tree))
 (else (cons (double-tree (car tree))
 (double-tree (cdr tree))))))

4. An advantage of representing trees as lists is that we can use list procedures. Write the double-tree procedure
using the map procedure.

(define (double-tree tree)
 (if (leaf? tree)
 (* 2 tree)
 (map double-tree tree)))

Note that in this case we don't have to check for null, since map is already doing so.

5. Recall the tree-map procedure, which will perform some operation on all the leaf nodes of a tree,
 e.g. (tree-map double mytree).

(define (tree-map proc tree)
 (if (leaf? tree)
 (proc tree)
 (map (lambda (tree) (tree-map proc tree)) tree)))

 Why can't we just use the procedure tree-map as the second argument to map? .

We can't just pass maptree, since we would have an argument mismatch (the procedure passed to map must take
only one argument). So we have to use an anonymous procedure that has the proc variable buried inside it.

Alternate tree-map:

(define (tree-map proc tree)
 (if (leaf? tree)
 (proc tree)
 (cons (tree-map proc (car tree))
 (tree-map proc (cdr tree)))))

