
Memoization is a clever idea that allows us to save on computation. It works by keeping track of evaluation of a procedure on a
specific argument, and simply returns the remembered value if the procedure has already been run on that argument. Draw
the environment diagram for the following procedure definition and application.

(define (memoize proc)
 (let ((cache '()))
 (lambda (arg)
 (if (assoc arg cache)

 (cadr (assoc arg cache))
 (let ((answer (proc arg)))
 (set! cache (cons (list arg answer) cache))
 answer)))))

(define my-sq (memoize (lambda (x) (* x x))))
(my-sq 5)

practice problem: memoization

memoization
Memoization is a clever idea that allows us to save on computation. It works by keeping track of evaluation of a procedure on a specific argument, and

simply returns the remembered value if the procedure has already been run on that argument.
(define (memoize proc)
 (let ((cache '()))
 (lambda (arg)
 (if (assoc arg cache)

 (cadr (assoc arg cache))
 (let ((answer (proc arg)))
 (set! cache (cons (list arg answer) cache))
 answer)))))

(define my-sq (memoize (lambda (x) (* x x))))
(my-sq 5)

