MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Recitation 16b, April 18

Higher Order Procedures Practice (Mike Leventon)

Dr. Kimberle Koile

1. Write a function swap that takes a function f , and returns a function that takes two arguments, and returns f with the variables swapped: ($\mathrm{f} \mathrm{x} y$) $==(($ (swap f$) \mathrm{y} x$) For example, ((swap -) 4 5) 1 .

2. Composing functions

Now try to write the function compose that takes two functions, f and g , and returns a function, that takes one argument, and composes f and g on that argument.

Example: composing double and cube means take the double of the cube of x ((compose double cube) 3) $=>$ (double (cube 3)) $=>54$
3. Using compose, define the function $\mathrm{f}^{\wedge} 3 / 2$ which takes a number x and computes $\mathrm{x}^{3 / 2}$.

4. Repeated Composition of Functions

We saw how to compose two functions to produce another function. For example, we can define the following:
(define fourth-power (compose square square))
(define eight-power (compose square (compose square square)))
... and so on ...

Write a recursive procedure called repeat that takes a function f and an integer n , and composes f, n times. For example: (define fourth-power (repeat square 2)) (define eight-power (repeat square 3)) ... and so on ...
5. Iterative Repeat: Write a version that creates the repeat procedure iteratively by calling compose. (Note: The procedure created will run as a recursive procedure.)
6. Iterative Repeated 2: Write a version of repeat that creates a procedure that will run as an iterative procedure. (Hint: Do not use compose.)

