
6.001 recitation 21 5/04/07

streams

Dr. Kimberle Koile

Thunk-memo

delayed lists: streams

(define (cons-my-list first rest)
(cons first rest))

(define ints-from-1-to-4 (cons-my-list 1 '(2 3 4)))

(define ints-from-1 ???)

delayed lists: streams

(define (ints-from-n n)
(cons-stream n (ints-from (+ n 1))))

(define ints (ints-from 1))

streams summary

Key ideas:

> streams are delayed lists

> represent a stream as a cons-stream, pair-like object with lazy cdr

> define a stream by figuring out first element, then how to compute rest

Examples:

> integers 1, 2, 3, 4, 5 ….

> factorials 1, 2, 6, 24, 120 ...

another way to think about streams

ints

first element?

rest?

facts

first element?

rest?

summary of examples of defining streams

finite

(stream-interval 1 1x10
100

)

infinite (indefinite)

explicit

implicit

useful stream procedures

stream-filter add-streams
stream-map mult-streams

. 2 args

. variable number args
stream-ref

(define (any? test l)
(cond ((null? l) #f

((test (car l)) #t)
(else (any? test (cdr l)))))

(define (map proc . args)
(if (null? args)

nil
(if (any? null? args)

nil
(cons (apply proc (map car args))

(apply map (cons proc (cdr args)))))))

(define (stream-map proc . args)
(if (null? args)

nil
(if (any? null? args)

nil
(cons-stream (apply proc (map stream-car args))

(apply stream-map (cons proc (map stream-cdr args)))))))

(define (add-streams s1 s2)
(cons-stream (+ (stream-car s1) (stream-car s2))

(add-streams (stream-cdr s1) (stream-cdr s2)))

another example

What value is printed in response to the last expression in this sequence of expressions?

(define evens (cons-stream 2 (stream-map (lambda (x) (+ x 2)) evens))

(stream-car
(add-streams evens (stream-cdr (stream-cdr evens))))))

1. Write mult-stream which takes two streams and returns a new stream that is the product of
the two streams.

(define (mult-streams s1 s2)

)

(cons-stream (* (stream-car s1) (stream-car s2))
(mult-streams (stream-cdr s1) (stream-cdr s2)))

Problem 1

2. Write stream-ref, modeled after list-ref, which takes a stream and a number n and returns
the nth element of the stream.

Problem 2

(define (list-ref x n)
(if (= n 0)

(car x)
(list-ref (cdr x (- n 1))))

(define (stream-ref x n)
(if (= n 0)

()

()))

Problem 3 (from a previous final exam)

(cons-stream (car l) (list->stream (cdr)))

3. Write list->stream, which turns a list into a stream.

(define (list->stream l)

)

Problem 4 (modified from a previous final exam problem)

4. Assume that the following have been evaluated:

(define ones (cons-stream 1 ones))

(define (add-streams s1 s2)
(cons-stream (+ (stream-car s1) (stream-car s2))

(add-streams (stream-cdr s1) (stream-cdr s2))))

Consider the expression:

(define integers (add-streams ones integers))

For each of the following, put an X in the box if the statement applies to the above scenario:

The expression evaluates to a stream of integers.

The interpreter goes into an infinite loop when (stream-cdr integers) is evaluated.

An "unbound variable" error occurs when the above expression defining ones is evaluated.

An "unbound variable" error occurs when the above expression defining integers is evaluated.

Problem 5 (from a previous final exam)

5. What value is printed in response to the last expression in this sequence of expressions?

(define s (cons-stream 1 (stream-map (lambda (x) (* x 2)) s))

(stream-car
(stream-cdr

(stream-cdr
(add-streams s (stream-cdr (stream-cdr s))))))

Problem 6

Consider the sequence of expressions:
(define (stream-enumerate-interval low high)

(if (> low high)
the-empty-stream
(cons-stream low (stream-enumerate-interval (+ low 1) high))))

(define sum 0)
(define (accum x)

(set! sum (+ x sum))
sum)

(define seq (stream-map accum (stream-enumerate-interval 1 10)))
(define y (stream-filter even? seq))
(define z (stream-filter (lambda (x) (= (remainder x 5) 0)) seq)

What is the printed response to evaluating the following expressions. Assume print-stream
prints out stream elements inside [], e.g. [1 2 3]

6a. (print-stream y)

6b. (stream-ref y 3)

6c. (print-stream z)

Problem 7

Assume that we're interested in the partial sums of a stream. Given a stream S, for example, a stream of
partial sums for S is the stream S0, S0 + S1, S0 + S1 + S2, ….

7a. Write an expression that defines a stream that is the partial sum of integers
For example, (partial-sums integers) should be the stream 1, 3, 6, 10, 15 …

(define ints (cons-stream 1 (add-streams ints ones)))

(define int-partial-sums

)

7b. Write a procedure partial-sums that takes a stream as an argument, and returns the stream
S0, S0 + S1, S0 + S1 + S2 …. For example, (partial-sums integers) should be the same
stream as in part a.

(define (partial-sums s)

)

Problem 8 (from a previous final exam)

8. Suppose you are given two streams and you need to produce a stream that contains both. Translating
append, which works on lists, into an append-stream procedure by changing the data abstraction selectorsand
constructor will not work if the streams are indefinite in length: "appending" the infinite streamS1, S2, S3 …
and a second infinite stream T1, T2, T3 … results in the stream S1 S2, S3, …, T1, T2, T3, … which is
effectively the same a the first stream. The solution is to merge the two streams instead of appending them.
Write a procedure called alternate-streams that consumes two streams and returns a single one that contains
elements alternating from the two inputs.

Remember that the data abstraction for streams uses stream-null?, stream-car, stream-cdr, null-stream, and
cons-stream.

