MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science
6.001 Structure and Interpretation of Computer Programs

Spring, 2007

Recitation 3, Wed, February 14

Substitution, Recursion Problems

Dr. Kimberle Koile

1. Substitution

Consider the example below. Notice that x is used in multiple places. When do we substitute for x and when don't we?

```
(define x-y*y
(lambda (x y)
    (- x ((lambda (x) (* x x ) ) y))))
```

Use the substitution model to evaluate the following expression, and write each substitution step.

$$
(x-y * y \quad 113)
$$

Value: \qquad

2. Recursion

2.1. a. Implement addition as a recursive procedure that employs repeated successor. In Scheme, this is the inc function, which increases its argument by 1 ; dec decreases its argument by 1 . (Hint: check for base case, then recursive case.)
(define (add $\mathrm{x} y$)
b. Write the first 4 substitution steps for (add 3 2)
2.2. Implement subtraction as a recursive procedure that employs the dec function, which decreases its argument by 1 .
(define (sub x y)
2.3 Implement exponentiation through repeated multiplication.
(define (expt x n)
<your code will go here>
)
a. recursive algorithm
b. iterative algorithm (Hint: Define a helper function.)

