
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.001 Structure and Interpretation of Computer Programs
Spring, 2007

Recitation 4, Friday February 16

Order of Growth Problems Dr. Kimberle Koile

1. What are the orders of growth for the find-e procedure?

(define (find-e n)
 (if ((= n 0)
 1
 (+ (/ 1 (fact n)) (find-e (- n 1)))))

2. Louis Reasoner is having great difficulty with a procedure he wrote that uses his version of fast-expt.
No matter what argument n he gives it, it tells him that n multiplications are required to raise something
to the nth power using fast-expt.. He feels fairly certain that’s not right. Louis calls his friend Eva Lu
Ator over to help. When they examining Louis’ code, they find that he has rewritten fast-expt to use an
explicit multiplication, rather than calling square.

(define (fast-expt b n))
 (cond ((= n 0) 1)
 ((even? n) (* (fast-expt b (/ n 2)) (fast-expt b (/ n 2))))
 (else (* b (fast-expt b (- n 1))))))

“I don’t see the difference the multiplication could make,” says Louis. “I do,” says Eva. “By writing the
procedure like that , you have transformed the Θ(log n) process into an Θ(n) process.” Explain.

time

space

3. What are the orders of growth for each of these procedures? (Assume n is positive.)
 Assume that you have a procedure divisible? that returns #t if n is divisible by x.
 It runs in Θ(n) time and Θ(1) space.

 Note that in Scheme, as shown here, procedures can be defined within other procedures.

 a. (define (prime? n)
 (define (helper curr n)
 (cond ((>= curr n) #t)
 ((divisible? n curr) #f)
 (else (helper (+ 1 curr) n))))
 (helper 2 n))

 b. This version is more clever in that the helper procedure runs fewer times.

 (define (prime-fast? n)
 (define (helper curr)
 (cond ((> curr (sqrt n)) #t)
 ((divisible? n curr) #f)
 (else (helper (+ 1 curr)))))
 (helper 2))

 Note that if sqrt is slower than square, we could write the first clause in the cond statement
 as (> (square curr) n) .

4. Write a procedure that computes the number of decimal digits in its input and that is linear in space and
time in the number of digits: (num-digits 102) => 3 Do not use logs; use the procedure quotient:
(quotient 21 5) => 4

5. The procedure s for exponentiation have been written in terms of repeated multiplication. In a similar
way, one can perform integer multiplication by means of repeated addition. The following multiplication
procedure (in which it is assumed that our language can only add, not multiply) is analogous to the expt
procedure:

(define (* a b)
 (if (= b 0)
 0
 (+ a (* a (- b 1)))))

This algorithm takes a number of steps that is linear in b. Now suppose we include, together with
addition, operations double, which doubles an integer, and halve, which divides an (even) integer by 2.
Using these procedures, design a multiplication procedure analogous to fast-expt that uses a logarithmic
number of steps.

time

space

time

space

