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1.  What are the orders of growth for the find-e procedure? 
 
(define (find-e n) 
    (if ((= n 0) 
           1 
           (+ (/ 1 (fact n)) (find-e (- n 1))))) 
 
 
 
 
 
 
 
 
 
 
2.  Louis Reasoner is having great difficulty with a procedure he wrote that uses his version of fast-expt.  
No matter what argument n he gives it, it tells him that n multiplications are required to raise something 
to the nth power using fast-expt..  He feels fairly certain that’s not right.  Louis calls his friend Eva Lu 
Ator over to help. When they examining Louis’ code, they find that he has rewritten fast-expt to use an 
explicit multiplication, rather than calling square. 
 
(define (fast-expt b n)) 
    (cond ((=  n 0) 1) 
              ((even? n) (* (fast-expt b (/ n 2)) (fast-expt b (/ n 2)))) 
              (else (* b (fast-expt b (- n 1)))))) 
 
“I don’t see the difference the multiplication could make,” says Louis.  “I do,” says Eva.  “By writing the 
procedure like that , you have transformed the Θ(log n) process into an Θ(n) process.”  Explain. 
 
 

time 
 
space 



3. What are the orders of growth for each of  these procedures?  (Assume n is positive.)    
    Assume that you have a procedure divisible? that returns #t if n is divisible by x.   
    It runs in Θ(n) time and Θ(1) space. 
 
    Note that in Scheme, as shown here, procedures can be defined within other procedures.    
 
    a.  (define (prime? n) 
            (define (helper curr n) 
                  (cond ((>= curr n) #t) 
                            ((divisible? n curr) #f) 
                            (else (helper (+ 1 curr) n)))) 
             (helper 2 n)) 
 
    b. This version is more clever in that the helper procedure runs fewer times. 
 
        (define (prime-fast? n) 
           (define (helper curr) 
                (cond ((> curr (sqrt n)) #t) 
                          ((divisible? n curr) #f) 
                          (else (helper (+ 1 curr))))) 
          (helper 2)) 
 
         
        
       Note that if sqrt is slower than square, we could write the first clause in the cond statement  
        as   (> (square curr) n) . 
 
4. Write a procedure that computes the number of decimal digits in its input and that is linear in space and 
time in the number of digits:    (num-digits 102) => 3      Do not use logs; use the procedure quotient:  
(quotient 21 5) => 4   
 
 
 
 
 
 
 
 
 
 
 
5.  The procedure s for exponentiation have been written in terms of repeated multiplication.  In a similar 
way, one can perform integer multiplication by means of repeated addition.  The following multiplication 
procedure (in which it is assumed that our language can only add, not multiply) is analogous to the expt 
procedure: 
 
(define (* a b) 
   (if (= b 0) 
        0 
        (+  a  (*  a (-  b 1))))) 
 
This algorithm takes a number of steps that is linear in b.  Now suppose we include, together with 
addition, operations double, which doubles an integer, and halve, which divides an (even) integer by 2.  
Using these procedures, design a multiplication procedure analogous to fast-expt that  uses a logarithmic 
number of steps. 

time 
 
space 

time 
 
space 


