MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.001 Structure and Interpretation of Computer Programs
Spring, 2007

Recitation 5, Friday February 23

Data Abstraction: cons, list Dr. Kimberle Koile

Language Elements

e primitive data: numbers, strings, Booleans
e primitive procedures

e procedure application
[compound data |

e naming
e compound procedures

- block structure

-_higher order procedures
e conventional interfaces — lists
e data abstraction

- constructors

- accessors

- contract

- operations

Data Abstractions
cons
1. Constructor
joonss A, B & Padr«lA,Bw; A & B = anytype
(COMS <x> <y>) <% <p>

2. Accessors
(car =p*} § cars Pair<A,B= 2 A
icdr <p=} f odry Pair<A,B» = B

3. Contract
(Car (Cons <xX*> <y>)) =% <x>
{cdr (cons <x> <y>)) = <y>
4. Operations
¢y pair?s anytype -+ boolean
(pair? <p=)
&. Abstraction Bamier

IGHORANCE SNEED T W DA

f. Concrete Representation & Implementation
Could have altermatiwve implementations!

list

1. Constructor
(list<a> ...) =><I>

2. Accessors
(first <I>)
(rest <I>)

3. Contract
(first (list <a> <c>)) => <a>

(rest (list <a> <c>)) => (<c>)
list (cont'd)
4. Operations
(list? <I>) ; returns #t if <I> is a list
(adjoin <z> <I>) ; adds <z> to the front of the list

5. Abstraction Barrier
6. Concrete Representation and Implemenation
(cons <a> (cons (cons <c>'())))
(define first car)
(define rest cdr)
(define adjoin cons)

Examples

(definea 1)
(define b 2)
(define c 3)

(car (cons a b)) ==>

(cdr (cons a b)) ==>

(first (list a b)) ==>

(rest (list a b)) ==>

(pair? (list a b)) ==>

(adjoin a (list b ¢)) ==>

(adjoin (list a b) (list c)) ==>

In Scheme, we often want to access elements deep in a cons structure. Therefore, the following accessors
have been defined to help us out:

(cadr x) ==> (car (cdr x)) (cddr x) ==> (cdr (cdr x))
(caddr x) ==> (car (cdr (cdr x))) (cdadar x) ==> (cdr (car (cdr (car x))))
(cdaar x) ==> (cdr (car (car x)))

For lists, we also often want to easily access the n'th element of a list. The accessors first, second, third,
..., tenth are defined to access the corresponding values of a list. For example, (third (list 1 2 3 4)) =>3

How could you define first, second, third, and fourth using the ¢???r functions?

(first x) ==> (third x) ==>

(second x) ==> (fourth x) ==>

