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What is the difference  in calling pattern between recursive factorial, iterative recursive factorial, and tail 
recursive iterative factorial?  (By "calling pattern" I mean how procedures call other procedures and 
return values.) 
 
Recursive factorial 
 
(define (fact  n) 
   (if (= n 1) 1 (* n (fact (- n 1))))) 
 
 1. (fact 4) 
 2. (* 4 (fact 3)) 
 3. (* 4 (* 3 (fact 2))) 
 4. (* 4 (* 3 (* 2 (fact 1)))) 
 5. (fact 1) returns 1, which is substituted into pending (* 2 <result>) 
 6. pending (* 2 1) returns the value 2 to its caller, (fact 2), in step 3 
 7. (fact 2) returns the 2 
 8. pending (* 3 2) returns the value 6 to its caller, (fact 3), in step 2 
 9. (fact 3) returns the value 6 
10. (pending (* 4 6) returns the value 24 to its caller, (fact 4), in step 1 
11. (fact 4) returns the value 24 
  
 
Iterative recursive factorial 
 
 (define ifact (lambda (n) (ifact-helper 1 1 n))) 
 
(define helper (lambda (product counter n) 
     (if (> counter n) 
 product 
 (helper (* product counter) (+ counter 1) n)))) 
 
 1. (ifact 4) 
 2. (helper 1 1 4) 
 3. (helper 1 2 4) 
 4. (helper 2 3 4) 
 5. (helper 6 4 4) 
 6. (helper 24 5 4) 
 7. (helper 24 5 4) returns 24 to caller in step 5, which was (helper 6 4 4)  
 8. (helper 6 4 4) returns the 24 to caller in step 4 
 9. (helper 2 3 4) returns the 24 to caller in step 3 
10. (helper 1 2 4) returns the 24 to caller in step 2 
11. (helper 1 1 4) returns the 24 to caller in step 1 
12. (ifact 4) returns 24 
 
Iterative  tail recursive factorial 
 



Notice that with iterative recursive factorial, no operations were performed on the value 24 after step 7; 
the value was simply passed back to the calling procedures. 
 
This situation---when the recursive call itself is the last operation in a procedure, is called tail recursion. 
A compiler can identify such situations and optimize the code to return the value after the innermost 
recursive call completes. 
 
With the optimization for tail recursion: 
 
 1. (ifact 4) 
 2. (helper 1 1 4) 
 3. (helper 1 2 4) 
 4. (helper 2 3 4) 
 5. (helper 6 4 4) 
 6. (helper 24 5 4) 
 7. (helper 24 5 4) returns 24 to outermost caller, (ifact 4) 
 8. (ifact 4) returns 24 
 
 
 
 
 
 


