MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science 6.001 Structure and Interpretation of Computer Programs Spring, 2007

Recitation 5, Friday February 23
List (+ Recursion + Orders of Growth) Problems
Dr. Kimberle Koile
Fill in the code for these recursive procedures. Assume recursive processes (not iterative).

1. This procedure returns the length (ie., number of elements) in a list.
(define (length list)

$$
\begin{aligned}
& \text { (if (null? lIst) } \\
& 0 \\
& (+1(\text { length }(\text { cdr lst)))))}
\end{aligned}
$$

$$
\text { time }=\Theta(n)
$$

$$
\text { space }=\Theta(\eta)
$$

n is length of list arg
2. This procedure returns the nth element of a list, where the first element index is 0 . (define (list-ref list n)

$$
\begin{array}{ll}
\text { Lif }(=n=0 & \text { time }=\Theta(n) \\
\text { (car list) } & \text { space }=\Theta(n)
\end{array}
$$

$$
(l i s t-r e f(c d r \text { list) }(-n 1)))
$$

n is the element index n
)
3. This procedure returns \#t if obj is an element of a list; \#f if it is not. (Hint: Use the procedure equal?.)
(define (member? obj list)

$$
\text { (cond }((\text { null? list }) \# f)
$$

$$
\text { time }=\Theta(n)
$$

((equal? obj (car $l s t)) \# t)$

$$
\text { space }=\Theta(1)
$$

n is length of list arg

