MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Electrical Engineering and Computer Science
 6.001 Structure and Interpretation of Computer Programs
 Spring, 2007

Recitation 6, Wed. February 28
Data Abstraction Notes Dr. Kimberle Koile

Main idea: hide implementation details
Example: primes
representing an integer as the product of its prime factors
$40=2 * 2 * 2 * 5$
What are possible representations?
e.g.,
(2 $\left.2 \begin{array}{lll}2 & 5\end{array}\right)$
(2 $\left.\begin{array}{lll}5 & 2 & 2\end{array}\right)$ order doesn't matter
((2) $\begin{array}{ll}\left.\left(\begin{array}{ll}5 & 1\end{array}\right)\right)\end{array}$
(40 (2 3) (5 1))
(40 2225)

Choose a representation and write get-number, which takes a factorization and returns the number that was factored. Here's an example (mnre elaborate than we did in class):

```
multiply-factors: list(numbers) }->\mathrm{ number
make-factorization: list(numbers) }->\mathrm{ factorization
get-factors: factorization }->\mathrm{ list(numbers)
get-number: factorization }->\mathrm{ number
(define (multiply-factors factors)
    ;; assume factors is a list
    (if (null? factors)
    1 ;; the number is prime
    (* (car factors) (multiply-factors (cdr factors))))))
or (define (multiply-factors factors)
    (define (helper rest-of-factors product)
                (if (null? rest-of-factors)
                    product
                            (helper (cdr rest-of-factors) (* (car factors) product)))
        (helper factors 1))
or (define (multiply-factors factors)
        (apply * factors))
```

```
(define (make-factorization factors)
    ;; assume factors is a list
    ;; represent a factorization as the number and the list of factors
    (cons (multiply-factors factors) factors)))
(define (get-factors f)
    ;; returns the list of factors in a factorization
    (cdr f)
(define (get-number f)
    ;; returns the number represented by the factorization
    (car f)))
Alternate representation:
(define (make-factorization factors)
    ;; assume factors is a list
    #; represent a factorization as the list of factors
    factors)
(define (get-factors f)
    ;; returns the list of factors in a factorization
    f)
(define (get-number f)
    ;; returns the number represented by the factorization
    (multiply-factors f))
What's the type of get-number?
    (Remember the arrow!)
factorization }->\mathrm{ number
```

