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Main idea:  hide implementation details  
 
Example:  primes 
 
     representing an integer as the product of its prime factors 
 
     40 = 2 * 2 * 2 * 5 
 
What are possible representations? 
 
e.g., 
 (2  2  2  5) 

 (2  5  2  2)      order doesn't matter 

 ((2  3)  (5  1)) 

 (40  (2  3)  (5  1)) 

 (40  2  2  2  5) 

 
Choose a representation and write get-number, which takes a factorization and returns the number that 
was factored.  Here's an example (mnre elaborate than we did in class): 
 
multiply-factors: list(numbers)  number   
make-factorization:   list(numbers)  factorization 
get-factors:  factorization  list(numbers) 
get-number:  factorization  number   
  
(define (multiply-factors factors) 
  ;; assume factors is a list 
  (if (null? factors)    
        1          ;; the number is prime 
       (* (car factors) (multiply-factors (cdr factors)))))) 
 
or (define (multiply-factors factors) 
       (define (helper rest-of-factors product) 
            (if (null? rest-of-factors)   
                 product 
                 (helper (cdr rest-of-factors) (*  (car factors)  product))) 
        (helper factors  1)) 
 
or  (define (multiply-factors factors) 
          (apply * factors)) 



 
 
(define (make-factorization factors) 
  ;; assume factors is a list 
  ;; represent a factorization as the number and the list of factors 
   (cons  (multiply-factors factors)   factors))) 
 
 (define (get-factors f) 
  ;; returns the list of factors in a factorization 
    (cdr f) 
 
(define (get-number f) 
   ;; returns the number represented by the factorization 
  (car f))) 
 
Alternate representation: 
 
(define (make-factorization factors) 
  ;; assume factors is a list 
  ;; represent a factorization as  the list of factors 
   factors) 
 
(define (get-factors f) 
  ;; returns the list of factors in a factorization 
   f) 
 
(define (get-number f) 
   ;; returns the number represented by the factorization 
  (multiply-factors f)) 
 
 
 
What's the type of get-number? 
     (Remember the arrow!) 
 
 
factorization  number 


