
 MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.001 Structure and Interpretation of Computer Programs
Spring, 2007

Recitation 8, Wed March 7

Higher Order Procedure Notes Dr. Kimberle Koile

Very useful hops:

(define (map proc items)

 (if (null? items)

 '()

 (cons (proc (car items))

 (map proc (cdr items))))

(define (filter pred items)

 (cond ((null? items) '())

 ((pred (car items)) (cons (car items) (filter pred (cdr items))))

 (else (filter pred (cdr items)))))

Examples

Assume that a point is represented as a 2-element list (x y), and that you have procedures called get-x and
get-y that when given a point return the x and y elements, respectively.
 (define make-point list)
 (define get-x car)
 (define get-y cadr)

1. Write a procedure get-x-coords that produces a list of all the x coordinates is a list of points.

2. Write a procedure get-greater-evens that produces a list of all the x coordinates that are even and
greater than a specified number.

(define (fold-right op init items)

 (if (null? items)

 init

 (op (car items)

 (fold-right op init (cdr items)))))

(define (fold-left op init items)

 (if (null items)

 init

 (fold-left op (op init (car items)) (cdr items))))

Compare fold-right and fold-left:

(fold-right + 0 (list 1 2 3)) => (+ 1 (+ 2 (+ 3 0))) => 6

(fold-left + 0 (list 1 2 3)) => (+ (+ (+ 0 1) 2) 3) => 6

(fold-right / 1 (list 2 3 4)) => (/ 2 (/ 3 (/ 4 1))) => 2 2/3
(fold-left / 1 (list 2 3 4)) => (/ (/ (/ 1 2) 3) 4) => 1/24

