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1 Today

e Examples of Fourier representations for basic functions

e Learning via Fourier representations(”low degree algorithm”)

2 Two Examples of Fourier representation of basic functions

2.1 AND on T C [l..n| such that |T| =k
Definition 1 (AND function)

1 ZfVGT,J?l:—l

—1  otherwise

Define

1 ifveT,zi=-1 1—x; 11—z 1-—ay (1)l
xT) = . -
1) {O otherwise 2 2 2 SEC:T 2k Xs

Then we have 5
TR RIECEING = TN

SCT,540

2.2 Decision Trees

Figure 1: Decision Tree




Definition 2 (path functions)
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Notice that no input reach more than one leaf, so we can define the decision tree as

flx) = Z fi(z) - value(l)
1

3 Learning via Fourier Representation

3.1 Fourier Concentration
Definition 3 f: {-1}" — R has a(e,n)-Fourier concentration if
Y. fs)P<e
SCln],IS[>a(en)
Remark For boolean function f, by Parseval’s theorem, this implies

> fls)?>1—e¢

SC[n],|S|<a(en)

Observe 1 If f doesn’t depend on x;, then all f(S) for which i € S satisfy f(S) =0.

Observe 2 Any function depends on most k variables has
Y. fs)?=0
S,|S|>k
which implies k-Fourier concentration.

Lemma 1 f=AND on T C [1...n] has log(2)-Fourier concentration.

Proof Let k= |T|
o If k< log(%), we’ve done by the previous observation.

o If k> log(%), we will show f has 0-Fourier concentration. Notice

FOP = (14 P> 1
So

Y. f8)P<e

S,|S1>0

which implies f has 0-Fourier concentration.



3.2 Low Degree Algorithm

e Given degree d , accuracy 7, confidence §

o Take m = O("?d In an) samples

e For each S such that |S] < d, Cs + estimate of f(S)
Output h(z) = 32 gj<q Csxs(@)

e Use sign(h(zx)) for hypothesis

3.3 Approximating Functions with Low Fourier Degree
Claim 2 With probability > 1 — §, V.S such that |S| < d, |Cs — f(S)| < fory«+ \/nit.

Proof Since samples are taken randomly, this claim can be proved by Hoeffling Bound and Union
Bound. B

Theorem 3 If f has d = a(e,n)-Fourier concentration, then h satisfies E,[(f(x) — h(z))?] < e+ 7 with
probability > 1 — 9.

Proof Define g(z) =
|S| > d. h(S) = 0= §(S

E[(f(2) = g(2))?] = Eulg(x)?] = > _4(8)* = >+ Z f(S)*<r1+e
S 1s|<d S|>d

f(z) = h(z). Then we have §(5) =
) =

f(S) — h(S). By definition, V.S such that
£(S). By claim, VS such that |S| < d, h(S) =

Cs = 19(S)| < . Thus,

3.4 sign(h) is useful for prediction

T(hi;)r]‘em 4 Let f : {£1}" — {1} and h : {£1}"™ — R, then Pr[f(xz) # sign(h(z))] < E[(f(x) —
h(z))?].
Proof

Bl(f(z) = h(x))’] = % > (f(@) = h(2))?

Pr(f(z) # sign(h(z))] = 2% D Luign(h(a)#£(x)

Notice that (f(z) — h(2))? > 1@)£sign(nz)). This is because if f(z) = sign(h(x)), 1) Lsign(h(z)) =
0 < (f(x) — h(x))%. If f(z) # sign(h(z)), Lt(a)£sign(h(z)) = 1 < (f(z) — h(z))?. Then we can directly
prove this theorem. M

Theorem 5 If C has Fourier concentration d = (e, h). There is a ¢ = ("T) sample uniform distri-
bution learning algorithm for C' which outputs hypothesis b’ such that Pr(f(x) # h'(z)] < 2e.

Proof Run low degree with 7 = € and outputs h such that E,[(f(x) — h(z))?] # 2¢. Let ' = sign(h),
then Pr[f(xz) # h'(z)] <2 B



