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This lecture discusses the relationship between pseudorandomness and hard functions. The main
result, accompanied by proof, is Theorem 3.

First, let’s review the definition of a useful construction from the previous lecture:

Definition 1 A collection of sets S1, . . . , Sm ⊆ [d] = {1, . . . , d} is an (l, a)-design if

• ∀i, |Si| = l

• ∀i 6= j, |Si ∩ Sj | ≤ a.

Note that if a = 0, then the sets S1, . . . , Sl are all disjoint as they each have l elements, d is forced to
be at least m · l. For the purposes of this lecture, it is useful to think of m as being big and a relatively
small.

We will use the following theorem, which we don’t prove here:

Theorem 1 For any constant γ, there exists an (l, a)-design with a = γ logm, constructible in time
2O(d) and such that d = O(l2/a).

We now introduce another definition

Definition 2 f : {0, 1}l → {0, 1} is (t, α)-average case hard if for any nonuniform (circuit with
advice) algorithm A running in time t(l) the following inequality holds for large l:

Pr
x,A

[A(x) = f(x)] < 1− α(l)

Note that x is of size l. We will use α(l) = 1− ε(l) for ε(l) ≤ 1
t(l) , hence 1− α(l) ≤ 1

2 + ε(l) ≤ 1
2 + 1

t(l) .
The following theorem allows us to extend by 1-bit:

Theorem 2 If f is (t, 1− ε)-average case hard, then G(y) := y ◦ f(y) is a (t, ε)-PRG.

We want to stretch this. Our approach is to use the Nisan-Wigderson generator, which we present
here.

Definition 3 (Nisan-Wigderson generator) Given (l, a)-design S1, . . . , Sm ⊆ [d], define G : {0, 1}d →
{0, 1}m to be

G(x) := f(x|S1) ◦ f(x|S2) ◦ · · · ◦ f(x|Sm
),

where x|Si is the string of length l = |Si| obtained by selecting the bits of x indexed by Si. For convenience,
use the notation fi(x) := f(x|Si

). Note that the domain of each fi is {0, 1}l.

The intuition behind this construction is that if the sets Si were completely disjoint, then the strings
x|Si would be completely independent, since they would have no common bits, making G hard to predict.
However, in this case, as we saw, d ≥ ml.

What we hope is that by trading independence of the strings x|Si
, by allowing a bit of overlap

(bounded above by |Si ∩ Sj | ≤ a), we can still achieve satisfactory unpredictability. The following
theorem quantifies these ideas:

Theorem 3 (NW) Assume that the following two conditions hold (to be used in the Nisan-Wigderson
generator):

• there exists f : {0, 1}l → {0, 1} such that f ∈ E := DTIME(2O(l)) and

f is
(
t,

1
2
− 1
ε(l)

)
− averagecasehard
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• there exists an (l, a)-design S1, . . . , Sm ⊆ [d] such that

m = t(l)1/3 and a =
1
3

log t(l)

Then the Nisan-Wigderson generator G is a 1
m -PRG against non-uniform time m.

Before we move on to the proof of theorem 3, we mention two interesting corollaries.

Corollary 4 If f ∈ E = DTIME(2O(l)) such that f is
(
t, 1

2 − t
)
-average case hard for

t = 2Ω(l) =⇒ P = BPP

t = 2l
Ω(1)

=⇒ P̃ = BPP

t = lω(1) =⇒ BPP ⊆ SUBEXP

Corollary 5 There exists (m, 1/m) PRG for depth d circuits of size m such that the PRG is computable
in polynomial time.

Now we present the proof of theorem 3:
Proof

Suppose the result is not true. Then there exists a next-bit predictor P such that

Pr
i,x

[
P
(
f1(x) ◦ f2(x) ◦ · · · ◦ fi−1(x)

)
= fi(x)

]
≥ 1

2
+

ε

m
. (1)

Note that the circuit size of P is the sum of the runtime of the PRG, which is m and the size of the
advice we gave P in the proof, which is O(m), hence size(P ) = O(m).

Using a standard argument (seen before in other lectures), there exists i∗ that achieves the expecta-
tion, in other words

Pr
bits of x in Si∗ , bits of x not in Si∗

[
P
(
f1(x) ◦ f2(x) ◦ · · · ◦ fi∗−1(x)

)
= fi∗(x)

]
≥ 1

2
+

ε

m
. (2)

Note that this is just inequality (1) as before, rewritten for i∗ and with the probability split over two
sets.

Now using an averaging process, we see that there must exist a setting Z of the bits of x not in Si
which achieves (2). We change notation and use the variable y to denote the x’s that has its bits not in
Si set according to the setting Z. Then (2) becomes

Pr
y

[
P
(
f1(y) ◦ f2(y) ◦ · · · ◦ fi∗−1(y)

)
= fi∗(y)

]
≥ 1

2
+

ε

m
(3)

Note that in (3), in fi∗(y), the unset variables are those indexed by Si∗ and fi∗ depends on all these.
However, on the left hand side of the equality inside the probability in (3), each fj , 1 ≤ j ≤ i∗−1 depends
only on the unset variables index by Sj ∩Si, for the other variable of y have been fixed according to the
setting Z chose above.

Hence, each fj depends on |Si ∩ Sj | ≤ a variables. The 2a values can be encoded as advice, giving
a total advice size of m · 2a. This relatively small size of the advice (for special m and a) is crucial in
what follows.

Define A(y) = P (f1(y) ◦ · · · ◦ fi∗−1(y)).

• predicts f(y) with advantage at least ε
m ≈

1
m2
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• has circuit size m · 2a + size of(P ). The latter we saw to be O(m). Since we picked a,m to satisfy
a = 1

3 log t(l) and m = t(l)
1
3 , we have that

size(A(y)) = m · 2a +O(m) = t(l)
1
3 · t(l) 1

3 +O(t(l)
1
3 )� t(l),

contradicting the first assumption of theorem 3. (the average case hardness assumption)
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