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Lecture 26
Lecturer: Ronitt Rubinfeld Scribe: Andrei Frimu

This lecture discusses the relationship between pseudorandomness and hard functions. The main
result, accompanied by proof, is Theorem 3.
First, let’s review the definition of a useful construction from the previous lecture:

Definition 1 A collection of sets Si,...,Sm C[d] ={1,...,d} is an (I,a)-design if
L Vi, ‘Sz| =1
hd VZ#‘], |SlmSJ| <a.

Note that if a = 0, then the sets S1, ..., S; are all disjoint as they each have [ elements, d is forced to
be at least m - [. For the purposes of this lecture, it is useful to think of m as being big and a relatively
small.

We will use the following theorem, which we don’t prove here:

Theorem 1 For any constant vy, there exists an (l,a)-design with a = ylogm, constructible in time
20 and such that d = O(I?/a).

We now introduce another definition

Definition 2 f : {0,1}} — {0,1} is (t,a)-average case hard if for any nonuniform (circuit with
advice) algorithm A running in time t(1) the following inequality holds for large 1:

Prid@) =f(@)] <1-a()

Note that x is of size [. We will use a(l) =1 — ¢(1) for €(I) < ﬁ, hence 1 — a(l) < 3 +€(l) <
The following theorem allows us to extend by 1-bit:

Theorem 2 If f is (t,1 — €)-average case hard, then G(y) :==yo f(y) is a (t,¢)-PRG.

N
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We want to stretch this. Our approach is to use the Nisan- Wigderson generator, which we present
here.

Definition 3 (Nisan-Wigderson generator) Given (I,a)-design Si,...,Sm C [d], define G : {0,1}% —
{0,1}™ to be

G(x) := f(x]s,) o f(z]s,) 00 f(2]s,,),
where x|g, 1s the string of length 1 = |S;| obtained by selecting the bits of x indexed by S;. For convenience,
use the notation f;(x) := f(z|s,). Note that the domain of each f; is {0, 1},

The intuition behind this construction is that if the sets .S; were completely disjoint, then the strings
x|s, would be completely independent, since they would have no common bits, making G hard to predict.
However, in this case, as we saw, d > ml.

What we hope is that by trading independence of the strings z|s,, by allowing a bit of overlap
(bounded above by |S; 0S| < a), we can still achieve satisfactory unpredictability. The following
theorem quantifies these ideas:

Theorem 3 (NW) Assume that the following two conditions hold (to be used in the Nisan-Wigderson
generator):

o there exists f: {0,1} — {0,1} such that f € E := DTIME(2°®) and

. 1 1
f s (t, 3~ 6(1)) — averagecasehard



o there exists an (I, a)-design Si,..., Sy C [d] such that

1
m = t(1)/3 and a=3 log t(1)

Then the Nisan-Wigderson generator G is a %—PRG against non-uniform time m.

Before we move on to the proof of theorem 3, we mention two interesting corollaries.

Corollary 4 If f € E = DTIME(2°®) such that f is (t, 5 —t)-average case hard for
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Corollary 5 There exists (m,1/m) PRG for depth d circuits of size m such that the PRG is computable
in polynomial time.

Now we present the proof of theorem 3:
Proof
Suppose the result is not true. Then there exists a next-bit predictor P such that

1 €
Pr[P(fi@)o fal@) o0 fia(@)) = fil)] = 5 + . (1)
Note that the circuit size of P is the sum of the runtime of the PRG, which is m and the size of the
advice we gave P in the proof, which is O(m), hence size(P) = O(m).
Using a standard argument (seen before in other lectures), there exists i* that achieves the expecta-
tion, in other words

[P(R@ o fl)o- o foa(@) = fr@] 2 5+ 5 @)

€

T —.

bits of z in $;«, bits of = not in s, m

Note that this is just inequality (1) as before, rewritten for i* and with the probability split over two
sets.

Now using an averaging process, we see that there must exist a setting Z of the bits of x not in S;

which achieves (2). We change notation and use the variable y to denote the 2’s that has its bits not in

S; set according to the setting Z. Then (2) becomes

Pr[P(AW) o fow)o--o fraa®) = fir )] 2 5+ = (3)

Note that in (3), in f;(y), the unset variables are those indexed by S;+ and f;« depends on all these.
However, on the left hand side of the equality inside the probability in (3), each f;, 1 < j < i*—1 depends
only on the unset variables index by S; N.S;, for the other variable of y have been fixed according to the
setting Z chose above.

Hence, each f; depends on |S; N.S;| < a variables. The 2% values can be encoded as advice, giving
a total advice size of m - 2%, This relatively small size of the advice (for special m and a) is crucial in
what follows.

Define A(y) = P(fi(y) oo fi—1(y))-

e predicts f(y) with advantage at least

€ ~ 1
- X =
m m
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e has circuit size m - 2% + size of(P). The latter we saw to be O(m). Since we picked a, m to satisfy
a= 3logt(l) and m = t(1)3, we have that

size(A(y)) = m - 2% + O(m) = t(1)3 - t(1)5 + O(t(1)3) < t(1),

contradicting the first assumption of theorem 3. (the average case hardness assumption)



