
6.842 Randomness and Computation April 11, 2022

Lecture 19
Lecturer: Ronitt Rubinfeld Scribe: Siwakorn Fuangkawinsombut

In this lecture, we continue on Fourier-based learning algorithms and how we use the noise sensitivity
to bound the Fourier concentration, as well as applying the technique derived from the noise sensitivity
to learn halfspaces. Then, in the second half of the lecture, we shift to the topic of learning heavy Fourier
coefficients with queries, which will mainly focus on the Kushilevitz-Mansour learning algorithm. Based
on this, the notes are structured as follows:

1. Review

2. Fourier concentration via noise sensitivity

3. Learning heavy Fourier coeffs (with queries)

1 Review

1.1 Fourier Transform

Definition 1 For S ∈ [n] and x ∈ {±1}n, the parity function is

χS(x) =
∏
i∈S

xi.

Definition 2 For any function f , the Fourier coefficients of f are {f̂(S)}, where

f̂(S) = 〈f, χS〉 = 1− 2Prx [f(x) 6= χS(x)] = 2Prx [f(x) = χS(x)]− 1.

A useful equation that we will use many times in this lecture, Parseval’s identity:

〈f, f〉 =
∑
S⊆[n]

f̂(S)2,

which is equal to one when f is a boolean function.

1.2 Noise Sensitivity

Definition 3 A noise operator is the function Nε(x) that each bit of x randomly flipped with probability
ε, where 0 < ε < 1/2 .

Definition 4 Noise sensitivity is how likely a function f changes if noise is added to its input x is

NSε(x) = Prx∈{±1}n +noise [f(x) 6= f(Nε(x))].

Theorem 5 For any boolean function f : {±1}n → {±1}, the noise sensitivity of this function is

NSε(f) =
1

2
− 1

2

∑
S⊆[n]

(1− 2ε)|S|f̂(S)2.

The proof of this theorem is left as an exercise and may be included in the next problem set.

1

2 Fourier Concentration via Noise Sensitivity

We introduced noise sensitivity in the last lecture. Now, we can utilize this concept to bound Fourier
concentration. Thus, we can determine a nice Fourier concentration via noise sensitivity. Also, noise
sensitivity provides a technique to be used to describe halfspaces by the corollary of the following
inequality theorem.

Theorem 6 For a boolean function f and probability 0 < γ < 1/2, then∑
|S|≥ 1

γ

f̂(S)2 < 2.32NSγ(f).

Proof By theorem 5, we get

2NSγ(f) = 1−
∑
S⊆[n]

(1− 2γ)|S|f̂(S)2

=
∑
S⊆[n]

(
1− (1− 2γ)|S|

)
f̂(S)2

≥
∑
|S|≥ 1

γ

(
1− (1− 2γ)|S|

)
f̂(S)2

>
∑
|S|≥ 1

γ

(
1− e−2

)
f̂(S)2.

The second line inequality is followed from the Parseval’s identity. Thus, we have∑
|S|≥ 1

γ

f̂(S)2 <

(
2

1− e−2

)
NSγ(f),

where 2
1−e−2 ≈ 2.31 < 2.32 as desired.

If NSγ(f) is small enough, we can apply the low degree algorithm to 1/γ to find Fourier concentration.
Now, we can use this theorem for learning halfapces as the follow corollary:

Corollary 7 For a halfspace h, then ∑
|S|≥O(1

ε2
)

ĥ(S) < ε.

We can show this corollary by bounding on the noise sensitivity and some calculations. Hence, we can

learn any halfspace from nO(1/ε2) random examples.

Corollary 8 Any function of k halfspaces can be learned with nO(k2/ε2) samples

As we don’t get examples from all k halfspaces but only from functions, we can’t learn each of them
individually. However, we can bound noise sensitivity!

3 Learning Heavy Fourier Coeffs (with queries)

Consider the scenario when we don’t have many heavy, like five, but most big Fourier coefficients
corresponding to big S’s, the low degree algorithm won’t work anymore. Thus, we need to query inputs
for getting progress, and we call this technique the learning heavy Fourier coefficients.

2

3.1 Algorithm Model

Given a function f and a threshold θ

• Output all coefficient S such that
∣∣∣f̂(S)

∣∣∣ ≥ θ (all interesting).

• Only output S such that
∣∣∣f̂(S)

∣∣∣ ≥ θ
2 (no junk).

We set the threshold to be θ, so this query will return interesting coefficients. However, this won’t
guarantee that we won’t miss some of them, so we also output S with Fourier above the “not-too-low”
threshold to avoid a sampling error.

3.2 Main Idea

We exhaustively search for all big S’s with a good pruning. We represent the pruning via a tree. If
xk is in S, the path goes to the left at level k; otherwise, it goes to the right at level k. Note that the
Goldreich-Levin and Kushilevitz-Mansour learning algorithms have similar trees but are different in the
search method.

This search aims to go down a subtree having a large sum of “weight”, which usually means the sum of
the square of Fourier coefficients. Then, the algorithm will output merely leaves reached the bottom (ie.
reaching level n).

Definition 9 For a fixed current level 0 ≤ k ≤ n and a current node of search S1 ⊆ [k], we define a
function fk,S1

: {±1}n−k → R such that

fk,S1
(x) =

∑
T2⊆{k+1,...,n}

f̂(S1 ∪ T2)χT2
(x).

We used χT2
rather than χS1∪T2

because χS1∪T2
= χS1

· χT2
and χS1

is constant as we fixed the current
node. In fact, χS1

= 1 since we selected all first k variables (ie. x1 = · · · = xk = 1). We can examine
some specific k for example:

Case k = 0 (root)

f0,∅(x) =
∑
T2⊆[n]

f̂(S1 ∪ T2)χT2
(x) =

∑
T2⊆[n]

f̂(T2)χT2
(x) = f(x).

Case k = n (leaf)

fn,S1(x) =
∑
T2⊆∅

f̂(S1 ∪ T2)χT2(x) = f̂(S1)

since f̂(S1 ∪ T2) = f̂(S1) and χ∅(x) = 1.

3

3.3 Plan

The pruning should only go down paths with Ex
[
fk,S1

(x)2
]
≥ θ2. Some aspects we have to keep in

mind about this algorithm:

1. Computation: How to compute fk,S1
(x)?

2. Correctness: Will it reach to right leaves, all heavy leaves without too much junk?

3. Runtime: How many paths do we take?

We will first focus on how many paths to ensure that we won’t examine too many of them.

3.4 Explore Paths

Next, we will prove the following lemma to show that we won’t explore too many nodes not only just at
the bottom but at any level k.

Lemma 10 (Not too many paths) For a boolean function f : {±1}n → {±1},

(i) At most 1
θ2 of S’s such that

∣∣∣f̂(S)
∣∣∣ ≥ θ

(ii) For any integer k ∈ [0, n], there are at most 1
θ2 functions fk,S1 with Ex

[
fk,S1(x)2

]
≥ θ2

Then, we explore at most O
(

1
θ2

)
nodes

Proof

(i) By Parserval’s identity on a boolean function, we get 1 =
∑
S f̂(S)2. If there are more than 1

θ2 of

S’s such that
∣∣∣f̂(S)

∣∣∣ ≥ θ, then
∑
S f̂(S)2 > 1

θ2 · θ
2 = 1, which is contradiction!

(ii) First, we show that

Ex
[
fk,S1

(x)2
]

= Ex

(∑
T2

f̂(S1 ∪ T2)χT2
(x)

)2


= Ex

∑
T2,T ′2

f̂(S1 ∪ T2)f̂(S1 ∪ T ′2)χT2
(x)χT ′2(x)


=
∑
T2,T ′2

f̂(S1 ∪ T2)f̂(S1 ∪ T ′2)Ex
[
χT2(x)χT ′2(x)

]
=
∑
T2

f̂(S1 ∪ T2)2.

The last line of equation follows from

Ex
[
χT2

(x)χT ′2(x)
]

=

{
1, if T2 = T ′2

0, otherwise

because χT2
(x) and χT ′2(x) are different signs half of the time if T2 6= T ′2. Then, using Parserval’s

identity, we have

1 =
∑
S⊆[n]

f̂(S)2 =
∑
S1⊆[k]

∑
T2⊆{k+1,...,n}

f̂(S1 ∪ T2)2 =
∑
S1⊆[k]

Ex
[
fk,S1(x)2

]
Thus, we have at most 1

θ2 of S1’s such that Ex
[
fk,S1

(x)2
]
> θ2

4

