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Abstract

Immerman and Vardi showed in the early 1980s that the logic LFP, augmented with an
ordering, can express all PTIME-decidable properties. In 1997, Makowsky conjectured that
LFP+A, i.e. LFP augmented with an arbitrary relation A, captures PTIME if and only if
a total ordering is parametrically definable on A using LFP. This would establish that LFP’s
computational power crucially depends on the input being ordered.

In this paper, we disprove Makowsky’s conjecture by giving a class of relations A such that
LFP+A captures PTIME, yet no ordering with more than O(

√
n) elements can be defined on

A.

1 Introduction

About 20 years ago, Immerman [Imm86] and Vardi [Var82] showed that the logic LFP captures
the complexity class PTIME on ordered structures. That is, sentences from LFP can be decided
in polynomial time, and every PTIME-decidable property on ordered structures can be expressed
as a sentence in LFP.

In turns out that this characterization does not hold if no ordering is present. In fact, even
Parity cannot be expressed in LFP without an ordering [CH82].

It has been a long open question what the exact role of orderings in capturing PTIME is,
and whether adding weaker structures to the input could still allow the capturing of PTIME with
LFP. By adding structure to the input we mean that given a class of tau-structures A (containing
one structure for each finite cardinality), for example total orders, we consider the expressiveness
of LFP on (σ∪ τ)-structures B whose τ -relations are isomorphic to an element of A. We call these
B structures with built-in relations from A, or simply speak about the expressiveness of LFP+A.

In 1997, Eric Rosen proved the following result about a particular class of built-in relations
[Mak97, Ros98], which is based on earlier work by Hella [Hel96]. An order of equivalence classes is
a total order on the equivalence classes of an equivalence relation.

Theorem 1 (Rosen 1997)
If A is a class of orders of equivalence classes, then LFP+A captures PTIME iff there is some c
such that the number of equivalence classes in all structures A ∈ A are at least |A| − c.
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Figure 1: An example: A21

This result shows that for these structures A, capturing PTIME is equivalent to being able to
parametrically define an ordering on A. By “parametrically defining an ordering”, we mean that
there is a formula ϕ(x, y, z1, . . . , zk) (k ≥ 0) in LFP, such that for every structure A ∈ A, there exist
elements c1, . . . , ck ∈ A (where A is the universe of A), such that {(x, y) | A |= ϕ(x, y, c1, . . . , ck)}
is a total ordering on A.

Based on Rosen’s result, Johann Makowsky conjectured in 1997 that this relationship between
capturing PTIME and being able to define an ordering is true for all built-in relations [Mak97].

Conjecture 2 (Makowsky 1997)
LetA be a class of finite structures, containing, up to isomorphism, one structure of each cardinality.
Then the following two statements are equivalent:

(i) LFP+A captures PTIME.

(ii) One can parametrically define an ordering on the structures in A with a formula in LFP.

Note that due to Immerman and Vardi’s result, (ii) implies (i).
To be precise, Makowsky made a more general conjecture than stated above; he allowed for

classes A with more than one (non-isomorphic) structure per cardinality. To avoid defining what
capturing means in that case, we just consider this more restrictive version of the conjecture.

In this paper we show that Makowsky’s conjecture is false by showing that (i) does not imply
(ii). Showing that the more restrictive version of Makowsky’s conjecture is false obviously implies
that the general version is false as well. For our proof, we give a class A of structures such that
one cannot define an ordering on them in LFP, but LFP+A still captures PTIME.

2 The Counterexample

In the following, let pi be the i-th prime number (p1 = 2, p2 = 3, p3 = 5, . . . ). We now define the
structure class A that will be the counterexample to Makowsky’s conjecture.

Definition 3 (A)
Let A be the set {A1, A2, A3, . . . }, where An = ({1, 2, . . . , n}, En). The binary relation En is
defined as follows. Let k be the integer with the property that p1 + p2 + · · · + pk ≤ n, but
p1 + p2 + · · ·+ pk+1 > n. Then En is the disjoint union of k directed cycles of sizes p1, p2, . . . , pk,
and a directed line on the remaining n−

∑k
i=1 pi vertices. (See Figure 1 for an example.)
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Lemma 4
There is no LFP-formula that (even parametrically) defines a total order on all structures in A.

Proof: Since LFP cannot distinguish the elements of a cycle, one has to use a parameter to define
an order on a cycle, and therefore needs at least as many parameters in the formula as there are
cycles in the graph. But since the number of cycles in the structures in A is unbounded, there
exists no LFP formula that parametrically defines an ordering on all the structures in A. �

3 Capturing PTIME

3.1 Interpretations

While it is not possible to define a total order on the structures in A, one can use built-in relations
from A to define (in LFP) an ordered copy of a given structure. This is enough to show that we
capture PTIME by LFP+A, since we can now just “compute” on the ordered copy.

The definition of the ordered copy is done by means of a logical interpretation (cf. [EF99]).
Assume that we are considering structures B of some signature σ ∪ {E}, where E is the built-in
relation from A. We will then give LFP[σ ∪ {E}] formulas ϕuniv(x1, x2, c), ϕ=(x1, x2, y1, y2, c),
ϕ<(x1, x2, y1, y2, c), and ϕR(x1, . . . , x2rR , c) for all relation symbols R ∈ σ with arity rR. The
constant c will be fixed appropriately later. This set of formulas implicitly defines a structure with
signature σ ∪ {<} as follows:

• The universe of the new structure is1

U = {(x1, x2) | B |= ϕuniv(x1, x2, c)} / {((x1, x2), (y1, y2)) | B |= ϕ=(x1, x2, y1, y2, c)} ,

where ϕ= defines an equivalence relation on B×B, where B is the universe of B. The set U
is therefore a set of equivalence classes on a subset of B ×B.

• The binary relation {([(x1, x2)], [(y1, y2)]) ∈ U | B |= ϕ<(x1, x2, y1, y2, c)} is a total ordering
on U .

• The ϕR similarly define r-ary relations on U .

The following is the main result of this paper.

Lemma 5
Let σ be a finite signature. Then there exists an LFP+A-interpretation π (in the above sense)
such that for any σ-structure B, the structure defined under the interpretation Bπ is isomorphic
to B and exhibits a total ordering.

Actually, by being careful in the construction, one can achieve a DTC+A interpretation that
achieves the same thing.

Before we prove the lemma, let us briefly consider why this is sufficient to prove that LFP+A
captures PTIME. We only have to show that for every sentence ϕ in LFP+< there is a sentence
ϕ′ in LFP+A such that ϕ is valid on a structure with built-in order iff ϕ′ is valid on the same
structure with a built-in relation from A instead. Given our interpretation from Lemma 5, we can
define ϕ′ from ϕ inductively, replacing every variable x by a pair of variables (x1, x2):

1By writing X/Y for a set X and an equivalence relation Y on a superset of X, we denote the set of equivalence
classes in (X ×X) ∩ Y .
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• [x = y]′ = ϕ=(x1, x2, y1, y2)

• [x < y]′ = ϕ<(x1, x2, y1, y2)

• [ϕ ∧ ψ]′ = ϕ′ ∧ ψ′

• [∃xϕ]′ = ∃x1∃x2 ϕuniv(x1, x2) ∧ ϕ′

More details can be found in [EF99], in particular the more involved inductive step for the
LFP-operator.

3.2 Constructing an Ordered Copy

Proof (Lemma 5): For simplicity’s sake, we assume in the following that all elements of B are
part of a cycle in E. If that were not the case, the additional elements would be totally ordered,
which makes the job of defining an ordered copy even easier.

First, we observe that we can define an ordering on the cycles in A, since one can express in
LFP that one cycle is bigger than another cycle.

For the following let c be any element of the largest cycle in the relation E. This allows us to
order the largest cycle (by, for example, letting c be the minimal element, and following the natural
order of the cycle). We will identify this order with the numbers {1, 2, . . . , pk}.

The universe of our ordered copy will be the following set:

(C2, 1), (C2, 2),
(C3, 1), (C3, 2), (C3, 3),
(C5, 1), (C5, 2), (C5, 3), (C5, 4), (C5, 5),
. . . ,

(Cpk
, 1), . . . , (Cpk

, pk)

Here the first element of every pair is an equivalence class containing all elements of the given cycle
(Cp denotes the cycle of size p). This is accomplished by setting

• ϕuniv(x1, x2, c) = “x2 is an element of c’s cycle” ∧ “the number of elements of x1’s cycle is
more than the number of edges on the path from c to x2”

• ϕ=(x1, x2, y1, y2, c) = “x1 and y1 are on the same cycle”

• ϕ<(x1, x2, y1, y2, c) = “y1’s cycle is larger than x1’s cycle” ∨ (“x1 and y1 are on the same
cycle” ∧ “y2 is further from c than x2”)

To define the ϕR’s we will try to create a mapping between each cycle Cp and the elements
(Cp, 1), (Cp, 2), . . . , (Cp, p) of the interpreted structure. It will turn out that either we can use the
structure present in B to create a one-to-one mapping between the two, or that all elements on the
cycle “behave the same” under all relations, in which case we can define an ordered copy without
creating any particular mapping. This follows from the following lemma.
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Lemma 6
The automorphism group Aut(B) of B is of the form

Aut(B) = G2 ×G3 ×G5 × · · · ×Gpk
,

where each Gp ∈ {0,Zp} (by 0 we denote the trivial group).

Proof: First note that the automorphism group of the cycles (relation E) by themselves is G =
Z2 × Z3 × · · · × Zpk

. Since Aut(B) is a subgroup of G, it is certainly enough to show that all
subgroups of G are of the form stated in the lemma. As G is cyclic (generated by the element
(1, 1, . . . , 1)), any subgroup of G is also cyclic. So consider some subgroup generated by the element
g = (g1, g2, . . . , gk).

For each i such that gi 6= 0, by the Chinese Remainder Theorem there is some integer x such that
x·gi ≡ 1 (pi) and x·gj ≡ 0 (pj) for all j 6= i. This shows that the element gx = (0, 0, . . . , 0, 1, 0, . . . , 0)
(with the 1 at the i-th position) is in the subgroup. Since that is true for all i with gi 6= 0 it is not
hard to see that the subgroup generated by these elements is equal to Gp1 ×Gp2 ×· · ·×Gpk

, where
Gpi = 0 if gi = 0 and Gpi = Zpi if gi 6= 0. This is because clearly we do not get more than the
subgroup, but also at least as much, since in particular we obtain the generator back. This shows
that the subgroup is of the desired form. �

3.3 Ordering Cycles

The formulas ϕR will be of the following form:

ϕR(x1, x2, . . . , x2rR , c) = ∃y1y2 . . . yrR“y1 = f(x1, x2)” ∧ “y2 = f(x3, x4)” ∧ . . .
· · · ∧ “yrR = f(x2rR−1, x2rR)” ∧Ry1y2 . . . yrR

Here f is an isomorphism (defined in LFP+A between the universe U of the ordered copy and
the universe B of the structure B. The function f actually depends on the values of the parameters
(xi)1≤i≤rR , but only in a way that does not impact the validity of whether Ry1y2 . . . yrR holds or
not.

To define f , we proceed as follows:

1. First, we define a unary relation F , which contains exactly one element of each cycle Cp, for
which Gp = 0, and no other elements.

2. Given the values of the parameters x1, x2, . . . , xrR we augment F such that it contain a single
element for all cycles on which the element {x2i−1 | 1 ≤ i ≤ rR} are (recall the structure of
the universe of our ordered copy: the first element of each pair denotes a cycle, while the
second encodes an index on that cycle). This is done by setting

F ′ := F ∪ {x2i−1 | “x2i−1 is on a different cycle than x2j−1∀j < i”∧F ∩ “x2i−1’s cycle” = ∅}

3. Now we define f(a1, a2). Let z be the unique element in F ′ on a1’s cycle. Then f(a1, a2) is
equal to the element which is as many steps from z (on z’s cycle) as a2 is from c.
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The function f maps each of element of the form (Cp, i) to an element of Cp. For cycles with
Gp = 0 this mapping is fixed based on the elements of F . For all other cycles, since Gp = Zp

any assignment that preserves the relative positions of elements on the same cycle will lead to an
isomorphism. This is why while the extension of F to F ′ depend on the values of the xi, the validity
of Ry1y2 . . . yrR does not depend on them.

So to complete the construction, all we have to do is to define the relation F , which singles
out one element per cycle Cp with Gp = 0. For the following, let r be the maximum arity of any
relation in σ. This means that r is a constant dependent only on σ.

Consider some cycle Cp for which the factor Gp in Aut(B) is the trivial group. In particular,
simply rotating the cycle Cp is not an automorphism. So there exist some relations involving the
elements of this cycle that do not hold after rotating the cycle. In particular there must be some
relation R ∈ σ and a tuple (x1, . . . , xrR) of elements such that Rx1 . . . xrR before the rotation, but
¬Rρ(x1) . . . ρ(xrR) after the rotation ρ. So the rotation is already not an automorphism on the set
of cycles containing the rR elements xi. Let us make that first observation.

Fact 7
For every cycle Cp with Gp = 0, there is a set of r cycles (which includes Cp), such that even
restricted to this set of cycles, any non-trivial rotation of Cp is not an automorphism.

This fact that we can detect a non-automorphism “locally” will enable us to distinguish the
elements of Cp within LFP. So let’s consider such a set of r cycles, containing Cp.

Suppose we fix one element on each of these r cycles. By considering these elements to be the
minimal elements on their cycles, we can construct a total order on these r cycles. This allows us
to write down the values of the relations on these cycles as a 0-1-sequence, by stepping through the
arguments in lexicographic order, and recording a 1 if the relation holds, and 0 if it does not hold.
Obviously, this sequence depends on the particular ordering, and therefore the elements we fixed
on each cycle. In particular, since picking a different element on Cp corresponds to a rotation of
Cp, a different choice of the element on Cp (no matter whether the other elements changes as well
or not) leads to a different sequence.

In LFP, we can determine which choice of r elements on our cycles leads to the lexicographically
smallest 0-1-sequence2. The choice of elements on the cycles which leads to this minimum need not
be unique. But all choices that lead to the minimum sequence have the same fixed element on Cp.
This is because different choices of elements on Cp lead to different sequences. This enables us to
uniquely identify this element on Cp, and add it to our relation F .

Initially, we do not know which Gp are the trivial group, and which set of r cycles exhibits that
fact for each p. To make sure that we find all such p, we simply step though all possible subsets
of r cycles (there are only polynomially many, since r is constant), and apply the above minimum
sequence finding algorithm. We maintain the unary relation F , initially empty, which contains the
fixed elements. When we identify a single element on some cycle Cp, and no element of that cycle
is yet in F , we add that element to F . After having considered all sets of r cycles, for each p with
Gp = 0 there will be a single element in F ∩ Cp, while F ∩ Cp = ∅ for all other p.

This enables us to construct ϕR as above, and concludes the proof. �

2This is because the cycles are completely ordered, so we can express anything computable in PTIME, in particular
which of the (at most) nr choices of elements on the r cycles leads to the minimal 0-1-sequence.
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