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Abstract

We present a novel message passing algorithm for approximating the MAP prob-
lem in graphical models. The algorithm is similar in structure to max-product but
unlike max-product it always converges, and can be proven tofind the exact MAP
solution in various settings. The algorithm is derived via block coordinate descent
in a dual of the LP relaxation of MAP, but does not require any tunable parameters
such as step size or tree weights. We also describe a generalization of the method
to cluster based potentials. The new method is tested on synthetic and real-world
problems, and compares favorably with previous approaches.

Graphical models are an effective approach for modeling complex objects via local interactions. In
such models, a distribution over a set of variables is assumed to factor according to cliques of a graph
with potentials assigned to each clique. Finding the assignment with highest probability in these
models is key to using them in practice, and is often referredto as the MAP (maximum aposteriori)
assignment problem. In the general case the problem is NP hard, with complexity exponential in the
tree-width of the underlying graph.

Linear programming (LP) relaxations have proven very useful in approximating the MAP problem,
and often yield satisfactory empirical results. These approaches relax the constraint that the solution
is integral, and generally yield non-integral solutions. However, when the LP solution is integral,
it is guaranteed to be the exact MAP. For some classes of problems the LP relaxation is provably
correct. These include the minimum cut problem and maximum weight matching in bi-partite graphs
[7]. Although LP relaxations can be solved using standard LPsolvers, this may be computationally
intensive for large problems [11]. The key problem with generic LP solvers is that they do not use
the graph structure explicitly and thus may be sub-optimal in terms of computational efficiency.

The max-product method [6] is a message passing algorithm that is often used to approximate the
MAP problem. In contrast to generic LP solvers, it makes direct use of the graph structure in
constructing and passing messages, and is also very simple to implement. The relation between
max-product and the LP relaxation has remained largely elusive, although there are some notable
exceptions: For tree-structured graphs, max-product and LP both yield the exact MAP. A recent
result [1] showed that for maximum weight matching on bi-partite graphs max-product and LP also
yield the exact MAP [1]. Finally, Wainwright et al. [9] proposed the Tree-Reweighted max-product
(TRMP) algorithm - a variation on max-product that is guaranteed to converge to the LP solution
for binaryxi variables, as shown in [5].

In this work, we propose the Max Product Linear Programming algorithm (MPLP) - a very sim-
ple variation on max-product that is always guaranteed to converge, and has several advantageous
properties. The algorithm is derived from the convex-dual of the LP relaxation [2], and is equiv-
alent to block coordinate descent in this dual. Although this results in monotone improvement of
the dual objective, global convergence is not always guaranteed since coordinate descent may get
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stuck in suboptimal points. However, this can be remedied using various approaches (e.g., auction
algorithms as in [2]), and in practice we have found MPLP to converge to the LP solution in a ma-
jority of the cases we studied. To derive MPLP we use a specialform of the dual LP, which involves
the introduction of redundant primal variables and constraints. We show how the dual variables
corresponding to these constraints turn out to be themessagespassed in the algorithm.

We evaluate the method on Potts models and protein design problems, and show that it compares
favorably with max-product (which often does not converge for these problems) and TRMP.

1 The Max-Product and MPLP Algorithms

The max-product algorithm [6] is one of the most often used methods for solving MAP problems.
Although it is neither guaranteed to converge to the correctsolution, or in fact converge at all, it
provides satisfactory results in some cases. Here we present two algorithms: EMPLP (edge based
MPLP) and NMPLP (node based MPLP), which are structurally very similar to max-product, but
have several key advantages:

• They always converge.

• No additional parameters (e.g., tree weights as in [5]) are required.

• If the beliefsbi(xi) are not tied (i.e.,bi(xi) has a unique maximizer) then the output of
MPLP is the exact MAP assignment.

• For binary variables, MPLP can be used to obtain the solutionto the LP relaxation
MAPLPR. This implies that when the LP relaxation is exact andvariables are binary,
MPLP will find the MAP solution. Moreover, for any variable whose beliefs are not tied,
the MAP assignment can be found (i.e., the solution is partially decodable).

Pseudo code for the algorithms (and for max-product) is given in Fig. 1. As we show in the next
sections, MPLP is essentially a coordinate descent algorithm in the dual of MAPLPR. Every update
of the MPLP messages corresponds to exact minimization of a set of dual variables. For EMPLP
minimization is over the set of variables corresponding to an edge, and for NMPLP it is over the
set of variables corresponding to all the edges a given node appears in (i.e., a star). The coordinate
descent property immediately implies both monotone improvement of the dual objective and con-
vergence. The other properties of MPLP also result from its relation to the LP dual. In what follows
we describe the derivation of the MPLP algorithms and prove their properties.

2 The MAP Problem and its LP Relaxation

We consider functions overn variablesx = {x1, . . . , xn} defined as follows. Given a graphG =
(V, E) with n vertices, and potentialsθij(xi, xj) for all edgesij ∈ E, define the function1

f(x; θ) =
∑

ij∈E

θij(xi, xj) . (1)

The MAP problem is defined as finding an assignmentxM that maximizes the functionf(x; θ).
Below we describe the standard LP relaxation for this problem. Denote by{µij(xi, xj)}ij∈E distri-
butions over variables corresponding to edgesij ∈ E and{µi(xi)}i∈V distributions corresponding
to nodesi ∈ V . We will useµ to denote a given set of distributions over all edges and nodes. The
setML(G) is defined as the set ofµ where pairwise and singleton distributions are consistent

ML(G) =

{

µ ≥ 0

∣

∣

∣

∣

∑

x̂i
µij(x̂i, xj) = µj(xj) ,

∑

x̂j
µij(xi, x̂j) = µi(xi) ∀ij ∈ E, xi, xj

∑

xi
µi(xi) = 1 ∀i ∈ V

}

Now consider the following linear program:

MAPLPR : µL∗ = arg max
µ∈ML(G)

µ · θ . (2)

1We note that some authors also add a term
P

i∈V θi(xi) to f(x; θ). However, these terms can be included
in the pairwise functionsθij(xi, xj), so we ignore them for simplicity.
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whereµ·θ is shorthand forµ·θ =
∑

ij∈E

∑

xi,xj
θij(xi, xj)µij(xi, xj). It is easy to show (see e.g.,

[9]) that the optimum of MAPLPR yields an upper bound on the MAP value, i.e.µL∗ ·θ ≥ f(xM ).
Furthermore, when the optimalµi(xi) have only integral values, the assignment that maximizes
µi(xi) yields the correct MAP assignment. In what follows we show how the MPLP algorithms can
be derived from the dual of MAPLPR.

3 The LP Relaxation Dual

Since MAPLPR is an LP, it has an equivalent convex dual. In App. A we derive a special dual of
MAPLPR using a different representation ofML(G) with redundant variables. The advantage of
this dual is that it allows the derivation of simple message passing algorithms. This does not seem
to be possible in the standard MAPLPR dual . The dual is described in the following proposition.

Proposition 1 The following optimization problem is a convex dual of MAPLPR

DMAPLPR:
min

∑

i

max
xi

∑

k∈N(i)

max
xk

βki(xk, xi)

s.t. βji(xj , xi) + βij(xi, xj) = θij(xi, xj) ,

(3)

where the dual variables areβij(xi, xj) for all ij, ji ∈ E and values ofxi andxj .

The dual has an intuitive interpretation in terms of re-parameterizations. Consider thestar
shaped graphGi consisting of nodei and all its neighborsN(i). Assume the potential on
edgeki (for k ∈ N(i)) is βki(xk, xi). The value of the MAP assignment for this model is
max

xi

∑

k∈N(i)

max
xk

βki(xk, xi). This is exactly the term in the objective of DMAPLPR. Thus the dual

corresponds to individually decoding star graphs around all nodesi ∈ V where the potentials on the
graph edges should sum to the original potential. It is easy to see that this will always result in an
upper bound on the MAP value. The somewhat surprising resultof the duality is that there exists a
β assignment such thatstar decodingyields the optimal value of MAPLPR.

4 Block Coordinate Descent in the Dual

To obtain a convergent algorithm for DMAPLPR we use a simple block coordinate descent strategy.
At every iteration, fix all variables except a subset, and optimize over this subset. It turns out that
this can be done in closed form for the cases we consider.

We begin by deriving the EMPLP algorithm. Consider fixing alltheβ variables except those cor-
responding to some edgeij ∈ E (i.e.,βij andβji), and minimizing DMAPLPR over the non-fixed
variables. Only two terms in the DMAPLPR objective depend onβij andβji. We can write those as

f(βij , βji) = max
xi

[

λ
−j
i (xi) + max

xj

βji(xj , xi)

]

+ max
xi

[

λ−i
j (xj) + max

xi

βij(xi, xj)

]

(4)

where we definedλ−j
i (xi) =

∑

k∈N(i)\j λki(xi) andλki(xi) = maxxk
βki(xk, xi) as in App. A.

Note that the functionf(βij , βji) depends on the otherβ values only throughλ−i
j (xj) andλ

−j
i (xi).

This implies that the optimization can be done solely in terms of λij(xj) and there is no need to
store theβ values explicitly. The optimalβij , βji are obtained by minimizingf(βij , βji) subject to
the re-parameterizationconstraintβji(xj , xi) + βij(xi, xj) = θij(xi, xj). The following proposi-
tion characterizes the minimum off(βij(xi, xj)). In fact, as mentioned above, we do not need to
characterize the optimalβij(xi, xj) itself, but only the newλ values.

Proposition 1 Maximizing the functionf(βij , βji) yields the followingλij(xj) andλji(xi)

λji(xi) = −
1

2
λ
−j
i (xi) +

1

2
max

xj

[

λ−i
j (xj) + θij(xi, xj)

]

The proposition is proved in App. B. Theλ updates above result in the EMPLP algorithm, described
in Fig. 1. Note that since theβ optimization affects bothλji(xi) andλij(xj), both thesemessages
need to be updated simultaneously.
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Inputs: A graphG = (V, E), potential functionsθij(xi, xj) for each edgeij ∈ E.

Initialization: ∀ij, ji ∈ E set:

8

>

>

>

<

>

>

>

:

mij(xj) = 0
λij(xj) = 1

2
max

xi

θij(xi, xj)

γij(xj) = max
xi

"

θij(xi, xj) + 1
2

P

k∈N(i)\j

max
xk

θki(xk, xi)

#

Algorithm:

• Iterate until convergence

– MAXPROD: Update all messages (cji shiftsmaxxi
mji(xi) to zero)

mji(xi)←max
xj

h

m
−i
j (xj) + θij(xi, xj)

i

− cji

– EMPLP: Iterate over edges, and forij, ji ∈ E update

λji(xi)←−
1

2
λ
−j
i (xi) +

1

2
max

xj

h

λ
−i
j (xj) + θij(xi, xj)

i

– NMPLP: Iterate over nodesi ∈ V and update allγij(xj) wherej ∈ N(i)

γij(xj) = max
xi

2

4θij(xi, xj)− γji(xi) +
2

|N(i)|+ 1

X

k∈N(i)

γki(xi)

3

5

• Calculate node “beliefs”: Setbi(xi) to be the sum of incoming messages into nodei ∈ V
(e.g., for NMPLP set

P

k∈N(i) γki(xi)).

Output: Return assignmentx defined asxi = arg maxx̂i
b(x̂i).

Figure 1:The max-product, EMPLP and NMPLP algorithms. Max-product,EMPLP and NMPLP use mes-
sagesmij , λij andγij respectively. We use the notationm−i

j (xj) =
P

k∈N(j)\i mkj(xj).

We proceed to derive the NMPLP algorithm. For a given nodei ∈ V , we consider all its neighbors
j ∈ N(i), and wish optimize over the variablesβji(xj , xi) for ji, ij ∈ E (i.e., all the edges in a
star centered oni), while the other variables are fixed. One way of doing so is touse the EMPLP
algorithm for the edges in the star, and iterate it until convergence. We now show that the result of
this optimization can be found in closed form. The assumption aboutβ being fixed outside the star
implies thatλ−i

j (xj) is fixed. Define:γji(xi) = maxxj

[

θij(xi, xj) + λ−i
j (xj)

]

. Simple algebra

yields the following relation betweenλ−j
i (xi) andγki(xi) for k ∈ N(i)

λ
−j
i (xi) = −γji(xi) +

2

|N(i)| + 1

∑

k∈N(i)

γki(xi) (5)

Plugging this into the definition ofγji(xi) we obtain the NMPLP update in Fig. 1. Initialization for
both algorithms follows from settingβ = 0.

5 Convergence Properties

The MPLP algorithm improves the dual objective at every iteration. This in itself does not guarantee
convergence to the optimum of the dual, since coordinate descent algorithms may get stuck at a point
where no improvement is possible over single coordinates (or subsets of coordinates as used here),
but the point is not a global optimum. There are ways of overcoming this difficulty, for example
by not movingǫ away from the optimum for a given coordinate (see [2], p. 636). We leave such
extensions for further work. In this section we provide several results about the properties of the
MPLP fixed points and their relation to the corresponding LP.First, we claim that if all beliefs have
unique maxima then theexactMAP assignment is obtained.

Proposition 2 Assume MPLP converges to beliefsbi(xi) such that for alli the functionbi(xi) has
a unique maximizerx∗

i . Thenx∗ is the solution to the MAP problem and the LP relaxation is exact.

Since the dual objective is always greater than or equal to the MAP value, it suffices to show that
there exists a dual feasible point whose objective value isf(x∗). Denote byβ∗, λ∗ the value of the
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corresponding dual parameters at the fixed point of MPLP. Then the dual objective satisfies
∑

i

max
xi

∑

k∈N(i)

λ∗
ki(xi) =

∑

i

∑

k∈N(i)

max
xk

β∗
ki(xk, x∗

i ) =
∑

i

∑

k∈N(i)

β∗
ki(x

∗
k, x∗

i ) = f(x∗)

The to see why the second equality holds, note that

bi(x
∗
i ) = max

xi,xj

λ
−j
i (xi) + βji(xj , xi) , bj(x

∗
j ) = max

xi,xj

λ−i
j (xj) + βij(xi, xj)

By the equalization property in Eq. 9 the arguments of the twomax operations are equal. From
the unique maximum assumption it follows thatx∗

i , x
∗
j are the unique maximizers of the above. It

follows thatβji, βij are also maximized byx∗
i , x

∗
j .

In the general case, the MPLP fixed point may not correspond toa primal optimum because of the
local optima problem with coordinate descent. However, when the variables are binary, fixed points
do correspond to primal solutions, as the following proposition states.

Proposition 3 When allxi are binary variables, MPLP will converge to the dual optimum.

The claim can be shown by constructing a primal optimal solution µ∗. For tiedbi, setµ∗
i (xi) to 0.5

and for untiedbi, setµ∗
i (x

∗
i ) to 1. If bi, bj are not tied we setµ∗

ij(x
∗
i , x

∗
j ) = 1. If bi is not tied butbj

is, we setµ∗
ij(x

∗
i , xj) = 0.5. If bi, bj are tied thenβji, βij can be shown to be maximized at either

x∗
i , x

∗
j = (0, 0), (1, 1) or x∗

i , x
∗
j = (0, 1), (1, 0). We then setµ∗

ij to be0.5 at one of these assignment
pairs. The resultingµ∗ is clearly primal feasible. Settingδ∗i = b∗i we obtain that the dual variables
(δ∗, λ∗, β∗) and primalµ∗ satisfy complementary slackness for the LP in Eq. 7 and thereforeµ∗ is
primal optimal. The binary optimality result implies partial decodability, since [5] shows that the
LP is partially decodable for binary variables.

6 Beyond pairwise potentials: Generalized MPLP

In the previous sections we considered maximizing functions which factor according to the edges of
the graph. A more general setting considers clustersc1, . . . , ck ⊂ {1, . . . , n} (the set of clusters is
denoted byC), and a function2 f(x; θ) =

∑

c θc(xc) defined via potentials over clustersθc(xc). The
MAP problem in this case also has an LP relaxation (see e.g. [10]). To define the LP we introduce
the following definitions:S = {c∩ ĉ : c, ĉ ∈ C, c∩ ĉ 6= ∅} is the set of intersection between clusters
andS(c) = {s ∈ S : s ⊆ c} is the set of overlap sets for clusterc.We now consider marginals over
the variables inc ∈ C and their intersection and require that cluster marginalsagreeon their overlap.
Denote this set byML(C). The LP relaxation is then to maximizeµ · θ subject toµ ∈ ML(C).

As in the Sec. 4, we can derive message passing updates that result in monotone decrease of the dual
LP of the above relaxation. The derivation is similar and we omit the details. The key observation
is that one needs to introduce|S(c)| copies of each marginalµc(xc) (instead of the two copies
in the pairwise case). Next, as in the EMPLP derivation we assume allβ are fixed except those
corresponding to some clusterc. The resulting messages areλc→s(xs) from a clusterc to all of its
intersection setss ∈ S(c). The update on these messages turns out to be:

λc→s(xs) = −

(

1 −
1

|S(c)|

)

λ−c
s (xs) +

1

|S(c)|
max
xc\s





∑

ŝ∈S(c)\s

λ−c
ŝ (xŝ) + θc(xc)





where for a givenc ∈ C all λc→s messages should be updated simultaneously fors ∈ S(c). We
refer to this algorithm as Generalized EMPLP (GEMPLP). It isalso possible to derive an algorithm
that like NMPLP updates several clusters simultaneously but its structure is more involved and we
do not address it here.

7 Related Work

Weiss et al. [10] recently studied the fixed points of a class of max-product likealgorithms. Their
analysis focused on properties of fixed points rather than convergence guarantees. Specifically, they

2The clusters are sometimes required to correspond to cliques in a graph. We do not pose that requirement
here, and the analysis does not require an underlying graph.
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showed that if the counting numbers used in a generalized max-product algorithm satisfy certain
properties, then its fixed points will be the exact MAP if the beliefs have unique maxima, and for
binary variables the solution can be partially decodable. Both these properties are obtained for the
MPLP fixed points, and in fact we can show that MPLP satisfies the conditions in [10], so that
we obtain these properties as corollaries of [10]. We stresshowever, that [10] does not address
convergence of algorithms, but rather properties of their fixed points, if they converge.

MPLP is similar in some aspects to Kolmogorov’s TRW-S algorithm [4]. TRW-S is also monotone
coordinate descent method in a certain dual of the LP relaxation and its fixed points also have similar
guarantees to those of MPLP [5]. Furthermore, convergence to a local optimum may occur, as it does
for MPLP. One advantage of MPLP lies in the simplicity of its updates and the fact that it is parame-
ter free . The other is its simple generalization to potentials over clusters of nodes (Sec. 6). Although
TRW-S may be extended to such a setting (e.g., by consideringpairwise interaction between nodes
that correspond to cluster, and using spanning trees on thisgraph) this seems less straightforward
than the MPLP extension.

Vontobel and Koetter [8] recently introduced a coordinate descent algorithm for decoding LDPC
codes. There are several key differences between MPLP and their method. First, we consider the
general MAP problem and not only the LDPC model. Second, MPLPgeneralizes to non pairwise
interactions. Third, NMPLP optimizes a set of edges simultaneously, whereas in [8] one edge is
optimized at a time (as in the EMPLP updates), resulting in slower convergence. Finally, coordinate
descent was also recently considered in the context of marginal estimation. In [3] the authors present
a coordinate descent algorithm for a variational bound on the partition function. Their approach
uses similar ideas to the MPLP dual , but importantly does notobtain a closed for solution for the
coordinates. Instead, agradient likestep is taken at every iteration to decrease the dual objective.

8 Experiments

We compared NMPLP to three other message passing algorithms:3 Tree-Reweighted max-product
(TRMP), standard max-product (MP), and GEMPLP. For MP and TRMP we used the standard
approach of damping messages using a factor ofα = 0.5. We ran all algorithms for a maximum of
2000 iterations, and used two measures to compare their convergence times: 1)hit-time - At every
iteration the beliefsbi(xi) can be used to obtain an assignmentx̂ with valuef(x). We consider the
first iteration at which the maximum value off(x̂) is achieved.4 2) belief-change- we calculated
ebi(xi) at every iteration, and normalize it to one. We then find the first iteration for which the
maximum change in these normalized beliefs (inL1 distance) is smaller than10−4.5

We first experimented with a10 × 10 grid graph, with5 values per state. The functionf(x) was
a Potts model:f(x) =

∑

ij∈E θijI(xi = xj) +
∑

i∈V θi(xi). The values forθij andθi(xi) were
randomly drawn from[−cI , cI ] and[−cF , cF ] respectively, and we used values ofcI andcF in the
range range[0.1, 2.1] (with intervals of0.25). The clusters for GEMPLP were the faces of the graph
[12]. To see if NMPLP converges to the LP solution we also usedan LP solver to solve the LP
relaxation. We found that the the normalized difference between NMPLP and LP objective was at
most10−3 (median10−7), suggesting that NMPLP typically converged to the LP solution. Fig. 2
(top row) shows the results for the three algorithms. It can be seen that while all algorithms obtain
similar f(x) values, NMPLP has betterhit-time than TRMP and comparablebelief-change(see
median), and MP does not converge in many cases (see caption). GEMPLP is comparable to MPLP
in hit-time, although each iteration is more costly. The values for GEMPLP are considerably better
than NMPLP. In fact, in95% of the cases the normalized difference between the GEMPLP objective
and thef(x) value was less than10−5, suggesting that the exact MAP solution was found.

We next applied the algorithms to the real world problems of protein design. In [11], Yanover
et al. show how these problems can be formalized in terms of finding a MAP in an appropriately
constructed graphical model.6 We used all algorithms except GNMPLP (since there is no natural

3As expected, NMPLP was faster than EMPLP so only NMPLP results are given.
4This is clearly a post-hoc measure since it can only be obtained after the algorithm has exceeded its maxi-

mum number of iterations. However, it is a reasonable algorithm-independent measure of convergence.
5Beliefs for all algorithms were scaled such that they agree on a graph with one edge.
6Data available from http://jmlr.csail.mit.edu/papers/volume7/yanover06a/RosettaDesignDataset.tgz
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Figure 2:Evaluation of message passing algorithms on a Potts model (top row) and protein design problems
(bottom row). Left column: box-plot (horiz. red line indicates median) of the difference between thehit-time
for the other algorithms and NMPLP. Middle: box-plot of the difference between thebelief-changetime for
the other algorithms and NMPLP . Right: box-plot of normalized difference between the value off(x) for
NMPLP and the other algorithms. Thus, figures are such that better MPLP performance yields positive values
on theY axis. Max-product converged on57% of the cases for the Potts model, and on10% for the protein
problems. Only convergent max-product runs are shown in thebox-plots.

choice for clusters in this case) to approximate the MAP solution on the97 models used in [11]. The
graph structure in these models is irregular with number of states per variable2−81. Fig. 2 (bottom)
shows results for all the design problems. In this case the majority of MP runs did not converge, and
NMPLP was better than TRMP in terms ofhit-timeand comparable inbelief changeand value.

9 Conclusion

We presented a convergent algorithm for MAP approximation that is based on block coordinate de-
scent of the MAP-LP relaxation dual. The algorithm can also be extended to cluster based functions,
which result empirically in improved MAP estimates. This isin line with the observations in [12]
that generalized belief propagation algorithms can resultin significant performance improvements.
However generalized max-product algorithms [12] are not guaranteed to converge whereas GMPLP
is. Furthermore, the GMPLP algorithm does not require a region graph and only involves intersec-
tion between pairs of clusters. In conclusion, MPLP has the advantage of resolving the convergence
problems of max-product while retaining its simplicity, and offering the theoretical guarantees of
LP relaxations. We thus believe it should be useful in a wide array of applications.

A Derivation of the dual

Before deriving the dual, we first express the constraint setML(G) is a slightly different way. The
definition ofML(G) in Sec. 2 uses a single distributionµij(xi, xj) for every ij ∈ E. In what
follows, we usetwocopies of this pairwise distribution for every edge, which we denotēµij(xi, xj)
andµ̄ji(xj , xi), and we add the constraint that these two copies both equal theoriginal µij(xi, xj).
For this extended set of pairwise marginals, we consider thefollowing set of constraints which
is clearly equivalent toML(G). On the rightmost column we give the dual variables that will
correspond to each constraint.

µ̄ij(xi, xj) = µij(xi, xj) ∀ij ∈ E, xi, xj βij(xi, xj)
µ̄ji(xj , xi) = µij(xi, xj) ∀ij ∈ E, xi, xj βji(xj , xi)
∑

x̂i
µ̄ij(x̂i, xj) = µi(xj) ∀ij ∈ E, ji ∈ E, xj λij(xj)

∑

xi
µi(xi) = 1 ∀i ∈ V δi

µ̄ij(xi, xj) ≥ 0 , µi(xi) ≥ 0 ∀i ∈ V, ∀ij ∈ E, ji ∈ E, xi, xj

(6)

We denote the set of(µ, µ̄) satisfying these constraints bȳML(G). We can now state an LP that
is equivalent to MAPLPR, only with an extended set of variables and constraints. The equivalent
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problem is to maximizeµ · θ subject to(µ, µ̄) ∈ M̄L(G) (note that the objective uses theoriginal
µ copy). LP duality transformation of the extended problem yields the following LP

min
∑

i δi

s.t. λij(xj) − βij(xi, xj) ≥ 0 ∀ij, ij ∈ E, xi, xj

βij(xi, xj) + βji(xj , xi) = θij(xi, xj) ∀ij ∈ E, xi, xj

−
∑

k∈N(i) λki(xi) + δi ≥ 0 ∀i ∈ V, xi

(7)

We next simplify the above LP by eliminating some of its constraints and variables. Since each
variableδi appears in only one constraint, and the objective minimizesδi it follows that δi =
maxxi

∑

k∈N(i) λki(xi) and the constraints withδi can be discarded. Similarly, sinceλij(xj) ap-
pears in a single constraint, we have that for allij ∈ E, ji ∈ E, xi, xj λij(xj) = maxxi

βij(xi, xj)
and the constraints withλij(xj), λji(xi) can also be discarded. Using the eliminatedδi andλji(xi)
variables, we obtain that the LP in Eq. 7 is equivalent to thatin Eq. 3. Note that the objective in
Eq. 3 is convex since it consists of point-wise maxima of convex functions.

B Proof of Proposition 1

We wish to minimizef in Eq. 4 subject to the constraint thatβij + βji = θij . Rewritef as

f(βij , βji) = max
xi,xj

[

λ
−j
i (xi) + βji(xj , xi)

]

+ max
xi,xj

[

λ−i
j (xj) + βij(xi, xj)

]

(8)

The sum of the two arguments in the max isλ−j
i (xi) + λ−i

j (xj) + θij(xi, xj)
(because of the constraints onβ). Thus the minimum must be greater than
1
2 maxxi,xj

[

λ
−j
i (xi) + λ−i

j (xj) + θij(xi, xj)
]

. One assignment toβ that achieves this mini-

mum is obtained by requiring an equalization condition:7

λ−i
j (xj) + βij(xi, xj) = λ

−j
i (xi) + βji(xj , xi) =

1

2

(

θij(xi, xj) + λ
−j
i (xi) + λ−i

j (xj)
)

(9)

which impliesβij(xi, xj) = 1
2

(

θij(xi, xj) + λ
−j
i (xi) − λ−i

j (xj)
)

and a similar expression forβji.

The resultingλij(xj) = maxxi
βij(xi, xj) are then the ones in Prop. 1.
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