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Abstract

We study the common problem of approx-
imating a target matrix with a matrix of
lower rank. We provide a simple and efficient
(EM) algorithm for solving weighted low-rank
approximation problems, which, unlike their
unweighted version, do not admit a closed-
form solution in general. We analyze, in ad-
dition, the nature of locally optimal solutions
that arise in this context, demonstrate the
utility of accommodating the weights in re-
constructing the underlying low-rank repre-
sentation, and extend the formulation to non-
Gaussian noise models such as logistic mod-
els. Finally, we apply the methods developed
to a collaborative filtering task.

1. Introduction

Factor models are natural in the analysis of many
kinds of tabulated data. This includes user preferences
over a list of items, microarray (gene expression) mea-
surements, and collections of images. Consider, for ex-
ample, a dataset of user preferences for movies or jokes.
The premise behind a factor model is that there is only
a small number of factors influencing the preferences,
and that a user’s preference vector is determined by
how each factor applies to that user. In a linear fac-
tor model, each factor is a preference vector, and a
user’s preferences correspond to a linear combination
of these factor vectors, with user-specific coefficients.
Thus, for n users and d items, the preferences accord-
ing to a k-factor model are given by the product of
an n× k coefficient matrix (each row representing the
extent to which each factor is used) and a k × d fac-
tor matrix whose rows are the factors. The preference
matrices which admit such a factorization are matri-
ces of rank at most k. Thus, training such a linear
factor model amounts to approximating the empirical
preferences with a low-rank matrix.

Low-rank matrix approximation with respect to the
Frobenius norm—minimizing the sum squared differ-
ences to the target matrix—can be easily solved with
Singular Value Decomposition (SVD). For many ap-
plications, however, the deviation between the ob-
served matrix and the low-rank approximation should
be measured relative to a weighted (or other) norm.
While the extension to the weighted-norm case is con-
ceptually straightforward, and dates back to early
work on factor analysis (Young, 1940), standard algo-
rithms (such as SVD) for solving the unweighted case
do not carry over to the weighted case.

Weighted norms can arise in a number of situations.
Zero/one weights, for example, arise when some of the
entries in the matrix are not observed. More generally,
we may introduce weights in response to some exter-
nal estimate of the noise variance associated with each
measurement. This is the case, for example, in gene ex-
pression analysis, where the error model for microarray
measurements provides entry-specific noise estimates.
Setting the weights inversely proportional to the as-
sumed noise variance can lead to a better reconstruc-
tion of the underlying structure. In other applications,
entries in the target matrix may represent aggregates
of many samples. The standard unweighted low-rank
approximation (e.g., for separating style and content
(Tenenbaum & Freeman, 2000)) would in this context
assume that the number of samples is uniform across
the entries. Non-uniform weights are needed to appro-
priately capture any differences in the sample sizes.

Despite its usefulness, the weighted extension has at-
tracted relatively little attention. Shpak (1990) and Lu
et al. (1997) studied weighted-norm low-rank approxi-
mations for the design of two-dimensional digital filters
where the weights arise from constraints of varying im-
portance. Shpak developed gradient-based optimiza-
tion methods while Lu et al. suggested alternating-
optimization methods. In both cases, rank-k approx-
imations are greedily combined from k rank-one ap-
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proximations. Unlike for the unweighted case, such a
greedy procedure is sub-optimal.

We suggest optimization methods that are signifi-
cantly more efficient and simpler to implement (Sec-
tion 2). We also consider other measures of deviation,
beyond weighted Frobenius norms. Such measures
arise, for example, when the noise model associated
with matrix elements is known but not is Gaussian.
For example, for binary data, a logistic model with an
underlying low-rank representation might be more ap-
propriate. In Section 3 we show how weighted-norm
approximation problems arise as subroutines for solv-
ing such a low-rank problem. Finally, in Section 4, we
illustrate the use of these methods by applying them
to a collaborative filtering problem.

2. Weighted Low-Rank Approximations

Given a target matrix A ∈ <n×d, a corresponding non-
negative weight matrix W ∈ <n×d

+ , and a desired (inte-
ger) rank k, we would like to find a matrix X ∈ <n×d of
rank (at most) k, that minimizes the weighted Frobe-
nius distance J(X) =

∑
i,a Wi,a (Xi,a −Ai,a)2. In this

section, we analyze this optimization problem and con-
sider optimization methods for it.

2.1. A Matrix-Factorization View

It will be useful to consider the decomposition X =
UV ′ where U ∈ <n×k and V ∈ <d×k. Since any rank-
k matrix can be decomposed in such a way, and any
pair of such matrices yields a rank-k matrix, we can
think of the problem as an unconstrained minimiza-
tion problem over pairs of matrices (U, V ) with the
minimization objective

J(U, V ) =
∑
i,a

Wi,a (Ai,a − (UV ′)i,a)2

=
∑
i,a

Wi,a

(
Ai,a −

∑
α

Ui,αVa,α

)2

.

This decomposition is not unique. For any invertible
R ∈ <k×k, the pair (UR, V R−1) provides a factoriza-
tion equivalent to (U, V ), i.e. J(U, V ) = J(UR, V R−1),
resulting in a k2-dimensional manifold of equivalent so-
lutions1. In particular, any (non-degenerate) solution
(U, V ) can be orthogonalized to a (non-unique) equiv-
alent orthogonal solution Ū = UR, V̄ = V R−1 such
that V̄ ′V̄ = I and Ū ′Ū is a diagonal matrix.2

1An equivalence class of solutions actually consists of a
collection of such manifolds, asymptotically tangent to one
another.

2We slightly abuse the standard linear-algebra notion of

We first revisit the well-studied case where all weights
are equal to one. It is a standard result that the low-
rank matrix minimizing the unweighted sum-squared
distance to A is given by the leading components of
the singular value decomposition of A. It will be in-
structive to consider this case carefully and understand
why the unweighted low-rank approximation has such
a clean and easily computable form. We will then be
able to move on to the weighted case, and understand
how, and why, the situation becomes less favorable.

In the unweighted case, the partial derivatives of the
objective J with respect to U, V are ∂J

∂U = 2(UV ′ −
A)V , ∂J

∂V = 2(V U ′ − A′)U . Solving ∂J
∂U = 0 for U

yields U = AV (V ′V )−1; focusing on an orthogonal
solution, where V ′V = I and U ′U = Λ is diagonal,
yields U = AV . Substituting back into ∂J

∂V = 0, we
have 0 = V U ′U − A′U = V Λ − A′AV . The columns
of V are mapped by A′A to multiples of themselves,
i.e. they are eigenvectors of A′A. Thus, the gradient

∂J
∂(U,V ) vanishes at an orthogonal (U, V ) if and only
if the columns of V are eigenvectors of A′A and the
columns of U are corresponding eigenvectors of AA′,
scaled by the square root of their eigenvalues. More
generally, the gradient vanishes at any (U, V ) if and
only if the columns of U are spanned by eigenvec-
tors of AA′ and the columns of V are correspondingly
spanned by eigenvectors of A′A. In terms of the sin-
gular value decomposition A = U0SV ′

0 , the gradient
vanishes at (U, V ) if and only if there exist matrices
Q′

UQV = I ∈ <k×k (or more generally, a zero/one di-
agonal matrix rather than I) such that U = U0SQU ,
V = V0QV . This provides a complete characterization
of the critical points of J . We now turn to identifying
the global minimum and understanding the nature of
the remaining critical points.

The global minimum can be identified by investigat-
ing the value of the objective function at the criti-
cal points. Let σ1 ≥ · · · ≥ σm be the eigenvalues of
A′A. For critical (U, V ) that are spanned by eigen-
vectors corresponding to eigenvalues {σq|q ∈ Q}, the
error of J(U, V ) is given by the sum of the eigenval-
ues not in Q (

∑
q 6∈Q σq), and so the global minimum is

attained when the eigenvectors corresponding to the
highest eigenvalues are taken. As long as there are
no repeated eigenvalues, all (U, V ) global minima cor-
respond to the same low-rank matrix X = UV ′, and
belong to the same equivalence class. 3

“orthogonal” since we cannot always have both Ū ′Ū = I
and V̄ ′V̄ = I.

3If there are repeated eigenvalues, the global minima
correspond to a polytope of low-rank approximations in
X space; in U, V space, they form a collection of higher-
dimensional asymptotically tangent manifolds.



In order to understand the behavior of the objective
function, it is important to study the remaining critical
points. For a critical point (U, V ) spanned by eigen-
vectors corresponding to eigenvalues as above (assum-
ing no repeated eigenvalues), the Hessian has exactly∑

q∈Q q−
(
k
2

)
negative eigenvalues: we can replace any

eigencomponent with eigenvalue σ with an alternate
eigencomponent not already in (U, V ) with eigenvalue
σ′ > σ, decreasing the objective function. The change
can be done gradually, replacing the component with a
convex combination of the original and improved com-
ponents. This results in a line between the two critical
points which is a monotonic improvement path. Since
there are

∑
q∈Q q−

(
k
2

)
such pairs of eigencomponents,

there are at least this many directions of improve-
ment. Other than these directions of improvement,
and the k2 directions along the equivalence manifold
corresponding to the k2 zero eigenvalues of the Hes-
sian, all other eigenvalues of the Hessian are positive
(or zero, in very degenerate A).

Hence, in the unweighted case, all critical points that
are not global minima are saddle points. This is an
important observation: Despite J(U, V ) not being a
convex function, all of its local minima are global.

We now move on to the weighted case, and try to take
the same path. Unfortunately, when weights are in-
troduced, the critical point structure changes signifi-
cantly.

The partial derivatives become (with ⊗ denoting
element-wise multiplication):

∂J
∂U = 2(W ⊗ (UV ′ −A))V
∂J
∂V = 2(W ⊗ (V U ′ −A′))U

The equation ∂J
∂U = 0 is still a linear system in

U , and for a fixed V , it can be solved, recovering
U∗

V = arg minU J(U, V ) (since J(U, V ) is convex in
U). However, the solution cannot be written using a
single pseudo-inverse V (V ′V )−1. Instead, a separate
pseudo-inverse is required for each row (U∗

V )i of U∗
V :

(U∗
V )i = (V ′WiV )−1V ′WiAi

= pinv(
√

WiV )(
√

WiAi)
(1)

where Wi ∈ <k×k is a diagonal matrix with the weights
from the ith row of W on the diagonal, and Ai is the
ith row of the target matrix4. In order to proceed as
in the unweighted case, we would have liked to choose
V such that V ′WiV = I (or is at least diagonal). This
can certainly be done for a single i, but in order to pro-
ceed we need to diagonalize all V ′WiV concurrently.

4Here and throughout the paper, rows of matrices, such
as Ai and (U∗

V )i, are treated in equations as column vectors.

When W is of rank one, such concurrent diagonaliza-
tion is possible, allowing for the same structure as in
the unweighted case, and in particular an eigenvector-
based solution (Irani & Anandan, 2000). However, for
higher-rank W , we cannot achieve this concurrently for
all rows. The critical points of the weighted low-rank
approximation problem, therefore, lack the eigenvector
structure of the unweighted case. Another implication
of this is that the incremental structure of unweighted
low-rank approximations is lost: an optimal rank-k
factorization cannot necessarily be extended to an op-
timal rank-(k + 1) factorization.

Lacking an analytic solution, we revert to numerical
optimization methods to minimize J(U, V ). But in-
stead of optimizing J(U, V ) by numerically searching
over (U, V ) pairs, we can take advantage of the fact
that for a fixed V , we can calculate U∗

V , and therefore
also the projected objective J∗(V ) = minU J(U, V ) =
J(U∗

V , V ). The parameter space of J∗(V ) is of course
much smaller than that of J(U, V ), making optimiza-
tion of J∗(V ) more tractable. This is especially true
in many typical applications where the the dimensions
of A are highly skewed, with one dimension several or-
ders of magnitude larger than the other (e.g. in gene
expression analysis one often deals with thousands of
genes, but only a few dozen experiments).

Recovering U∗
V using (1) requires n inversions of k× k

matrices. The dominating factor is actually the ma-
trix multiplications: Each calculation of V ′WiV re-
quires O(dk2) operations, for a total of O(ndk2) oper-
ations. Although more involved than the unweighted
case, this is still significantly less than the prohibitive
O(n3k3) required for each iteration suggested by Lu
et al. (1997), or for Hessian methods on (U, V ) (Sh-
pak, 1990), and is only a factor of k larger than the
O(ndk) required just to compute the prediction UV ′.

After recovering U∗
V , we can easily compute not only

the value of the projected objective, but also its gra-
dient. Since ∂J(V,U)

∂U

∣∣∣
U=U∗V

= 0, we have

∂J∗(V )
∂V = ∂J(V,U)

∂V

∣∣∣
U=U∗V

= 2(W ⊗ (V U∗
V
′ −A′))U∗

V .

The computation requires only O(ndk) operations,
and is therefore “free” after U∗

V has been recovered.

Equipped with the above calculations, we can use stan-
dard gradient-descent techniques to optimize J∗(V ).
Unfortunately, though, unlike in the unweighted case,
J(U, V ), and J∗(V ), might have local minima that
are not global. Figure 1 shows the emergence of a
non-global local minimum of J∗(V ) for a rank-one ap-
proximation of A =

(
1 1.1
1 −1

)
. The matrix V is a two-

dimensional vector. But since J∗(V ) is invariant under



invertible scalings, V can be specified as an angle θ on
a semi-circle. We plot the value of J∗([cos θ, sin θ]) for
each θ, and for varying weight matrices of the form
W =

(
1+α 1

1 1+α

)
. At the front of the plot, the weight

matrix is uniform and indeed there is only a single lo-
cal minimum, but at the back of the plot, where the
weight matrix emphasizes the diagonal, a non-global
local minimum emerges.
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Figure 1. Emergence of local minima when the weights be-
come non-uniform.

Despite the abundance of local minima, we found gra-
dient descent methods on J∗(V ), and in particular con-
jugate gradient descent, equipped with a long-range
line-search for choosing the step size, very effective in
avoiding local minima and quickly converging to the
global minimum.

2.2. A Missing-Values View and an EM
Procedure

In this section we present an alternative optimiza-
tion procedure, which is much simpler to implement.
This procedure is based on viewing the weighted low-
rank approximation problem as a maximum-likelihood
problem with missing values.

Consider first systems with only zero/one weights,
where only some of the elements of the target matrix A
are observed (those with weight one) while others are
missing (those with weight zero). Referring to a prob-
abilistic model parameterized by a low-rank matrix X,
where A = X + Z and Z is white Gaussian noise, the
weighted cost of X is equivalent to the log-likelihood
of the observed variables.

This suggests an Expectation-Maximization proce-
dure. In each EM update we would like to find a
new parameter matrix maximizing the expected log-

likelihood of a filled-in A, where missing values are
filled in according to the distribution imposed by the
current estimate of X. This maximum-likelihood pa-
rameter matrix is the (unweighted) low-rank approxi-
mation of the mean filled-in A, which is A with miss-
ing values filled in from X. To summarize: in the
Expectation step values from the current estimate of
X are filled in for the missing values in A, and in the
Maximization step X is reestimated as a low-rank ap-
proximation of the filled-in A.

In order to extend this approach to a general weight
matrix, consider a probabilistic system with several
target matrices, A(1), A(2), . . . , A(N), but with a single
low-rank parameter matrix X, where A(r) = X + Z(r)

and the random matrices Z(r) are independent white
Gaussian noise with fixed variance. When all target
matrices are fully observed, the maximum likelihood
setting for X is the low-rank approximation of the their
average. Now, if some of the entries of some of the tar-
get matrices are not observed, we can use a similar EM
procedure, where in the expectation step values from
the current estimate of X are filled in for all missing
entries in the target matrices, and in the maximization
step X is updated to be a low-rank approximation of
the mean of the filled-in target matrices.

To see how to use the above procedure to solve
weighted low-rank approximation problems, consider
systems with weights limited to Wia = wia

N with inte-
ger wia ∈ {0, 1, . . . , N}. Such a low-rank approxima-
tion problem can be transformed to a missing value
problem of the form above by “observing” the value
Aia in wia of the target matrices (for each entry i, a),
and leaving the entry as missing in the rest of the tar-
get matrices. The EM update then becomes:

X(t+1) = LRAk

(
W ⊗A + (1−W )⊗X(t)

)
(2)

where LRAk(X) is the unweighted rank-k approxima-
tion of X, as can be computed from the SVD. Note
that this procedure is independent of N . For any
weight matrix (scaled to weights between zero and
one) the procedure in equation (2) can thus be seen
as an expectation-maximization procedure. This pro-
vides for a very simple, tweaking-free method for find-
ing weighted low-rank approximations.

Although we found this EM-inspired method effective
in many cases, in some other cases the procedure con-
verges to a local minimum which is not global. Since
the method is completely deterministic, initialization
of X plays a crucial role in promoting convergence to
a global, or at least deep local, minimum, as well as
the speed with which convergence is attained.

Two obvious initialization methods are to initialize X



to A, and to initialize X to zero. Initializing X to
A works reasonably well if the weights are bounded
away from zero, or if the target values in A have rela-
tively small variance. However, when the weights are
zero, or very close to zero, the target values become
meaningless, and can throw off the search. Initializing
X to zero avoids this problem, as target values with
zero weights are completely ignored (as they should
be), and works well as long as the weights are fairly
dense. However, when the weights are sparse, it often
converges to local minima which consistently under-
predict the magnitude of the target values.

As an alternative to these initialization methods, we
found the following procedure very effective: we initial-
ize X to zero, but instead of seeking a rank-k approx-
imation right away, we start with a full rank matrix,
and gradually reduce the rank of our approximations.
That is, the first d− k iterations take the form:

X(t+1) = LRAd−t

(
W ⊗A + (1−W )⊗X(t)

)
, (3)

resulting in X(t) of rank (d−t+1). After reaching rank
k, we revert back to the iterations of equation (2) un-
til convergence. Note that with iterations of the form
X(t+1) = W ⊗A+(1−W )⊗X(t), without rank reduc-
tions, we would have X

(t)
ia = (1 − (1 − Wia)t))Aia →

(1 − e−tWia)Aia, which converges exponentially fast
to A for positive weights. Of course, because of the
rank reduction, this does not hold, but even the few
high-rank iterations set values with weights away from
zero close to their target values, as long as they do not
significantly contradict other values.

2.3. Reconstruction Experiments

Since the unweighted or simple low-rank approxima-
tion problem permits a closed-form solution, one might
be tempted to use such a solution even in the presence
of non-uniform weights (i.e., ignore the weights). We
demonstrate here that this procedure results in a sub-
stantial loss of reconstruction accuracy as compared to
the EM algorithm designed for the weighted problem.

To this end, we generated 1000 × 30 low rank ma-
trices combined with Gaussian noise models to yield
the observed (target) matrices. For each matrix entry,
the noise variance σ2

ia was chosen uniformly in some
noise level range characterized by a noise spread ratio
max σ2/ minσ2. The planted matrix was subsequently
reconstructed using both a weighted low-rank approx-
imation with weights Wia = 1/σ2

ia, and an unweighted
low-rank approximation (using SVD). The quality of
reconstruction was assessed by an unweighted squared
distance from the “planted” matrix.
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Figure 2. Reconstruction of a 1000×30 rank-three matrix.
Left: (a) weighted and unweighted reconstruction with a
noise spread of 100 ; right: (b) reduction in reconstruction
error for various noise spreads.

Figure 2(a) shows the quality of reconstruction at-
tained by the two approaches as a function of the
signal (weighted variance of planted low-rank matrix)
to noise (average noise variance) ratio, for a noise
spread ratio of 100 (corresponding to weights in the
range 0.01–1). The reconstruction error attained by
the weighted approach is generally over twenty times
smaller than the error of the unweighted solution. Fig-
ure 2(b) shows this improvement in the reconstruction
error, in terms of the error ratio between the weighted
and unweighted solutions, for the data in Figure 2(a),
as well as for smaller noise spread ratios of ten and two.
Even when the noise variances (and hence the weights)
are within a factor of two, we still see a consistent ten
percent improvement in reconstruction.

The weighted low-rank approximations in this experi-
ment were computed using the EM algorithm of Sec-
tion 2.2. For a wide noise spread, when the low-
rank matrix becomes virtually undetectable (a signal-
to-noise ratio well below one, and reconstruction er-
rors in excess of the variance of the signal), EM of-
ten converges to a non-global minimum. This results
in weighted low-rank approximations with errors far
higher than could otherwise be expected, as can be
seen in both figures. In such situations, conjugate gra-
dient descent methods proved far superior in finding
the global minimum.

3. Low-rank Logistic Regression

In certain situations we might like to capture a binary
data matrix y ∈ {−1,+1}n×d with a low-rank model.
A natural choice in this case is a logistic model param-
eterized by a low-rank matrix X ∈ <n×d, such that
Pr (Yia = +1|Xia) = g(Xia) independently for each
i, a, where g is the logistic function g(x) = 1

1+e−x . One
then seeks a low-rank matrix X maximizing the like-
lihood Pr (Y = y|X). Such low-rank logistic models
were suggested by Collins et al. (2002) and by Gordon



(2003) and recently studied by Schein et al. (2003).

Using a weighted low-rank approximation, we can fit
a low-rank matrix X minimizing a quadratic loss from
the target. In order to fit a non-quadratic loss such as
a logistic loss, Loss(Xia; yia) = log g(yiaXia), we use a
quadratic approximation to the loss.

Consider the second-order Taylor expansion of
log g(yx) about x̃:

log g(yx) ≈

≈ log g(yx̃) + yg(−yx̃)(x− x̃)− g(yx̃)g(−yx̃)
2 (x− x̃)2

≈ − g(yx̃)g(−yx̃)
2

(
x−

(
x̃ + y

g(yx̃)

))2

+log g(yx̃)+ g(−yx̃)
2g(yx̃) .

The log-likelihood of a low-rank parameter matrix X
can then be approximated as:

log Pr (y|X) ≈

−
∑
ia

g(yiaX̃ia)g(−yiaX̃ia)
2

(
Xia −

(
X̃ia + yia

g(yiaX̃ia)

))2

+ Const (4)

Maximizing (4) is a weighted low-rank approximation
problem. Note that for each entry (i, a), we use a
second-order expansion about a different point X̃ia.
The closer the origin X̃ia is to Xia, the better the
approximation. This suggests an iterative approach,
where in each iteration we find a parameter matrix X
using an approximation of the log-likelihood about the
parameter matrix found in the previous iteration.

For the Taylor expansion, the improvement of the
approximation is not always monotonic. This might
cause the method outlined above not to converge. In
order to provide for a more robust method, we use the
following variational bound on the logistic (Jaakkola
& Jordan, 2000):

log g(yx) ≥ log g(yx̃) + yx−yx̃
2 − tanh(x̃/2)

4x̃

(
x2 − x̃2

)
= − 1

4
tanh(x̃/2)

x̃

(
x− yx̃

tanh(x̃/2)

)
+ Const,

yielding the corresponding bound on the likelihood:

log Pr (y|X) ≥

− 1
4

∑
ia

tanh(X̃ia/2)

X̃ia

(
Xia − yiaX̃ia

tanh(X̃ia/2)

)
+ Const (5)

with equality if and only if X = X̃. This bound sug-
gests an iterative update of the parameter matrix X(t)

by seeking a low-rank approximation X(t+1) for the
following target and weight matrices:

A
(t+1)
ia = yia/W

(t+1)
ia

W
(t+1)
ia = tanh(X(t)

ia /2)/X
(t)
ia

(6)

Fortunately, we do not need to confront the severe
problems associated with nesting iterative optimiza-
tion methods. In order to increase the likelihood of
our logistic model, we do not need to find a low-
rank matrix minimizing the objective specified by (6),
just one improving it. Any low-rank matrix X(t+1)

with a lower objective value than X(t) (with respect
to A(t+1) and W (t+1)) is guaranteed to have a higher
likelihood: A lower objective corresponds to a higher
upper bound in (5), and since the bound is tight for
X(t), the log-likelihood of X(t+1) must be higher than
the log-likelihood of X(t). Moreover, if the likelihood
of X(t) is not already maximal, there are guaranteed
to be matrices with lower objective values. Therefore,
we can mix weighted low-rank approximation itera-
tions and logistic bound update iterations, while still
ensuring convergence.

In many applications we may also want to associate
external weights with each entry in the matrix (e.g.
to accommodate missing values), or more generally,
weights (counts) of positive and negative observations
in each entry (e.g. to capture the likelihood with re-
spect to an empirical distribution). This can easily be
done by multiplying the weights in (6) by the external
weights, or taking a weighted combination correspond-
ing to y = +1 and y = −1.

Note that the target and weight matrices correspond-
ing to the Taylor approximation and those correspond-
ing to the variational bound are different: The varia-
tional target is always closer to the current value of
X, and the weights are more subtle. This ensures
the guaranteed convergence (as discussed above), but
the price we pay is a much lower convergence rate.
Although we have observed many instances in which
a ‘Taylor’ iteration increases, rather then decreases,
the objective, overall convergence was attained much
faster using ‘Taylor’, rather than ‘variational’ itera-
tions.

4. A Collaborative Filtering Example

To illustrate the use of weighted, and generalized, low-
rank approximations, we applied our methods to a col-
laborative filtering problem. The task of collaborative
filtering is, given some entries of a user preferences
matrix, to predict the remaining entries. We do this
by approximating those observed values by a low-rank
matrix (using weighted low-rank approximation with
zero/one weights). Unobserved values are predicted
according to the learned low-rank matrix.

Using low-rank approximation for collaborative fil-
tering has been suggested in the past. Goldberg



et al. (2001) use a low-rank approximation of a fully-
observed subset of columns of the matrix, thus avoid-
ing the need to introduce weights. Billsus and Paz-
zani (1998) use a singular value decomposition of a
sparse binary observation matrix. Both Goldberg and
Billsus use the low-rank approximation only as a pre-
processing step, and then use clustering (Goldberg)
and neural networks (Billsus) to learn the preferences.
Azar et al. (2001) proved asymptotic consistency of
a method in which unobserved entries are replaced by
zeros, and observed entries are scaled inversely pro-
portionally to the probability of them being observed.
No guarantees are provided for finite data sets, and to
the best of our knowledge this technique has not been
experimentally tested.

We analyzed a subset of the Jester data5 (Goldberg
et al., 2001). The data set contains one hundred jokes,
with user ratings (bounded continuous values entered
by clicking an on-screen “funniness” bar) for some of
the jokes. All users rated a core set of ten jokes, and
most users rated an extended core set of a total of
twenty jokes. Each user also rated a variable number of
additional jokes. We selected at random one thousand
users who rated the extended core set and at least two
additional jokes. For each user, we selected at random
two non-core jokes and held out their ratings. We fit
low-rank matrices using the following techniques:
svd Unobserved values were replaced with zeros, and

the unweighted low-rank approximation to the re-
sulting matrix was sought.

subset An unweighted low-rank approximation for
the core subset of jokes was sought (similarly to
Goldberg’s initial step). The matrix was extended
to the remaining jokes by projecting each joke col-
umn onto the column subspace of this matrix.

rescaling Following Azar et al. (2001), the ratings
for each joke were scaled inversely proportional
to the frequency with which the joke was rated
(between 0.197 and 0.77). An unweighted low-
rank approximation for the resulting matrix was
sought.

wlra A weight of one was assigned to each observed
joke, and a weight of zero to each unobserved
joke, and a weighted low-rank approximation was
sought using gradient descent techniques.

For each low-rank matrix, the test error on the held out
jokes (Figure 3) and the training error were measured
in terms of the average squared difference to the true
rating, scaled by the possible range of ratings. Normal-
ized mean absolute error (NMAE) was also measured,
producing very similar results, with no qualitative dif-

5The data set was kindly provided by Ken Goldberg.
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Figure 3. Prediction errors on Jester jokes: test error (main
figure) and training error (insert).

ferences. Beyond the consistent reduction in training
error (which is guaranteed by the optimization objec-
tive), we observe that wlra achieves a better test error
than any of the other methods. Not surprisingly, it
also over-fits much more quickly, as it becomes possi-
ble to approximate the observed values better at the
expense of extreme values in the other entries.

0 2 4 6 8 10 12 14 16
0.6

0.8

1

rank of approximation

%
 o

rd
er

 a
gr

ee
m

en
ts

 fo
r e

xt
re

m
e 

pa
irs

svd (training)
wlra
wlra on probs
logistic
svd (testing)
wlra
wlra on probs
logistic

Figure 4. Training (dotted lines) and test performance on
Jester jokes.

As discussed in the introduction, minimizing the
squared error to the absolute ratings is not necessar-
ily the correct objective. Taking the view that each
joke has a ‘probability of being funny’ for each user,
we proceeded to try to fit a low-rank logistic regres-
sion model. We first transformed the raw observed
values into ‘funniness’ probabilities by fitting a mix-
ture model with two equal-variance Gaussian com-
ponents to each user’s ratings, and using the result-
ing component-posterior probabilities. This procedure



also ensures scale and transformation invariability for
a user’s ratings, and places more emphasis on users
with a bimodal rating distribution than on users for
which all ratings are clustered together. We proceeded
to fit a low-rank logistic model (q.v. Section 3) using
the observed posterior probabilities as empirical prob-
abilities. Since the resulting low-rank model no longer
predicts the absolute rating of jokes, we measured suc-
cess by analyzing the relative ranking of jokes by each
user. Specifically, for each user we held out one non-
core joke which was rated among the top quarter by
the user, and one non-core joke which was rated in
the bottom quarter. We then measured the frequency
with which the relative rankings of the predictions on
these two jokes was consistent with the true relative
ranking. Using this measure, we compared the logistic
low-rank model to the sum-squared error methods dis-
cussed above, applied to both the absolute ratings (as
above) and the probabilities. Figure 4 shows the train-
ing and test performance of the logistic method, the
wlra method applied to the ratings, the wlra method
applied to the probabilities, and the svd method ap-
plied to the ratings (all other methods tested perform
worse than those shown). Although the results indi-
cate that the wlra method performs better than the
logistic method, it is interesting to note that for small
ranks, k = 2, 3, the training performance of the lo-
gistic model is better—in these cases the logistic view
allows us to better capture the rankings than a sum-
squared-error view (Schein et al. (2003) investigates
the training error of other data sets, and arrives at
similar conclusions). A possible modification to the
logistic model that might make it more suitable for
such tasks is the introduction of label noise.

5. Conclusion

We have provided simple and efficient algorithms for
solving weighted low-rank approximation problems.
The EM algorithm is extremely simple to implement,
and works well in some cases. In more complex cases,
conjugate gradient descent on J∗(V ) provides efficient
convergence, usually to the global minimum.

Weighted low-rank approximation problems are im-
portant in their own right and appear as subroutines in
solving a class of more general low-rank problems. One
such problem, fitting a low-rank logistic model, was de-
veloped in this paper. Similar approaches can be used
for other convex loss functions with a bounded Hes-
sian. Another class of problems that we can solve us-
ing weighted low-rank approximation as a subroutine
is low-rank approximation with respect to a mixture-
of-Gaussians noise model. This application will be

treated in depth in a separate paper.
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