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Abstract

The bootstrap has become a popular method for exploring model
(structure) uncertainty. Our experiments with artificial and real-
world data demonstrate that the graphs learned from bootstrap
samples can be severely biased towards too complex graphical mod-
els. Accounting for this bias is hence essential, e.g., when explor-
ing model uncertainty. We find that this bias is intimately tied to
(well-known) spurious dependences induced by the bootstrap. The
leading-order bias-correction equals one half of Akaike’s penalty
for model complexity. We demonstrate the effect of this simple
bias-correction in our experiments. We also relate this bias to the
bias of the plug-in estimator for entropy, as well as to the differ-
ence between the expected test and training errors of a graphical
model, which asymptotically equals Akaike’s penalty (rather than
one half).

1 Introduction
Efron’s bootstrap is a powerful tool for estimating various properties of a given
statistic, most commonly its bias and variance (cf. [5]). It quickly gained popularity
also in the context of model selection. When learning the structure of graphical
models from small data sets, like gene-expression data, it has been applied to explore
model (structure) uncertainty [7, 6, 8, 12].

However, the bootstrap procedure also involves various problems (e.g., cf. [4] for an
overview). For instance, in the non-parametric bootstrap, where bootstrap samples
D(b) (b = 1, ..., B) are generated by drawing the data points from the given data D
with replacement, each bootstrap sample D(b) often contains multiple identical data
points, which is a typical property of discrete data. When the given data D is in fact
continuous (with a vanishing probability of two data points being identical), e.g., as
in gene-expression data, the bootstrap procedure introduces a spurious discreteness
in the samples D(b). A statistic computed from these discrete bootstrap samples
may differ from the ones based on the continuous data D. As noted in [4], however,
the effects due to this induced spurious discreteness are typically negligible.

In this paper, we focus on the spurious dependences induced by the bootstrap proce-
dure, even when given discrete data. We demonstrate that the consequences of those
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spurious dependences cannot be neglected when exploring model (structure) uncer-
tainty by means of bootstrap, whether parametric or non-parametric. Graphical
models learned from the bootstrap samples are biased towards too complex models
and this bias can be considerably larger than the variability of the graph structure,
especially in the interesting case of limited data. As a result, too many edges are
present in the learned model structures, and the confidence in the presence of edges
is overestimated. This suggests that a bias-corrected bootstrap procedure is essen-
tial for exploring model structure uncertainty. Similarly to the statistics literature,
we give a derivation for the bias-correction term to amend several popular scoring
functions when applied to bootstrap samples (cf. Section 3.2). This bias-correction
term asymptotically equals one half of the penalty term for model complexity in
the Akaike Information Criterion (AIC), cf. Section 3.2. The (huge) effects of this
bias and the proposed bias-correction are illustrated in our experiments in Section
5.

As the maximum likelihood score and the entropy are intimately tied to each other in
the exponential family of probability distributions, we also relate this bias towards
too complex models with the bias of the plug-in estimator for entropy (Section
3.1). Moreover, we show in Section 4, similarly to [13, 1], how the (bootstrap)
bias-correction can be used to obtain a scoring function whose penalty for model
complexity asymptotically equals Akaike’s penalty (rather than one half of that).

2 Bootstrap Bias-Estimation and Bias-Correction

In this section, we introduce relevant notation and briefly review the bootstrap
bias estimation of an arbitrary statistic as well as the bootstrap bias-correction (cf.
also [5, 4]). The scoring-functions commonly used for graphical models such as the
Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC), the
Minimum Description Length (MDL), or the posterior probability, can be viewed
as special cases of a statistic.

In a domain of n discrete random variables, X = (X1, ..., Xn), let p(X) denote the
(unknown) true distribution from which the given data D has been sampled. The
empirical distribution implied by D is then given by p̂(X), where p̂(x) = N(x)/N ,
where N(x) is the frequency of state X = x and N =

∑
xN(x) is the sample size of

D. A statistic T is any number that can be computed from the given dataD. Its bias
is defined as BiasT = 〈T (D)〉D∼p−T (p), where 〈T (D)〉D∼p denotes the expectation
over the data sets D of size N sampled from the (unknown) true distribution p.
While T (D) is an arbitrary statistic, T (p) is the associated, but possibly slightly
different, statistic that can be computed from a (normalized) distribution. Since
the true distribution p is typically unknown, BiasT cannot be computed. However,
it can be approximated by the bootstrap bias-estimate, where p is replaced by the
empirical distribution p̂, and the average over the data sets D is replaced by the
one over the bootstrap samples D(b) generated from p̂, where b = 1, ..., B with
sufficiently large B (e.g., cf. [5]):

B̂iasT = 〈T (D(b))〉b − T (p̂) (1)

The estimator T (p̂) is a so-called plug-in statistic, as the empirical distribution is
”plugged in” in place of the (unknown) true one. For example, T̃σ2(p̂) = IE(X2)−
IE(X)2 is the familiar plug-in statistic for the variance, while T unbiased

σ2 (D) = N/(N−
1)Tσ2(p̂) is the unbiased estimator.

Obviously, a plug-in statistic yields an unbiased estimate concerning the distribu-
tion that is plugged in. Consequently, when the empirical distribution is plugged
in, a plug-in statistic typically does not give an unbiased estimate concerning the
(unknown) true distribution. Only plug-in statistics that are linear functions of
p̂(x) are inherently unbiased (e.g., the arithmetic mean). However, most statistics,



including the above scoring functions, are non-linear functions of p̂(x) (or equiva-
lently of N(x)). In this case, the bias does not vanish in general. In the special case
where a plug-in statistic is a convex (concave) function of p̂, it follows immediately
from the Jensen inequality that its bias is positive (negative). For example, the
statistic Tσ2(p̂) is a negative quadratic, and thus concave, function of p̂, and hence
underestimates the variance of the (unknown) true distribution.

The general procedure of bias-correction can be used to reduce the bias of a biased
statistic considerably. The bootstrap bias-corrected estimator TBC is given by

TBC(D) = T (D)− B̂iasT = 2T (D)− 〈T (D(b))〉b, (2)

where B̂iasT is the bootstrap bias estimate according to Eq. 1.1 Typically, TBC(D)
agrees with the corresponding unbiased estimator in leading order in N (cf., e.g.,
[5]). Higher-order corrections can be achieved by ”bootstrapping the bootstrap”
[5].

Bias-correction can be dangerous in practice (cf. [5]): even though TBC(D) is
less biased than T (D), the bias-corrected estimator may have substantially larger
variance. This is due to a possibly higher variability in the estimate of the bias,
particularly when computed from small data sets. However, this is not an issue
in this paper, since the ”estimate” of the bias turns out to be independent of the
empirical distribution (in leading order in N).

3 Bias-Corrected Scoring-Functions
In this section, we show that the above popular scoring-functions are (considerably)
biased towards too complex models when applied to bootstrap samples (in place of
the given data). These scoring functions can be amended by an additional penalty
term that accounts for this bias. Using the bootstrap bias-correction in a slightly
non-standard way, a simple expression for this penalty term follows easily (Sec-
tion 3.2) from the well-know bias of the plug-in estimator of the entropy, which is
reviewed in Section 3.1 (cf. also, e.g., [11, 2, 16]).

3.1 Bias-Corrected Estimator for True Entropy
The entropy of the (true) distribution p(X) is defined by H(p(X)) =
−
∑
x p(x) log p(x). Since this is a concave function of the p’s, the plug-in esti-

mator H(p̂(X)) tends to underestimate the true entropy H(p(X)) (cf. Section 2).
The bootstrap bias estimate of H(p̂(X)) is B̂iasH = 〈H(D(b))〉b −H(p̂), where

〈H(D(b))〉b =
1
B

B∑
b=1

H(D(b)(X)) = −
∑
x

〈ν(x)
N

log
ν(x)
N
〉ν(x)∼Bin(N,p̂(x)), (3)

where Bin(N, p̂(x)) denotes the Binomial distribution that originates from the re-
sampling procedure in the bootstrap; N is the sample size; p̂(x) is the probability of
sampling a data point with X = x. An exact evaluation of Eq. 3 is computationally
prohibitive in most cases. Monte Carlo methods, while yielding accurate results,
are computationally costly. An analytical approximation of Eq. 3 follows imme-
diately from the second-order Taylor expansion of L(q(x)) := q(x) log q(x) about
p̂(x), where q(x) = ν(x)/N :2

−
∑
x

〈L(
ν(x)
N

)〉ν(x) = H(p̂(x))− 1
2

∑
x

L′′(p̂(x)) 〈[ν(x)
N
− p̂(x)]2〉ν(x) +O(

1
N2

)

= H(p̂(x))− 1
2N

(|X| − 1) +O(
1
N2

), (4)

1Note that 〈T (D(b))〉b is not the bias-corrected statistic.
2Note that this approximation can be applied analogously to BiasH (instead of the

bootstrap estimate B̂iasH), and the same leading-order term is obtained.



where −L′′(p̂(x)) = −1/p̂(x) is the observed Fisher information evaluated at the
empirical value p̂(x), and 〈[ν(x) − Np̂(x)]2〉ν(x) = Np̂(x)(1 − p̂(x)) is the well-
known variance of the Binomial distribution, induced by the bootstrap. In Eq. 4,
|X| is the number of (joint) states of X. The bootstrap bias-corrected estimator
for the entropy of the (unknown true) distribution is thus given by HBC(p̂(X)) =
H(p̂(X)) + 1

2N (|X| − 1) +O( 1
N2 ).

3.2 Bias-Correction for Bootstrapped Scoring-Functions
This section is concerned with the bias of popular scoring functions that is induced
by the bootstrap procedure. For the moment, let us focus on the BIC when learning
a Bayesian network structure m,

TBIC(D,m) = N
n∑
i=1

∑
xi,πi

p̂(xi, πi) log
p̂(xi, πi)
p̂(πi)

− 1
2

logN · |θ|. (5)

The maximum likelihood involves a summation over all the variables (i = 1, ..., n)
and all the joint states of each variable Xi and its parents Πi according to graph
m. The number of independent parameters in the Bayesian network is given by

|θ| =
n∑
i=1

(|Xi| − 1) · |Πi| (6)

where |Xi| denotes the number of states of variable Xi, and |Πi| the number of
(joint) states of its parents Πi. Like other scoring-functions, the BIC is obviously
intended to be applied to the given data. If done so, optimizing the BIC yields
an ”unbiased” estimate of the true network structure underlying the given data.
However, when the BIC is applied to a bootstrap sample D(b)(instead of the given
data D), the BIC cannot be expected to yield an ”unbiased” estimate of the true
graph. This is because the maximum likelihood term in the BIC is biased when
computed from the bootstrap sample D(b) instead of the given data D. This bias
reads B̂iasTBIC = 〈TBIC(D(b))〉b−TBIC(D). It differs conceptually from Eq. 1 in two
ways. First, it is the (exact) bias induced by the bootstrap procedure, while Eq. 1 is a
bootstrap approximation of the (unknown) true bias. Second, while Eq. 1 applies to
a statistic in general, the last term in Eq. 1 necessarily has to be a plug-in statistic.
In contrast, both terms involved in B̂iasTBIC comprise the same general statistic.

Since the maximum likelihood term is intimately tied to the entropy in the expo-
nential family of probability distributions, the leading-order approximation of the
bias of the entropy carries over (cf. Eq. 4):

B̂iasTBIC =
1
2

n∑
i=1

(
{|Xi| · |Πi| − 1} − {|Πi| − 1}

)
+O(

1
N

) =
1
2
|θ|+O(

1
N

), (7)

where |θ| is the number of independent parameters in the model, as given in Eq. 6
for Bayesian networks. Note that this bias is identical to one half of the penalty
for model complexity in the Akaike Information Criterion (AIC). Hence, this bias
due to the bootstrap cannot be neglected compared to the penalty terms inherent
in all popular scoring functions. Also our experiments in Section 5 confirm the
dominating effect of this bias when exploring model uncertainty.

This bias in the maximum likelihood gives rise to spurious dependences induced by
the bootstrap (a well-known property). In this paper, we are mainly interested in
structure learning of graphical models. In this context, the bootstrap procedure
obviously gives rise to a (considerable) bias towards too complex models. As a
consequence, too many edges are present in the learned graph structure, and the
confidence in the presence of edges is overestimated. Moreover, the (undesirable)
additional directed edges in Bayesian networks tend to point towards variables that
already have a large number of parents. This is because the bias is proportional to



the number of joint states of the parents of a variable (cf. Eqs. 7 and 6). Hence,
the amount of the induced bias generally varies among the different edges in the
graph.

Consequently, the BIC has to be amended when applied to a bootstrap sample
D(b) (instead of the given data D). The bias-corrected BIC reads TBCBIC(D(b),m) =
TBIC(D(b),m) − 1

2 |θ| (in leading order in N). Since the bias originates from the
maximum likelihood term involved in the BIC, the same bias-correction applies to
the AIC and MDL scores. Moreover, as the BIC approximates the (Bayesian) log
marginal likelihood, log p(D|m), for large N , the leading-order bias-correction in
Eq. 7 can also be expected to account for most of the bias of log p(D(b)|m) when
applied to bootstrap samples D(b).

4 Bias-Corrected Maximum-Likelihood

It may be surprising that the bias derived in Eq. 7 equals only one half of the
AIC penalty. In this section, we demonstrate that this is indeed consistent with the
AIC score. Using the standard bootstrap bias-correction procedure (cf. Section 2),
we obtain a scoring function that asymptotically equals the AIC. This approach is
similar to the ones in [1, 13].

Assume that we are given some data D sampled from the (unknown) true distri-
bution p(X). The goal is to learn a Bayesian network model with p(X|θ̂,m), or
p̂(X|m) in short, where m is the graph structure and θ̂ are the maximum likelihood
parameter estimates, given data D. An information theoretic measure for the qual-
ity of graph m is the KL divergence between the (unknown) true distribution p(X)
and the one described by the Bayesian network, p̂(X|m) (cf. the approach in [1]).
Since the entropy of the true distribution p(X) is an irrelevant constant when com-
paring different graphs, minimizing the KL-divergence is equivalent to minimizing
the statistic

T (p, p̂,m) = −
∑
x

p(x) log p̂(x|m), (8)

which is the test error of the learned model when using the log loss. When p is
unknown, one cannot evaluate T (p, p̂,m), but approximate it by the training error,

T (p̂,m) = −
∑
x

p̂(x) log p̂(x|m) = −
∑
x

p̂(x|m) log p̂(x|m). (9)

(assuming exponential family distributions). Note that T (p̂,m) is equal to the
negative maximum log likelihood up to the irrelevant factor N . It is well-known
that the training error underestimates the test error. However, the ”bias-corrected
training error”,

TBC(p̂,m) = T (p̂,m)− BiasT (p̂,m), (10)
can serve as a surrogate, (nearly) unbiased estimator for the unknown test error,
T (p, p̂,m), and hence as a scoring function for model selection. The bias is given
by the difference between the expected training error and the expected test error,

BiasT =
∑
x

p(x|m)〈log p̂(x|m)〉D∼p︸ ︷︷ ︸
=−H(p(X|m))− 1

2N |θ|+O( 1
N2 )

−
∑
x

〈p̂(x|m) log p̂(x|m)〉D∼p︸ ︷︷ ︸
=−H(p(X|m))+ 1

2N |θ|+O( 1
N2 )

≈ − 1
N
|θ|. (11)

The expectation is taken over the various data sets D (of sample size N) sampled
from the unknown true distribution p; H(p(X|m)) is the (unknown) conditional
entropy of the true distribution. In the leading-order approximation in N (cf. also
Section 3.1), the number of independent parameters of the model, |θ|, is given
in Eq. 6 for Bayesian network. Note that both the expected test error and the
expected training error give rise to one half of the AIC penalty each. The overall



bias amounts to |θ|/N , which exactly equals the AIC penalty for model complexity.
Note that, while the AIC asymptotically favors the same models as cross-validation
[15], it typically does not select the true model underlying the given data, but a
more complex model.

When the bootstrap estimate of the (exact) bias in Eq. 11 is inserted in the scoring
function in Eq. 10, the resulting score may be viewed as the frequentist version of
the (Bayesian) Deviance Information Criterion (DIC)[13] (up to a factor 2): while
averaging over the distribution of the model parameters is natural in the Bayesian
approach, this is mimicked by the bootstrap in the frequentist approach.

5 Experiments
In our experiments with artificial and real-world data, we demonstrate the crucial
effect of the bias induced by the bootstrap procedure, when exploring model uncer-
tainty. We also show that the penalty term in Eq. 7 can compensate for most of
this (possibly large) bias in structure learning of Bayesian networks.

In the first experiment, we used data sampled from the alarm network (37 dis-
crete variables, 46 edges). Comprising 300 and 1,000 data points, respectively, the
generated data sets can be expected to entail some model structure uncertainty.
We examined two different scoring functions, namely BIC and posterior probability
(uniform prior over network structures, equivalent sample size α = 1, cf. [10]).
We used the K2 search strategy [3] because of its computational efficiency and its
accuracy in structure learning, which is high compared to local search (even when
combined with simulated annealing) [10]. This accuracy is due to the additional
input required by the K2 algorithm, namely a correct topological ordering of the
variables according to the true network structure. Consequently, the reported vari-
ability in the learned network structures tends to be smaller than the uncertainty
determined by local search (without this additional information). However, we are
mainly interested in the bias induced by the bootstrap here, which can be expected
to be largely unaffected by the search strategy.

Although the true alarm network is known, we use the network structures learned
from the given data D as a reference in our experiments: as expected, the optimal
graphs learned from our small data sets tend to be sparser than the original graph
in order to avoid over-fitting (cf. Table 1).3

We generated 200 bootstrap samples from the given data D (as suggested in [5]),
and then learned the network structure from each. Table 1 shows that the bias
induced by the bootstrap procedure is considerable for both the BIC and the pos-
terior probability: it cannot be neglected compared to the standard deviation of
the distribution over the number of edges. Also note that, despite the small data
sets, the bootstrap yields graphs that have even more edges than the true alarm
network. In contrast, Table 1 illustrates that this bias towards too complex models
can be reduced dramatically by the bias-correction outlined in Section 3.2. However
note that the bias-correction does not work perfectly as it is only the leading-order
correction in N (cf. Eq. 7).

The jackknife is an alternative resampling method, and can be viewed as an ap-
proximation to the bootstrap (e.g., cf. [5]). In the delete-d jackknife procedure,
subsamples are generated from the given data D by deleting d data points.4 The
choice d = 1 is most popular, but leads to inconsistencies for non-smooth statistics
(e.g., cf. [5]). These inconsistency can be resolved by choosing a larger value for

3Note that the greedy K2 algorithm yields exactly one graph from each given data set.
4As a consequence, unlike bootstrap samples, jackknife samples do not contain multiple

identical data points when generated from a given continuous data set (cf. Section 1).



alarm network data pheromone
N = 300 N = 1, 000 N = 320

BIC posterior BIC posterior posterior
data D 41 40 43 44 63.0 ± 1.5
boot BC 40.7 ± 4.9 40.5 ± 3.5 44.2 ± 2.6 44.1 ± 2.9 57.8 ± 3.5
boot 49.1 ± 11.5 47.8 ± 10.9 47.3 ± 4.6 47.9 ± 4.8 135.7 ± 51.1
jack 1 41.0 ± 0.0 40.0 ± 0.0 43.0 ± 0.0 44.0 ± 0.0 63.2 ± 1.5
jack d 41.1 ± 0.9 40.1 ± 0.3 43.1 ± 0.3 43.7 ± 0.4 63.1 ± 2.3

Table 1: Number of edges (mean ± standard deviation) in the network structures
learned from the given data set D, and when using various resampling methods:
bias-corrected bootstrap (boot BC), naive bootstrap (boot), delete-1 jackknife (jack
1), and delete-d jackknife (jack d; here d = N/10).
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Figure 1: The axis of these scatter plots show the confidence in the presence of the
edges in the graphs learned from the pheromone data. The vertical and horizontal
lines indicate the threshold values according to the mean number of edges in the
graphs determined by the three methods (cf. Table 1).

d, roughly speaking
√
N < d � N , cf. [5]. The underestimation of both the bias

and the variance of a statistic is often considered a disadvantage of the jackknife
procedure: the ”raw” jackknife estimates of bias and variance typically have to
be multiplied by a so-called ”inflation factor”, which is usually of the order of the
sample size N . In the context of model selection, however, one may take advantage
of the extremely small bias of the ”raw” jackknife estimate when determining, e.g.,
the mean number of edges in the model. Table 1 shows that the ”raw” jackknife
is typically less biased than the bias-corrected bootstrap in our experiments. How-
ever, it is not clear in the context of model selection as to how meaningful the ”raw”
jackknife estimate of model variability is.

Our second experiment essentially confirms the above results. The yeast pheromone
response data contains 33 variables and 320 data points (measurements) [9]. We
discretized this gene-expression data using the average optimal number of discretiza-
tion levels for each variable as determined in [14]. Unlike in [14], we simply dis-
cretized the data in a preprocessing step, and then conducted our experiments based
on this discretized data set.5 Since the correct network structure is unknown in this
experiment, we used local search combined with simulated annealing in order to
optimize the BIC score and the posterior probability (α = 25, cf. [14]). As a ref-
erence in this experiment, we used 320 network structures learned from the given
(discretized) data D, each of which is the highest-scoring graph found in a run of
local search combined with simulated annealing.6 Each resampling procedure is
also based on 320 subsamples.

5Of course, the bias-correction according to Eq. 7 also applies to the joint optimization
of the discretization and graph structure when given a bootstrap sample.

6Using the annealing parameters as suggested in [10], each run of simulated annealing
resulted in a different network structure (local optimum) in practice.



While the pheromone data experiments in Table 1 qualitatively confirm the previous
results, the bias induced by the bootstrap is even larger here. We suspect that this
difference in the bias is caused by the rather extreme parameter values in the original
alarm network model, which leads to a relatively large signal-to-noise ratio even in
small data sets. In contrast, gene-expression data is known to be extremely noisy.

Another effect of the spurious dependences induced by the bootstrap procedure is
shown in Figure 1: the overestimation of the confidence in the presence of individual
edges in the network structures. The confidence in an individual edge can be esti-
mated as the ratio between the number of learned graphs where that edge is present
and the overall number of learned graphs. Each mark in Figure 1 corresponds to an
edge, and its coordinates reflect the confidence estimated by the different methods.
Obviously, the naive application of the bootstrap leads to a considerable overesti-
mation of the confidence in the presence of many edges in Figure 1, particularly of
those whose absence is favored by both our reference and the bias-corrected boot-
strap. In contrast, the confidence estimated by the bias-corrected bootstrap aligns
quite well with the confidence determined by our reference in Figure 1, leading to
more trustworthy results in our experiments.
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