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Our Approach

Core Idea: Unsupervised discriminative model over
pairs of words Iin the chain.

paint = painting

* Orthographic features
Morfessor (Goldwater and Johnson, 2004; Creutz and
Lagus, 2007), Poon et al., 2009, Dreyer and Eisner, 2009,
Sirts and Goldwater, 2013

 Semantic features
Schone and Jurafsky, 2000; Baroni et al., 2002

* Handle transformations. (plan = planning)
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Task Setup

-

Training

with frequencies

~

Unannotated word list

-

a 395134
ability 17793
able 560802

about 524355

N

Word Vector Learning

~

Large text corpus

Wikipedia
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Different chains can share word pairs
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nation — national — international — internationally
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Types - Prefix, Suffix, Transformations, Stop.



Transformations

* Templates for handling changes in stem during
addition of affixes.

* Repetition template: PQ = PQQR (for each Q in
alphabet). Ex.

plan — planning

/N \

P Q R
e Feature template for each transformation.
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Transformation types

3 different transtormations:
e Repetition (plan = planning)
e Deletion (decide—deciding)
* Modification (carry — carried)

Trade-off between types of transformation and
computational tractabillity.

e These three do well for a range of languages and are
computationally tractable: max O(|Z|?) for alphabet ¥
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Features ¢o(w,z)

Orthographic Semantic

Affixes: Indicator feature

. ine similarit
for top affixes Cosine similarity

between word vectors

Affix Correlation: pairs of of word and parent

aftixes sharing set of stems
(inter-, re-), (under-, over-)

Segment | Cosine Similarity
D 0.095
pl -0.037
Word freq. of parent ola 0.041
play 0.580
: : playe 0.000
Transformation types with Slayer 1,000

character bigrams
Cosine similarity with player
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_earning

e Objective:

-

/
[P =TI P = 1Y -

] /1
wEn* 2 et o(w’,z")

J

o Optimize likelihood using convex optimization: LBFGS-B

(with regularization)
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Contrastive Estimation

* |nstead, we use Contrastive Estimation (Smith and
Eisner, 2005):

* Neighborhood of invalid words for each word to
take probability mass from.

* [ranspose pair of adjacent chars from first and
last k chars in word. (Ex. painting — paintnig)

69*@25(’11),23)
/ 69'¢(wlaz/)

P(w, z) = s
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Prediction

* Predict chain in recursive fashion (argmax parent
candidate each time) till stop.

O
paintings ; , ,
Algorithm 2 Procedure to predict a morphological
chain
pa/n t/ng 1: procedure GETCHAIN(word)
2: candidate + PREDICT(word)
l 3: parent, type < candidate
pa iNt 4: if type = STOPFP then return
[((word, STOP)]
l 5 return GETCHAIN(parent)+|(parent, type))
STOP

- /
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Segmentation Experiments

* Three languages - English, Arabic, Turkish

' Lang Train Test | WordVec |
(# words) | (# words) | (# words) |
' English | MC-10 | MC-05:10 Wikipedia
(878K) | (2218) | (129M) |
' Turkish | MC-10 | MC-05:10 | BOUN |
| (617K) (2534) | (361M) |
' Arabic | Gigaword ATB Gigaword |
| (3.83M) (119K) | (1.22G) |

* Evaluation: Morphological segmentation - Precision,
Recall, F1 over individual segmentation points

 Baselines: Morfessor-Baseline, Morfessor CatMAP,
AGMorph (Sirts and Goldwater, 2013) and Lee et al.

(2011)

15



F1 scores on MorphoChallenge

M Morfessor-B M Morfessor-C . AGMorph o Lee (M2)
B MorphoChain

67.5 -
45 -

22.5 -

English Turkish Arabic
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Fffect of data size
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Normalized Frequency

Normalized Frequency

Affix Analysis
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Figure 2: Comparison of gold and predicted frequéhcy distributions of the top 15 affixes for English



Error analysis

e Errors (on a random subset of 50 words per language):

Language Over-segment  Under-segment
English 10% 86%
Turkish 12% 78%
Arabic 60% 40%

 Most errors (58%) in Turkish due to parent words

not present or having low count.

* Root template morphology of Arabic causes 14%
Of errors.
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Sample segmentations

Correct Segmentations

Word Segmentation
salvoes salvo-es
negotiations negotiat-10n-s

telephotograph | tele-photo-graph
unequivocally | un-equivocal-ly
carsickness’s | car-sick-ness-’s

Incorrect Segmentations
Word Predicted Correct
legacies legac-ies lega-ci-es
sterilizing steriliz-ing steril-1z-ing
desolating desolating desolat-ing
storerooms storeroom-s store-room-s
tattlers tattler-s tattl-er-s
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Morphology in Keyword Spotting

* Keyword Spotting is the task of identifying keywords in speech
utterances

* Major issue: Out of vocabulary words

B Supervised M Unsupervised (Morfessor)

0.2

0.15
KWS Results on OOV keywords in Turkish

0.1 LLP (Narasimhan et al., 2014)

ATWV

0.05

KWS-Test

e Adding morphemes helps KWS.

e Better morphology can lead to better KWS (supervised vs.
unsupervised)

* Need for better unsupervised segmentation.



Morfessor vs MorphoChain for KWS
ATWV scores on Bengali VLLP

20.2

w/o web data w/ web data

B Morfessor B MorphoChain

 MorphoChain outperforms state-of-the-art unsupervised
morphological system on KWS

*In collaboration with Damianos Karakos and Rich Schwartz at BBN



Conclusions

* A new method for unsupervised morphological

analysis incorporating both orthographic and
semantic features.

 Equals or outpertorms state-of-the-art systems on
morphological segmentation.

e Works well on downstream tasks.

Code: http://people.csail.mit.edu/karthikn/morphochain/
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