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Our Approach

• Orthographic features 
Morfessor (Goldwater and Johnson, 2004; Creutz and 
Lagus, 2007), Poon et al., 2009, Dreyer and Eisner, 2009, 
Sirts and Goldwater, 2013

• Semantic features 
Schone and Jurafsky, 2000; Baroni et al., 2002

• Handle transformations. (plan → planning)
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Training


Unannotated word list 
with frequencies

Word Vector Learning


Large text corpus

Wikipedia

a 
ability 
able 
about

395134 
17793 
56802 

524355
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nation → national → international → internationally

nation → national → nationally → internationally 

Multiple chains possible for a word.

nation → national → international → internationally

nation → national → nationalize

Different chains can share word pairs.
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Types - Prefix, Suffix, Transformations, Stop. 



• Templates for handling changes in stem during 
addition of affixes. 

• Repetition template: PQ → PQQR (for each Q in 
alphabet). Ex.  

• Feature template for each transformation.

Transformations

plan → planning

P Q R
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3 different transformations: 

• Repetition (plan → planning)

• Deletion (decide→deciding)

• Modification (carry → carried)

Trade-off between types of transformation and 
computational tractability.

• These three do well for a range of languages and are 
computationally tractable: max O(|∑|2) for alphabet ∑

Transformation types
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Orthographic

• Affixes: Indicator feature 
for top affixes

• Affix Correlation: pairs of 
affixes sharing set of stems 
(inter-, re-), (under-, over-)

• Word freq. of parent

• Transformation types with 
character bigrams

Semantic


• Cosine similarity 
between word vectors 
of word and parent

Cosine similarity with player
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Contrastive Estimation

• Instead, we use Contrastive Estimation (Smith and 
Eisner, 2005):

• Neighborhood of invalid words for each word to 
take probability mass from.

• Transpose pair of adjacent chars from first and 
last k chars in word. (Ex. painting → paintnig)

P (w, z) = e✓·�(w,z)
P

w02N(w),z0 e
✓·�(w0,z0)
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Prediction
• Predict chain in recursive fashion (argmax parent 

candidate each time) till stop. 

paintings

painting

paint

STOP
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Segmentation Experiments 
• Three languages - English, Arabic, Turkish 

• Evaluation: Morphological segmentation - Precision, 
Recall, F1 over individual segmentation points  

• Baselines: Morfessor-Baseline, Morfessor CatMAP, 
AGMorph (Sirts and Goldwater, 2013) and Lee et al. 
(2011) 

15



F1 scores on MorphoChallenge

0

22.5

45

67.5

90

English Turkish Arabic

Morfessor-B Morfessor-C AGMorph Lee (M2)
MorphoChain
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Effect of data size
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Affix Analysis
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Error analysis
• Errors (on a random subset of 50 words per language):     

Language Over-segment Under-segment

English 10% 86%

Turkish 12% 78%

Arabic 60% 40%

• Most errors (58%) in Turkish due to parent words 
not present or having low count. 

• Root template morphology of Arabic causes 14% 
of errors.
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Sample segmentations
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• Adding morphemes helps KWS. 
• Better morphology can lead to better KWS (supervised vs. 

unsupervised) 
• Need for better unsupervised segmentation.

•  Keyword Spotting is the task of identifying keywords in speech 
utterances 

•  Major issue: Out of vocabulary words



• MorphoChain outperforms state-of-the-art unsupervised 
morphological system on KWS

AT
W

V

20.2

20.35

20.5

20.65

20.8

w/o web data

Morfessor MorphoChain

Morfessor vs MorphoChain for KWS

AT
W

V

23

23.75

24.5

25.25

26

w/ web data

ATWV scores on Bengali VLLP

*in collaboration with Damianos Karakos and Rich Schwartz at BBN



Conclusions
• A new method for unsupervised morphological 

analysis incorporating both orthographic and 
semantic features. 

• Equals or outperforms state-of-the-art systems on 
morphological segmentation. 

• Works well on downstream tasks.

Code: http://people.csail.mit.edu/karthikn/morphochain/
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