Improving Information Extraction
by Acquiring External Evidence
with Reinforcement Learning

Karthik Narasimhan, Adam Yala, Regina Barzilay

CSAIL, MIT
Information Extraction: State of the Art

• Dependence on large training sets

ACE: 300K words
Freebase: 24M relations

Not available for many domains (ex. medicine, crime)

• Even large corpora do not guarantee high performance
 ~ 75% F1 on relation extraction (ACE)
 ~ 58% F1 on event extraction (ACE)
A hard reading task for you

Task: Identify food carcinogens

Coffee significantly reduced ER and cyclin D1 abundance in ER(+) cells ...

Coffee reduced the pAkt levels in both ER(+) and ER(-) cells.
A hard reading task for you

Task: Identify food carcinogens

Coffee significantly reduced ER and cyclin D1 abundance in ER(+) cells ...

Coffee reduced the pAkt levels in both ER(+) and ER(-) cells.

Is coffee a carcinogen?
A hard reading task for machines: IE

A 2 year old girl and four other people were wounded in a shooting in West Englewood Thursday night, police said.
A hard reading task: IE (not always!)

A 2 year old girl and four other people were wounded in a shooting in West Englewood Thursday night, police said.

The last shooting left five people wounded.
Incorporate External Evidence

Traditional formulation

Our approach

extract + reason

extract

extra articles

agg.
Challenges

1. Event Coreference

| Shooter: Scott Westerhuis | NumKilled: 4 |
| Location: S.D |

| Shooter: Scott Westerhuis | NumKilled: 6 |
| Location: Platte |

Several irrelevant articles!

Inconsistent extractions
Learning through Reinforcement

Original

extract

Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D

Start with traditional extraction system
Learning through Reinforcement

Original

query

extract

Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D

extract

Shooter: Scott Westerhuis
NumKilled: 6
Location: Platte

Perform a query and extract from a new article
Learning through Reinforcement

Original

Platte Fire: Westerhuis Family Apparent Murder-Suicide, Officer

Shooter: Scott Westerhuis
NumKilled: 6
Location: Platte

Current

Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D

New

S.D. dad killed wife, four kids with shotgun setting house ablaze and killing self: author

Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D
State

- **Shooter:** Scott Westerhuis
 - **NumKilled:** 4
 - **Location:** S.D

- **Shooter:** Scott Westerhuis
 - **NumKilled:** 6
 - **Location:** Platte

- **Conf**:
 - 0.3
 - 0.2
 - 0.1
 - 0.4
 - 0.6
 - 0.3
RL: State

State

New

- **Shooter:** Scott Westerhuis
- **NumKilled:** 6
- **Location:** Platte

Curr

- **Shooter:** Scott Westerhuis
- **NumKilled:** 4
- **Location:** S.D

Conf

- currentConf:
 - 0.1
 - 0.2
 - 0.3

- newConf:
 - 0.3
 - 0.4
 - 0.6
 - 0.3
State

Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D

Shooter: Scott Westerhuis
NumKilled: 6
Location: Platte

RL: State

Conf

0.3
0.2
0.1

currentConf

0.4
0.6
0.3

newConf

matches

1
0
0
RL: State

State

Curr

New

Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D

Shooter: Scott Westerhuis
NumKilled: 6
Location: Platte

Conf

0.3
0.2
0.1

0.4
0.6
0.3

matches
1
0
0

0.65

currentConf
0.3
0.2
0.1

newConf
0.4
0.6
0.3

docSim
0.65
RL: State

State

Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D

Shooter: Scott Westerhuis
NumKilled: 6
Location: Platte

Conf

currentConf

newConf

matches

docSim

context
1. **Reconcile (d)** old values and new values.
 - Pick a single value, all values or no value from new set
2. Decide how to proceed:
 - Stop
2. Decide how to proceed:

- Select next query (q)
Queries

Query templates are induced automatically

• Title of original article
• Content words having high mutual information with gold values

<title>
<title> + (suspect | shooter | said | men | arrested | …)
<title> + (injured | wounded | victims | shot | …)
Rewards

• Change in accuracy

Previous Values

Shooter: Scott Westerhuis
NumKilled: 6
NumWounded: 1
Location: Platte

Current Values

Shooter: Scott Westerhuis
NumKilled: 6
NumWounded: 0
Location: Platte

$$R(s, a) = \sum_{entity_j} Acc(e^j_{cur}) - Acc(e^j_{prev}) = 1$$

• Small penalty for each transition
Deep Q-Network

State space is continuous: requires function approximation

\[Q(s, a) \approx Q(s, a; \theta) \]

Trained to maximize cumulative reward
Acquiring External Evidence

1. Select a query to search for articles on the same event

```
shooting in platte september 2015
```

2. Use base extractor to obtain values for entities of interest

```
Shooter: Scott Westerhuis
NumKilled: 6
Location: Platte
```

3. Reconcile old and new extractions

```
Shooter: Scott Westerhuis
NumKilled: 4
Location: S.D

Shooter: Scott Westerhuis
NumKilled: 6
Location: Platte
```
Related Work

• Open Information Extraction (Etzioni et al., 2011; Fader et al., 2011; Wu and Weld, 2010)
Related Work

• Open Information Extraction (Etzioni et al., 2011; Fader et al., 2011; Wu and Weld, 2010)

• Slot filling (Surdeanu et al., 2010; Ji and Grishman, 2011)
Related Work

• Open Information Extraction (Etzioni et al., 2011; Fader et al., 2011; Wu and Weld, 2010)

• Slot filling (Surdeanu et al., 2010; Ji and Grishman, 2011)

• Searching for additional sources on the web (Banko et al., 2002, West et al., 2014; Kanani and McCallum, 2012)
Datasets

1. Mass shootings in the United States

<table>
<thead>
<tr>
<th>Shooter Name</th>
<th>Num Killed</th>
<th>Num Wounded</th>
<th>City</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Train</th>
<th>Test</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>306</td>
<td>8k</td>
<td>292</td>
<td>66</td>
</tr>
<tr>
<td>Downloaded</td>
<td>7.9k</td>
<td>1.6k</td>
<td></td>
</tr>
</tbody>
</table>

Downloaded

Source

Train

Test

Dev
Datasets

2. Adulteration events from Foodshield EMA

<table>
<thead>
<tr>
<th></th>
<th>Train</th>
<th>Test</th>
<th>Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>292</td>
<td>148</td>
<td>42</td>
</tr>
<tr>
<td>Downloaded</td>
<td>7.6k</td>
<td>5.3k</td>
<td>1.5k</td>
</tr>
</tbody>
</table>
Base Extraction Model

Maximum entropy model with contextual features

(Chieu and Ng, 2002; Bunescu et al., 2005)

Indirect supervision: Project database values onto articles
Baselines (1)

Simple Aggregation systems:

- **Confidence-based**: Choose entity value with highest confidence

Original

- **Shooter**: Scott Westerhuis
 - **NumKilled**: 4
 - **Location**: S.D

Extra

- **Shooter**: Scott Westerhuis
 - **NumKilled**: 6
 - **Location**: Platte

Final

- **Shooter**: Scott Westerhuis
 - **NumKilled**: 6
 - **Location**: Platte

(Skounakis and Craven, 2003)
Baselines (1)

Simple Aggregation systems:

- **Majority-based**: Choose entity value extracted the most from all articles on the event

Original

```
Shooter: Scott Westerhuis  
NumKilled: 4  
Location: S.D
```

```
Shooter: Scott Westerhuis  
NumKilled: 6  
Location: Platte
```

Extra

```
Shooter: Scott Westerhuis  
NumKilled: 6  
Location: S.D
```

Final

```
Shooter: Scott Westerhuis  
NumKilled: 6  
Location: S.D
```

(Skounakis and Craven, 2003)
Baselines (2)

Meta-classifier:

- Same input space S and set of reconciliation decisions as RL agent.
Baselines (2)

Meta-classifier:

• Same input space S and set of reconciliation decisions as RL agent.
Accuracy (Shootings)

NumKilled

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxent</td>
<td>69.7</td>
</tr>
<tr>
<td>Confidence Agg.</td>
<td>70.3</td>
</tr>
<tr>
<td>Meta-Classifier</td>
<td>70.7</td>
</tr>
<tr>
<td>RL-Extract</td>
<td></td>
</tr>
</tbody>
</table>
Accuracy (Shootings)

NumKilled

Accuracy

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxent</td>
<td>69.7</td>
</tr>
<tr>
<td>Confidence Agg.</td>
<td>70.3</td>
</tr>
<tr>
<td>Meta-Classifier</td>
<td>70.7</td>
</tr>
<tr>
<td>RL-Extract</td>
<td>77.6</td>
</tr>
</tbody>
</table>
Accuracy (Adulterations)

Food

<table>
<thead>
<tr>
<th>Method</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxent</td>
<td>56.0</td>
</tr>
<tr>
<td>Majority Agg.</td>
<td>56.7</td>
</tr>
<tr>
<td>Meta-Classifier</td>
<td>55.4</td>
</tr>
<tr>
<td>RL-Extract</td>
<td>59.6</td>
</tr>
</tbody>
</table>
Oracle

• Given:
 • Same base extractor
 • Same set of queries
 • Agent performing **perfect** reconciliation and querying decisions.
 • Upper-bound on performance of any system given these extra articles on each event.
Accuracy (Shootings)

NumKilled

Accuracy

<table>
<thead>
<tr>
<th></th>
<th>Maxent</th>
<th>RL-Extract</th>
<th>Oracle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>69.7</td>
<td>77.6</td>
<td>86.4</td>
</tr>
</tbody>
</table>
Both reconciliation and querying
Documents are presented in round robin order from different query lists.
Reconciliation is confidence-based
Both reconciliation and querying are important and inter-linked
Evolution of Test Accuracy

Agent learns to balance all entity choices simultaneously
<table>
<thead>
<tr>
<th></th>
<th>Text</th>
<th>Shooter Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Extractor</td>
<td>A source tells Channel 2 Action News that Thomas Lee has been arrested in Mississippi ... Sgt. Stewart Smith, with the Troup County Sheriff’s office, said.</td>
<td>Stewart</td>
</tr>
<tr>
<td>RL-Extract</td>
<td>Lee is accused of killing his wife, Christie; ...</td>
<td>Lee</td>
</tr>
</tbody>
</table>
Examples

<table>
<thead>
<tr>
<th>Basic Extractor</th>
<th>Text</th>
<th>NumKilled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Shooting leaves 25 year old Pittsfield man dead, 4 injured</td>
<td>0</td>
</tr>
<tr>
<td>RL-Extract</td>
<td>One man is dead after a shooting Saturday night at the intersection of Dewey Avenue and Linden Street.</td>
<td>1</td>
</tr>
</tbody>
</table>

Our system finds alternative sources of information for reliable extraction.
Adulteration Detection

FDA Ingredient Search Engine

Search for possible adulterants or foods (use the button on the right to toggle between modes).

Incidents

<table>
<thead>
<tr>
<th>Food Product</th>
<th>Food Category</th>
<th>Adulterant</th>
<th>Method of adulteration</th>
<th>Location</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>turmeric</td>
<td>vegetable and lentil mixes</td>
<td>colour Sudan 1</td>
<td></td>
<td>Pakistan</td>
<td>2006</td>
</tr>
<tr>
<td>turmeric</td>
<td>herbs & spices</td>
<td>ash colored rice bran</td>
<td>Artificial Enhancement</td>
<td>Southeast Asia, India</td>
<td>2010</td>
</tr>
<tr>
<td>turmeric</td>
<td>herbs & spices</td>
<td>lead chromate</td>
<td>Artificial Enhancement</td>
<td>Southeast Asia, India</td>
<td>2010</td>
</tr>
<tr>
<td>turmeric</td>
<td>herbs & spices</td>
<td>paddy husk</td>
<td>Dilution with with a non-food-grade substance</td>
<td>Southeast Asia, India</td>
<td>2011</td>
</tr>
<tr>
<td>turmeric</td>
<td>herbs & spices</td>
<td>rice</td>
<td>Artificial Enhancement</td>
<td>Southeast Asia, India</td>
<td>2015</td>
</tr>
</tbody>
</table>
Conclusion

- Alternative paradigm to improve Information Extraction, especially for low-resource domains.
- Use of Reinforcement Learning to find and incorporate external information.

Code and data available at:
/http://people.csail.mit.edu/karthikn/rl-ie/