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Abstract

Given a stereo pair it is possible to recover a depth map
and use that depth to render a synthetically defocused im-
age. Though stereo algorithms are well-studied, rarely are
those algorithms considered solely in the context of produc-
ing these defocused renderings. In this paper we present
a technique for efficiently producing disparity maps us-
ing a novel optimization framework in which inference is
performed in “bilateral-space”. Our approach produces
higher-quality “defocus” results than other stereo algo-
rithms while also being 10− 100× faster than comparable
techniques.

1. Introduction

Expensive DSLR cameras are capable of producing
shallow-depth-of-field images — objects at a certain dis-
tance from the camera are in focus, while nearer or farther
objects are out of focus. This is due to the large apertures
(and equally-large lenses) of DSLRs. Cellphone cameras,
in contrast, have small apertures and therefore deep depths-
of-field; in most non-macro cellphone camera images, the
entire scene is in focus. Because consumers and photogra-
phers generally prefer shallow-depth-of-field images, com-
panies such as HTC [15] have begun producing devices
with two rear-facing cameras to enable this “defocus” ef-
fect. With two or more images of a subject, stereo tech-
niques can be used to estimate a per-pixel disparity map,
which can then be used to render synthetically defocused
shallow-depth-of-field images.

Accomplishing this defocus effect requires a stereo al-
gorithm with a number of distinct properties. Because con-
sumer cameras have high resolutions (4-16 megapixel reso-
lutions are common), the stereo algorithm must be tractable
at high resolutions1. The algorithm must produce good
depth maps, both in terms of accurate depth estimates and

1Of course, one can downsample a stereo pair, produce a low-resolution
depth map, and then upsample that depth, but this discards depth informa-
tion and (unless the upsampling is edge-aware) produces a blurry depth
map. It is also possible to produce low-resolution defocused images, but
consumers generally prefer high-resolution images.

(a) Input stereo pair with cropped subregions of the right image

(b) Our algorithm’s disparity and defocused image / subregions

(c) SGM’s [14] disparity and defocused image / subregions

Figure 1: Given the 4-megapixel stereo pair in Fig. 1a, we
produce the disparity map shown in Fig. 1b and then ren-
der a synthetically defocused image. Though our depths are
sometimes incorrect, they are incorrect in ways that tend to
not matter for the defocus task, and so our defocused im-
ages look natural even upon close inspection. Images pro-
duced using other stereo algorithms (such as Fig. 1c) tend
to have artifacts that render then unacceptable to photogra-
phers. The reader is encouraged to zoom in and inspect the
images closely.

in terms of localization — edges in the depth map must
closely track edges in the image to avoid rendering arti-
facts. And due to the time and power required to trans-
fer high-resolution images between a mobile device and a
server (and because users expect their cameras to be re-
sponsive, even without internet access) the stereo algorithm
should be tractable even on a mobile platform. In this pa-



per we present an algorithm that can process a 4-megapixel
stereo pair in less than one second and produces higher-
quality depth maps for the defocus use-case than existing
algorithms. A variant of our stereo algorithm is used as part
of the “Lens Blur” feature in the Google Camera app [13].

Of course, there are other ways to produce depth maps
besides stereo algorithms. An active depth sensor can be
embedded in a mobile device [11], but this requires spe-
cialized hardware, consumes lots of power, typically pro-
duces low-resolution depth maps, and often only works in-
doors. Lytro [21] and Pelican [29] capture a light field
using a microlens array or a camera array, respectively,
and then resample that light field to produce defocused im-
ages. These approaches require specialized hardware, and
the size of their synthetic apertures is limited by the size of
their physical apertures — they cannot easily produce de-
focused images that are not a subset of the sampled light
field. Researchers have investigated depth-recovery from
semi-stationary videos [16, 34], but these approaches are
difficult to use and fail on moving objects. Our approach
requires just two conventional cameras, and our renderings
are limited only by the quality of our stereo algorithm and
the baseline of the cameras.

Stereo is a well-studied problem, comprehensively sur-
veyed in [25]. Most past work has focused on small im-
ages (with some exceptions [26]), and many techniques be-
come slow or intractable at higher resolutions. Our algo-
rithm is tractable at resolutions as high as 64 megapixels,
and is 10-100× faster than comparable state-of-the-art al-
gorithms. Some stereo approaches use specialized hardware
[12] or GPU-acceleration [19] to improve performance. Our
approach’s speed is due to algorithm design rather than im-
plementation, making high speeds possible even with our
straightforward C++ implementation.

Traditional stereo evaluation metrics favor algorithms
that produce accurate metric depth estimates rather than
well-localized depth edges, under the assumption that depth
is a useful tool for robot navigation or a similar task. This
means that algorithms that perform well on standard stereo
benchmarks such as Middlebury [25, 26] or KITTI [9] of-
ten do not produce satisfactory results when used for defo-
cus rendering applications, as shown in Figure 1. To this
end, we present our own benchmark and dataset designed
to measure the end-to-end defocus quality of a stereo algo-
rithm. We find that, though our algorithm does not produce
good results according to traditional stereo benchmarks, it
outperforms the state-of-the-art at this defocus task.

Most stereo algorithms work by assigning a disparity
label to each pixel in an image. The core idea of our
technique is that we avoid per-pixel inference by leverag-
ing techniques for fast bilateral filtering [1, 5] to “resam-
ple” a dense stereo problem from pixel-space into a much
smaller “bilateral-space”. Bilateral-space is a resampling of

pixel-space (or any vector space in which bilateral affini-
ties are computed) such that small, simple blurs between
adjacent vertices in bilateral-space are equivalent to large,
edge-aware blurs in pixel-space. Instead of performing in-
ference with respect to all pixels in an image, we instead
approximate a per-pixel optimization problem in this re-
duced bilateral-space. Our bilateral-space is defined such
that it is cheap to compute, such that general optimization
problems can be efficiently embedded into that space, and
such that per-pixel depth-labelings we produce after infer-
ence have the edge-aware properties that make them useful
for our defocus task. Because inference is done in this com-
pact “bilateral-space” instead of pixel-space, our approach
is fast and scalable despite solving a global optimization
problem with non-local smoothness priors.

We are not the first to exploit edge-aware filtering in
the context of stereo, or the similar problem of optical
flow. Several optical flow techniques use bilateral filter-
ing to produce edge-aware flow fields [27, 31]. Other tech-
niques take this idea one step further, and use techniques
for fast bilateral filtering to produce accelerated flow algo-
rithms [18, 24]. Others have used different non-local edge-
aware filters, such as the guided filter [23] and MST-based
non-local filters [33]. Fast bilateral filtering has also been
used successfully for semantic segmentation [17]. These
approaches based on fast bilateral filtering generally per-
form inference with respect to pixels, and use fast bilateral
filtering techniques to speed up a per-pixel filter used dur-
ing inference. We take this idea a step further, and use the
core ideas behind fast bilateral filtering techniques to re-
sample an optimization problem into the space in which
bilateral filtering is fast, and then solve the optimization
problem in that reduced space. In contrast to previous tech-
niques, our use of a bilateral filter allows our optimization
problem to be solved more efficiently than most approaches
based on simple local smoothness, and causes more aggres-
sive bilateral filters (larger filter sizes) to make optimiza-
tion faster. Though most fast stereo research tends to focus
on “local” techniques, our technique is completely global
(we solve an optimization problem with respect to every
pixel) while being faster than these local techniques. Unlike
most “global” stereo techniques, our optimization problem
is convex, which make optimization easy and guarantees
convergence.

2. Fast Bilateral Filtering

The bilateral filter [28] is an edge-preserving filter,
which blurs along edges but not across edges by locally
adapting the filter to the image content. A convenient way to
think of the bilateral filter is as a normalized matrix-vector
multiplication:

y = (Ax)/(A1) (1)



Where Ai,j is the weight between pixels i and j, x is a
(vectorized) input image, y is the filtered output image, /
is element-wise division, and 1 is a vector of all ones. For-
mally, A is defined as:

Ai,j = exp
(
−‖[xi,yi]−[xj ,yj ]‖2

2σ2
xy

− ‖[ri,gi,bi]−[rj ,gj ,bj ]‖
2

2σ2
rgb

)
(2)

Where the σxy and σrgb parameters control the spatial and
range bandwidths of the filter, respectively.

There have been many proposed techniques for speed-
ing up bilateral filtering [1, 2, 5, 8]. Two of these tech-
niques, the bilateral grid [5] and the permutohedral lattice
[1] express bilateral filtering as a “splat/blur/slice” proce-
dure: pixel values are “splatted” onto a small set of vertices
in a grid or lattice (a soft histogramming operation), then
those vertex values are blurred, and then the filtered values
for each pixel are produced via a “slice” (an interpolation)
of the blurred vertex values. Though neither paper presents
itself in this fashion, it is convenient to describe these tech-
niques as approximating A with a matrix factorization:

A ≈ STB̄S (3)

Where multiplication by S is the “splat”, multiplication by
B̄ is the “blur”, and multiplication by ST is the “slice”.
Even thoughAmay be large and dense, by construction S is
a short, wide, and sparse matrix, and B̄ is small and sparse.
B̄ is actually a product of several sparse matrices (though
we will treat it as a single matrix for convenience). See the
supplementary material for visualizations of these bilateral
representations as matrix decompositions. While the naive
filtering of Eq. 1 is often intractably slow, this factorization
allows for fast filtering:

y =
(
ST
(
B̄ (Sx)

))
/
(
ST
(
B̄ (S1)

))
(4)

We will refer to splat/blur/slice techniques like the bi-
lateral grid or the permutohedral lattice as “bilateral repre-
sentations”. In this work we will demonstrate how to take
a certain class of global optimization problems phrased in
terms of pixels and a bilateral affinity measure and embed
that problem into a bilateral representation. We will focus
on two bilateral representations: the permutohedral lattice,
and a simplified variant of the bilateral grid, though other
representations are possible. Both representations work by
resampling a signal from pixel-space into “bilateral-space”,
where small blurs between adjacent vertices in bilateral-
space are equivalent to large, non-local, edge-aware blurs in
pixel-space. The permutohedral lattice accurately approxi-
mates A by lifting points into a higher dimensional space
and using barycentric interpolation [1]. The simplified bi-
lateral grid is based on the bilateral grid of [5], where inter-
polation has been replaced by “hard” assignment and where
the “blur” is a sum of filters rather than a product. A similar

(a) The permutohedral lattice (adapted from [1])

(b) The simplified bilateral grid

Figure 2: The two bilateral representations we use in this
paper, here shown filtering a toy one-dimensional grayscale
image of a step-edge. This toy image corresponds to a 2D
space visualized here (x = pixel location, y = pixel value)
while in the paper we use RGB images, which corresponds
to a 5D space (XYRGB). The lattice (Fig 2a) uses barycen-
tric interpolation to map pixels to vertices and requires d+1
blurring operations, where d is the dimensionality of the
space. Our simplified bilateral grid (Fig 2b) uses nearest-
neighbor interpolation and requires d blurring operations
which are summed rather than done in sequence. The grid
is cheaper to construct and to use than the lattice, but the
use of hard assignments means that the filtered output often
has blocky piecewise-constant artifacts.

data structure has been used for mean-shift image segmen-
tation [6, 22]. Our grid is cheap to construct and to use but
produces a worse approximation of A, while the permuto-
hedral lattice is expensive but models A accurately. For a
better intuition for these bilateral representations see Fig-
ures 2 and 3, or the supplemental material.

The efficiency of filtering with a bilateral representation
is due to several factors: the sparsity of the splat/slice ma-
trix, the sparsity of the blur matrices, and the fact that the
number of vertices is generally much smaller than the num-
ber of pixels. For a 4-megapixel image with σrgb = 8 and
σxy = 32 (the values we use in all of our experiments),
the bilateral representation (which adapts its size according
to image content) usually contains 40-200 thousand ver-
tices — a 10-200× reduction in the number of variables.
As these σ’s grow larger, the number of vertices needed in
the bilateral representation grows smaller. Our algorithm
works by “splatting” a per-pixel global stereo algorithm into
this compact bilateral-space, solving a convex optimization



(a) image (b) grid (c) lattice

Figure 3: In Fig 3b we visualize the simplified bilateral grid
representation of the image in Fig 3a, where each vertex
has been assigned a random color. Each color in this visual-
ization corresponds to a variable in our optimization prob-
lem. In Fig 3c we have that same visualization for the per-
mutohedral lattice, which “softly” models each pixel as a
weighted combination of its surrounding vertices instead of
using “hard” assignment.

problem in bilateral-space through repeated “blurring”, and
finally “slicing” out a per-pixel disparity map upon conver-
gence. This is much more efficient than performing infer-
ence in the much-larger pixel-space, which would be much
more memory-intensive in addition to requiring repeated
splatting and slicing.

3. Problem Formulation
We will now construct a global stereo optimization prob-

lem, where we solve for a disparity pi of every pixel in the
image subject to some smoothness constraint:

minimize
p

1

2

∑
i

∑
j

Âi,j (pi − pj)2 + λ
∑
i

fi(pi) (5)

As is common, we have a smoothness term and a data term
which are balanced with some multiplier λ. Âi,j is the affin-
ity between pixels i and j, where a stronger affinity causes
the disparities at pixels i and j to be more similar in a least-
squares sense. Â is a bistochastic version ofA (all rows and
columns sum to 1), which is easier to manipulate and has
desirable properties when used as a filter [20]. Each fi(·) is
a convex cost function for pixel i which penalizes different
values of pi. In stereo nomenclature, the set of all fi(·) col-
lectively form the “cost volume” of the stereo pair. Given
that Â is bistochastic and symmetric, our problem can be
rewritten as follows:

minimize
p

pT
(
I − Â

)
p + λ

∑
i

fi(pi) (6)

See the supplemental material for a derivation of this equiv-
alence. We will leverage our insight from Eq. 3 that A can
be expressed as a matrix factorization by performing a vari-
able substitution which reformulates our problem in terms
of vertices instead of pixels:

p = STv (7)

Where v is a vector of disparity values for each bilateral-
space vertex. This reparametrization not only reduces the
dimensionality of the space, but also allows us to reduce
the cost of evaluating the loss function by projecting our
loss into bilateral-space. We then solve our optimization
problem in bilateral-space to recover v∗, and from that we
produce a per-pixel disparity map p∗ = STv∗.

This reparametrization means that not all solutions are
expressible: each pixel’s disparity must be an interpo-
lated function (a “slice”) of the disparities of the bilateral-
space vertices in that pixel’s simplex, heavily constrain-
ing our output space. Our output disparity can only have
sharp edges when there are corresponding edges in the in-
put image, meaning that we cannot produce depth maps
that are not smooth in a bilateral sense. Effectively, this
reparametrization means that our output disparity map must
resemble the output of a bilateral filter. This is consis-
tent with our target application: depth discontinuities are
only noticeable in defocused images where there are im-
age edges, and a blurred flat region looks identical to a
non-blurred flat region. This decision is also consistent
with the inherent limits of stereo: depth discontinuities that
are not visible in the input images are difficult to recover.
This analysis breaks down slightly for the simplified bilat-
eral grid which, due to the use of nearest-neighbor assign-
ment instead of interpolation, can produce blocky artifacts
in “sliced” disparity images — though as we will demon-
strate, this can be ameliorated with simple post-processing.

Let us rewrite the smoothness term of the per-pixel opti-
mization problem in Eq. 6 in bilateral-space:

pT
(
I − Â

)
p ≈ vT

(
Cs − CnB̄Cn

)
v (8)

Where Cs a diagonal matrix whose diagonal is equal to the
row-sum of S (Cs = diag(S1)), and Cn is a diagonal ma-
trix which is constructed such that CnB̄Cn1 = Cs1. See
the supplemental material for the derivation of this equiv-
alence, which also necessarily describes how we deal with
the bistochasticization of Â.

Now let us rewrite the data term of our per-pixel op-
timization problem in bilateral-space. Remember that in
pixel-space, our loss is a per-pixel function fi(pi), which
we will assume to be a lookup table that we will access
with linear interpolation such that optimization is continu-
ous with respect to p. We will construct a set of bilateral-
space lookup tables by “splatting” our per-pixel lookup ta-
bles, giving us a bilateral-space cost volume. Let us define
gj(vj) as a lookup table for vertex j, as follows:

∀x gj(x) =
∑

(w,i)∈Sj

wfi(x) (9)

Where Sj is the row of the splat matrix that corresponds
to vertex j, which consists of a set of pixel indices i and
weights w.



Combining our smoothness and data terms, we have our
bilateral-space optimization problem:

minimize
v

vT
(
Cs − CnB̄Cn

)
v + λ

∑
j

gj(vj) (10)

This bilateral-space optimization problem is approximately
equivalent to our pixel-space optimization problem of Eq. 5,
where the approximation is due to some differences re-
quired for efficient bistochastization.

4. An Efficient Stereo Data Term

Our framework as we have described it is agnostic to
the choice of the data term fi(pi), as long as it is a con-
vex lookup table. Naively, we could choose a standard cost
such as sum-of-absolute-values and “splat” that pixel-space
cost volume into bilateral-space as shown in Eq. 9. But this
is inefficient: it requires computing an entire N×D-sized
cost volume (where N is the number of pixels and D is
the number of disparities) which is both slow and memory-
intensive, and it requires D “splat” operations. We will
therefore use a particular data term that retains convexity
and allows the bilateral-space cost volume to be quickly
computed with O(N) complexity in time and space.

We will parametrize our per-pixel cost as follows:

fi(pi) = max(0, pi − ui) + max(0, li − pi) (11)

This is the sum of two hinge-losses for each pixel, which
penalizes values of pi that lie outside of the range [li, ui].
Similarly-convex costs have been used in stereo algo-
rithms [35], though usually alongside progressive relax-
ation, which we do not attempt. An instance of this cost
for a single pixel is visualized in Figure 4. Details of how
these upper and lower bounds are computed can be found in
the supplemental material, though our algorithm is agnostic
to how these bounds are computed.

This loss is a coarse approximation to more descriptive
losses such as sum-of-absolute-differences. For example,
if we observe a match at two disparities, this loss assumes
that all disparities between them are also viable matches.
But this loss has many desirable properties: 1) it is com-
pact, as we need only store two numbers per pixel, 2) it
is convex, 3) it can be evaluated efficiently, and 4) it can be
embedded into bilateral-space efficiently, as we will demon-
strate. First, recall that the derivative of a hinge is a Heav-
iside function, that the derivative of a Heaviside function
is a delta function, and that integration is a linear operator.
With this knowledge, we see that it is possible to compute
a weighted sum of hinge losses by computing a weighted
sum of delta functions, and then integrating that sum twice.
We can use this insight to construct each lookup table of our

(a) left image (b) right image

(c) the loss applied to the right pixel.

Figure 4: A toy stereo pair, for which we want to com-
pute disparity for the right image. We have highlighted in
yellow a pixel of interest in the right image and the corre-
sponding scanline in the left image which may match that
pixel (assuming rectification). We identify the range of the
left scanline which may match the right pixel, as described
in the supplemental material. The upper and lower bounds
of that range [li, ui] completely define the two hinge-losses
we impose on the right pixel.

bilateral-space cost volume gj(·) as follows:

gj(vj) =

vj∑
y=0

y∑
x=0

u′′j (x) +

D∑
y=vj

∞∑
x=y

l′′j (x) (12)

u′′j (x) =
∑

(w,i)∈Sj

w [x = (ui + 1)] (13)

l′′j (x) =
∑

(w,i)∈Sj

w [x = (li − 1)] (14)

Where the square brackets are indicator functions. We
construct each gj(·) as the sum of two double-cumulative-
sums of histograms of upper and lower bounds, producing a
lookup table of losses. Computing this cost volume requires
O(N) operations to splat the bounds and O(MD) opera-
tions to integrate the lookup tables (where M is the number
of vertices), which in practice is 20-200× faster than the
O(ND) operations required by the naive approach in Eq. 9.

5. Optimization
Now that we have projected our optimization problem

into bilateral-space, we can solve it. Because our problem is



(a) image (b) grid (c) grid+DT (d) lattice

Figure 5: Our grid-based model introduces blocky artifacts
in our output (Fig. 5b), which we remove by filtering with
respect to the input image (Fig. 5a) using a domain trans-
form [7], causing our output (Fig. 5c) to more-closely re-
semble that of our lattice-based model (Fig. 5d).

convex many optimization techniques are viable. We use a
multiscale variant of L-BFGS. This requires that we be able
to efficiently compute our loss function and its gradient. To
review, our loss function is:

loss(v) = vT
(
Cs − CnB̄Cn

)
v+ (15)

λ
∑
j

((dvje − vj)gj(bvjc) + (vj − bvjc)gj(dvje))

This is simply Eq. 10 with linear interpolation written out
in full. The gradient of this loss function is:

∇ loss(v) = 2
(
Cs − CnB̄Cn

)
v+ (16)

λ [g1(dv1e)− g1 (bv1c) ; ... ; gM (dvMe)− gM (bvMc)]

The loss and gradient are straightforward to compute si-
multaneously in large part because CnB̄Cn is symmetric,
which is due to the fact that Â is bistochastic.

With our loss and gradient defined, we use L-BFGS
(through the open-source optimization package Ceres [4])
to solve for a bilateral-space solution v∗, from which we
can “slice” a pixel-space solution p∗:

v∗ = arg minv loss(v) (17)

p∗ = STv∗ (18)

Optimization speed can be improved using multiscale tech-
niques, as described in the supplemental material. In all
experiments we terminate after 25 iterations of L-BFGS,
which we found sufficient.

The nearest-neighbor assignment used in our simplified
bilateral grid creates blocky artifacts in flat regions of the in-
put image. To remove these artifacts, we post-process these
disparity maps using the domain transform (DT) [7], a fast
edge-aware filtering technique. See Figure 5 for a visual-
ization of the output of our simplified grid model before
and after the domain transform.

6. Results
Evaluating a stereo algorithm for the defocus task is

challenging. Though there are many stereo datasets [9, 25,

26], these benchmarks primarily evaluate the metric accu-
racy of a disparity map (that is, how accurately objects are
localized along the z-axis, rather than in x or y), under the
assumption that stereo is most useful for knowing exactly
how far away an object is, rather than knowing the exact
shape of that object. We have found that algorithms that
perform well according to this traditional metric often per-
form poorly in terms of defocus rendering quality, primar-
ily because of mis-aligned depth edges. We therefore use a
complete end-to-end evaluation of the quality of defocused
renderings to evaluate each stereo algorithm, with both a
quantitative benchmark and a user study.

In our experiments we evaluated against the top-
performing stereo techniques with available code: LI-
BELAS [10], SGM (the OpenCV implementation imple-
mentation of [14], the top technique on V3 of the Mid-
dlebury stereo dataset [26] as of 9/2014), SPS-StFl [32]
(the top technique on the KITTI stereo benchmark [9] as
of 9/2014), LPS [26] (a top-performing technique on Mid-
dlebury V3 meant to perform well on high-resolution im-
ages), and CostFilter [23]2 (a technique which aims to be
fast and edge-aware, like ours). We also benchmark against
a baseline of our own creation: “SAD-lattice”, a sum-of-
absolute-values stereo algorithm where the cost volume is
filtered with Â before taking the arg min, which demon-
strates that simply using a bilateral filter is not the same as
working in bilateral-space. We tried to benchmark against
[33], but the code ran out of memory on 1-megapixel im-
ages and crashed. For each baseline we include a variant
in which disparity is post-processed with the domain trans-
form. We did not modify the hyperparameters of any base-
line, and we tuned our own models against the Middlebury
training set [25]. This seems to be a fair evaluation, as we
use the same training set as other techniques and use our
own benchmark only as a test set.

For our benchmark we will recover a depth map from a
stereo pair, render a set of images (a focal stack) using an
image from that stereo pair and the recovered depth, and
compare those renderings to a “true” shallow-depth-of-field
image generated from a light field. We could instead render
synthetically defocused images using the ground-truth dis-
parity maps of a standard stereo dataset, but even “ground-
truth” depth maps tend to have rough edges and missing
pixels. Most importantly, such an approach would presup-
pose the assumption that good defocused images can be
produced by rendering images according to disparity maps,
which is precisely one of the claims that we wish to val-
idate. This benchmark is constructed from the Stanford
Light Field Archive [3], which allows us to produce rec-
tified stereo pairs and ground-truth defocused images. See

2The authors of [23] only released a Matlab implementation which took
10-20 minutes per megapixel, so we omitted its runtime from our experi-
ments.



Method time (s) pixel4 pixel∞ patch4 patch∞ grad4 grad∞ dssim4 dssim∞ avg.
Ours(grid) 0.30 1.177 0.443 1.315 0.311 0.421 0.234 0.756 0.245 0.500
Ours(grid)+DT 0.32 1.195 0.451 1.305 0.308 0.445 0.230 0.740 0.240 0.500
Ours(lattice) 4.32 1.243 0.448 1.315 0.305 0.440 0.211 0.737 0.252 0.499
LIBELAS[10] 1.91 1.297 0.471 1.302 0.319 0.488 0.269 0.788 0.278 0.540
SGM[14] 2.45 1.342 0.501 1.363 0.336 0.518 0.273 0.897 0.298 0.573
CostFilter[23] - 1.429 0.523 1.414 0.352 0.584 0.313 0.872 0.299 0.604
SPS-StFl[32] 13.47 1.437 0.541 1.375 0.340 0.578 0.304 0.859 0.291 0.596
LPS[26] - 1.214 0.454 1.303 0.312 0.478 0.262 0.821 0.287 0.534
SAD-lattice 8.66 1.331 0.440 1.454 0.324 0.465 0.269 0.891 0.289 0.554
LIBELAS+DT 1.94 1.236 0.463 1.333 0.321 0.457 0.263 0.737 0.244 0.519
SGM+DT 2.47 1.220 0.462 1.321 0.310 0.481 0.264 0.739 0.257 0.523
CostFilter+DT - 1.273 0.488 1.360 0.322 0.487 0.273 0.768 0.256 0.539
SPS-StFl+DT 13.49 1.281 0.483 1.327 0.318 0.502 0.271 0.730 0.249 0.532
SAD-lattice+DT 8.71 1.231 0.451 1.377 0.327 0.484 0.261 0.776 0.251 0.529
LPS+DT - 1.206 0.451 1.316 0.315 0.473 0.258 0.722 0.246 0.514

Table 1: Results on our light field benchmark. For each
metric the best-performing technique is red and the second-
best is yellow. Our approaches outperform the baselines,
even those post-processed with the domain transform, and
our grid approach is substantially faster.

Method
User

mean± std.
1 2 3 4 5 6

Ours (grid) + DT 175 185 162 134 165 145 161.0± 18.8
LIBELAS[10] 9 5 10 8 16 8 9.3± 3.7
SGM[14] 19 9 18 27 15 21 18.2± 6.0
CostFilter[23] 15 12 13 24 23 11 16.3± 5.7
SPS− StFl[32] 22 31 29 35 19 54 31.7± 12.4
SAD− lattice 24 22 32 36 26 25 27.5± 5.4

Table 2: The results of our user study. We recorded the
number of times that the output of each algorithm was pre-
ferred over the others, for 264 cropped image regions. Each
user’s preferences are shown in each column, with the av-
erage (mean and standard deviation) shown at the end. For
each user the most-preferred technique is highlighted in red,
and the second-most-preferred is in yellow.

Figure 6 for a visualization of a light field and the corre-
sponding stereo pair and shallow-depth-of-field image that
we extract from it. Some cropped defocused images ren-
dered using depth maps from our technique and the baseline
techniques can be seen in Figure 7. As shown in Table 1, our
techniques outperform all baselines (even those whose out-
put has been post-processed), and our grid-based technique
is faster than the fastest baseline. The lattice-based model
produces higher-quality results, though post-processing our
grid-based model increases its quality to the level of the
lattice-based model while being much faster. Details of this
benchmark can be found in the supplemental material.

To perform our user study we acquired a large dataset of
images taken from our own stereo camera, which consists
of two 4-megapixel cellphone cameras spaced 10mm apart.
Our stereo rig was calibrated using standard epipolar geom-
etry techniques to produce rectified image pairs. For each
pair we ran our own algorithm (the post-processed grid ver-
sion) and the baseline algorithms. One stereo pair is shown

(a) light field (b) true defocus (c) stereo pair

Figure 6: In Fig. 6a we show the constituent images of one
scene from the light field dataset. The images that we aver-
age together to produce our “ground truth” shallow-depth-
of-field image (Fig. 6b) are circled in magenta, and the two
images we took to form our stereo pair (Fig. 6c, visualized
as a red-blue anaglyph) are circled in green.

input ground truth Ours LIBELAS

SGM LPS SPS-StFl SAD-lattice

Figure 7: A set of cropped regions from: one image from
our input stereo pair, a ground-truth shallow-depth-of-field
image rendered from a light field, and the rendering pro-
duced using the disparity maps generated from our algo-
rithm and the baseline stereo algorithms. Ours looks natu-
ral and similar to the ground-truth, while the others tend to
have false edges and artifacts.

Input Ours
(grid) + DT

LIBELAS SGM CostFilter SPS-StFl SAD-lattice

Figure 8: Some images from our user study. The user was
presented with six images produced with six different stereo
algorithms, and was asked to select the image that they pre-
ferred.



in Figure 1, and many more can be seen in the supplemental
material.

For our user study, we had six people of varying lev-
els of photographic expertise who were not involved in this
project compare the output of our algorithm and the baseline
algorithms. We repeatedly presented each user a cropped
subset of a scene showing the renderings produced with
each algorithm, and asked the user to select the rendering
which they preferred. Examples of these trials can be seen
in Figure 8. The users were each shown 264 cropped ren-
derings in total: 4 cropped regions from 66 images, auto-
matically cropped to the location where the rendering dis-
agreed the most (the window with the maximum variance
across the gradients-magnitudes of the renderings). The al-
gorithms were presented in a random order on each pre-
sentation to avoid bias. The results can be seen in Ta-
ble 2. The preferences of the users are surprisingly con-
sistent, with the output of our algorithm being chosen by all
participants roughly 5× more often than the next most pre-
ferred algorithm (SPS-StFl). Even more surprisingly, the
users strongly agreed with one another, with the median
intra-user agreement on votes being 51%.

To evaluate the speed of our approach, we took 20 stereo
pairs from our dataset and cropped or tiled them to produce
an expanded set of images with resolutions from 0.25 to 64
megapixels (the maximum disparity remained unchanged).
By running each algorithm on that set of images we can
see how speed varies with respect to image resolution, as
shown in Figure 9. Because code was not available for the
LPS baseline [26] we used its performance on our light field
dataset3 to extrapolate runtimes at different scales, which
roughly agree with [26]: LPS is slower than LIBELAS
and faster than SGM. Our grid-based algorithm is roughly
10− 20× faster than LIBELAS, the next fastest algorithm,
with our speed improvement increasing with the size of the
image. All of our reported times exclude the disk I/O time
require to read images and write depth maps.

7. Conclusions
We have presented a technique for computing a dispar-

ity map from a stereo pair, for the purpose of synthetically
defocusing an image. Our technique produces better look-
ing defocused images than comparable state-of-the-art tech-
niques, while being 10-100× faster. Our algorithm is built
on a novel technique for embedding optimization problems
into the “splat-blur-slice” data structures that are tradition-
ally used for fast bilateral filtering. We have presented a
novel benchmark for evaluating stereo algorithms with re-
spect to the defocus task as well as a user study, which both
demonstrate that our technique produces higher-quality re-
sults than existing stereo algorithms.

3The authors of [26] kindly ran their algorithm on our light field dataset
to produce disparity maps and runtimes for each image

Figure 9: The runtime (median and 25-75 percentiles) for
our algorithm and baselines, shown as a function of image
resolution. “Ours (coarse)” is our grid model where we have
doubled σxy and σrgb to show that runtime depends on the
scale of the bilateral representation. The SPS-StFl baseline
crashed at resolutions > 8 megapixels, so its times are ex-
trapolated. Note that the LPS times are from a different
computer, and are extrapolated from 1-megapixel runtimes.

Though our technique is fast and accurate, it comes with
some caveats. Our emphasis on accurately localizing edges
means that our algorithm is less accurate at estimating met-
rically correct depths — though this tradeoff seems worth-
while when targeting defocus applications. Our approach
limits what disparity maps we can produce: if two pix-
els have similar color and positions, then the final dispar-
ity of those pixels must be similar. This is occasionally
the source of errors when a foreground object resembles
a nearby background object, though if the foreground and
background are exactly the same color then these mistakes
are generally not objectionable — a blurry flat patch looks
identical to a un-blurred flat patch.

Our approach has several benefits besides speed and de-
focus quality. The memory required is low, as we do not
construct a complete cost-volume and instead manipulate
an implicit cost-volume. Because our algorithm is a global
technique, information propagates across the entire image
during inference, unlike most local stereo algorithms. Our
loss is convex and therefore easy to optimize and without lo-
cal minima, and our optimization approximately corrsponds
to a straightforward per-pixel global stereo algorithm. Our
technique has only three intuitive hyperparameters which
can be tuned to trade quality for speed. Our output disparity
tightly follows edges in the input image, making our depth
maps well-suited to many graphics applications. Though
we focused on two specific bilateral representations, our
technique is agnostic to the specific “splat-blur-slice” ap-
proach being used and may generalize to future advances in
fast bilateral filtering.
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