
Design Contest Overview:
Combined Architecture for Network Stream

Categorization and Intrusion Detection (CANSCID)
Michael Pellauer∗, Abhinav Agarwal∗, Asif Khan∗, Man Cheuk Ng∗,

Muralidaran Vijayaraghavan∗, Forrest Brewer†, Joel Emer∗‡

∗Massachusetts Institute of Technology †University of California, Santa Barbara ‡Intel Corporation
Computation Structures Group High Level Design Group VSSAD Group
Computer Science and AI Lab Electrical and Computer Engineering Hudson, MA

Cambridge, MA Santa Barbara, CA

1. Introduction
This year’s MEMOCODE Design Contest challenged teams

to implement the architecture for a unique type of Deep Packet
Inspector called CANSCID. This type of architectural chal-
lenge represents a new direction for the contest, as previous
years had focused on the acceleration of algorithmic specifica-
tions such as matrix multiplication. Despite such a challenging
problem domain the contest received 8 submissions, 6 using
FPGAs and 2 using GP-GPUs. This exceeds the total of
all FPGA-based submissions from all previous years of the
contest combined.

In this paper we describe this year’s unique problem
statement, and our motivation for choosing it. This paper is
followed by short descriptions prepared by individual teams
detailing their particular approach to solving the problem.

2. Motivation
During initial meetings, the organizers identified that ideally

the contest challenge should:
• Focus on something that traditional software programs

have difficulty with.
• Be accessible enough that it can be done in the contest

timeframe.
• Demonstrate the utility of hardware accelerators such as

FPGAs and GP-GPUs.
Given these criteria we identified Regular Expression (RE)

matching as a potential problem domain. In particular, we
were aware that recently a large volume of research that been
directed at accelerating Deep Packet Inspection (DPI) using
FPGAs, which involves testing one or more incoming streams
of packets against a body of regular expression patterns.

There were two potential problems that we identified with
using DPI for the contest problem. First, some organizers were
concerned that the difficulty of implementing a Deep Packet
Inspector would be too high, and would constrain teams to
use platforms that had direct control over an Ethernet MAC.
In order to address this concern we decided to use a simulated

Simulated
Ethernet

St ream
Categorizer

Category-
Specific

RE Matchers

Category-
Independent
RE Matchers

category

match

match

Fig. 1. Overview of CANSCID deep-packet inspector.

Ethernet approach. Our testbench would create ”packets” that
were subdivided into 32-bit flits and laid out as an array in
memory. In order to add a degree of realism we then identified
a line rate of 500 Mb/s that teams would have to maintain in
order to simulate accepting input from a real Ethernet.

Second, some organizers raised the concern that imple-
menting a regular expression matcher on an FPGA might be
too close to existing research projects. While we wanted to
encourage teams to use concepts from the literature, we wanted
to make sure that no existing project could be submitted with
minimal adjustments, as this would give teams with access to
such a code base an unfair advantage.

In order to solve this we created a novel twist on a
Deep Packet Inspection architecture. Commonly, deep-packet
inspection has two different main uses: stream categorization
(such as L7-filter, l7-filter.sourceforge.net), and
intrusion detection (such as snort, www.snort.org). Our
insight was that the contest problem could be to construct
a packet inspector which performs both of these tasks. Thus
we named the design CANSCID: Combined Architecture for
Stream Categorization and Intrusion Detection.

3. CANSCID Overview
A high-level overview of CANSCID is presented in Figure

1. The system consists of 3 main regular expression units,
which are described in the following sections. Thus the chal-
lenge for the teams is not only to match using an efficient RE
engine, but also to coordinate between multiple sets of such
matchers.

978-1-4244-7886-6/10/$26.00 ©2010 IEEE 69

3.1. Stream Categorization
When CANSCID detects a new TCP connection (based on

host IP and port, and destination IP and port) it attempts to
categorize the stream based on the payloads of the first four
packets. This functionality is similar to the software package
L7-filter, which also provided the regular expressions for this
part of the contest. The regular expressions define patterns
which may cross packet boundaries. For instance, the regular
expression for detecting an SMTP mail session:

220\s* (E?SMTP|[Ss]imple [Mm]ail)

With this pattern, the “220” string does not necessarily need
to reside in the same packet as the “Simple Mail” string
for a match to occur. Therefore the design must support a
scheme for storing the state of the regular expression matchers
associated with a particular stream, and swapping that state in
when a packet of the stream is detected (based on host IP
and port, and destination IP and port). For the purposes of the
contest we required designs to handle up to 64 simultaneous
open connections. This represented a major simplification over
a real packet inspector, which would handle thousands of
simultaneous connections.

When a stream is successfully categorized, the CANSCID
records a histogram of the number of streams seen of each
type. Additionally, the category of each stream must also be
remembered, so that it can be used for intrusion detection.

3.2. Category-Specific Intrusion Detection
When a stream has been categorized, CANSCID inspects

its packets for intrusions or other malicious behavior. This
functionality is similar to the software package snort, which
also provided the regular expressions for this part of the
contest. For instance, here is a snort regular expression to
detect an SMTP vrfy decode attempt:

vrfy\s+decode

Checking non-SMTP streams for this pattern would waste
resources and could result in false positives (for instance,
if a user loaded a webpage describing the vulnerability).
Combining many regular expression parsers can result in large
and inefficient automata which can limit a packet sniffer’s
bandwidth.

Snort avoids this problem by hardcoding which IP addresses
and ports represent SMTP servers, and only checking con-
nections to those locations for these patterns. This approach
can lead to problems—for instance if new servers are added
without the configuration files being updated—or if an attacker
manages to convince a computer to open an SMTP server
on an unexpected port. Additionally, attack attempts which
originate in the administered domain can be missed.

CANSCID works around these limitations by using the
stream categorizer described above. The categorizer employs
regular expressions to identify protocols which are host- and
port-independent. Once a stream has been categorized, CAN-
SCID only needs to apply the appropriate category-specific

regular expressions against that stream for the remainder of
its lifetime.

When a match does occur, CANSCID outputs a message
identifying the connection destination and host, category,
regular expression matched, and the offending location in the
packet stream.

3.3. Category-Independent Intrusion Detection
In addition to the category-specific patterns, CANSCID in-

cludes a set of patterns that are run on every stream, regardless
of their category. These include patterns which represent things
such as shellcode — executable code masquerading as ASCII
text. Snort disables these patterns by default because of the
large performance hit which they can entail, so we were
interested if an accelerated implementation could do better.

4. Contest Patterns and Scoring

Category Number of Patterns
Mandatory Optional

finger 1 4
ftp 1 9

http 1 9
imap 1 9

netbios 1 9
nntp 1 9
pop3 1 9

rlogin 1 4
smtp 1 9

telnet 1 9
all* 5 10

other** 0 25
total 15 + 10 categories = 25 115

* The “all” category refers to category-independent patterns that
must be run on all streams.
** The “other” category refers to other protocols which the packet
sniffer can identify, but does no further checking on.

TABLE I
OVERVIEW OF PATTERNS OFFICIALLY SUPPORTED BY THE CONTEST

For the contest the organizers identified patterns as shown
in Table I. There are 5 mandatory patterns which teams had
to run on each stream regardless of category. Each category
then requires 1 pattern to identify streams of that protocol,
and has 1 associated mandatory pattern which must be run on
streams of that type. As there are 10 categories, the minimum
requirement for a functioning submission was to implement 25
patterns (10 category-matching patterns, 10 category-specific
patterns, and 5 category-independent patterns).

The first goal of this contest for teams to construct a design
which can handle these 25 patterns while meeting the target
line rate of 500 Mb/s. The organizers determined that if no
submission is able to meet the line rate, then the winner
will be the team which achieves the fastest overall rate while
implementing all mandatory patterns.

Once a team has achieved line rate, there are additional
optional patterns that they can implement: 80 category-specific
patterns, 10 category-independent patterns, and 25 additional

70

Team Name Place Number of Patterns Line Rate Platform Institution
Mandatory Optional (Mb/s)

Sasao Lab 1 (tie) 25 115 798 FPGA: Altera Stratix III Kyushu Institute of Technology, Japan
Limenators 1 (tie) 25 115 500 FPGA: Xilinx V5LX330 IBM Research, USA

SpbSU 3 25 101 500 FPGA: Xilinx ML505 Lanit-Tercom, Russia
Kraaken 4 25 60 734 FPGA: Xilinx XUPV5 AMD, USA
Battery 5 25 10 524 GPU: NVIDIA Tesla T10 Iowa State University, USA

Team IISC 6 25 0 584 FPGA: Xilinx XUPV5 Indian Institute of Science, India
Tosan 7 25 0 524 GPU: NVIDIA GTX 295 IPM, Iran

[Ii][Ss][Uu][0-2]{4} 8 10 32 534 FPGA: Altera Stratix III Iowa State University, USA

TABLE II
FINAL PERFORMANCE RESULTS

categorization patterns. These optional categorization patterns
have no category-specific patterns associated with them. For
instance, it may be useful for a packet sniffer to identify a
World-of-Warcraft stream in order to perform network-policy
enforcement. However such a stream does not need to be
checked for intrusion detection (beyond the checks which are
applied to all streams). The submission which implements the
most patterns while meeting the line rate would win the contest
(assuming any submission managed to meet the line rate).

Additionally, teams that were able to implement all 140
patterns were allowed to contact the organizers to request more
patterns. This scaling points system was designed to encourage
participation in the contest. The organizers hoped that the 25
mandatory patterns would provide a realistic enough goal that
teams would be interested in participating, which would then
lead to the challenge of implementing as many patterns as
possible in parallel. Furthermore, some patterns were much
more complex than others, so there was some strategy involved
in deciding where teams should invest their effort.

Previous years’ contests have employed a “normalization”
function to attempt to make comparisons between different
platforms. We find it significant that the nature of this year’s
problem allowed us to do away with normalization and rely
only on absolute metrics.

5. Reference Design and Default DFAs
In order to ease the implementation burden on the con-

testants the organizers created a reference implementation of
CANSCID that could either run on a Xilinx Microblaze (for
FPGA-based teams) or X86 (for software or GP-GPU based
teams). Although the reference design was written in C++ it
was purposely structured in a “hardware-like” way, as shown
in Figure 2.

The goal of these hardware-like blocks was to ease the
groups’ transition to hardware by already defining a poten-
tial implementation architecture (though not necessarily an
optimal one). Similarly, the reference design included a set
of Deterministic Finite Automata (DFA) for each pattern,
generated using the JLex lexical analyzer. This approach was
straightforward to implement, but might not result in the
best performance. The goal was to offer teams a progressive
implementation strategy whereby a non-optimal design could
be brought up and then refined for performance.

Simulated
Ethernet

Stream
Categorizer

Category-
Specific

RE Matchers

Category-
Independent
RE Matchers

CANSCID
Control

Connection
Map

Conn ID
Freelist Backing

Store

Backing
Store

Backing
Store

allocate
deallocate

Packet Flit
Buffer

enq
deq

clear

map
unmap
lookup

process
newConn
switchTo{process

Results
Histogram

incr

Fig. 2. Overview of the CANSCID reference design implementation.

The DFA generators (taken from a student project done
for a class at MIT) actually contained an interesting latent
bug. It is well known that a pattern like vrfy.* results in a
cheaper DFA than .*vrfy.*. In a misguided attempt to take
advantage of this, the students used the vrfy.* style DFA,
but replaced all transitions to the “error” state with ones to the
“start” state. The result was DFAs that seemed to work, but
actually could not handle strings like vvrfy or vrvrfy, as
the second v causes a transition to the “start” state rather than
the “seen a v” state. When the contest began, the bug was
quickly reported by multiple teams. The organizers decided
that—rather than unexpectedly changing the complexity of the
DFAs in the middle of the contest—we would just ensure that
no such prefixes occurred in our testing benchmarks. This
would not penalize teams using the bugged DFAs, but also
would not hurt teams that decided to fix the bug.

6. Final Results
This year we received 8 submissions for our Deep Packet

Inspection problem. 6 submissions used FPGAs, and 2 used
GP-GPUs. The organizers find it significant that no team
submitted a software-only solution that did not use some kind
of hardware accelerator— an indication that software alone
could not meet the required line rate.

This year the contest ended in a tie. Congratulations to
the joint winners, Team Sasao Lab and Team Limenators,
each having implemented 140 patterns while maintaining line
rate. Additionally, Team Sasao Lab was the only team to
use an NFA approach rather than DFAs for matching the
regular expressions. Full results are given in Table II. The
performance of the two winners was verified by the organizers
using undisclosed test inputs. The performance of the other
teams is self-reported.

71

72

