
GENERATING INFRASTRUCTURE FOR FPGA-ACCELERATED APPLICATIONS

Myron King, Asif Khan, Abhinav Agarwal, Oriol Arcas, Arvind
{mdk,aik,abhiag,arvind}@csail.mit.edu, oriol.arcas@bsc.es

Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Laboratory
Universitat Politecnica de Catalunya - BarcelonaTech, Barcelona Supercomputing Center

ABSTRACT
Whether for use as the final target or simply a rapid pro-

totyping platform, programming systems containing FPGAs
is challenging. Some of the difficulty is due to the difference
between the models used to program hardware and software,
but great effort is also required to coordinate the simultane-
ous execution of the application running on the micropro-
cessor with the accelerated kernel(s) running on the FPGA.

In this paper we present a new methodology and pro-
gramming model for introducing hardware-acceleration to
an application running in software. The application is rep-
resented as a data-flow graph and the computation at each
node in the graph is specified for execution either in soft-
ware or on the FPGA using the programmer’s language of
choice. We have implemented an interface compiler which
takes as its input the FIFO edges of the graph and generates
code to connect all the different parts of the program, includ-
ing those which communicate across the hardware/software
boundary. Our methodology and compiler enable program-
mers to effectively exploit FPGA acceleration without ever
leaving the application space.

1. INTRODUCTION

The use of specialized hardware by an application running
in software can sometimes improve its performance or lower
its power consumption. Using traditional methodologies,
the task of migrating functionality from software (SW) to
hardware (HW) can be characterized as follows:

• Profile the application and select the kernel to be re-
implemented in HW.

• Define the interface, and implement the specialized HW.
• Translate data-types which cross the HW/SW boundary.
• Implement additional HW and SW to connect the appli-

cation components to the communication fabric.
• Restructure the application SW to more effectively ex-

ploit the HW accelerator.

While some of these steps require deep insight into the or-
ganization of the algorithm, others are simply tedious and
error prone. Our experience has led us to a new methodol-
ogy that addresses some of the problems encountered in tra-
ditional methods. We begin by using data-flow to describe
the high-level organization of each application. The com-
putation at each node in the data-flow graph is implemented
in the programmer’s language of choice, and a target for the
node (either HW or SW) is also specified.

By enforcing data-flow as the only method of commu-
nication between HW and SW, we separate the task of im-
plementing the communication into two parts. At the ap-

plication level, the programmer simply defines the HW/SW
interface as the union of all data-flow edges which cross the
HW/SW boundary. At the systems-level, we consider the
separate problem of efficiently mapping the FIFO channels
to the physical platform.

With a target designated for each node in the graph, an
interface compiler we have implemented specifically for this
task compiles the FIFO edges and generates code to con-
nect the nodes. Adjacent nodes assigned to SW communi-
cate using shared memory, while adjacent nodes assigned
to HW are connected using efficient FIFOs implemented in
the FPGA fabric. Edges crossing the HW/SW boundary re-
quire substantially more work, but on supported platforms
these too can be automatically implemented on the shared
communication fabric, along with the SW drivers and HW
shims connecting the accelerator to the rest of the system.
Assuming the efficient and automatic implementation of the
communication model, the primary challenge for the appli-
cation programmer is now to enable the appropriate granu-
larity of communication.

In this paper, we present a new methodology and pro-
gramming model for HW/SW communication based on
data-flow, and show how it is implemented by our inter-
face compiler. Through the use of examples, we demon-
strate the simplicity and flexibility of our approach and
the efficiency of the generated implementations on the
Zynq platform from Xilinx.
Paper Organization: Section 2 illustrates the steps enumer-
ated in the Introduction, as well as other challenges intrinsic
to the use of specialized HW. In Section 3, we introduce the
programming model for HW/SW communication, discuss
related works and the potential for automation, and present
the compilation strategy by which the interface compiler im-
plements the programming model. We provide an evaluation
in Section 4, and conclude with Section 5.

2. A MOTIVATING EXAMPLE

In this section we describe a structured approach to the task
of accelerating a C++ implementation of Ogg Vorbis, an
open-source audio CODEC designed for low-complexity de-
coding. We have chosen this example for its relative simplic-
ity, but the complications which arise are only exaggerated
as the applications grow in complexity.

Kernel Selection: Figure 1.a shows the organization of a
single-threaded C++ implementation of the Vorbis CODEC.
Using profiling tools, we observe that most of the execution
time is spent computing an Inverse Fast Fourier Transform
(IFFT) 1 . This “hot spot” is a natural candidate for FPGA



❶ IFFT dominates SW exec. time 
❷ Move IFFT to HW as an RPC 
❸ Compute is much faster in HW 
❹ Communication latencies can 
hide the speedup. 
❺ SW multi-threading can 
interleave the tasks. 
❻ Communication latencies can be 
overlapped with computation, 
hiding the overheads. 
❼ Asynchronous systems tend to 
perform better. a) Single thread b) HW RPC c) Multithreaded SW with HW 

IFFT	  

Window	  

Parser	  

Floor	  

Residue	  

Parser	  

Floor	  

Residue	  

Window	  

IFFT	  

Parser	  

Floor	  

Residue	  

SW	   HW	  SW	   HW	  SW	  0	   SW	  1	  

IFFT	  
Window	  

❶ 

❹ 

❷ 

❸ 

❺ 

❻ 
❼ 

Fig. 1. The organization of the application evolves as we introduce hardware and then optimize its performance.

acceleration.

Defining the Interface: The IFFT interface 2 we choose
must reflect the flexible nature of the application, which can
accommodate a range of frame sizes. Flow control is also
necessary to enforce correct use of the accelerator. Our HW
implementation of IFFT will have three logical ports: Au-
dio frame size, data input, and data output. For each logi-
cal port, we will assign thirty-two bits for the data and two
additional ready and enable bits for flow control. On each
port, the same hand-shaking protocol is implemented to ap-
ply back-pressure and maintain flow-control. For example,
if the “data input ready” signal is high, the next input word
can be transmitted by asserting “data input enable”. The
interface and associated timing properties are quite conven-
tional from a hardware perspective, but making the connec-
tion from this interface to a function call in SW will require
substantial effort.

Data-Type Conversion: Mismatch of data representations
is a common source of errors. Objects generated by the ap-
plication must be correctly converted to the bit representa-
tion expected by the accelerator. Verilog and C++ compilers
may have different endian conventions, and there are SW
structures such as pointers which cannot be directly repre-
sented in HW. Maintaining consistency between two sep-
arate representations of the same datatypes is both tedious
and error-prone.

Implementing the specialized HW: In general, specialized
HW tends to be more efficient, in terms of energy or time,
than SW implementations. This effect is especially acute
for highly parallel algorithms, like IFFT, which will perform
faster on an FPGA than in SW 3 .

Connecting To The Communication Fabric: Tight FPGA/
Microprocessor integration is generally achieved using some
kind of bus. The hand-shaking protocol which we imple-
mented for the IFFT accelerator is similar to many bus pro-
tocols, so we can simply expose the device to the bus using
three separate slave interfaces. We will invariably need to
implement a thin layer or shim to sit between the IFFT HW
and the bus to correctly convert between the two protocols.

The next task is to expose the HW functionality to the
SW. What happens if SW attempts to read or write a port
whose Rdy signal is not high: should these invocations block
or should we expose this in some other way? Most bus pro-
tocols support blocking read/write functionality, which we

can use to expose each of the logical HW ports as blocking
remote procedure calls (RPC) to the application SW. With
a suitable SW abstraction of the FPGA accelerator, we can
integrate it into the application code as shown in Figure 1.b.
Given the latency introduced by transferring the data to and
from the accelerator over the bus one word at a time, it is
highly unlikely that the overall throughput of the implemen-
tation will improve by using the accelerator in this manner
4 .

Performance bottlenecks are not the only motivation for
specialized hardware: in the cases where it does not dramat-
ically improve throughput, the result may be computed us-
ing far less energy. Additionally, the cost of data-transfer in
terms of energy must also be taken into consideration when
selecting the accelerated kernel.

Restructuring The Application SW: Where significant data
transfer is involved, it is important to find ways to speed
up the communication. It is often impossible to change the
latency of communication, which is tied to system compo-
nents like bus and network. Several potential solutions exist
to hide this latency, chief among which are increasing the
granularity of communication, and introducing pipelining.

The cost of a bus transaction can be amortized by us-
ing DMA hardware to transfer larger blocks of data directly
into the accelerator memory, but care must be taken to en-
sure that sufficient buffering exists before the burst transfer
is initiated. In the application SW, substantial reorganiza-
tion may be required to increase the communication granu-
larity 5 . On some systems, failure to ensure these buffering
conditions raises the possibility of deadlock: if the HW ac-
celerator exerts back pressure during a burst transaction, the
DMA engine will stall until the HW begins accepting tokens
again. If bus control cannot be transferred, the entire system
may deadlock if the HW cannot make forward progress.

Instead of modifying the IFFT implementations to guar-
antee sufficient buffering, we choose a simpler approach in
which we add a thin layer, or shim, on top of the accelerator
interface consisting of buffering and some control logic to
ensures that transactions will begin only when certain con-
ditions are met.

Pipelining the HW accelerator hardware can further im-
prove the throughput 6 . This requires substantial trans-
formation of the HW implementation, but once completed
we can exploit this concurrency in SW through the use of
multi-threading, as shown in Figure 1.c. Instead of block-



1	   2	  

4	   5	  

3	  

6	  

a) Data-flow/Kernel Selection b) Interface Definition 

2

6

1

4

3

5

fabric	  

c) Infrastructure Synthesis d) Mapping to Platform 

CPU	  

FPGA	   system	  	  
memory	  

comm	  
sched	  

3

5

bu
s	   2

4
1

6

Fig. 2. With HW/SW communication expressed as data-flow, our interface compiler can automate b), c), and d).

ing function calls, we could also have chosen non-blocking
variants, which return an error code if the data is not ready,
or if there is insufficient buffering. SW is always free to
take advantage of the error codes returned by the interface
methods to do other useful work. A reactive programming
paradigm is often useful to improve application throughput
using these error codes. All these techniques can help to
overlap the communication latency with the computation,
effectively improving the performance 7 .

3. A DIFFERENT PROGRAMMING MODEL

In this section, we examine the possibility of automating the
steps detailed in Section 2 and to what extent our proposed
programming model improves matters. A treatment of the
related work is included in this discussion.

We require the high-level organization of the algorithm
to be specified in terms of a data-flow graph [1]. In the
data-flow model, nodes in the graph encapsulate compu-
tation, while directed edges represent communication. In
order to execute the functionality at a node, data must be
present on the input edges and buffering must be available
on the output edges. The edges themselves are implemented
as guarded FIFO channels, which means that they respect
the data-flow contract and naturally enforce flow control.
Figure 2.a shows an example of an application which has
been decomposed into a data-flow graph consisting of six
nodes. The edges in the graph reflect the underlying com-
munication between application components, and the col-
oring indicates the partitioning choice (nodes colored blue
have been selected for HW implementation). Rather than
interlinked execution with a blocking RPC, interaction with
the HW accelerator now involves enqueuing data into output
FIFOs and dequeuing data from input FIFOs.

There is a substantial body of work surrounding algorith-
mic approaches to automating the choice of a HW/SW par-
titioning that will improve application throughput or energy
efficiency. One such example is [2]. The success of these
approaches depend on how accurately the dynamic proper-
ties of the application are captured in the models constructed
by the programmer, as well as the cost model of the target
platform. We have chosen not to automate the kernel selec-
tion, though any efforts in this area are complementary to
the work presented in this paper.

It is important to note that the data-flow edges effectively
isolate the functionality encapsulated by the nodes. When
migrating functionality from SW to HW, it may need to be
reimplemented in a different language, e.g. from C++ to
Verilog, but as long as the functionality is selected at the
same granularity as the nodes in the graph, this migration
will not affect adjacent nodes. This isolation allows the de-

signer to lower the reimplementation cost when experiment-
ing with different HW/SW partitions.

Much research has been undertaken in the generation of
specialized HW with varying degrees of automation. For ap-
plications with regular data-flow, a C-to-gates solution such
as [3, 4] can generate an implementation from the origi-
nal application SW. Cases where the data-flow is less reg-
ular or where the designer wants greater control over the
micro-architecture, re-implementation in some HDL is re-
quired [5]. In contrast with C-to-gates solutions, the use of
languages designed specifically for HW/SW codesign [6, 7]
can fully automate the generation of interfaces and imple-
mentations, often with superior results. The Chinook [8]
compiler is another tool interface generation.

As shown in Figure 2.b, the HW/SW interface is simply
the union of all data-flow edges which cross the HW/SW
boundary. We use Bluespec [9] to specify the node inter-
faces, since its guarded interface semantics provide a direct
implementation of the data-flow contract. Below we give the
Bluespec interface definition for the IFFT module discussed
in Section 2:

typedef FixedPoint#(8,24) FxPt;
typedef Vector#(MAX IFFT SZ,FxPt) Frame;
interface IFFT
method Action dataInput(Frame x);
method ActionValue#(Frame) dataOutput();
method Action frameSz(Bit#(3) x); endinterface;

We assign one interface method to each data-flow edge. From
this declaration, our interface compiler can easily infer the
FIFO channels connecting HW and SW, the conversion rou-
tines for all data-types being transmitted, and the correct ab-
straction to expose to the SW application code.

In [7], the Bluespec Codesign Language (BCL) was used
to define the entire data-flow graph, including the function-
ality at each node. This can be a convenient option when
building an applicaiton from whole-cloth, but it can also be
burdensome since it requires implementing the entire algo-
rithm in BCL. In contrast, the methodology described in this
paper provides an incremental approach which allows the
programmer to exploit existing IP (specified in C++, Ver-
ilog, or VHDL) inside a data-flow graph whose structure is
specified using Bluespec. Because data-flow graphs are hi-
erarchically composable, any node can itself describe a sub-
graph specified entirely in BCL whose partitioning can be
further explored. In further contrast with [7] which gave no
details on the communication infrastructure, this paper pro-
vides a generic procedure for automatically synthesizing the
HW/SW interfaces on any system for which “platform sup-
port” has been implemented.

Figure 2.b shows the data-flow graph in a state where the
nodes have been grouped to form the HW and SW applica-



tion components. The task of connecting these components
is simply a matter of implementing the FIFO channels on
the shared communication fabric, and presenting a usable
abstraction to the application-level HW and SW. Due to the
latency tolerance of data-flow edges, we have some flexibil-
ity which can be exploited in the interest of efficiency.

The first step in implementing the FIFOs used in the pro-
gramming model is to map them to the shared communi-
cation fabric. This synthesis problem is illustrated in Fig-
ure 2.c. Given a model of the fabric, marshaling and de-
marshaling routines must be generated for each data-type
being transmitted. A scheduler must also be generated to en-
sure that all virtual FIFOs are fairly serviced. The schedul-
ing logic is especially important when multiple CPU core
are concurrently accessing different interface FIFOs over
the same bus. So as not to introduce deadlocks, additional
buffering may also need to be place in either HW or SW
domains. To simplify the logic, we assume a static prior-
ity among the channels, though it is easy to imagine a more
complex scheduler which reacts to the environment dynam-
ically. If the user does not specify otherwise, we treat all
FIFOs with the same priority and implement a simple round-
robin schedule. Once an abstract model of the physical net-
work has been manually specified, this synthesis problem
can be automated completely.

The final step requires the implementation of the sched-
uler and marshaling/demarshaling routines on a physical plat-
form. An interface compiler can generate low-level SW
driver code and HW shims along the lines of our discussion
in Section 2. The exact details of the generated code depend
on the target platform.

3.1. Implementation Details

The methodology has been discussed in some abstraction,
but we have implemented a working compiler which targets
the Zedboard and ML507 platforms from Xilinx. Code gen-
erated by our interface compiler relies on platform support,
which consists of some HW and SW libraries as well as an
abstract model of the interconnection fabric for use by the
compiler. To use our interface compiler, the user simply de-
fines the guarded interface for the specialized HW in Blue-
spec, using only the unary Action and nullary ActionValue
methods. On the SW side, the interface compiler generates
a header file with the interface FIFO declarations, their C++
implementations, and the necessary driver code to commu-
nicate with the physical network. On the HW side, the com-
piler generates a communication scheduler and a shim for
each FIFO channel. Shims consist of a slave interface which
connects to the bus, an FSL master interface used to commu-
nicate with the scheduler, and additional buffering imple-
mented using BRAMs. The scheduler implements one FSL
slave interface for each FIFO channel, and a bus mastering
interface for the initiation of bus transactions.

Figure 2.d shows how all the pieces fit together on the
Zynq platform. When a SW thread wants to send data to
the HW over a particular channel, it writes the data to the
corresponding output FIFO implemented in system mem-
ory. If the FIFO lacks sufficient free buffering, an error code
will be returned which the application SW must handle ap-
propriately. After successfully writing the data to the SW

FIFO, the driver notifies the communication scheduler of a
pending transmission. The scheduling logic is a bus master-
ing device, which at some point will initiate a DMA transfer
from system memory to the slave interface corresponding to
that particular FIFO on the HW side. Transmission in the
reverse direction takes place through similar means, but is
initiated by the application HW instead of the SW, over one
of the FSL links. Instead of communicating with the sched-
uler over the AXI bus, the FSL links provide a side-channel
thereby reducing bus traffic.

It is easy to imagine a system with a more interesting
communication fabric. The ML507, for example, has four
dedicated DMA engines implemented in ASIC, as well as
the Xilinx PLB standard bus. With such a network, we
map the higher-bandwidth FIFOs to the DMA engines, since
their dedicated interfaces allow for extremely efficient data
transfer. FIFOs with lower bandwidth requirements might
be implemented on the PLB. In general, we will need to
synthesize one scheduler for each multiplexed physical con-
nection in the interconnection fabric, so a more complex sys-
tem may have more than one communication scheduler. Au-
tomating this process simply requires a more complex model
to represent the communication fabric. Once the data-flow
edges have been assigned to a particular physical link, the in-
frastructure supporting each link can be compiled separately
in the manner outlined previously. The schedulers are aware
of all FIFO interfaces and their relative priorities on a par-
ticular physical link. This provides a natural extension for
the case where threads running on different cores are each
attempting to communicate with a different interface.

Optimizations: The system described on the Zynq platform
requires one burst transaction for the transmission of each
interface type. If the bit-representation of the interface type
is less than or equal to the width of the bus, the data could
just as well have been written to that FIFO’s slave interface
directly. Depending on the burst setup time, there may be
a range of bit-widths for which it may be more efficient to
transmit the data directly even when more than one write
is required. These tradeoffs are represented in the abstract
model given to the compiler so it can synthesize the most
efficient routines.

4. EVALUATION

To demonstrate our methodology, we employ it in a case
study in which we attempt to identify a beneficial HW/SW
partitioning choice for a number of applications running on
the Zynq platform from Xilinx. We have selected what we
believe is an interesting set of applications for embedded
systems. In addition to the interface compiler, we have im-
plemented a tool-chain that automates compilation, FPGA
programming, and application execution. With this tool-
chain we can automatically measure execution time, power
consumption, and area (FPGA resource) costs for each par-
titioning choice. Time is measured by executing the appli-
cation, power is estimated using XPA (Xilinx Power Ana-
lyzer), and FPGA resource consumption is directly reported
in the place-and-route reports. Energy is computed on a per-
component basis using the component’s active time and the
estimated power. In order to select the most suitable parti-
tioning, a developer can combine these metrics at will.



!"#$ %&$

'$

($

&$

)$

%$

#$

*$

+$

,-./01$ 233456-7-8-9$ :;993;7$ 2;<$=.;>09?$ @ABC$

6D
33
4E

D$

F$ G$ :$ H$ B$ I$

Fig. 3. Speedup obtained by the various HW/SW partitions
over the full SW (A) partition (higher is better)

!"#$%&' ())*+,"-"."/' 01//)1-' (12'3#14%/5' 6789'

:'

;:::'

<:::'

=:::'

>:::'

?:::'

@:::'

A' B' 0' C' 8' D' A' B' 0' C' 8' D' A' B' 0' C' 8' D' A' B' 0' C' 8' D' A' B' 0' C' 8' D'

3%
.
)'
E.

&F
'

,"GH1#)' I1#*H1#)' 0"..J/%41K"/' L1--'4-"4M'

Fig. 4. SW, HW and communication times for each applica-
tion partitions. The total execution time (a horizontal black
bar) may be less than the sum of the three time components
due to concurrent execution.

On the Zynq platform, HW implemented on the FPGA
fabric has a much slower clock speed than the ARM core.
Moving a component to HW will improve performance only
if considerable HW parallelism can be exploited. For the
cases where improved energy consumption is not accom-
panied by improved performance (a natural consequence of
running for a shorter amount of time), it is because the HW
reimplementation uses few FPGA resources.

What follows is an analysis of the benchmarks and an
evaluation of the various partitioning choices. In Figure 3,
we show, for all the benchmarks, the speedup obtained by
each HW/SW partitioning over the full SW implementation
(partition A). Vorbis has six partitionings (labeled A to F),
while the other benchmarks have four (labeled A to D).

Figure 4 provides a breakdown of the execution time, for
each partition, into the SW, HW and communication times.
The total execution time is indicated by a black bar in each
column. In Figure 5, we show for each benchmark, the en-
ergy consumption of the partitions, normalized to the full
SW partition (A). Though not listed due to space consider-
ations, FPGA-resource consumption (“area”) must also be
considered when multiple programs are simultaneously run-
ning on the same system, competing for finite resources.

Ogg Vorbis Decoding: Figure 6 shows the dataflow and the
HW/SW partitions chosen for analysis. Moving the IFFT
Core and Windowing function to HW, as in partitions C and
F, results in a large speedup, seen in Figure 3. As seen in
Figure 5, partition F achieves the least normalized energy
consumption. The combination of the speedup and energy
efficiency, coupled with a moderate area cost, make F an
attractive partitioning choice. This is a result of the highly
efficient and parallel HW implementation of the complex

!"#$% !"#&%

'%

'"(%

'"!%

'")%

'"*%

#%

#"(%

#"!%

#")%

+,-./0% 122345,6,7,8% 9:882:6% 1:;%<-:=/8>% ?@AB%

C
,-
7
:6
/D
23

%A
82

->
;%

E% F% 9% G% A% H%

Fig. 5. Energy consumption of the HW/SW partitions nor-
malized to the full SW (A) partition (lower is better)

and large IMDCT computation. Partition C presents an in-
teresting alternative to F, since it achieves almost the same
performance using far less FPGA resources.

Window'

IFFT'Core'

IMDCT'FSMs'

Param'
Tables'

Backend'FSMs'
A'(FULL'SW)' B' C'

D' E' F'

Fig. 6. Vorbis dataflow and partitions (HW is shaded)

Reed-Solomon Decoding: The Reed Solomon decoder is
the error correction code used in the 802.16 receiver. Fig-
ure 7 shows the dataflow and HW/SW partitions chosen for
analysis. Moving any block to HW leads to a large speedup
due to the highly efficient parallel implementation of the
Galois Field arithmetic blocks used in this algorithm. The
active HW duration for all partitions of this benchmark is
much smaller than the active SW and communication dura-
tions, as seen in Figure 4. Partition D has the maximum
speedup (Figure 3) and the least normalized energy con-
sumption (Figure 5) as it has all of the modules in HW.

Syndrome)Computa/on)

Berlekamp3Massey)Algorithm)

Chien)Search)

Forney’s)Algorithm)

Error)Correc/on)

IO
)D
at
a)
tr
an
sf
er
)

M
AC

)C
on

tr
ol
)S
et
up

)

A)(Full)SW)) B)

C) D)

Fig. 7. Reed-Solomon partitions (HW is shaded)

Canneal: This member of the PARSEC benchmark suite
performs simulated annealing to optimize the routing cost
of chip design. The dataflow and partitioning choices are
shown in Figure 8. This benchmark exhibits an interesting
behavior. Partition C achieves the highest speedup over SW
(Figure 3), but is not the most energy efficient. (Figure 5).
This speedup happens when the communication latencies
can be overlapped with the HW and SW computation, as
shown in Figure 4. On the other hand, partitions B and
D perform similar or slightly worse, but are more energy-
efficient.



D"

A"(Full"SW)" B"

C"

Element"Selec3on"

Delta"Rou3ng"Cost"

Move"Decision"

Swap"Loca3ons"

Termina3on"Decision"

Total"Rou3ng"Cost"

Fig. 8. Canneal partitions (HW is shaded)

Ray Tracing: This next benchmark is an implementation of
ray tracing. Figure 9 shows the dataflow and the four par-
titions. Partition B moves the most intensive computations
into HW, however this leads to the slowdown shown in Fig-
ure 3, since it generates pseudo-random memory accesses
preventing efficient bursty communications. For Partition
C, a single burst command transmits the necessary geome-
try to HW and the collisions are calculated by the pipelined
HW, making it the most attractive choice. Attempting to put
the traversal engine into HW, as in partition D, introduces
similar synchronization hazards as in B.

Ray$Gen$

Light/Color$

Bitmap$

Box$Inter$

BVH$Trav$

Geom$Inter$

BVH$Ctor$

BVH$Mem$

Scene$Mem$

A$(Full$SW)$ B$

C$ D$

Fig. 9. Ray Tracing partitions (HW is shaded)

JPEG Decoding: This final benchmark implements the JPEG
specification, whose data-flow and partitioning choices are
shown in Figure 10. The results in Figure 3 show that only
B achieves a speedup. HW/SW communication in partition
B (2.2 MB) is smaller than in C (6.2 MB) and D (4.5 MB).
This results in a smaller communication time (Figure 4) and
reduced energy consumption (Figure 5). The reason that D
does not show a greater improvement over A is because the
performs the final image composition in SW.

JFIF$Parsing$

Huffman$&$Quan2za2on$Tables$

Block$Decompression$

IDCT$

B$A$(Full$SW)$

D$C$

Fig. 10. JPEG Decoder partitions (HW is shaded)

Final remarks: We examined different HW/SW partition-
ing choices for five well-known applications. Using our
methodology and interface compiler, we were able to greatly
reduce the reimplementation burden when experimenting with
partitioning choices by automating the infrastructure gener-
ation. For some of the applications, there is a trade-off be-
tween performance and energy consumption. In others it
was possible to find an optimal partition by both metrics.

5. CONCLUSION

In this paper, we have proposed a new methodology for in-
troducing FPGA-acceleration to applications running in SW.
Once the application is expressed as a data-flow graph, the
programmer can designate nodes to be accelerated on the
FPGA. Using conventional methodologies, generating the
communiation infrastructure requires intimate knowledge of
the physical platform and involves substantial programming
effort. After migrating functionality to HW, the restructur-
ing of the appliation SW presents additional challenges. Our
interface compiler can automatically generate the commu-
nication infrastructure on a number of supported platforms,
greatly reducing the programming burden. In addition, the
data-flow model provides other benefits to the programmer
by isolating functionality, promoting modular refinement,
and easing SW reorganization.

We have shown how the FIFOs which constitute the HW/
SW interface can be efficiently and automatically synthe-
sized on the Zynq platform, and through the case study have
demonstrated the flexibility of the programming model. Us-
ing an interface compiler we have implemented specifically
for this task, a programmer can introduce HW acceleration
to an application running on the microprocessor, and exper-
iment with multiple HW/SW partitioning choices without
ever leaving the application space.

6. REFERENCES

[1] G. Kahn, “The semantics of simple language for parallel
programming,” in IFIP Congress, 1974, pp. 471–475.

[2] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Ptolemy: A framework for simulating and prototyping
heterogenous systems,” Int. Journal in Computer Simu-
lation, vol. 4, no. 2, 1994.

[3] Catapult-C Manual and C/C++ style guide, Mentor
Graphics, 2004.

[4] Vivado Design Suite, http://www.xilinx.com.

[5] A. Agarwal, M. C. Ng, and Arvind, “A comparative
evaluation of high-level hardware synthesis using reed-
solomon decoder,” Embedded Systems Letters, IEEE,
vol. 2, no. 3, pp. 72 –76, 2010.

[6] S. S. Huang, A. Hormati, D. F. Bacon, and R. Rabbah,
“Liquid metal: Object-oriented programming across the
hardware/software boundary,” ser. ECOOP ’08, 2008.

[7] M. King, N. Dave, and Arvind, “Automatic genera-
tion of hardware/software interfaces,” ser. ASPLOS ’12.
New York, NY, USA: ACM, 2012.

[8] P. H. Chou, R. B. Ortega, and G. Borriello, “The chi-
nook hardware/software co-synthesis system,” in In In-
ternational Symposium on System Synthesis, 1995, pp.
22–27.

[9] L. Augustsson, J. Schwarz, and R. S. Nikhil, “Bluespec
Language definition,” p. 95, 2001, Sandburst Corp.


