
72 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 3, SEPTEMBER 2010

A Comparative Evaluation of High-Level Hardware
Synthesis Using Reed–Solomon Decoder

Abhinav Agarwal, Man Cheuk Ng, and Arvind

Abstract—Using the example of a Reed–Solomon decoder, we
provide insights into what type of hardware structures are needed
to be generated to achieve specific performance targets. Due to the
presence of run-time dependencies, sometimes it is not clear how
the C code can be restructured so that a synthesis tool can infer
the desired hardware structure. Such hardware structures are easy
to express in an HDL. We present an implementation in Bluespec,
a high-level HDL, and show a 7.8 improvement in performance
while using only 0.45 area of a C-based implementation.

Index Terms—Bluespec, C-based design, case study, high-level
synthesis.

I. INTRODUCTION

D SP community perceives several advantages in using a
C-based design methodology [14], [6]—having a concise

source code allows faster design and simulation, technology-
dependent physical design is isolated from the source and using
an untimed design description allows high-level exploration by
raising the level of abstraction. Several EDA vendors provide
tools for this purpose [11], [15], [3], [5], [9]. In this letter, we
use a specific example to explore to what degree a particular
performance target can be achieved using such tools.

C-based tools fall into two distinct categories—those that
adhere to pure C/C++ semantics like Catapult-C [11], PICO
[15] and C-to-Silicon Compiler [3], and those that deviate from
the pure sequential semantics by allowing new constructs, like
SpecC [5], SystemC [13] and BachC [9], (see [4] for a detailed
discussion of this topic). In this study, we used a popular
C-based tool that synthesizes hardware directly from standard
C/C++ and allows annotations and user specified settings for
greater customization. Such annotations are most effective in
those parts of the source code that have static loop bounds and
statically determinable data dependencies. In this letter, we
give examples where it is essential to exploit parallelism, the
extent of which depends on run-time parameters. It is difficult
for the user to restructure some of these source codes to allow
the C-based tool to infer the desired hardware structure. These
hardware structures can be designed using any HDL; we used
a high-level HDL, Bluespec SystemVerilog [2], which makes it
easy to express the necessary architectural elements to achieve
the desired performance.

Manuscript received May 25, 2010; revised June 23, 2010; accepted June 23,
2010. Date of publication June 28, 2010; date of current version September 17,
2010. This work was supported by Nokia sponsored research at CSAIL, MIT.
This manuscript was recommended for publication by R. Gupta.

The authors are with the Computer Science and Artificial Intelligence Labo-
ratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA 02139
USA (e-mail: abhiag@mit.edu; mcn02@mit.edu; arvind@mit.edu).

Digital Object Identifier 10.1109/LES.2010.2055231

II. THE APPLICATION: REED–SOLOMON DECODER

Reed–Solomon codes [12] are a class of error correction
codes frequently used in wireless protocols. In this letter, we
present the design of a Reed–Solomon decoder for an 802.16
protocol receiver [8]. The target operating frequency for the
FPGA implementation of our designs was set to 100 MHz.
To achieve the 802.16 target throughput of 134.4 Mbps at this
frequency, the design needs to accept a new 255 byte input
block every 1520 cycles. During the design process, our goal
was also to see if the number of cycles can be reduced even
further because the “extra performance” can be used to decrease
voltage or frequency for low power implementations.

A. Decoding Process

Reed–Solomon decoding algorithm [16] consists of five
steps:

1) syndrome computation by evaluating the received polyno-
mial at various roots of the underlying Galois Field (GF)
primitive polynomial;

2) error locator polynomial and error evaluator polynomial
computation through the Berlekamp–Massey algorithm
using the syndrome;

3) error location computation using Chien search which gives
the roots of the error locator polynomial;

4) error magnitude computation using Forney’s algorithm;
5) error correction by subtracting the computed errors from

the received polynomial.
Each input block is decoded independently of other blocks. A
Reed–Solomon encoded data block consists of information
symbols and parity symbols for a total of () sym-
bols. The decoding process is able to correct a maximum of
errors.

III. GENERATING HARDWARE FROM C/C++

A. The Initial Design

The decoding algorithm was written in a subset of C++ used
by the tool for compiling into hardware. Each stage of the
Reed–Solomon decoder was represented by a separate function
and a top-level function invokes these functions sequentially.
The different functions share data using array pointers passed
as arguments. High-level synthesis tools can automatically gen-
erate a finite state machine (FSM) associated with each C/C++
function once the target platform (Xilinx Virtex II FPGA) and
the target frequency (100 MHz) has been specified. For our
Reed–Solomon code, with as 255 and as a parameter with
a maximum value of 16, the tool generated a hardware design
that required 7.565 million cycles per input block, for the worst
case error scenario. The high cycle count was due to the fact

1943-0663/$26.00 © 2010 IEEE

AGARWAL et al.: A COMPARATIVE EVALUATION OF HIGH-LEVEL HARDWARE SYNTHESIS USING REED–SOLOMON DECODER 73

that the tool produced an FSM for each computation loop that
exactly mimicked its sequential execution. We next discuss
how we reduced this cycle count by three orders of magnitude.

B. Loop Unrolling to Increase Parallelism

C-based design tools exploit computational loops to extract
fine-grain parallelism [7]. Loop unrolling can increase the
amount of parallelism in a computation and data-dependency
analysis within and across loops can show the opportunities for
pipelined execution. For example, the algorithm for syndrome
calculations consists of two nested for-loops. For a typical value
of , the innerloop computes 32 syndromes sequentially.
All of these can be computed in parallel if the innerloop is
unfolded. Most C-based design tools can automatically identify
the loops that can be unrolled. By adding annotations to the
source code, the user can specify which of these identified
loops need to be unrolled and how many times they should be
unrolled. For unrolling, we first selected the for-loops corre-
sponding to the Galois Field (GF) Multiplication, which is used
extensively throughout the design. Next, the inner for-loop of
Syndrome computation was unrolled. The inner for-loop of the
Chien search was also unrolled. To perform unrolling we had to
replace the dynamic parameters being used as loop bounds by
their static upper bounds. These unrolling steps cumulatively
lead to an improvement of two orders of magnitude in the
throughput, achieving 19 020 cycles per input block. Still, this
was only 7% of the target data throughput.

C. Expressing Producer–Consumer Relationships

To further improve the throughput, two consecutive stages in
the decoder need to be able to exploit fine-grain producer-con-
sumer parallelism. For example, once the Chien search module
determines a particular error location, that location can be for-
warded immediately to the Forney’s algorithm module for com-
putation of the error magnitude, without waiting for the rest of
error locations. Such functions are naturally suited for pipelined
implementations. But this idea is hard to express in sequential
C source descriptions, and automatic detection of such oppor-
tunities is practically impossible.

For simple loop structures the compiler can infer that both the
producer and consumer operate on data symbols in-order. It can
use this information to process the data in a fine-grained manner,
without waiting for the entire block to be available. Consider the
code segment shown in Fig. 1. The C-based tool appropriately
generates streaming hardware for this code in the form shown
in Fig. 2. This hardware passes one byte at a time between the
blocks to allow maximum overlapped execution of the producer
and consumer processes for a single data block.

However, the presence of dynamic parameters in for-loop
bounds can obfuscate the sharing of streamed data and makes
it difficult to apply static dataflow optimizations [10]. For ex-
ample, consider the code segment shown in Fig. 3, where the
length of the intermediate array produced and the producer loop
iterations which produce its values are dynamically determined
based on the input.

The hardware generated by the C-based tool for this code
is shown in Fig. 4. The compiler generates a large RAM for

Fig. 1. Simple streaming example—source code.

Fig. 2. Simple streaming example—hardware output.

Fig. 3. Complex streaming example—Source code.

Fig. 4. Complex streaming example—Hardware output.

sharing one instance of the intermediate array between the mod-
ules. Furthermore, to ensure the program semantics, the com-
piler does not permit the two modules to access the array simul-
taneously, preventing overlapped execution of the two modules.
It is conceivable that a clever compiler could detect that the pro-
duction and consumption of data-elements is in order and then
set up a pipelined producer-consumer structure properly. How-
ever, we expect such analysis for real codes to be quite difficult
and brittle in practice.

Some C-based tools support an alternative buffering mecha-
nism called ping-pong memory which uses a double buffering
technique, to allow some overlapping execution, but at the cost
of extra hardware resources. Using this type of double buffer, our
design’s throughput improved to 16 638 cycles per data block.

74 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 5. Forney’s algorithm implementation. (a) Original structure. (b) Unrolled
structure. (c) Modified structure.

D. Issues in Streaming Conditionals

The compilers are generally unable to infer streaming archi-
tectures if the data blocks are accessed conditionally by the pro-
ducer or consumer. For example, in Forney’s algorithm the oper-
ation of the main for-loop is determined by a conditional check
whether the location is in error or not. The input data structure
contains () symbols out of which at most () sym-
bols can be in error. Let us further assume it takes 17 cycles
to process a symbol in error and only one to process a symbol
not in error. The processing of symbols is independent of each
other but the output stream must maintain the order of the input.
If the compiler is unable to detect this independence, it will
process these symbols in-order sequentially, taking as much as

cycles [see Fig. 5(a)]. On
the other hand, if the compiler can detect the independence of
conditional loop iterations and we ask the tool to unroll it two
times, we get the structure shown in Fig. 5(b). If the errors are
distributed evenly, such a structure may double the throughput
at the cost of doubling the hardware. The preferred structure for
this computation is the pipeline shown in Fig. 5(c), which should
take cycles to process all symbols. No-
tice Fig. 5(c) takes considerably less area than Fig. 5(b) because
it does not duplicate the error handling hardware.

The C-based tool was not able to generate the structure shown
in Fig. 5(c). We think it will be difficult for any C-based syn-
thesis tool to infer such a conditional structure. First, it is always
difficult to detect if the iterations of an outer loop can be done
in parallel. Second, static scheduling techniques rely on the fact

that different branches take equal amount of time, while we are
trying to exploit the imbalance in branches.

To further improve the performance and synthesis results,
we made use of common guidelines [14] for code refinement.
Adding hierarchy to Berlekamp computations and making its
complex loop bounds static by removing the dynamic variables
from the loop bounds, required algorithmic modifications to
ensure data consistency. By doing so, we could unroll the
Berlekamp module to obtain a throughput of 2073 cycles per
block. However, as seen in Section V, even this design could
only achieve 66.7% of the target throughput and the synthesized
hardware required considerably more FPGA resources than the
other designs.

E. Fine-Grained Processing

Further optimizations require expressing module functions in
a fine-grained manner, i.e., operating on a symbol-by-symbol
basis. This leads to considerable complexity as modules higher
in hierarchy have to keep track of individual symbol accesses
within a block. The modular design would need to be flattened
completely, so that a global FSM can be made aware of fine-
grained parallelism across the design. The abstractions provided
by high-level sequential languages are at odds with these types
of concurrent hardware structures and make it difficult for al-
gorithm designers to express the intended structures in C/C++.
Others have identified the same tension [4]. This is the reason for
the inefficiency in generated hardware which we encountered
during our study. The transaction granularity on which the func-
tions operate is a tradeoff between performance and implemen-
tation effort. Coarse-grain interfaces where each function call
processes a complete array is easier for software programmers
but fine-grain interface gives the C compiler a better chance to
exploit fine-grained parallelism.

IV. IMPLEMENTATION IN BLUESPEC

Bluespec encourages the designer to consider the decoding
algorithm in terms of concurrently operating modules, each cor-
responding to one major functional block. Modules communi-
cate with each other through bounded first-in–first-outs (FIFOs)
as shown in Fig. 6. Each module’s interface simply consists of
methods to enqueue and dequeue data with underlying Blue-
spec semantics taking care of control logic for handling full and
empty FIFOs. It is straightforward to encode desired architec-
tural mechanisms and perform design exploration to search for
an optimal hardware configuration. Bluespec supports polymor-
phism, which allows expression of parameterized module inter-
faces to vary granularity of data communication between mod-
ules. The pipeline in Fig. 6 is latency insensitive in the sense
that its functional correctness does not depend upon the size of
FIFOs or the number of cycles each module takes to produce
an output or consume an input. This provides great flexibility in
tuning any module for better performance without affecting the
correctness of the whole pipeline.

A. Initial Design

In Bluespec design, one instantiates the state elements, e.g.,
registers, memories, and FIFOs, and describes the behavior
using atomic rules which specify how the values of the state

AGARWAL et al.: A COMPARATIVE EVALUATION OF HIGH-LEVEL HARDWARE SYNTHESIS USING REED–SOLOMON DECODER 75

Fig. 6. Bluespec interface for the decoder.

Fig. 7. Initial version of compute-syndrome rule.

elements can be changed every cycle. The FSM, with its Muxes
and control signals, is generated automatically by the compiler.
For example, for Syndrome computation, the input and output
of the module are buffered by two FIFOs, and
and it has three registers: for storing the temporary value
of the syndrome, and and for loop bookkeeping. The entire
FSM is represented by a single rule called compute_syndrome
in the module as shown in Fig. 7. This rule models the se-
mantics of the two nested for-loops in the algorithm. The GF
arithmetic operations, gf_mult and gf_add, and alpha are purely
combinational library functions.

We implemented each of the five modules using this ap-
proach. This initial design had a throughput of 8161 cycles
per data block. This was 17% of the target data throughput.
It should be noted that even in this early implementation,
computations in different modules can occur concurrently on
different bytes of a single data block boosting the performance.

B. Design Refinements

Bluespec requires users to express explicitly the level of par-
allelism they want to achieve, which can be parameterized sim-
ilar to the degree of loop unrolling in C-based tools. We illustrate
this using the Syndrome Computation module. This module re-
quires GF Mults and GF Adds per input symbol, which can
be performed in parallel. Our initial implementation only per-
forms one multiplication and one addition per cycle. By modi-
fying the rule as shown in Fig. 8, the module can complete par
iterations per cycle. The code is nearly identical to the original
with the modifications highlighted in bold. The only change is
the addition of a user specified static variable par which controls
the number of multiplications and additions the design executes
per cycle.

Fig. 8. Parameterized parallel version of the compute-syndrome rule.

We unrolled the computations of the other modules using this
technique, which allowed the design to process a block every
483 cycles. At this point, the design throughput was already
315% of the target performance. It was possible to boost the
performance even further by using some of the insight into al-
gorithmic structures discussed in Section III. For example, at
this point in the design cycle we found that the Forney’s algo-
rithm module was the bottleneck, which could be resolved by
using a split conditional streaming structure shown in Fig. 5(c).
This structure can be described in BSV using individual rules
triggering independently for each of the steps shown as a box in
Fig. 5(c). This design allowed the Forney’s Algorithm module
to process an input block every 272 cycles. The sizes of FIFO
buffers in the system also have a large impact on the overall
system throughput and area. It is trivial to adjust the sizes of
the FIFOs with the BSV library. Exploration of various sizes
through testbench simulations allowed fine-tuning of the overall
system to get a system throughput of 276 cycles per input block,
which was 5.5 of the target throughput, as seen in Section V.

V. RESULTS

At the end of the design process, the RTL outputs of C and
Bluespec design flows were used to obtain performance and
hardware synthesis metrics for comparison. Both the RTL de-
signs were synthesized for Xilinx Virtex-II Pro FPGA using
Xilinx ISE v8.2.03i. The Xilinx IP core for Reed Solomon de-
coder, v5.1 [17], was used for comparison. The designs were
simulated to obtain performance metrics. Fig. 9 summarizes the
results. The C-based design achieved only 23% of the Xilinx
IP’s data rate while using 201% of the latter’s equivalent gate
count, while the Bluespec design achieved 178% of the IP’s data
rate with 90% of its equivalent gate count.

76 IEEE EMBEDDED SYSTEMS LETTERS, VOL. 2, NO. 3, SEPTEMBER 2010

Fig. 9. Comparison of source code size, FPGA resources and performance
(*source code was not available for the Xilinx IP).

VI. CONCLUSION

Using the Reed–Solomon decoder as an example, we have
shown that even for DSP algorithms with relatively simple mod-
ular structure, architectural issues dominate in determining the
quality of hardware generated. Identifying the right microarchi-
tecture requires exploring the design space, i.e., a design needs
to be tuned after we have the first working design. Examples of
design explorations include pipelining at the right level of gran-
ularity, splitting streaming conditionals to exploit computation-
ally unbalanced branches, sizing of buffers and caches, and as-
sociated caching policies. The desired hardware structures can
always be expressed in an HDL like Verilog, but it takes con-
siderable effort to do design exploration. HDLs like Bluespec
bring many advantages of software languages in the hardware
domain by providing high-level language abstractions for han-
dling intricate controls and allowing design exploration through
parameterization.

C-based design flow offers many advantages for algorithmic
designs—the designer works in a familiar language and often
starts with an executable specification. The C-based synthesis
tools can synthesize good hardware when the source code is an-
alyzable for parallelism and resource demands. The compiler’s
ability to infer appropriate dataflow and parallelism, and the
granularity of communication, decreases as the data-dependent
control behavior in the program increases. It is difficult for the
user to remove all such dynamic control parameters from the al-
gorithm, as seen in the case of Forney’s algorithm, and this leads
to inefficient hardware. For our case study, we were not able to
go beyond 66.7% of the target performance with the C-based

tool. It is not clear to us if even a complete reworking of the al-
gorithm would have yielded the target performance. The source
codes and the transformations are available [1] for the interested
readers.

ACKNOWLEDGMENT

The authors are thankful to J. Hicks and G. Raghavan at Nokia
for their assistance.

REFERENCES

[1] A. Agarwal and M. C. Ng, Reed-Solomon Decoder [Online]. Available:
www.opencores.org/project,reedsolomon

[2] Bluespec, Inc., Bluespec SystemVerilog Language [Online]. Available:
www.bluespec.com

[3] Cadence, C-to-Silicon Compiler [Online]. Available: www.ca-
dence.com

[4] S. A. Edwards, “Challenges of synthesizing hardware from C-like lan-
guages,” IEEE Design Test Comput., vol. 23, no. 5, May 2006.

[5] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Methodology. Norwood, MA: Kluwer,
2000.

[6] Y. Guo, D. McCain, J. R. Cavallaro, and A. Takach, “Rapid prototyping
and SoC design of 3G/4G wireless systems using an HLS methodol-
ogy,” EURASIP J. Embed. Syst., vol. 2006, no. 1, pp. 18–18, 2006.

[7] S. Gupta, N. Dutt, R. Gupta, and A. Nicolau, “Loop shifting and com-
paction for the high-level synthesis of designs with complex control
flow,” in Proc. Design, Autom. Test. Eur., Paris, France, 2004.

[8] IEEE Standard 802.16. Air Interface for Fixed Broadband Wireless Ac-
cess Systems IEEE, 2004.

[9] T. Kambe, A. Yamada, K. Nishida, K. Okada, M. Ohnishi, A. Kay, P.
Boca, V. Zammit, and T. Nomura, “A C-based synthesis system, Bach,
and its application,” in Proc. Asia South Pacific Design Autom. Conf.
(ASP-DAC), Yokohama, Japan, 2001.

[10] E. A. Lee and D. G. Messerschmitt, “Static scheduling of synchronous
data flow programs for digital signal processing,” IEEE Trans.
Comput., vol. 36, pp. 24–35, 1987.

[11] Mentor Graphics, Catapult-C [Online]. Available: www.mentor.com
[12] T. K. Moon, Error Correction Coding-Mathematical Methods and Al-

gorithms. New York: Wiley-Interscience, 2005.
[13] SystemC Language Open SystemC Initiative [Online]. Available:

www.systemc.org
[14] G. Stitt, F. Vahid, and W. Najjar, “A code refinement methodology for

performance-improved synthesis from C,” in Proc. Int. Conf. Comput.-
Aided Design (ICCAD’06), San Jose, CA, 2006.

[15] Synfora, PICO Platform [Online]. Available: www.synfora.com
[16] S. B. Wicker and V. Bhargava, Reed-Solomon Codes and Their Appli-

cations. New York: IEEE, 1994.
[17] Xilinx, CORE Reed Solomon Decoder IP v5.1 [Online]. Available:

www.xilinx.com/ipcenter/coregen/coregen_iplist_71i_ip2.htm

