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Abstract—Leakage power reduction through power gating
requires considerable design and verification effort. We present a
scheme which uses high-level design description to automatically
generate a collection of fine-grain power domains and associated
control signals. We also describe a method of collecting the
dynamic activity characteristics of a domain, viz. total inactivity
and frequency of inactive-active transitions, which are necessary to
decide the domain’s suitability for power gating. Our automated
power-gating technique provides power savings without exacer-
bating the verification problem because the power domains are
correct by construction. We illustrate our technique using two
wireless decoder designs.

I. INTRODUCTION

Leakage power reduction is increasingly important in hard-
ware design, especially in implementing wireless applications
with long standby times [13]. Also, as technology scaling
continues, the leakage to active power ratio increases dramat-
ically [5], [9], making leakage power the dominant factor of
the power budget. Power gating, i.e., inserting logic to switch
off power to parts of the design, is one way to drastically
reduce the leakage power. Introducing power gating in a design
involves the following steps:

• Dividing the design into power domains and generat-
ing power-gating signals for each domain.

• Determining whether it is useful to power gate a
particular domain based on the expected dynamic
characteristics such as its periods of activity.

• Insertion of isolation logic and power network layout
including the sizing of the power switches, and veri-
fication of signal integrity.

Generally, the first two steps are done manually while some
tools and techniques exist to automate step 3 [4], [8], [16],
[21]. In this paper, we provide a technique to automate the
first two steps; our technique is orthogonal to the solutions
used in step 3.

Since power gating is usually done manually, it is applied
only at a fairly coarse granularity, i.e., large power domains
with logic, state and clock networks being switched off for
hundreds of cycles. This process requires substantial verifica-
tion effort to ensure that the functionality is preserved. Such
power gated designs rely on a global power controller which
requires a significant effort to design and integrate. We propose
a technique to automatically power gate the majority of the

combinational logic on a per-cycle basis. This technique can be
applied independently of whether a global power management
scheme exists, and to designs of any size and complexity
without additional design and verification effort. Using the
greater savings of a fine-grained approach, our technique can
result in a significant reduction of the total leakage power
dissipation. Power gating can reduce leakage, but it incurs the
overhead of the switching power associated with the gating
transistors and power domains. It also incurs the area cost of
power-gating transistors, isolation logic and power network.
Thus, a crucial part of the analysis is to determine which
power domains are likely to produce net energy savings. Such
analysis, by its very nature, is based on use scenarios and
needs to be captured empirically during the design process.

The main contributions of this paper are providing 1. a
novel technique that uses rule-based design descriptions for
automatic partitioning of a digital design into power domains
and associated gating signals, and 2. automatic classification of
power domains for their suitability for power gating based on
their dynamic characteristics. We illustrate our technique using
two high-performance wireless decoders. These examples will
show that unlike global power controllers, our technique intro-
duces no new logic or state to generate power-gating control
signals.

Paper Organization: Section II discusses related work in
the area of design partitioning and power gating. In Section III,
we describe a general technique for generating power domains
and using dynamic activity metrics. In section IV, we describe
how the use of rule-based designs eases the partitioning
problem and collection of metrics, and our algorithm for the
same. In Section V, we introduce two realistic wireless decoder
designs and discuss their activity metrics. Section VI discusses
the power and performance impact of our technique. Sec-
tion VII discusses some future extensions to our power-gating
technique. Finally, we present our conclusions in Section VIII.

II. RELATED WORK

Existing literature on Operand Isolation [2], [6] has al-
gorithms for identifying operands that are not needed under
dynamic conditions. Such work has targeted reducing unneces-
sary dynamic transitions in designs towards the goal of cutting
dynamic and peak power consumption [17]. Chinnery et al. [7]
have presented analysis and optimization techniques for gating
automation once the list of modules to be power gated and
the sleep signals have been specified. Usami et al. [20]
proposed a fine-grained power-gating scheme that relies on
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Fig. 1: Nodes of explicit control circuits

already present enable signals of a gated clock design. In
contrast, our work does not require any prior analysis of
clock gating, and allows gating of logic that might even be
feeding registers being clocked in a given cycle. Leinweber et
al. [12] have described a partitioning algorithm for the design
netlist to reduce power consumption. However, starting from
the synthesized netlist obscures high-level control signals that
can ease the partitioning problem as well as allow utilization of
the designer’s intent for power reduction. Singh et al. [18] have
analyzed Term Rewriting Systems for identifying inactive logic
for reducing dynamic power. Our work focuses on analysis of
similar rule-based designs towards reduction of leakage power,
which has increasingly become the dominant factor in recent
designs. We also demonstrate how use of dynamic activity
statistics is necessary for the selection of appropriate logic
domains to power gate.

III. POWER DOMAIN PARTITIONING

Partitioning a digital design into fine-grain power domains
requires identifying control signals that indicate which part of
the next-state logic is needed. Two types of control signals
are of greatest interest: register write enables and multiplexer
selectors. Though such signals are generally quite obvious
in high-level designs, they can get obscured in synthesized
netlists. Our partitioning technique includes the following
steps:

1) A circuit level description of the design given in
terms of four elements: Registers, Multiplexers, Forks
(for representing fan-outs), and all other logic gates,
shown in Figure 1. We call such descriptions explicit
control (EC) circuits. Any digital design can be
described as an EC circuit.
Classification of a netlist into EC elements is not
unique, for example, a multiplexer is composed of
logic gates itself. Rather than identifying such ele-
ments in existing netlists, we use a synthesis pro-
cedure for rule-based design descriptions where EC
circuits arise naturally.

2) A partitioning of the EC circuit into power domains.
This step, as described next, is implemented as a
graph-coloring task where the set of colors associ-
ated with each logic element gives the power gating
condition for it.

Our partitioning algorithm is independent of how the EC
circuits are generated.

A. Partitioning algorithm as graph-coloring

We describe our power domain partitioning algorithm as
coloring a graph consisting of the EC elements as nodes, and
connecting wires as links. The definition of the graph colors
is as follows:

1) Seed color: Each register (eni) and mux (selj) has a
unique seed color.

2) Link color: Each link in the EC circuit has a color
which is a Boolean function of the seed colors.

3) Each Mux and logic gate has a color, which is the
same as its output link color.

4) Logic elements having the same color constitute a
power domain, with the gating condition defined by
the color.

Link colors are derived by solving a set of equations which
are set up as follows:

• Register i:
Ceni

= True

Cdatai = eni
(1)

• Mux j:
Cselj = Coutj

Cin1j = Coutj · selj
Cin2j = Coutj · selj

(2)

• Fork k:
Cink

= Cout1k + · · ·+ Coutnk (3)

• Logic Gate l:
Cop1l = Cresl

Cop2l = Cresl

(4)

• Constraint due to connectivity: For each link, the sink
color is same as the source color.

Given the above set of equations and constraints, it is
straightforward to solve for all the link colors in the graph.
The solution follows from back-propagation of the seed colors,
eni and selj , and gives every link a color which is a boolean
expression of seed colors.

B. Example for generation of gating conditions

As an example of this process, consider the segment of
a general design shown in Figure 2. Here, each logic block,
fi, consists of a collection of logic gates and forks. The seed
colors are the control signals for muxes, and register write
enables, called Φi, whose generation logic is kept ungated. In
this scenario, each logic block has a distinct activity condition
consisting of all the control signal values that allow it to
propagate to any state element, as shown in Figure 3.

In this manner, power domains and their gating conditions
can be generated for an EC circuit. It is important to realize
that different power domains dissipate different amounts of
leakage power. In fact, when we take into account the energy
overhead of switching on the power domain from an inactive
state, then it may not make sense to power gate logic that is
very active or has short inactive intervals. We next describe
how to differentiate between power domains based on their
dynamic characteristics.
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Fig. 2: Selection of logic datapaths

Logic block Activity Condition
f1 Φ1 · Φ3 · Φ4

f2 {{Φ1 · Φ3}+ {Φ2 · Φ3}} · Φ4

f3 Φ2 · Φ3 · Φ4

f4 Φ3 · Φ4

f5 Φ3 · Φ4

f6 Φ4

Fig. 3: Activity conditions for logic gates

C. Dynamic Activity Metrics

In order to determine which power domains will provide
actual leakage power savings when gated, we need to charac-
terize the dynamic activity of the overall design. There are two
ways to use the metrics: first, to see whether the individual
power domain should be gated and second, to see whether
gating all possible domains of a design saves power. Given a
representative testbench or a suite of testbenches, we compute
the following dynamic activity metrics:

Metric 1: Total inactivity (N1) It is defined as the
total number of clock cycles in which the logic block under
consideration is inactive, i.e., information generated by the
block is not used to compute and update any state element.

Metric 2: Frequency of inactive-active transitions (N2)
It is defined as the total number of times the logic block
becomes active from an inactive state in the previous cycle.

Use of these metrics depends on the values of two
technology-dependent characteristics of the power domain
under consideration. Given the desired clock cycle time t, let
the leakage power saved by gating the logic block be α and the
energy cost of switching on the power domain from sleep state
be β. Once we have computed these metrics over a realistic
testbench, the net energy saved for the ith power domain is
given by equation 5. For the complete design, the total energy
saved can be computed by summing over all the gated domains
as in equation 6.

Ei = tN1iαi −N2iβi (5)∑
i

Ei = t
∑
i

N1iαi −
∑
i

N2iβi (6)

The ideal metrics for power gating a domain would be a
high enough number of total inactive cycles (N1) to compen-
sate for the switching costs of all inactive-active transitions
(N2). Consider a logic block that is inactive for half of the
total clock cycles of a test input, but each inactive interval is
just one clock cycle, followed by one cycle of activity and so
on. In this case, even though its N1 metric would be quite high,
the number of transitions, N2, would also be very high and
would swamp any leakage savings achieved by power gating.
In this manner, dynamic metrics allow us to eliminate power
domains that are unsuitable for gating due to their expected
activity profiles.

For the example in Figure 2, computing these metrics
would require information about the dynamic values of the
control signals (Φi) for realistic testbenches. In general, though
this can be done for any EC circuit, doing it at the netlist level
is cumbersome and resource intensive as it requires a complete
design simulation for very large test inputs and collection of
statistical values for each control signal. In the next section, we
describe how using rule-based design eases design partitioning
and activity metric collection.

IV. USE OF RULE-BASED DESIGNS

Our technique uses design descriptions that consist of state
definitions and rules, each of which computes some state
updates. Rules are defined as guarded atomic actions that can
execute in a given cycle if their associated guard condition
is true. We use Bluespec System Verilog (BSV) [3] as the
source language for rule-based designs. The Bluespec compiler
generates a scheduler which selects rules to execute every
clock cycle. The scheduler logic ensures that there are no
double writes to any register i.e., at maximum only one rule can
update a register in a clock cycle. On compilation to Verilog
RTL, the compiler generates multiplexers to select the state
updates based on these scheduler-generated control signals. In
this manner, any EC circuit can be generated from a rule-based
design.

As an example, consider the conceptual BSV module
shown in Figure 4, consisting of state elements x and y,
and two guarded rules r1 and r2 for state updates. Functions
f1, f2, f3, f4 and f5 used in these rules can be arbitrarily
complex combinational functions, which after synthesis can
result in large logic blocks. This module description generates
the circuit shown in Figure 5(a). The scheduler logic that
generates rule firing signals (willF ireri) has not been shown
as it is not gated. Typically the scheduler logic is much smaller
than the rest of the combinational logic of the module. In
this example, since both rules update registers x and y, the
scheduler ensures that they can never fire in the same cycle.

We parse the BSV-generated Verilog to determine the logic
blocks that provide data inputs to muxes, and introduce a
fine-grained power domain for each input controlled by the
corresponding mux control input. Shared logic used to update
multiple state elements is gated by the OR of the control
signals that select this logic in each mux. The use of BSV
rules to automatically generate the power domains ensures
correctness by construction. Figure 5(b) shows the possible set
of power domains for the example from Figure 4. It consists of
three elements: f1 and f4 in one domain which is turned on



module mkExample (InterfaceExample);
Reg x, y; //state definitions

rule r1 (p1(x,y));
x <= f1(x,y);
y <= f3(y) + f4(x,y);

endrule

rule r2 (p2(x,y));
x <= f2(x,y) + f3(y);
y <= f5(x,y);

endrule

method definitions;
endmodule

Fig. 4: Conceptual design of a module in BSV
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Fig. 5: Generated Hardware

only when r1 is selected, f2 and f5 in another domain which
is turned on when r2 is selected, and f3 in a third domain
which is turned on when either rule is selected for execution.
The two muxes can also be considered as part of the third
domain.

Input: Rule-based design and compiled RTL

1. Identify Muxes that select state updates
2. Mux Control inputs are functions of rule firing

signals Φ
3. Mux Data inputs are potential logic blocks

with some shared logic
4. Use graph-coloring to select logic functions

that are controlled by a unique control signal
5. Generate fine-grain UPF power domain description
6. Collect activity metrics to determine leakage

power savings and switching cost for domains
7. Select power domains that have net power savings

Output: Power Domain definitions for logic blocks

Fig. 6: Algorithm to generate and select power domains for
rule-based designs

We summarize our algorithm for generating and select-
ing fine-grained power domains from rule-based designs in
Figure 6. We start with an N-rule design, with each rule
having a firing condition determining when the rule is active.
These conditions, denoted as Φ1..N , are functions of the state
within the design. Given these control signals and parsing
the generated Verilog code for the mux control inputs, we
can associate the firing conditions with the logic blocks used
for state updates. This allows us to generate a Unified power
format (UPF) [19], [11] specification that provides the place
and route tools with the power domain description for each
of the logic blocks and their respective gating signals. Finally,
we collect activity metrics for the identified logic blocks using
rule firing statistics to select appropriate power domains.

Through the use of rule-based digital design description,
we can generate hardware that is amenable to the discussed
graph-coloring analysis for power domain partitioning as well
as collection of dynamic activity metrics for logic blocks.
Such designs generate groupings of logic elements and control
points, which lead to a natural description in terms of fine-
grained power domains. A fundamental issue in power gating
is that it should not alter the functionality of the overall
design by introducing unintended behavior, such as turning off
some needed logic. Grouping logical blocks into distinct power
domains, and verifying that they do not introduce changes
requires significant verification effort. This is avoided when
we power gate rule-based designs.

It is important to note that our technique is not limited
to BSV – any design process that generates well-structured
RTL code with pre-defined control signals for logic blocks
can be used for the method of partitioning that we have
outlined. We determine the best candidates for power gating
based on a power domain’s statistical dynamic activity as
discussed earlier in section III-C. This can be done easily
for rule-based designs by associating activation of rules with
corresponding logic blocks. We demonstrate the collection of
such statistics for realistic examples in the next section. This
data was collected by automatically instrumenting the BSV
designs for rule activity collection and simulating them for
various testbenches. This instrumentation does not affect the
generated hardware as it is only generated for simulation using
compile time macros.



Fig. 7: Architecture of Reed-Solomon Decoder

V. WIRELESS DECODERS: ACTIVITY METRICS

For illustrative purposes, we have chosen two standards-
compliant wireless decoders to use for our analysis. We have
simulated the designs under realistic traffic patterns to analyze
the dynamic activity statistics of their design components.

The first design is a Reed-Solomon decoder [1] which is
used in 802.16 transceivers. This design is parameterized by
the input block size, and for this study was configured to have
32 bytes of parity in each 255 byte input block. The second
design is a Viterbi decoder [15], which is a component in an
802.11 transceiver. Both these designs are high performance
implementations that meet performance requirements for re-
spective wireless protocols.

A. Metrics for the Reed-Solomon decoder

Figure 7 shows the architecture of the Reed-Solomon de-
coder consisting of five modules, each of which performs one
step of the decoding algorithm as a finite state machine (FSM).
These FSMs are designed such that they might terminate early
depending on the dynamic input conditions. We computed
the earlier defined activity metrics for each rule in the five
modules of the Reed-Solomon decoder under two different
input conditions. The data shown in Figure 8(a) corresponds
to the maximal activity case which occurs when the number
of errors in the input data is equal to the maximum correctable
limit determined by the number of parity bytes in the under-
lying Reed-Solomon encoding. The data was collected over a
testbench of 4000 cycles of simulation.

At the other end of the spectrum, Figure 8(b) gives the
data for the case where the input data is entirely uncorrupted
with no errors. For this input, the first and third modules of
the Reed-Solomon pipeline, Syndrome and Chien, still have
approximately the same number of inactive cycles (N1) as the
earlier case, while the Error Magnitude computation module is
completely inactive as there are no magnitudes to be computed.
Berlekamp module also has increased N1 values, as the rules
generating the error magnitude polynomial are inactive.

For the Syndrome module, the entire computation logic
is limited to rule r in which is nearly always active, and
hence non-viable for gating. For the Berlekamp module, the
amount of logic in each calc * rule is about the same with
no shared logic. Though N1 is quite high for all the rules,
N2 (number of inactive-active transition) is relatively high for
rules calc d and calc lambda as seen in Figure 8(a). Hence,
the better candidates for gating are rules calc lambda 2 and
calc lambda 3. Analysis of the Chien module is similar to
that of the Syndrome module. The Error Magnitude module’s
activity profile depends on whether the input data has errors
or not, and hence expectations of the noise characteristics in
the use-environment of the module would affect the selection
of power domains in this case. Rules enq error, deq invalid,
bypass int, and start next can be expected to be good candi-
dates in most cases. The Error Corrector module has a bimodal

Rule N1: No. of N2: No. of
Inactive cycles Inactive-Active

transitions
Syndrome Module
r in 24 17
s out 3984 16
Berlekamp Module
calc d 3474 526
calc lambda 3489 511
calc lamb 2 3494 506
calc lamb 3 3494 506
start new 3984 16
Chien Module
calc loc 222 38
start next 3985 15
Error Magnitude Module
eval lambda 261 233
enq error 3767 233
deq invalid 3986 14
process err 714 71
bypass int 4000 0
start next 3985 15
Error Corrector Module
d no error 4000 0
d correct 711 71

(a) Input data with maximal correctable errors

Rule N1: No. of N2: No. of
Inactive cycles Inactive-Active

transitions
Syndrome Module
r in 16 16
s out 3984 16
Berlekamp Module
calc d 3472 528
calc lambda 3488 512
calc lamb 2 4000 0
calc lamb 3 4000 0
start new 3984 16
Chien Module
calc loc 32 16
start next 3984 16
Error Magnitude Module
eval lambda 4000 0
enq error 4000 0
deq invalid 4000 0
process err 4000 0
bypass int 3984 16
start next 3984 16
Error Corrector Module
d no error 528 16
d correct 4000 0

(b) Input data with no errors

Fig. 8: Reed-Solomon Activity Metrics

activity profile where one of two rules fire with a very high
activity rate, depending on the presence or absence of errors,
making them poor candidates for gating.

The above analysis was done using a standalone testbench
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for the Reed-Solomon decoder that continuously pumps input
data into it. The Reed-Solomon decoder is used in wire-
less receivers as a Forward Error Correction (FEC) decoder.
Depending on the structure of these receiver pipelines, the
decoder is not always active. In the next subsection, we use
the Viterbi decoder in a complete receiver pipeline to illustrate
how external input activity affects the analysis.

B. Metrics for the Viterbi decoder

To obtain the statistical activity data for the Viterbi decoder,
we used the AirBlue platform [14] to simulate the complete
802.11 receiver pipeline, as shown in Figure 9. Having a setup
of the global architecture in which the decoder itself is a
component, provides information on the frequency and bursty
nature of the input to the decoder. This has an impact on the
internal activity metrics - the average activity decreases and
the length of inactivity intervals increases. The Viterbi decoder
consists of three main modules: Branch Metric Unit (BMU),
Path Metric Unit (PMU) and Trace Back Unit (TBU). Each of
these modules has all its activity defined in one or two rules.
Thus, the data shown in Figures 10(a) and 10(b) is able to cap-
ture all the granularity of activity with just four entries (rules
push zeros and put data both correspond to BMU). The data
was collected over a testbench of 32000 cycles of simulation
taken at a steady state. For the case with input errors, we set
the SNR at a low value under QAM modulation, such that
the Bit Error Rate (BER) of the input data was reasonably
high at 0.5%. This setup provides the Viterbi decoder with a
significant amount of activity as the wireless receiver pipeline
is dominated by the decoding effort. The inactivity metrics
for various components of the Viterbi decoder are shown in
Figure 10(a). When compared with the large values of inactive
cycles (N1), the infrequency of inactive-active transitions (N2)
indicate that the inactivity intervals for the Viterbi decoder
are quite long, much longer than those for the Reed-Solomon
decoder, making it an attractive candidate for fine-grained
gating even in conditions of low SNR and high activity.

The second testbench environment was set at a high SNR
under BPSK modulation, giving an effective BER of zero. As
shown in Figure 10(b), under this scenario the Viterbi decoder
has a higher number of inactive cycles, as other modules in the
pipeline are rate-limiting. The high value of the ratio of N1

to N2 emphasizes the long length of their inactivity intervals
in this testbench emulating realistic traffic conditions. Based
on this data, we can conclude that all of these rules would be
excellent candidates for our proposed power-gating scheme.

Rule N1: No. of N2: No. of
Inactive cycles Inactive-Active

transitions
Branch Metric Unit
put data 18079 156
push zeros 30568 38
Path Metric Unit
pmu put 15649 156
Trace Back Unit
tbu put 15650 156

(a) Input data with BER = 0.5%

Rule N1: No. of N2: No. of
Inactive cycles Inactive-Active

transitions
Branch Metric Unit
put data 28376 151
push zeros 31424 9
Path Metric Unit
pmu put 27800 151
Trace Back Unit
tbu put 27800 151

(b) Input data with BER = 0%

Fig. 10: Viterbi Activity Metrics

VI. POWER AND PERFORMANCE IMPACT

In this section, we discuss the impact of our technique on
the overall power consumption and performance of the designs.
As seen in Figure 12, the fraction of total power consumed as
leakage in wireless designs is quite significant: 44% in Reed-
Solomon decoder and 41% in Viterbi decoder. This fraction
increases even further depending on a number of factors such
as operating temperature, technology node and relative external
activity. This gives us a strong motivation to explore methods
for reducing leakage power in such designs.

This data was generated by simulating the extracted place
and routed netlists with realistic testbenches. This process also
generates the breakdown of the leakage power for each logic
element of the design. Next, we need to determine the number
of clock cycles for which a typical fine-grained logic block
needs to remain inactive for, in order to recoup the energy
lost in switching on the power domain and compare it to
the dynamic activity metrics obtained from simulation. To
determine the switching energy cost per transition and the
breakeven threshold of inactivity, we performed circuit-level
SPICE simulations of typical logic blocks with appropriately

Design Component Power (mW)

Reed-Solomon decoder
Dynamic 8.624 (56%)
Leakage 6.741 (44%)

Total 15.365

Viterbi decoder
Dynamic 7.961 (59%)
Leakage 5.371 (41%)

Total 13.332

Fig. 12: Power consumption breakdown of Reed-Solomon and
Viterbi decoders. The synthesis was done using Nangate 45nm
library with the operating frequency set to 100MHz. Power
consumption data was obtained using simulation of the placed
and routed designs.



Property tested Value
Leakage power of a typical fine-grained and ungated logic block: a 432.60 nW
Leakage power of the block after gating with a 4/1 high Vth PMOS: b 0.21 nW
Leakage power saved by power gating the block: α = (a− b) 432.39 nW
Energy lost in turning on the power switch and power domain: β 20.8 fJ
Breakeven time period for net power savings in a single inactive interval: β/α 48.1 ns
Breakeven threshold in clock cycles at 100 MHz 5 cycles
Increase in output propagation delay (as measured by 50% output value) 0.31 ns
Increase in output rise time (as measured by 10%-90% delay) 1.50 ns

Fig. 11: Characterization of the breakeven threshold of inactivity interval, and the performance impact for gating a logic block
consisting of sixteen 2-input NAND gates with x2 drive strength.

sized power switches using NCSU 45nm library and Nangate
Open Cell library. Figure 11 shows a brief summary of the
analysis determining the leakage power saved by gating a
typical logic block, breakeven time to generate net savings
and the impact on output signal propagation due to insertion
of power switches and isolation cells.

As seen in the data, by dividing the switching energy
cost (β) with the leakage power saved by gating (α), we
arrive at the breakeven time period of 48.1 ns. This indicates
that the minimum length of inactivity interval required to
compensate for the energy lost in switching off the domain is
5 cycles at a clock frequency of 100 MHz. This reflects well
on our previous analysis of the decoder designs which had
several logic blocks having much longer inactivity intervals,
thus providing significant power savings. For each technology
library used, designers can similarly determine values of α and
β for a typical logic block and use them with the dynamic
activity metrics computed for the rule-based design to select
appropriate logic blocks to be power gated.

The overall leakage power reduction achieved by our
technique can be estimated in the following manner. Leakage
power dissipation has four main components: 1. inactive com-
binational logic used for state updates, 2. the state elements,
3. the buffers of the clock distribution network and 4. the
control logic. Our technique targets elimination of leakage
power of inactive combinational logic. We categorized the
various leakage power components manually by examining the
digital power simulation output of the designs under various
activity inputs. Based on this analysis, we estimate that 35%
of the total leakage power is due to the first component.
After accommodating the switching costs of power gating
the domains, we can save about 90% of their leakage power
consumption. Given that the decoders had up to 44% power as
leakage (Figure 12), we estimate that our technique can save
up to 14% (= 0.44×0.9×0.35) of the total power consumption
without any power-saving design burden on the user.

For our gating methodology, the power domains need to be
turned on or off within a clock cycle. This places a requirement
on the clock cycle time to be long enough to accommodate
the time required to turn on a power domain and complete
logic computation. For the fine-grained power domains under
consideration in the two wireless decoders, the impact of gating
is seen as an increase in propagation delay of 0.31 ns (for the
output to reach 50% of max value) and a 1.5 ns increase in
output rise time, as shown in Figure 11. After adding this delay
to the prior critical path of the decoders, we still had sufficient
margin to keep the clock frequency at 100 MHz to allow such

gating and maintain the performance requirements of wireless
standards compliance.

It is possible that for designs with a high clock frequency
requirement, insertion of such gating might necessitate increas-
ing the cycle time. Such performance impact can be mitigated
by selective addition or removal of power gating from the
overall architecture. Since power gating is defined in a fine-
grained manner, it is possible to eliminate gating from the logic
on the critical path of the clock. It is also expected that such
critical logic would be mostly active and hence would not be
a viable candidate for fine-grained power gating anyway.

VII. EXTENSIONS TO THE TECHNIQUE

A. Gating local state

The technique for determining appropriate power domains
by collecting dynamic activity information applies to logic as
well as state elements. There is a significant fraction of leakage
power consumed by state elements like registers. However,
the loss of information on switching off state elements, and
the difficulty of detecting and specifying exactly when it is
functionally correct to do so, is a barrier to this technique.
Verifying that all future readers of a state have obtained the
required information and the value stored in the state element
will not be needed by any block internal or external to the
module is a complex problem. However, it could be possible
to turn off some local state elements inside a module. For
example, consider a divider implementation that takes multiple
cycles to complete an operation. Any state that is used in this
implementation to store running accumulator values or pipeline
states, is strictly local to the divide operation and can be turned
off when the operation is completed. One way to implement
this is to use multi-cycle rule expression, an enhancement
to BSV [10], which generates state elements that are only
needed when the operation is triggered. Another way could
be by compiler analysis of state within a module to determine
what state is localized for operations and is not read externally.
Efforts in this direction are underway.

B. Allowing turn on over multiple cycles

Currently, our technique requires the power domain to turn
on within a clock cycle, thus limiting the maximum clock
frequency of the design. One way to overcome this limitation
is to allow domains to turn on over multiple cycles. To prevent
change in functionality, this requires change in rule scheduling
to stall rules that read state updates from a rule being activated
over multiple cycles. Development of a modified compilation
scheme that generates such scheduling logic is one of the future
extensions of our work.



C. Extending to module level gating

Power gating designs at the module-level granularity has
some advantages from an implementation viewpoint. Each
BSV module can be synthesized as a separate Verilog module
and can be easily expressed as an independent power domain.
To gate such a domain, we require information about its logic
activity as well as state usage. We identify the following
conditions for turning on and off a power domain that consists
of a single module with methods for interfacing with the
external environment. To turn the power domain on from an
off state, any one of the IO method enable signals should be
high. To turn the power domain off from an on state, all of the
following need to be true: all method enable signals should be
low, all rule willFire signals should be low and none of the
internal state elements should be read by any external module.

Before switching off an entire module, we have to ensure
that there is no loss of state that is yet to be read by an external
method. One naive way of verifying this would be to check the
ready signals of output methods. For example, if a module has
a FIFO in which the output is stored for an external module to
read from, after the computation is completed all rules can stop
firing while the output methods become ready. However, this
is not a universal fact, and there are instances where module
registers need to be read externally and these might be always
ready. We propose the use of a state done signal that can be
combined optionally with one or more methods or it can be an
independent signal designed by the user. Here, the burden of
ensuring that there is no pending state that can be lost by power
gating lies with the designer, making the correctness issue
moot. In this scenario, some of the gating logic, namely the
rule willFire signal generation, is contained within the power
domain being gated. However, this logic is only needed for
turning off the domain and hence it will be valid when used.

VIII. CONCLUSION

We have proposed a technique to automate: 1) the parti-
tioning of a high-level design into independent fine-grained
power domains with associated control signals, and 2) the
collection of dynamic activity information for selecting viable
domains from the point of view of leakage savings. For this
purpose, we use two technology-independent metrics: total
inactivity and frequency of inactive-active transitions. These
activity metrics can be collected automatically during the
normal test phase of the design flow. The power-gating control
signals are correct-by-construction and do not involve any
hardware overhead because they are generated using high-
level information already present in rule-based designs. Using
two wireless decoder designs, Reed-Solomon and Viterbi, we
showed that the use of our technique can reduce the leakage
power consumption significantly. The most important aspect
of our technique is that it can be used in conjunction with a
global power management scheme, accruing additional power
savings. Even when a global power domain is turned on,
the use of our technique allows switching off parts of it
automatically.
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