
12 • 2014 IEEE International Solid-State Circuits Conference

ISSCC 2014 / SESSION 27 / ENERGY-EFFICIENT DIGITAL CIRCUITS / 27.4

27.4 A 0.75-Million-Point Fourier-Transform Chip for
Frequency-Sparse Signals

Omid Abari, Ezz Hamed, Haitham Hassanieh, Abhinav Agarwal,
Dina Katabi, Anantha P. Chandrakasan, Vladimir Stojanovic

Massachusetts Institute of Technology, Cambridge, MA

Applications like spectrum sensing, radar signal processing, and pattern
matching by convolving a signal with a long code, as in GPS, require large FFT
sizes. ASIC implementations of such FFTs are challenging due to their large
silicon area and high power consumption. However, the signals in these
applications are sparse, i.e., the energy at the output of the FFT/IFFT is
concentrated at a limited number of frequencies and with zero/negligible energy
at most frequencies. Recent advances in signal processing have shown that, for
such sparse signals, a new algorithm called the sparse FFT (sFFT) can compute
the Fourier transform more efficiently than traditional FFTs [1].

This paper presents a VLSI implementation of the sFFT algorithm. The chip
implements a 746,496-point sFFT, in 0.6mm2 of silicon area. At 0.66V, it
consumes 0.4pJ/sample and has an effective throughput of 36GS/s. The
effective throughput is computed over all frequencies but frequencies with
negligible magnitudes are not produced. The chip works for signals that occupy
up to 0.1% of the transform frequency range (0.1% sparse). It can be used to
detect a signal that is frequency hopping in a wideband, to perform pattern
matching against a long code, or to detect a blocker location with very high
frequency resolution. For example, it can detect and recover a signal that
occupies 18MHz randomly scattered anywhere in an 18GHz band with a
frequency resolution of ~24kHz.

The sFFT algorithm has three steps: bucketization, estimation, and collision
resolution. Bucketization: The algorithm starts by mapping the spectrum into
buckets as shown in Fig. 27.4.1. This is done by sub-sampling the signal and
then performing an FFT. Sub-sampling in time causes aliasing in frequency.
Since the spectrum is sparsely occupied, most buckets will be either empty or
have a single active frequency, and only few buckets will have a collision of
multiple active frequencies. Empty buckets are discarded and non-empty
buckets are passed to the estimation step.

Estimation: This step estimates the value and frequency number (i.e. location in
the spectrum) of each active frequency. In the absence of a collision, the value
of an active frequency is the value of its bucket. To find the frequency number,
the algorithm repeats the bucketization on the original signal after shifting it by
1 sample. A shift in time causes a phase change in the frequency domain of
2πfτ/N, where f is the frequency number, τ is the time shift, and N is the sFFT
size. Thus, the phase change can be used to compute the frequency number.

Collision resolution: The algorithm detects collisions as follows: If a bucket
contains a collision then repeating the bucketization with a time shift causes the
bucket’s magnitude to change since the colliding frequencies rotate by different
phases. In contrast, the magnitude does not change if the bucket has a single
active frequency. After detecting collisions, the algorithm resolves them by using
bucketization multiple times with co-prime sampling rates (FFTs with co-prime
sizes). Two numbers are co-prime if their greatest common divisor is one. The
use of co-prime sampling rates guarantees that any two frequencies that collide
in one bucketization do not collide in other bucketizations, as shown in Fig.
27.4.1.

The block diagram of the sFFT chip is shown in Fig. 27.4.2. A 12b 746,496-point
(210×36-point) sFFT is implemented. Two types of FFTs (210 and 36-point) are used
for bucketization. The input to the 210-point FFT is the signal sub-sampled by 36,
while the input to the 36-point FFT is the signal sub-sampled by 210. FFTs of sizes
210 and 36 were chosen since they are co-prime and can be implemented with
simple low-radix FFTs. Three FFTs of each size are used with inputs shifted by 0,
1 or 32 time samples, as shown in Fig. 27.4.2. In principle, shifts of 0 and 1 are
sufficient. However, the third shift is used to increase the estimation accuracy.
One 1024-word and one 729-word SRAMs are used for three 210-point and three
36-point FFTs, respectively. SRAMs are triplicated to enable pipelined operation
of the I/O interface, bucketization and reconstruction blocks. Thus, 3 sFFT
frames exist in the pipeline.

The micro-architecture of the 210-point FFT is shown in Fig. 27.4.3. Each 210-point
FFT uses one radix-4 butterfly to perform an in-place FFT, which is optimized to
reduce area and power consumption as follows: First, the FFT block performs

read and write operations at even and odd clock cycles, respectively, which
enables the use of single port SRAMs. A single read operation provides three
complex values, one for each radix-4 butterfly. The complex multiplication is
computed over two clock cycles using two multipliers for each butterfly. Second,
a twiddle factor (TWF) control unit is shared between the three butterflies. Third,
the block floating point (BFP) technique is used to minimize the quantization
error [2]. BFP is implemented using a single exponent shared between FFTs, and
scaling is done by shifting in case of overflow. Round-half-away-from-zero is
implemented by initializing the accumulator registers with 0.5LSB and truncating
the results. The 36-point FFTs are similar, but use radix-3 butterflies.

The micro-architecture of estimation and collision detection is shown in Fig.
27.4.4. Phase shift and phase detector units use the CORDIC algorithm. The
estimation block operates in two steps. First, time shifts of 1 and 32 samples are
used to compute the MSBs and LSBs of the phase change, respectively. A 3b
overlap is used to fix errors due to concatenation. Since the 5 MSBs of phase
change are taken directly from the output of phase detectors, active frequencies
have to be ~30dB above the quantization noise to be detected correctly.
Frequencies below this level are considered negligible. The frequency number is
estimated from the phase change. This frequency number may have errors in the
LSBs due to quantization noise. The second step corrects any such errors by
using the bucket number to recover the LSBs of the frequency number. This is
possible because all frequencies in a bucket share the same remainder B (B=f
mod M, where f is the frequency number and M is the FFT size), which is also
the bucket number. Thus, in the frequency recovery block associated with the
210-point FFTs, the bucket number gives the 10 LSBs of the frequency number.
However, in the frequency recovery for the 36-point FFTs, the LSBs cannot be
directly replaced by the bucket number since M=36 is not a power of 2. Instead,
the remainder of dividing the frequency number by 36 is calculated and
subtracted from the frequency number. The bucket number is then added to the
result of the subtraction. In our implementation, calculating and subtracting the
remainder is done indirectly by truncating the LSBs of the phase change.

The collision detection block in Fig. 27.4.4 compares the values of the buckets
with and without time-shifts. It uses the estimated frequency to remove the
phase change in the time-shifted bucketizations and compares the three complex
values to detect collisions. In the case of no collision, the three values are
averaged to reduce noise. The result is used to update the output of the sFFT in
SRAMs.

The testchip is fabricated in IBM’s 45nm SOI technology. The sFFT core occupies
0.6mm2 including SRAMs. At 1.18V supply, the chip operates at a maximum
frequency of 1.5GHz, resulting in an effective throughput of 109GS/s. At this
frequency, the measured energy efficiency is 1.2μJ per 746,496–point Fourier
transform. Reducing the clock frequency to 500MHz enables an energy
efficiency of 298nJ per Fourier transform at 0.66V supply. Energy and operating
frequency for a range of supply voltages are shown in Fig. 27.4.5.

Since no prior ASIC implementations of sFFT exist, we compare with recent low-
power implementations of the traditional FFT [3-5]. The measured energy is
normalized by the Fourier transform size to obtain the energy per sample (the
sFFT chip, however, outputs only active frequencies). Fig. 27.4.6 shows that the
implementations in [3-5] work for sparse and non-sparse signals while the sFFT
chip works for signal sparsity up to 0.1%. However, for such sparse signals, the
sFFT chip delivers ~40× lower energy per sample for a 36× larger FFT size. Fig.
27.4.6 also shows that the 746,496-point sFFT chip achieves an 88× reduction
in run-time compared to a C++ implementation running on an i7 CPU [6].

References:
[1] H. Hassanieh, et al., “Simple and Practical Algorithm for Sparse Fourier
Transform,” ACM Symp. Discrete Algorithms, pp. 1183-1184, 2012.
[2] G. Zhong, et al., “A Power-Scalable Reconfigurable FFT/IFFT IC Based on a
Multi-Processor Ring,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 483-495,
2006.
[3] M. Seok, et al., “A 0.27V 30MHz 17.7nJ/transform 1024-pt Complex FFT
Core with Super-Pipelining,” ISSCC Dig. Tech Papers, pp. 342-344, 2011.
[4] Y. Chen, et al., “A 2.4-Gsample/s DVFS FFT Processor for MIMO OFDM
Communication Systems,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1260-
1273, 2008.
[5] C. Yang, et al., “Power and Area Minimization of Reconfigurable FFT
Processors: A 3GPP-LTE Example,” IEEE J. Solid-State Circuits, vol. 47, no. 3,
pp. 757-768, 2012.
[6] sFFT C++ code. http://groups.csail.mit.edu/netmit/sFFT/code.html

978-1-4799-0920-9/14/$31.00 ©2014 IEEE

Session_27_Session_ 12/6/13 6:13 PM Page 12

13DIGEST OF TECHNICAL PAPERS •

ISSCC 2014 / February 12, 2014 / 3:15 PM

Figure 27.4.1: The sFFT algorithm performs bucketization by sub-sampling in
the time domain then taking an FFT, which causes aliasing in the frequency
domain.

Figure 27.4.2: A block diagram of the 210×36-point sparse FFT and input
samples to the 6 FFTs.

Figure 27.4.3: The micro-architecture of the 210-point FFTs.

Figure 27.4.5: Measured energy and operating frequency for a range of
voltage, and throughput versus energy per sample for computing a 746,496-
point sparse Fourier transform.

Figure 27.4.6: Measured energy efficiency and performance of the sFFT chip
compared to published FFTs.

Figure 27.4.4: The micro-architecture of collision detection and estimation.
The complex values (r1, i1), (r2, i2) and (r3, i3) are the output of bucketization
for time-shifts 0, 1 and 32 samples.

27

Session_27_Session_ 12/6/13 6:13 PM Page 13

14 • 2014 IEEE International Solid-State Circuits Conference 978-1-4799-0920-9/14/$31.00 ©2014 IEEE

ISSCC 2014 PAPER CONTINUATIONS

Figure 27.4.7: Die photo of the testchip.

Session_27_Session_ 12/6/13 6:13 PM Page 14

