
Implementing a Fast Cartesian-Polar Matrix
Interpolator

Abhinav Agarwal, Nirav Dave, Kermin Fleming, Asif Khan,

Myron King, Man Cheuk Ng, Muralidaran Vijayaraghavan

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139
Email: {abhiag, ndave, kfleming, aik, mdk, mcn02, vmurali}@csail.mit.edu

Abstract—The 2009 MEMOCODE Hardware/Software Co-
Design Contest assignment was the implementation of a
cartesian-to-polar matrix interpolator. We discuss our hardware
and software design submissions.

I. INTRODUCTION

Each year, MEMOCODE holds a hardware/software co-

design contest, aimed at quickly generating fast and efficient

implementations for a computationally intensive problem. In

this paper, we present our two submissions to the 2009

MEMOCODE hardware/software co-design contest: a pure

hardware cartesian-to-polar matrix interpolator implemented

on the XUP platform and a pure software version implemented

in C.

Microarchitectural tradeoffs are difficult to gauge even in

a well-understood problem space. To better characterize these

tradeoffs, researchers typically build simulation models early

in the design cycle. Unfortunately in our case, the tight contest

schedule precluded such studies. Worse, we had no prior

experience within the problem domain nor were we able to

find an existing body of research as in years past. As a result,

we relied on simplified mathematical analysis to guide our

microarchitectural decisions. In this paper we will discuss our

rationale and the resulting microarchitecture.

II. PROBLEM DESCRIPTION

The cartesian-to-polar interpolator projects a set of cartesian

points onto a sector of the polar plane. The input consists of

an integer value N ∈ [10, 1000], the size of each dimension

in the matrices, an N × N Cartesian matrix CART, a sector

length R ∈ [10, 100], and a sector angle θ ∈ [π
256 , π

4]. Figure 1

shows a diagram of the coordinate plane.

Each entry CART[x][y] corresponds to the point (R +
x

N−1 ,R+ y
N−1). Each entry POL[t][r] corresponds to the point

(R + r
N−1 , t

N−1θ) in polar coordinates or the Cartesian point

(x, y) = ((R + r
N−1) cos(tθ

N−1), (R + r
N−1) sin(tθ

N−1)).
The interpolated polar matrix is determined by a simple

average of the four surrounding points in the CART matrix. To

allow for reduced precision implementations, the specification

constrains the input precision and allows boundary errors when

Fig. 1. Coordinate plane from Design Specification[1]

the polar coordinate is within 2−16 of the a cell boundary in

the Cartesian matrix.

A simplified version of the given C reference code for the

PowerPC on XUP can be found in Figure 2. We use this as

the basis for our discussions of algorithmic changes.

dx=((R+1)-(R*(cos(θ))))/(N-1);
dy=((R+1)*(sin(θ)))/(N-1);
for(r=0;r<N;r++) {
for(t=0;t<N;t++) {
x=(R+(double)r/(N-1))*cos(θ*(double)t/(N-1));
y=(R+(double)r/(N-1))*sin(θ*(double)t/(N-1));
li=(int)((x-R*cos(θ))/dx);
lj=(int)(y/dy);
out[t][r]=
(in[lj+1][li]+in[lj][li]+
in[lj+1][li+1]+in[lj][li+1])/4;

}
}

Fig. 2. Initial Reference Code

III. HARDWARE DESIGN

The coordinate conversion problem exhibits abundant paral-

lelism. All point calculations are fully data-parallel, implying

that computations may be both deeply pipelined and paral-

lelized until device resources are exhausted. To understand the

amount of parallelism realizable on the FPGA, we partition

the interpolation process into two separate stages: address

generation and memory. Address generation determines which

matrix elements to average. As we have noted, this stage is

highly parallel and is limited only by the FPGA resources. The

73978-1-4244-4807-4/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: MIT Libraries. Downloaded on January 31, 2010 at 11:28 from IEEE Xplore. Restrictions apply.

memory stage uses the generated addresses to load the data,

performing a simple average and writing the result back to

memory. Like the first stage, this stage is completely data-

parallel, though it is constrained by the physical memory

bandwidth available on the FPGA board. Figure 3 shows the

top-level block diagram.

Memory
Subsystem

PowerPC

Address
Generation

DMA Engine

System Memory

Fig. 3. Top-Level Diagram

There is no advantage to over-engineering either stage of

the pipeline, since, by Little’s law, unbalancing the pipeline

throughput buys no performance. However, determining the

correct balance of resources allocated to the pipeline stages

is non-trivial. A priori, it is difficult to estimate the resources

required to produce addresses at a certain rate. Instead, We

will analyze the memory system, since it is constrained by

the maximum speed of the off-chip memory. We reused the

PLB-Master DMA Engine [2] built for a previous contest

submission, which transfers an average of one 32-bit word

per cycle when running in burst mode. Each coordinate

computation requires four 32-bit reads and one 32-bit write.

Thus, to process one polar coordinate per cycle, we require

an effective bandwidth five times greater than our physical

memory bandwidth. Even with good cache organization, this

bandwidth will be difficult to sustain. We therefore cap the

address generation performance at a single address request

per cycle and allocate all remaining resources to the memory

system.

A. Address Generation

For performance, we must frame the address generation

problem in such a way so as to exploit cache locality, while

minimizing resource consumption to permit higher perfor-

mance cache designs. To achieve these goals, we process the

polar coordinates in ray-major order. As rays are linear, we

can compute the fixed delta between adjacent points on a ray,

reducing multiplication to addition. This ordering also exhibits

good temporal and spatial locality of memory addresses. Ad-

jacent entries in the polar matrix are close together, sometimes

even aliasing to the same memory location. Figure 4 shows

the new algorithm.

This algorithm leaves only simple additions in the inner

loop. It also moves all division into initialization, allowing a

slow and simple hardware divider to be used. To avoid the

inv_dx= 1 / ((R+1)-(R*cos(θ)));
inv_dy= 1 / ((R+1)*sin(θ));
N1=N-1; theta = 0; dtheta = θ/N1;
rcost_dx = inv_dx * N1 * R * cos(θ);
for(t=0;t<N;t++, theta += dtheta) {
scaledcost = inv_dx * cos(theta);
scaledsint = inv_dy * sin(theta);
x = R*scaledcost-rcost_dx;
y = R*scaledsint ;
for(r=0;r<N;r++) {
x += scaledcost; li=(int) x;
y += scaledsint; lj=(int) y;
out[t][r]=
(in[lj+1][li]+in[lj][li] +
in[lj+1][li+1]+in[lj][li+1])/4;

}
}

Fig. 4. High-level Hardware Algorithm

complexity of floating point computation, we switched to a

fixed-point representation. The successive additions in the new

algorithm require 42 bits of precision for address calculation

in order to stay within the specified accuracy bounds.

1) Implementing Trigonometric Functions: One solution

for implementing trigonometric functions is to execute them in

software and pass the values into hardware. However, because

the PowerPC has no hardware support for these operations,

this would introduce a bottleneck. Using the algorithmic

techniques described in Section IV, we can reduce the number

of trigonometric functions to seven. However, this increases

chain of computation requiring an additional log(Nmax) = 10
bits of precision.

Instead, we used a previously developed [3] hardware IP

library which uses pipeline combinators to implement the CO-

ordinate Rotation DIgital Computer (CORDIC) algorithm [4].

After exploring a variety of pipelining choices, we chose the

fully folded pipeline which generates one sine-cosine pair

every 42 cycles.

B. Memory Subsystem

The memory subsystem is comprised of a direct-mapped

cache module and a fast PLB interface. We will first motivate

the construction of our cache with some observations on

ray-major coordinate calculation. We will then describe the

physical implementation of the cache.

Dependency management is a major challenge in achieving

high degrees of parallelism in a cache and generally carries a

fairly heavy implementation burden. However, for the memory

access pattern used in coordinate conversion, a few simple

observations greatly reduce the complexity of tracking hazards

within the cache.

First, the state read (the cartesian matrix) and the state writ-

ten (the polar matrix) are disjoint. This means we can forward

store values directly to the memory and implement a read-only

cache system. For bandwidth efficiency we accumulate store

commands in a conventional store buffer, coalescing writes

into memory bursts.

74

Authorized licensed use limited to: MIT Libraries. Downloaded on January 31, 2010 at 11:28 from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 5. Cache Behavior at Varying Ray Angles: Figure (a) shows an
example of a cache with 4-word burst size. Shaded blocks are needed for ray
computation, checked blocks are resident in the cache but will never be used
again. Figure (b) shows the π

4
case, in which all blocks in the cache are fully

utilized. The dark box in Figure (b) is a column.

Second, coordinate interpolations touch two adjacent rows

in the cartesian matrix. This means we can partition odd and

even rows into separate caches, doubling cache bandwidth

without substantially increasing design complexity.

Third, address generation traverses the polar coordinates

in ray-major order, with monotonically increasing ray angles

to a maximum of π
4 . This monotonicity implies that if we

access a point in the cartesian matrix, we can guarantee that

no elements below that point in the matrix column will be

accessed in the future. Thus, assuming it is sufficiently large,

the cache will incur only cold misses, implying that no evicted

block will need to be re-fetched. This observation simplifies

the cache, since evicted blocks can be replaced as soon as the

new fill begins streaming in, without checking for write-after-

read (WAR) hazards.

This third observation merits some explanation, since an

insufficiently sized cache may still have WAR hazards. We

organize our cache logically as a set of small independent

caches which share tag-lookup and data store circuitry for

efficiency. Each small cache contains data from a particular

column of the cartesian array. The row size of each cache

and of each column is equal to the size of a memory burst.

Thus, conflicts may occur within the column but not between

columns. We achieve column independence by padding the

cartesian array in memory and providing sufficient cache area

for the number of columns in the largest permitted input. With

this cache organization and the maximum specified ray angle

of π
4 , we observe that if the column caches have capacity

equal to burst size plus one rows, we can avoid all capacity

and conflict misses and thus all WAR hazards. Figure 5 gives

a graphical demonstration of this claim. As the ray sweeps up,

only a set of trailing rows in each column will be used. Only

in the case of a ray angle of π
4 will each row in each column

cache contain live data. We can generate caches supporting

burst sizes up to 32 words on the XUP board.

1) The Cache Implementation: Based on these observa-

tions, we developed a simple four stage pipeline, shown in

Figure 6. Logically, the pipeline can be divided into two parts:

tag match and data access.

Tag matching starts with tag bank lookup, followed by a

= =

Tag
Control

Tag Lookup

Tag Check

Data Request

Data Resp

Data Output

Address Input

E
xt

er
na

l M
em

or
y

Fig. 6. Cache Pipeline

tag match in the next stage. Tag hits are sent immediately to

the data access backend. Tag misses require an extra cycle

to emit a fill request and to update the tag bank. Since, by

construction, there are no hazards within the cache, we can

completely decouple the tag match from the data access to

improve performance. We give the tag match engine ample

buffering to allow many concurrent outstanding fill requests.

The data backend consists of two stages: data address and

data read, based on the read stages of the underlying BRAM

memories. Data is organized into two BRAM banks, allowing

unaligned requests to be satisfied in a single cycle.

The odd and even caches are connected to the DMA

engine via a round-robin arbiter. This organization gives us a

maximum effective memory bandwidth of 128 bits per cycle.

C. Testing

Due to the large input space specified in the problem

description, verification by simulation of even a few large

scenarios was difficult. Since a full system operating on the

FPGA was implemented relatively quickly, we instead chose

to verify our implementation exclusively on the XUP board,

comparing the output against the reference software supplied

by the contest organizers. Unfortunately, for large tests, we

discovered that the reference software was prohibitively slow,

requiring hours to complete a single interpolation.

To ameliorate this situation, we applied a series of trans-

formations, inspired by our hardware design, to the reference

software. These optimizations, in turn, required us to verify

the modified software against the reference solution. However,

since only software needed to be verified, a much faster

general purpose machine could be used.

IV. SOFTWARE IMPLEMENTATION

During the verification of our accelerated software algo-

rithm, it became clear that the software, on a fast multicore,

75

Authorized licensed use limited to: MIT Libraries. Downloaded on January 31, 2010 at 11:28 from IEEE Xplore. Restrictions apply.

outperformed the hardware implementation. We attribute this

difference to the superior memory systems of modern general

purpose processors.

A. Improving the Algorithm

As in hardware, using fixed point values for computation

resulted in a substantial speedup. To further improve perfor-

mance, we need to reduce the number of trigonometric func-

tions. This is accomplished by leveraging the sum-to-product

formulas for cosine and sine to derive a fast computation for

generating the sine-cosine pair for one ray from the sine-cosine

pair of the previous ray.

cos(θ + Δθ) = cos(θ) cos(Δθ) − sin(θ) sin(Δθ)
sin(θ + Δθ) = sin(θ) cos(Δθ) + sin(θ) cos(Δθ)

Since we scale cosine and sine by dx and dy we need to

rescale sin(Δθ) by dy
dx to obtain the correct results. Our final

single-threaded version can be found in Figure 7.

N1=N-1; RN=R*N1;
dx=((R+1)-(R*cos(theta)))/N1;
dy=((R+1)*sin(theta))/N1;
xoffset=R*cos(theta)/dx;
sin_dt_dy_dx=sin(theta/N1)*dy/dx;
sin_dt_dx_dy=sin(theta/N1)*dx/dy;
cos_dt=cos(theta/N1);
scaledcos_t=(1.0/(R+1 - (R*cos(theta));
scaledsin_t=0.0;
for(t=0;t<N;t++) {

x = RN*scaledcos_t - xoffset;
y = RN*scaledsin_t;
for(r=0;r<N;r++) {

li = fixed2Int(x);
lj = fixed2Int(y);
out[t][r]=
(in[lj+1][li]+in[lj][li] +
in[lj+1][li+1]+in[lj][li+1])/4;

x +=scaledcos_t;
y +=scaledsin_t;

}
temp = scaledcos_t*cos_dt

scaledsin_t*sin_dt_dy_dx;
scaledsin_t = scaledsin_t*cos_dt +

scaledcos_t*sin_dt_dx_dy;
scaledcos_t = temp;

}

Fig. 7. Single-threaded Final Code

B. Multithreading

Having optimized the address generation loop, we found

we were still unable to saturate the memory bandwidth. To

increase utilization we exploit the inherent ray-parallelism by

splitting the task across multiple threads. Because the cost of

context switching is quite costly compared to the total task

runtime, we limited the number of threads to four, the total

number of cores in our system.

While multithreading gives us a great speedup, smaller test

cases are too short to compensate for the thread initiation costs.

To counter this we empirically determined how many threads

were necessary for each input size. We found that for sizes

Module LUTs Flip Flops BRAMs
Address Gen. 5276 2762 3
PLB Master 523 462 0
Cache 1976 2658 70
Single Cache 870 647 35

CartPol Total 9411 6247 73

System Total 11590 8127 97

Fig. 8. Synthesis Results for Cartesian-to-Polar interpolator. The total number
of slices is 10132

N ≥ 190 a four-thread system was the right choice while a

single-threaded worked better for the smaller cases.

V. RESULTS

Submissions were scored in two ways. The absolute score

was calculated as a direct speedup over the reference software

running on the PowerPC on the Xilinx XUP board. The

normalized score was determined by dividing the absolute

score by a speedup factor1 normalized to the XUP board. This

factor was based on the speedup of a micro-benchmark and a

count of parallel cores.

Our hardware implementation had a factor of 3381 speedup

over the reference implementation, seven times faster than

the next fastest design submission using the same board. Our

hardware implementation is memory bound, achieving 1.33
Gb/s for most test vectors.

An FPGA with better memory bandwidth would improve

the system. In the case of the XUPV5 board, it is conceivable

to improve the design over the normalization factor. This is

because the XUPV5, in addition to increased LUT count and

memory bandwidth, has a much improved memory controller

which takes advantage of open pages, allowing us to decrease

the burst setup time for particular access patterns. We designed

a cache which exploited these features, but we were unable to

run the design on the XUPV5 by the contest deadline.

Our multithreaded software implementation came in third

in the absolute speed category with an absolute speedup of

24093 over the reference, a factor of two slower than the

winning entry. We believe using a system with more cores

would improve our performance.

REFERENCES

[1] MEMOCode Design Contest, “Cartesian-to-Polar Interpolation,”
http://www.ece.cmu.edu/ jhoe/distribution/
mc09contest/contest09.pdf.

[2] Nirav Dave, Kermin Fleming, Myron King, Michael Pellauer, Murali-
daran Vijayaraghavan, “Hardware Accelleration of Matrix Multiplication
on a Xilinx FPGA,” in Proceedings of Formal Methods and Models for
Codesign (MEMOCODE), Nice, France, 2007.

[3] M. C. Ng, M. Vijayaraghavan, G. Raghavan, N. Dave, J. Hicks, and
Arvind, “From WiFI to WiMAX: Techniques for IP Reuse Across
Different OFDM Protocols,” in Proceedings of Formal Methods and
Models for Codesign (MEMOCODE), Nice, France, 2007.

[4] J. E. Volder, “The CORDIC Trigonometric Computing Technique,” IRE
Transactions on Electronic Computers, vol. 8, no. 3, pp. 330–334,
September 1959.

1the minimum factor was 1

76

Authorized licensed use limited to: MIT Libraries. Downloaded on January 31, 2010 at 11:28 from IEEE Xplore. Restrictions apply.

