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ABSTRACT

We construct a multiparty computation (MPC) protocol
that is secure even if a malicious adversary, in addition to
corrupting 1-€ fraction of all parties for an arbitrarily small
constant € > 0, can leak information about the secret state
of each honest party. This leakage can be continuous for
an unbounded number of executions of the MPC protocol,
computing different functions on the same or different set of
inputs. We assume a (necessary) “leak-free” preprocessing
stage.

We emphasize that we achieve leakage resilience without
weakening the security guarantee of classical MPC. Namely,
an adversary who is given leakage on honest parties’ states,
is guaranteed to learn nothing beyond the input and output
values of corrupted parties. This is in contrast with pre-
vious works on leakage in the multi-party protocol setting,
which weaken the security notion, and only guarantee that a
protocol which leaks ¢ bits about the parties’ secret states,
yields at most ¢ bits of leakage on the parties’ private in-
puts. For some functions, such as voting, such leakage can
be detrimental.

Our result relies on standard cryptographic assumptions,
and our security parameter is polynomially related to the
number of parties.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General;
F.0 [Theory]: General
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1. INTRODUCTION

The notion of secure multiparty computation (MPC), in-
troduced in the works of Yao [Yao82] and Goldreich, Mi-
cali and Wigderson [GMWS8T], is one of the cornerstones in
cryptography. Very briefly, an MPC protocol for computing
a function f allows a group of parties to jointly evaluate f
over their private inputs, with the property that an adver-
sary who corrupts a subset of the parties does not learn
anything beyond the inputs of the corrupted parties and
the output of the function f. Over the years, MPC proto-
cols have found numerous applications, such as in protocols
for auctions, electronic voting, private information retrieval,
and threshold and proactive cryptography.

The definition of security for MPC assumes that an adver-
sary sees the messages sent and received by honest parties,
but their internal state is perfectly secret. However, over the
last two decades, it has become increasingly evident that in
the real world, attackers can gain various additional infor-
mation about the secret states of the honest parties via vari-
ous side-channel attacks (see [Koc96, AK96, QS01, GMOO01,
0ST06, HSH*08] and references therein).

In this work, we study MPC in the setting where an
adversary, who corrupts an arbitrary subset of parties in
the protocol, can also leak information about the entire se-
cret state of each honest party throughout the protocol ex-
ecution (except during a designated leak-free preprocessing
stage). Leakage is modeled by allowing the adversary to
query leakage functions, as follows. Each leakage function is
computed by an arbitrary poly-size circuit, with bounded
output-length, which is applied to the secret state of an
honest processor. The adversary may choose the leakage
functions adaptively, based on the entire history of commu-
nication, previous leakage, and internal state of corrupted
processors.

The security guarantee we aim for and will achieve, is
that any adversary in the above leakage model, does not
learn anything beyond the inputs of the corrupted parties and
output values of the functions computed by the MPC pro-
tocol. This is formalized via the standard real/ideal world
paradigm. In the ideal world, parties do not interact directly,
but rather send their inputs to an “ideal functionality”, who
computes the function for them, and sends them the output.
There is no leakage in the ideal world. An MPC protocol
is said to be secure, if for every “real world” leakage adver-



sary A (as above) there exists an “ideal world” simulator S,
such that the output of all the parties (including the adver-
sary) in the real world, is computationally indistinguishable
from the output of all the parties (including the simulator)
in the ideal world.

Weakly Leakage-Resilient MPC.

We note that recently there have been several results that
consider the problem of constructing leakage-resilient proto-
cols [GJS11, BCH11, DHP11, BGG™11]. However, in con-
trast to the security guarantee we consider here, all these
results give a weak security guarantee (though, they do not
rely on a leak-free preprocessing stage). They guarantee that
an adversary that runs the protocol and leaks ¢ bits about
the honest parties’ secret state, does not learn more than the
output of the function being computed, and an additional ¢
bits about the private inputs of the honest parties. We note
that leakage of ¢ bits on the private inputs of the honest par-
ties could be detrimental to the security of the entire MPC
protocol. For example, say the function to be computed by
the MPC protocol is to tally up the binary votes of the par-
ties. Then, the £ bits can be exactly the complete ¢ votes of
any ¢ honest parties, rendering the protocol useless.

Moreover, this weak security notion allows the adversary
to learn ¢ bits about the joint view of all the honest parties.
Thus, another instructive example is to think of the function
being computed as a threshold decryption function, where
each party has a secret-share of the decryption key. In this
case, the weak security guarantee allows the leakage of ¢
bits from the decryption key, which for some decryption al-
gorithms could entirely compromise security.

Interestingly, we use the result in [BGG*11], which con-
structs an MPC protocol with the weak security guarantee,
as a building block to construct a leakage-resilient MPC pro-
tocol with the classical (strong) security guarantee.

Security Against Continual Leakage.

We further remark that the weaker security notion previ-
ously achieved cannot be extended meaningfully to continual
leakage in the MPC setting. That is, it cannot address the
setting where the n users do not just perform a one-shot
MPC protocol, but rather engage in an unbounded num-
ber of MPC protocols for many functions, and during each
MPC invocation the adversary leaks ¢ bits from each of the
honest party’s internal state. This is obvious, as allowing
the repeated leakage of new £ bits of information on the
honest parties’ inputs would eventually leak the honest par-
ties’ inputs in their entirety. For example, in the setting
where a set of parties jointly compute a threshold decryp-
tion function (as described above), they may want to carry
out many decryption computations, where leakage happens
repeatedly. Since each ¢ bits of leakage corresponds to ¢
bits of leakage on the decryption key, the decryption key
may eventually be completely leaked! Nonetheless, we use
the result of [BGG111] as a building block to achieve our
stronger continual leakage security guarantee.

1.1 Our Result: Continual Leakage-Resilient
MPC

In this work, we construct a leakage-resilient MPC proto-
col for any function f, without weakening the security guar-
antee. We consider a continual setting, where parties over
time compute many functions on their inputs. Our security
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guarantee is that an adversary does not learn anything be-
yond the inputs of the corrupted parties and the output of
the functions computed, even if he continually leaks informa-
tion about the honest parties’ secret states throughout the
protocol executions. Parties’ secret states are periodically
updated via an update procedure, during which the adver-
sary can continue to leak information. We allow each of the
adversary’s leakage functions to be an arbitrary (shrinking)
polynomial time computable function of the entire secret
state of each honest party (separately), and these leakage
functions can be chosen adaptively on all information the
adversary has seen thus far.

Theorem (Informal).

Under (standard) intractability assumptions, for every con-
stant € > 0 there exists an MPC protocol for computing an
unbounded number of functions among n parties of which
at least € fraction are honest. The protocol is secure against
continual leakage, assuming a one-time leak-free preprocess-
ing stage in which the inputs are shared, and where the se-
curity parameter is polynomially related to the number of
parties n.

A few remarks about our result statement are in order.

“Leak-free” Preprocessing.

We assume the existence of a leak-free preprocessing stage.
We stress that this is a necessary assumption to obtain our
strong security guarantee, since otherwise an adversary can
simply leak ¢ bits about an honest party’s secret input, be-
fore the MPC even commences. More generally, we note that
such a leak-free preprocessing stage is a necessary step in the
construction of any leakage resilient cryptographic primitive
which receives a secret input, and where the security guaran-
tee is that the secret input does not leak. This is the case, for
example, in the compilers of [[SW03, FRR*10, JV10, GR10,
GR12], which transform algorithms with a secret state into a
functionally equivalent leakage-resilient variant of the same
algorithm.

We remark that our preprocessing stage in fact has the
nice property that it can be decomposed into two parts,
namely, (a) an interactive preprocessing phase that is inde-
pendent of the parties’ inputs and the functions to be com-
puted, and (b) a non-interactive input dispersal phase. We
stress that the first phase is run only once in the beginning
of time, before the parties know what their inputs are or
what functions they wish to compute. The second (non-
interactive) phase is run whenever the parties choose a set
of inputs.

While both of these parts are assumed to be “leak-free”,
we do allow leakage between them. We refer the reader to
Section 3 for a formal description of our model.

Multi-function MPC and Continual Leakage.

We note that in the standard (leak-free) MPC literature,
one typically considers a one-shot MPC protocol, as opposed
to considering the setting where the parties compute an un-
bounded (polynomial) number of functions. The reason we
focus on the latter setting, is to emphasize that we need
to run the leak-free preprocessing stage only once, and then
the parties can compute any unbounded number of functions
fi,..., fe in a leaky environment.

We further emphasize that we allow the adversary to leak



continuously on the secret states of the parties during the
unbounded computations; the only (necessary) requirement
is that the secret states of the parties are periodically up-
dated (since otherwise they will eventually be completely
leaked). However, the adversary is allowed to leak even dur-
ing each update procedure. We do not bound the total num-
ber of bits that the adversary leaks, but rather only bound
the leakage rate: i.e., the number of bits leaked between up-
dates.

Extending to Multi-Input MPC.

We stated our theorem for the case of computing many
functions on a single set of inputs. However, our construc-
tion is easily extended to the many-input case. Whenever a
party chooses a new input, the (leak-free) non-interactive in-
put phase described above can be repeated. Namely, party
P; on new input x; performs a local computation on z;,
sends a message to the other parties, and erases z;. One
may think of this model as a “hot potato” model, where the
parties never store their inputs for very long (since they are
concerned with leakage), but rather immediately share their
input (as if it were a “hot potato”).

Number of Parties vs. Security Parameter.

Notice that in our theorem, the security parameter is poly-
nomially related to the number of parties. Namely, the se-
curity increases with the number of parties. Therefore, this
theorem is meaningful only when the number of parties in
the MPC protocol is large. One may ask whether this re-
striction on the number of parties being large, or the re-
striction that an e-fraction is honest, is inherent, or whether
it is simply an artifact of our techniques. Unfortunately,
it turns out that this restriction cannot be removed alto-
gether. In particular, one can prove that there does not
exist a secure leakage-resilient two-party computation pro-
tocol in our model.’ Similarly, one can show that there
does not exist a secure leakage-resilient MPC protocol if all
the parties except one are malicious. Moreover, jumping
ahead, in Section 1.4 we show that proving this theorem for
constant number of parties, implies an “only computation
leaks (OCL) compiler” (without leak-free hardware) that has
only a constant number of sub-computations (or “modules”),
which is an interesting open problem on its own. We refer
the reader to Section 1.4 for details.

Assumptions.

In our construction, we rely on several underlying crypto-
graphic primitives, including a fully homomorphic encryp-
tion (FHE) scheme [Gen09, BGV11], a non-interactive zero-

knowledge (NIZK) proof-of-knowledge system [FLS90], a stan-

dard MPC protocol [GMW8T7], an equivocal commitment

and an LDS compiler [BCG™11] (which can be thought of as
a stronger version of an OCL compiler as in [JV10, GR10,
GR12]). These primitives have been shown to exist under
various standard computational intractability assumptions,
and we refer the reader to Section 2 for details on these prim-
itives, and the corresponding assumptions. We note however
that all these primitives, excluding FHE, can be based on
the DDH assumption.

The use of FHE in our construction is in order to ensure
the number of parties required will be independent of the
comelexity of the functions computed by the MPC proto-
col.

Applications.

We demonstrate the application of our result to the prob-
lem of delegating multi-party computation to outside servers.
Generally, the setting is of a large set of parties who need to
perform a joint computation, and they would like a service
(such as Amazon) to do the computation for them. How-
ever, they do not trust any one server, and further believe
that any server can be leaked upon.

Usually, MPC provides a solution around the trust prob-
lem by using several servers, as follows: Each party secret
shares her input, and gives one share to each server; then
the servers carry out the desired computation by running
an MPC protocol; finally, one argues that if there are suf-
ficiently many honest parties, then security is guaranteed.
However, if an adversary can obtain leakage information
from the honest servers, then this is no longer true. To ar-
gue security in the leaky setting, the servers will need to run
a leakage-resilient MPC protocol. Moreover, if the servers
compute many functions on the secret inputs, then they will
need to run an MPC protocol that is secure against con-
tinual leakage. Let us demonstrate three examples of this
setting.

e FElectronic election: Say an electronic election among
many voters is to be held. Clearly running an MPC
protocol among all voters is prohibitive, since it re-
quires interaction between every two voters. Instead,
the MPC protocol is run by a proxy of n servers. Since
these servers compute on very sensitive information,
attackers may try to employ various side-channel at-
tacks to learn this information. Thus, to ensure the
secrecy of the individual votes, the servers should run
a leakage-resilient MPC protocol.

Medical Data: One may envision a huge database which
contains the medical data of every patient in the US.
To compute any global statistic on this data, one would
not want to put complete trust in any single database.

scheme [FS89], a weakly leakage-resilient MPC protocol [BGGT11]?We emphasize that, while FHE immediately solves the re-

IThe reason is the following: Assume the adversary controls
party Pi. In this case, he knows the entire secret state si
of P1, and can choose his leakage function L to depend on s1:
i.e., L=L,. Note that L takes as input the secret state sz
of P,, and thus the adversary can leak any (shrinking) func-
tion g(s1, s2) by setting L, (s2) 2 g(s1, s2). But, recall that
from the secret states (s1,s2) the parties can compute any
function of the original inputs (21, z2). Therefore, the func-
tion leaked can be an arbitrary function of the original in-
puts. Clearly, such leakage cannot be simulated in the ideal
world.
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lated problem of computing on encrypted data, FHE does
not suffice for our purposes. To illustrate, suppose the par-
ties collectively generate a public key pk for the FHE scheme,
so that they each hold a secret share of the correspond-
ing secret key, and then each publish an encryption of their
input x;. Then for any efficiently computable function f,
they can easily produce an encryption of the desired output,
Encok(f(Z)). However, the challenge is (even for a one-shot
function computation) how to enable the parties to collec-
tively decrypt this ciphertext and reveal f (a? itself, while
simultaneously ensuring that the adversary (who can cor-
rupt nearly all of the parties, and leak on all the rest) is not
able to learn any information on the x;’s.



Instead, it is distributed to n different databases. Each
time they need to compute statistics on this data, they
engage in an MPC protocol. As in the voting example,
since these databases contain very sensitive informa-
tion, an adversary may try to obtain this information
via a leakage attack. Thus, to ensure security, the
databases must run an MPC protocol that is secure
against continual leakage.

Differential Privacy: In the area of differential privacy,
great care is taken to ensure that the data of individ-
uals is protected. However, usually it is assumed that
there is an honest curator, and that the people in the
database hand their secret data to this curator. How-
ever, it seems likely that people may not trust any
single curator with highly sensitive information (such
as whether they do or do not have a disease which may
scare off life insurance providers). Thus, as in the pre-
vious examples, this trusted curator can be replaced
by a multitude of parties of which only a small frac-
tion is assumed to be honest. Moreover, if these par-
ties compute on the database using a leakage-resilient
MPC protocol, then security is guaranteed even if all
the honest parties are leaked upon (as long as some
e-fraction of the honest parties are not fully leaked
upon).

1.2 Related Work

Leakage-Resilient Non-Interactive Primitives.
There has been an extensive amount of research on leakage-
resilient cryptography in the past few years. Most prior

works construct specific leakage-resilient non-interactive prim-
itives, such as leakage-resilient encryption schemes and leakage-

resilient signature schemes [DP08, AGV09, Pie09, DKL09,
ADWO09, NS09, KV09, DGK™10, FKPR10, ADNT10, KP10,
GR10, JV10, BG10, BKKV10, DP10, DHLW10a, DHLW10b,
LRW11, MTVY11, BSW11, LLW11, DLWW11, BCG*11].

Weakly Leakage-Resilient Interactive Protocols.
There has also been prior work on the problem of con-

structing leakage-resilient interactive protocols [GJS11, BCH11,

BGK11, DHP11, BGG"11]. Garg et. al. [GJS11] present
a leakage-resilient zero-knowledge proof system. Bitansky
et. al. [BCH11] present leakage-resilient protocols for various
functionalities (such as secure message transmission, obliv-
ious transfer, and commitments) which are secure against
semi-honest adversaries, and also zero knowledge, in the UC
framework. Boyle et. al. [BGK11] present a leakage-resilient
multi-party coin tossing protocol. Damgard, Hazay, and Pa-
tra [DHP11] present a general leakage-resilient two-party se-
cure function evaluation protocol for NC' functions in the
semi-honest setting. In their model, they further place a
restriction that the adversary must leak on the input and
randomness of an honest party’s secret state independently.
Finally, very recently Boyle et. al. [BGG'11] constructed a
general leakage-resilient MPC protocol that is secure in the
UC setting.

However, all the results in the interactive setting men-
tioned above offer a weak security guarantee, that an adver-
sary that leaks £ bits in the real world, gains at most £ bits
of secret information about the secret inputs of the parties.
(An exception is the work of [BGK11] that considered the
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specific coin-tossing functionality, where the parties do not
have any secret inputs.) Moreover, the £ bits of secret in-
formation gained is an arbitrary (poly-size) function of the
joint inputs x1,...,Tn.

Only Computation Leaks Model.

Finally, we mention that various leakage models have been
considered in the literature that restrict the leakage func-
tions in different ways. Most notable is the only computa-
tion leaks (OCL) model of Micali and Reyzin [MRO4]. The
axiom of this model is that secret information that is merely
stored in memory does not leak, but any information that
is used during a computation may leak.

Several results prove security for specific cryptographic
primitives in the OCL leakage model [DP08, Pie09, FKPR10].
More generally, it is known how to convert any circuit into
one that is secure in the OCL model [GR10, JV10, GR12].
In particular, a recent work of Goldwasser and Rothblum
[GR12] shows how to do this unconditionally, making no
intractability assumptions, and without resorting to secure
leak-free hardware, unlike the previous works. Specifically,
Goldwasser and Rothblum construct an efficient compiler
that takes any circuit (with some secret values hard-wired)
and converts it into a leakage-resilient one, consisting of sev-

eral modules, each of which performs a specific sub-computation.

The security guarantee is that an adversary, who at any
point of time throughout the computation obtains bounded
leakage from the “currently active” module, does not learn
any more information than having black-box access to the
circuit. We will use a variant of this result (namely, an LDS
compiler; see Section 2.5) to construct our leakage-resilient
MPC scheme. In particular, we use [GR12] as a building
block in our construction. See Section 1.3 for details.

We stress that our result does not use the OCL assump-
tion, and we allow the adversary to compute leakage func-
tions on everything held in the memory of each party (except
during the preprocessing phase and during the input phase).

1.3 Overview of Our Construction

Starting point — OCL Compiler.

As discussed earlier, it is known how to convert any circuit
into one that is secure in the only computation leaks (OCL)
model (without assuming secure hardware) [GR12]. In light
of this result, a natural first idea toward realizing our goal
of constructing leakage-resilient MPC protocols, is the fol-
lowing. Let Pi,..., P, denote the set of all parties, and let
Uz be a universal circuit that has the secret input vector &
of all the parties hard-wired into it and on input a circuit f
outputs Uz(f) = f(x). Then, very roughly, the candidate
MPC protocol works as follows. First, in the “leak free”
preprocessing phase, apply the OCL compiler of [GR12] on
circuit Uz to obtain a set of modules Subi,...,Sub, such
that on any input f, the “compiled” circuit (consisting of
Subq,...,Sub,) outputs Uz(f) = f(¥). Next, in the com-
putation phase, in order to securely compute a function f,
each party P; emulates the module Sub; (such that the com-
putation of Sub; is performed by party P;), where the input
of Sub; is f, and the output of Sub,, is the protocol out-
put f(Z). Finally, in the update phase, the parties update
their respective modules by running the update algorithm
of the OCL compiler.

Now, assuming that we can reduce (independent) leakage



on each party to (independent) leakage on its correspond-
ing module, one may hope that the above MPC protocol
achieves the desired security properties: in particular, pri-
vacy of the inputs that were “encoded” in the preprocessing
phase. Unfortunately, as we explain below, this is not the
case. Nevertheless, as will be evident from the forthcom-
ing discussion, the above approach serves as a good starting
point toward realizing our goal.

OCL Compiler vs. LR-MPC.
There are two main differences between the setting of
leakage-resilient MPC (LR-MPC) and an OCL compiler.

1. The first difference is perhaps best illustrated by the
fact that an OCL compiler only guarantees security
against an external adversary who can obtain leakage
from the modules. In contrast, in the setting of LR-
MPC, we wish to guarantee security against an inter-
nal adversary, who may also corrupt a subset of the
parties.

More concretely, recall that the security of the OCL
compiler crucially relies on the assumption that an ex-
ternal adversary can only obtain bounded, independent
leakage on each module. Further, in order for the cor-
rectness of the compiled circuit to hold, each module
must perform its computation as specified. As a result,
the above approach, at best, yields an MPC protocol
that is secure when all the parties are honest (not even
semi-honest) but can be leaked upon by an external
adversary. Specifically, note that if an internal adver-
sary can corrupt some of the parties, then we can no
longer guarantee correctness of computation, and even
worse, an adversary may be able to obtain joint leak-
age on multiple modules, and learn the entire secret
state of modules corresponding to corrupted parties,
thus violating both of the above stated requirements.

. The second difference between the OCL compiler and
the leakage-resilient MPC setting is that in the OCL
setting, the communication between the modules is as-
sumed to be private (but may be leaked), and leakage
is assumed to happen “in order”; i.e., only a module
which is currently computing can be leaked upon. On
the other hand, in the leakage-resilient MPC setting,
the entire communication is to be known to the adver-
sary, and moreover, leakage on any party can happen
at any time.

Emulating Modules via Weakly LR-MPC.

Our key idea to circumvent the first problem stated above
is to emulate each Sub; by a designated set of parties S; =
{P;,,..., P}, instead of a single party P;. More concretely,
we secret share Sub; between P;,...,P;,, who then run a
specific MPC protocol II to jointly emulate the (function-
ality of) module Sub;. Now, note that as long as at least
one of the parties in the designated set .S; is honest, the
emulation of Sub; will be “correct”, and if leakage on each
honest party is bounded, then we can expect the leakage on
the module Sub; to be bounded as well. Furthermore, if all
of the designated sets S; for the modules Sub; are disjoint
(i-e., no party is contained within two different sets), then
the leakage on each module will be independent, as required.
However, note that since we are in the setting of leakage, in
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order for the above idea to work, we need the MPC protocol
IT to satisfy some form of leakage-resilience. Thus, a priori,
it seems that we haven’t made any progress at all.

Our next crucial observation is that protocol II in fact
only needs to a satisfy a weaker form of leakage-resilience.
Specifically, we only require that leakage on the secret state
of each party P;, executing protocol II (to emulate Sub;)
can be “reduced” to leakage on the module Sub;. (This suf-
fices since the OCL compiler allows bounded leakage on each
module.) More generally, this translates to constructing an
MPC protocol such that the leakage on the secret states of
the honest parties in the real world can be reduced to leak-
age on the inputs of the honest parties in the ideal world.
Fortunately, an MPC protocol (for any poly-size function f)
satisfying the above (weak) form of leakage-resilience was
recently constructed by Boyle et al. [BGG11]. Thus, we
are able to employ their construction here.?

However, the result of Boyle et al. is only for determinis-
tic functions, whereas the modules in the OCL construction
compute randomized functions. Thus, we need to extend the
weakly leakage-resilient MPC to hold for randomized com-
putations. See Section 2.6 (and Section 2.6.1 in particular)
for further details.

Using an LDS Compiler Instead of an OCL Compiler.

Our key idea to circumvent the second problem stated
above is to use an LDS compiler instead of an OCL compiler.
The LDS (leaky distributed system) model was introduced
in [BCG™11], and it strengthens the OCL model in two ways
(which are exactly the strengthenings we need). First, in the
OCL model, leakage occurs in a certain ordering (based on
the order of computation). The LDS model strengthens the
power of the adversary, by allowing him to leak from the
sub-computations in any order he wishes. Moreover, he can
leak a bit from Sub;, then leak a bit from Subj;, and based
on the leakage values, leak again on Sub;. So, the adversary
controls which Sub; he wishes to leak from. In addition,
in the LDS model, the adversary can view and control the
entire communication between the modules. We refer the
reader to Section 2.5 for details on the LDS compiler.

By using an LDS compiler, as opposed to an OCL compiler,
we get around the second problem mentioned above.

Reducing Number of Parties via FHE.

An important issue that was overlooked in the previous
discussion is the following. The only known OCL compiler
that does not rely on leak-free hardware [GR12], and thus
the only known LDS compiler without leak-free hardware,
suffers from the drawback that the number of modules in
the “compiled” circuit is linear in the size of the original
circuit. As a result, when we apply the LDS compiler on Ug,
whose size grows with |Z|, the number of resultant modules
is more than the number of parties! Thus, a priori, it is not
even clear how to realize the above approach.

3 At this point, an advanced reader may question whether
the result of Boyle et al. [BGG'11], in conjunction with
a leakage-resilient secret sharing scheme, directly yields a
leakage-resilient MPC protocol in our model. Unfortunately,
this is not the case since the simulator of Boyle et al. requires
joint leakage on the honest party inputs, even when the real
world adversary makes disjoint leakage queries on the secret
states of honest parties. We refer the reader to Section 1.4
for more details.



In order to resolve this above problem, we make crucial
use of fully homomorphic encryption (FHE) in the following
manner. Instead of simply applying the LDS compiler to
Uz, we now first compute a key pair (pk,sk) for an FHE
scheme, and then apply the LDS compiler to the decryption
circuit Dece(-) with the secret key sk hardwired. Note that
the number of resultant modules is now independent of the
number of parties. Now, in a non-interactive input phase
(that is also “leak-free”), the parties P; each encrypt their
respective inputs x; under the public key pk, and publish
the resulting ciphertexts &;. Then, whenever the parties
wish to compute a functionality f over their inputs, they
homomorphically evaluate §; = Evalp((£1, ..., Zn), f), and
collectively evaluate the compiled decryption circuit on the
value 5 in the manner described above.

We note that the use of FHE allows us to obtain the de-
sired property that the preprocessing phase is independent
of the inputs and functions to be computed, since in this
phase a key pair (pk, sk) is generated and the LDS compiler
is applied to the corresponding decryption circuit Decy(+).
In addition, the input phase is non-interactive, since in this
phase the parties simply compute and send an encryption of
their inputs.

Missing Pieces.

A few technical issues still remain undiscussed. For exam-
ple, it is not immediately clear how to choose the designated
sets of parties S; such that at least one of the parties in
each set S; is honest, and each set S; is independent. Very
roughly, to address this problem, we employ (an adapted
version of) the committee election protocol of Feige [Fei99]
to divide the parties into several committees, one for each
module. Then, by a careful choice of parameters, we are
able to obtain the desired guarantees. We refer the reader
to the technical sections for more details.

1.4 Future Directions

LR-MPC for Constant Number of Parties.

Perhaps the most interesting open question left from this
work is to construct a leakage-resilient MPC protocol for
constant number of parties. We note that such a result (even
if we only consider adversaries that leak, but do not corrupt
any party) will imply the following interesting corollary: The
existence of an efficient compiler that converts any circuit
into a leakage-resilient circuit that is secure in the “only
computation leaks” (OCL) model with constant number of
modules (and without assuming leak-free hardware). We
refer the reader to Section 2.5 for details.

To see this implication, consider such a leakage-resilient
MPC protocol. Let (an arbitrary) party Pi take as his se-
cret input the secret circuit C' to be compiled, and the other
parties take no inputs. After the leak-free preprocessing
stage (and the leak-free input stage), each party P; holds a
secret state s;. We think of each party P; as being a mod-
ule Sub; in the compiled circuit. To evaluate the circuit C
on (public) input z, the modules carry out a leakage-resilient
MPC computation of the universal function U,, that on in-
puts {s;}, which form some sort of secret-sharing of C', out-
puts C(z). Since the OCL model allows leakage on each
module separately, this corresponds to allowing leakage on
each party separately, which according to our definition of
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security gives no information about the secret C' beyond the
output value C(x).

Weakly Leakage-Resilient MPC with Disjoint Leak-
age.

Another interesting open question is to construct a leakage-
resilient MPC protocol without assuming any leak-free stages,
and requiring the following weakened security definition: For
each “real world” adversary that makes ¢ leakage queries,
where each leakage query is applied to the secret state of
a single honest party, there exists a simulator in the “ideal
world” that makes at most ¢ leakage queries, where each
leakage query is applied to the input of a single honest party.

We note that the recent result of [BGG™11] allowed the
adversary in the “real world” to make leakage queries on the
joint secret state of all the parties, and allowed the simu-
lator in the “ideal world” to make leakage queries that are
a function of all the inputs of the honest parties. Unfortu-
nately, their simulator requires joint leakage on the honest
party’s inputs even in the case where the adversary only
makes disjoint leakage queries.

We next show that such a leakage-resilient MPC protocol,
where the leakage in the real world and in the ideal world is
made on each party separately, would imply a result similar
to ours, which allows a leak-free preprocessing stage, but
considers a strong security guarantee. Intuitively, in the
leak-free preprocessing stage, the parties will secret share
their inputs via a secret sharing scheme that is resilient to
continual leakage. Such a scheme was recently presented by
Dodis et. al. [DLWW11]. Then, any time the parties wish
to compute a function f of their secret inputs, they will run
the weak leakage-resilient MPC protocol. Security follows
from the fact that the adversary only gains leakage from the
secret share of each party separately, and from the fact that
the secret-sharing scheme is resilient to continual leakage on
each of its shares.

LR-MPC with Non-Interactive Preprocessing.

Finally, an interesting open question that is left by this
work, is to construct a leakage-resilient MPC protocol with-
out the initial leak-free preprocessing stage, but only with
the leak-free non-interactive input stages.

2. PRELIMINARIES

2.1 Non-Interactive Zero Knowledge

DEFINITION 2.1. [FLS90, BFM88, BSMP91]:
II = (Gen,P,V,S = (8°,5)) is an efficient adaptive
NIZK proof system for a language L € NP with witness
relation R if Gen, P, V, 8, SP°°f are all ppt algorithms, and
there exists a negligible function p such that for all k the
following three requirements hold.

e Completeness: For all z,w such that R(z,w)
and for all strings crs < Gen(1%),

V(crs, z, P(z, w,crs)) = 1.

L,

e Adaptive Soundness: For all adversaries A, if crs <
Gen(1%) is sampled uniformly at random, then the prob-
ability that A(crs) will output a pair (xz,m) such that
x & L and yet V(crs,x,m) =1, is at most u(k).



Adaptive Zero-Knowledge: For all ppt adversaries
A,

| Pr{Exp u (k) = 1] — Pr{ExpSs (k) = 1]| < u(k),
where the experiment Exp 4 (k) is defined by:

crs < Gen(1%)
Return A7) (crs)

and the experiment Exp3 (k) is defined by:
(crs, trap) < S°(1%)

Return AS/(CrS’trap"")(crs),
where S'(crs, trap, z, w) = SP° (crs, trap, z).
We next define the notion of a NIZK proof of knowledge.

DEFINITION 2.2. Let I = (Gen,P,V,S = (8%, 57°°")) be
an efficient adaptive NIZK proof system for an NP language
L € NP with a corresponding NP relation R. We say that 11
is a proof-of-knowledge if there exists a ppt algorithm E
such that for every ppt adversary A,

Pr[A(crs) = (z,7) and E(crs, trap,z,m) = w”
s.t. V(ers,z,m) = 1 and (z,w") ¢ R] = negl(k),

where the probabilities are over (crs,trap) + ST(1%), and
over the random coin tosses of the extractor algorithm E.

LEMMA 2.3 ([FLS90]). Assuming the existence of en-
hanced trapdoor permutations, there exists an efficient adap-
tive NIZK proof of knowledge for all languages in NP.

2.2 Equivocal Commitments

Informally speaking, a bit-commitment scheme is equivo-
cal if it satisfies the following additional requirement. There
exists an efficient simulator that outputs a fake commit-
ment such that: (a) the commitment can be decommitted
to both 0 and 1, and (b) the simulated commitment and
decommitment pair is indistinguishable from a real pair.
We now formally define the equivocability property for bit-
commitment schemes in the CRS model.

The following definition is adapted from [FS89, CIO98].

DEFINITION 2.4. A non-interactive bit-commitment scheme

(Gen, Com, Rec) in the CRS model is said to be an equivo-
cal bit-commitment scheme in the CRS model if there exists
a PPT simulator algorithm S = (8%, 8°™) such that S
takes as input the security parameter 1¥ and outputs a CRS
and trapdoor pair, (crs,trap); and S®™ takes as input such
a pair (crs,trap) and generates a tuple (c,d°,d") of a com-
mitment string ¢ and two decommitments d° and d* (for O
and 1), such that the following holds.

1. For everyb € {0,1} and every (c,d°,d") + S®™(crs, trap),

it holds that
Rec(crs, ¢, d’) = b.

2. For every b € {0, 1}, the random variables

{(crs, ¢, d) : crs < Gen(1"), (¢, d) < Com(crs, b)}
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and

{(crs, ¢, d®) : (crs, trap) < S“°(1%),
(c,d’,d") < S°™(crs, trap)}

are computationally indistinguishable.

Reusable CRS.

Note that the simulator algorithms S and S®™ are de-
scribed as separate algorithms in the Definition 2.4 to high-
light that it is not necessary to create a separate CRS for
every equivocal commitment, i.e., the CRS is reusable. In
this case, Definition 2.4 can be extended in a straightfor-
ward manner to consider indistinguishability of an honestly
generated tuple consisting of a crs and polynomially many
commitment-decommitment pairs, from a simulated tuple.

LEMMA 2.5 ([CLOS02]). Assuming the existence of one-
way functions, there exists an equivocal bit commitment in
the (reusable) CRS model.

String Equivocal Commitments.

For our purposes, we actually use string equivocal com-
mitment schemes. Note that such a scheme can be easily
constructed by simply repeating the above bit commitment
scheme in parallel. More specifically, a commitment to a
string of length n is a vector (c1, ..., ¢ ), with corresponding
decommitment vector (di, ...,dr). The simulator algorithm
S°™ produces a commitment vector and a pair of decommit-
ment vectors d° = (dY, ...,d%), d* = (di,...,dp). A decom-
mitment to any particular bit string a = (a,...,an) can be
formed by selecting the appropriate decommitment values
(dit,...,dav). We denote this vector as d”.

2.3 The Elect Protocol

As part of our protocol, we elect disjoint committees, and
need the guarantee that (with overwhelming probability in
k) the number of parties in each committee is of the correct
approximate size, and that a constant fraction of each com-
mittee is honest. Such a protocol can be obtained using the
technique of Feige’s lightest bin committee election protocol
[Fei99].

Feige’s protocol selects a single committee of approximate
size k out of n parties by having each party choose and
broadcast a random bin in [%] 4 The elected committee £
consists of the parties in the lightest bin. Feige demonstrated
that no set of malicious parties M C [n] of size (1 — €)n
can force a committee £ to be elected for which |€ N M| is
significantly greater than (1—e)k, by using a Chernoff bound
to argue that each bin contains nearly ek honest parties.

Suppose we wish to elect m disjoint committees, each of
size approximately k, where k is the security parameter,
and where the number of parties n is at least n > mk?. We
consider the following protocol, Elect. Each party samples
a random value z; <+ [%] The resulting committees are
precisely the m lightest bins. Namely, suppose the lightest
bin is ¢1, the second lightest bin is £2, etc. Then & = {P; :
Ti = fj}, for _] = 1,...,m.

“In Feige’s original work [Fei99], he considered the specific
case of k£ = logn. For our purpose, we need to elect com-
mittees whose size depends on the security parameter (to
achieve negligible error), and thus we consider general k.



LEMMA 2.6. Let n > mk?, and let M C [n] be any sub-
set of corrupted parties of size (1 — €)n. Then the protocol
Elect yields a collection of m disjoint committees {£;}72
such that the following properties simultaneously hold with
probability > 1 — e~ ©®

|E;NM|
1€5]

2. Vj, <l-3.

The proof of Lemma 2.6 is very similar to that of the
disjoint committee election protocol of [BGK11]. We refer
the reader to the full version for a complete analysis.

We remark that a constant fraction of honest parties in
the elected committees will be needed for the weakly leakage-
resilient MPC for randomized functionalities (see discussion
in Section 2.6.1).

2.4 Fully Homomorphic Encryption

A fully homomorphic public-key encryption scheme (FHE)
consists of algorithms (Gen, Enc, Dec, Eval). The first three
are the standard key generation, encryption and decryption
algorithms of a public key scheme. The additional algorithm
Eval is a deterministic polynomial-time algorithm that takes
as input a public key pk, a ciphertext & < Encpk () and
a circuit C, and outputs a new ciphertext ¢ = Evaly (%, C)
such that Decq (¢) = C (x), where sk is the secret key corre-
sponding to the public key pk. It is required that the size of
¢ depends polynomially on the security parameter and the
length of the output C' (z), but is otherwise independent of
the size of the circuit C.

Several such FHE schemes have been constructed, start-
ing with the seminal work of Gentry [Gen09]. Recently, new
schemes were presented by Brakerski, Gentry and Vaikun-
tanathan [BV11, BGV11] that achieve greater efficiency and
are based on the LWE assumption. We note that in these
schemes, the size of the public key depends linearly on the
depth of the functions being evaluated. As a result, the com-
plexity of our preprocessing phase depends on the maximum
depth of functions that we would like to compute. This is-
sue can be avoided altogether if we assume that the schemes
of [BV11, BGV11] are circular secure.

For our construction, we need an FHE scheme with the
following additional property, which we refer to as certifia-
bility. Loosely speaking, an FHE scheme is said to be cer-
tifiable, if there is an efficient algorithm that takes as input
a random string r and tests whether it is “good” to use r
as randomness in the encryption algorithm Enc. More pre-
cisely, a certifiable FHE scheme is associated with a set R,
which consists of all the “good” random strings, such that (1)
a random string is in R with overwhelming probability; and
(2) The Eval algorithm and the decryption algorithm Dec
are correct on ciphertexts that use randomness from R to
encrypt. A formal definition follows.

DEFINITION 2.7. A FHE scheme is said to be certifiable if
there exists a subset R C {0,1}P°Y®) of possible randomness
values for which the following hold.

1. Pr[r € R] = 1 — negl(k), where the probability is over
uniformly sampled r + {0,1}P¥*),

2. There exists an efficient algorithm Agr such that Ar(r) =
1 for r € R and 0 otherwise.
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8. We have

Vb1, ...,bn € {0,1}, Vri,...,7n € R,
Y poly-size circuits f : {0,1}" — {0,1}

plkj,gk Decs (Evalpk(f, 1y ..oy ¢n)) = f(b1, ..., bn),
where ¢; = Encpk(bi; 73)
=1 — negl(k).

We note that this property holds, for example, for the
schemes of [BV11, BGV11]. For the readers who are familiar
with these constructions, the set of “good” randomness R
corresponds to encrypting with sufficiently “small noise.”

2.5 Leaky Distributed Systems

One of the tools in our construction is a compiler that
converts any circuit C' (with secrets) into a collection of sub-
computations (or “modules”) Subq, ..., Sub.,,, whose sequen-
tial evaluation evaluates the circuit C', and which is secure in
the leaky distributed systems (LDS) model, a model recently
introduced by Bitansky et. al. [BCG111].

Before we describe this model and compiler, let us re-
call prerequisite prior works [JV10, GR10, GR12], which
construct such a compiler in the “only computation leaks”
(OCL) model. In particular, these works demonstrate a
compiler that takes a circuit C' and converts it into a cir-
cuit C’ consisting of m disjoint, ordered sub-computations
Suby,...,Sub,,, where the input to sub-computation Sub;
depends only on the output of earlier sub-computations.
Each of these sub-computations Sub; is modeled as a non-
uniform randomized poly-size circuit, with a “secret state.”
It was proven that no information about the circuit C is
leaked, even if each of these sub-computations is leaky. More
specifically, the adversary can request to see a bounded-
length function of each Sub; (separately), and these leakage
functions may be adaptively chosen.

These works also consider the continual leakage setting,
where leakage occurs over and over again in time. In this
setting, the secret state of each Sub; must be continually
updated or refreshed. To this end, after each computation,
all the Sub;’s update their secret state by running a ran-
domized protocol Update. We stress that leakage may occur
during each of these update protocols, and that such leakage
may be a function of both the current secret state and the
randomness used by the Update procedure.

In this work, we use such a compiler which is secure in
the LDS model [BCG™11]. The LDS model strengthens the
OCL model in two ways. First, in the LDS model, the adver-
sary is allowed to view and control the entire communication
between modules; in contrast, the OCL model assumes the
communication between modules is kept secret from the ad-
versary, and that the messages are generated honestly. Sec-
ond, in the LDS model, the adversary may leak adaptively
on each module in any order. For instance, the adversary
may leak a bit from Sub;, then a bit from Subj;, and based
on the results, leak again on Sub;. In contrast, the OCL
model only allows the adversary to request leakage infor-
mation from the module that is currently computing. In
particular, this restricts the adversary to leak on modules in
order (i.e., first leak from Subi, then from Subs, etc.).

REMARK 2.8. For the sake of simplicity of notation, we
assume (without loss of generality) that the module Sub; only
sends messages to Sub; 1 (where we define Subm,41 £ Subq ).



Moreover, we assume for simplicity that during each com-
putation, where C' is evaluated on some input v, each mod-
ule Sub; sends a single message to Sub;y1, and that Sub,,
does not send a message to any module, and simply out-
puts C(v). This assumption indeed holds for the LDS com-
piler of [BCG" 11] which is based on [GR12]. We note that
this assumption is not needed for our result to be correct, but
it simplifies the notation.

At the end of each time period, the modules “refresh” their
inner state by applying a (possibly distributed) Update pro-
cedure, after which they erase their previous state. As with
the rest of the computation, the Update procedure is also
exposed to leakage, and the adversary controls the exchange
of messages during the update.

DEFINITION 2.9
In a X-bounded LDS attack, a PPT adversary A interacts
with modules (Subi, ..., Suby,) by adaptively performing any
sequence of the following actions:

e Interact(j, msg): For j € [m], send the message msg to
the j’th submodule, Subj, and receive the corresponding
reply. Note that the modules are message-driven: they
become activated when they receive a message from the
attacker, at which point they compute and send the
result, and then wait for additional messages.

Leak(j,L): For j € [m] and a poly-size leakage func-
tion L : {0,1}* — {0,1}, if strictly fewer than A
queries of the form Leak(j, -) have been made so far, A
receives the evaluation of L on the secret state of the
j’th submodule, Sub;. Otherwise, A receives L.

In a continual A\-LDS attack, the adversary A repeats a \-
bounded LDS attack polynomially many times, where between
every two consecutive attacks the secret states of the modules
are updated. The update is done by running a distributed
Update protocol among all the modules. We also allow A to
leak during the Update procedure, where the leakage function
takes as input both the current secret state of Sub; and the
randomness it uses during the Update procedure.

We denote by time period t of submodule Subj the time
period between the beginning of the (t—1) st Update procedure
and the end of the t’th Update procedure in that submodule
(note that these time periods are overlapping).5 We allow
the adversary A to leak at most A bits from each Sub; during
each (local) time period.

We refer to such an adversary A as an A-LDS adver-
sary, and denote the output of A in such an attack by Al :
Suby, ..., Sub,, : Update].

We say that the collection of modules (Subs, ..., Sub,,) is
A-secure in the LDS model if for any A-LDS adversary A
interacting with the modules as described above, there exists
a PPT simulator who simulates the output of A.

DEFINITION 2.10  (LDS-SECURE CIRCUIT COMPILER).
We say that (C,Update) is a A\-LDS secure circuit compiler if
for any circuit C and (Subq, ..., Sub,,) < C(C), the following
two properties hold:

SIntuitively, time period ¢ is the entire time period where the
t’th updated secret states can be leaked. Note that during
the t’th Update procedure, both the (¢t — 1)’st and the ¢’th
secret state may leak, which is why the time periods are
overlapping.

(LEAKY DISTRIBUTED SYSTEMS (LDS)).
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1. Correctness: The collection of modules (Suby, ..., Suby,)
maintain the functionality of C when all the messages
between them are delivered intact.

. Secrecy: For every PPT A-LDS adversary A there
exists a PPT simulator S, such that for any ensemble
of poly-size circuits {Cn} and any auziliary input z €
{0, 1}p01y(n) .

{A(z)[x: Subi, .., Sub,, : Update] }

EN,CeC,
. {Sc(z, 1|C|)}

where S only queries C' on the inputs A sends to the
first module, Subs .

neN,CeCyp ’

THEOREM 2.11  ([BCG111]). Assuming the existence of
a non-committing encryption scheme and a A\-OCL circuit
compiler which compiles a circuit C' to m(|C|) modules, there
exists a A-LDS secure circuit compiler (C,Update) for which
C(C) has the same number of modules, m(|C]|).

We note that there are known constructions of non-committing

encryption schemes based on standard cryptographic as-
sumptions, such as the DDH assumption and the RSA as-
sumption. Moreover, a very recent work of Goldwasser and
Rothblum [GR12] constructs a A-OCL circuit compiler (un-
conditionally) with the following properties.

THEOREM 2.12  ([GR12]). For any security parameter
k, there (unconditionally) exists a A\-OCL secure circuit com-

piler for X = Q(k), that takes any circuit C' into a collection
of O(|C|) modules, each of size O(k?).

REMARK 2.13 (FOLKLORE). If one additionally assumes
the existence of a fully homomorphic encryption (FHE) scheme,
then there exists a A\-LDS secure circuit compiler (C, Update)
such that for every poly-size circuit C, the number of out-
put sub-computations Subq, ..., Sub,, generated by C is poly-
nomial in the security parameter of the FHE scheme and
independent of the size of C.

2.6 Weakly Leakage-Resilient MPC

Our construction of a leakage-resilient MPC protocol in
the preprocessing model (defined in Section 3.2), uses as a
building block an MPC protocol that is leakage-resilient with
respect to a weaker notion of secrecy (where the ideal world
is weakened), as was recently constructed in [BGG*11]. For
lack of a better name, we call it weakly leakage-resilient
MPC. Below, we recall the security model from [BGG*11].

Very briefly, the security definition in [BGG™11] follows
the ideal/real world paradigm. They consider a real-world
execution without a leak-free preprocessing stage, though
they do assume the existence of an honestly generated CRS.%
The adversary, in addition to corrupting a number of par-
ties, can obtain leakage information on the joint secret states
of the honest parties at any point during the protocol execu-
tion. Leakage queries may be adaptively chosen based on all
information received up to that point (including responses
to previous leakage queries), and are computed on the joint
secret states of all the honest parties.

5The CRS is simply a truly random string, and thus, could
be generated in a leaky environment.



Note that one cannot hope to realize the standard ideal
world security in the presence of such leakage attacks.To this
end, [BGG™11] consider an ideal world experiment where in
addition to learning the output of the function evaluation,
the simulator is also allowed to request leakage on the inputs
of all the honest parties jointly. Below, we describe the
ideal and real world experiments and give the formal security
definition from [BGG™11].

Ideal World.

We first describe the ideal world experiment, where n par-
ties Pi,..., P, interact with an ideal functionality for com-
puting a function f. An adversary may corrupt any subset
M C P of the parties. As in the standard MPC ideal world
experiment, the parties send their inputs to the ideal func-
tionality and receive the output of f evaluated on all inputs.
The main difference from the standard ideal world experi-
ment is that the adversary is also allowed to make leakage
queries on the inputs of the honest parties. Such queries are
evaluated on the joint collection of all parties’ inputs. The
ideal world execution proceeds as follows.

Inputs: Each party P; obtains an input z;. The adversary
is given auxiliary input z and selects a subset of parties
M C P to corrupt.

Sending inputs to trusted party: Each honest party P;
sends its input x; to the ideal functionality. For each
corrupted party P; € M, the adversary may select any
value z; and send it to the ideal functionality.

Trusted party computes output: Let x},...,z), be the
inputs that were sent to the ideal functionality. The
ideal functionality computes f(z1,...,z}).

Adversary learns output: The ideal functionality first sends

the evaluation f(z1,...,x5) to the adversary. The ad-
versary replies with either continue or abort.

Honest parties learn output: If the message is abort, the
ideal functionality sends L to all honest parties. If the
adversary’s message was continue, then the ideal func-
tionality sends the function evaluation f(x1,...,}) to
all honest parties.

Leakage queries on inputs: The adversary may send (adap-

tively chosen) leakage queries in the form of efficiently
computable functions L; (described as a circuit). On
receiving such a query, the ideal functionality com-
putes L;(z!,...,x;) and returns the output to the ad-
versary.

Outputs: Honest parties output their inputs and the mes-
sages they obtained from the ideal functionality. Mali-
cious parties may output an arbitrary PPT function of
their initial input (auxiliary input and random-tape)
and the message it has obtained from the ideal func-
tionality.

An ideal world adversary S who obtains a total of A\ bits
of leakage is referred to as a A-leakage ideal adversary. The
overall output of the ideal-world experiment consists of all
the inputs and values received by honest parties from the
ideal functionality, together with the output of the adver-
sary, and is denoted by W—lDEALé,M(1k7f, z).

Real World.

The real-world experiment begins by first choosing a com-
mon random string crs. Then, each party P; receives an in-
put z; and the adversary A receives auxiliary input z. These
values can depend arbitrarily on the crs, but need to be ef-
ficiently computable given the crs. However, for the sake
of simplicity of notation, throughout this section we assume
that these values are independent of the crs.

The adversary A selects any arbitrary subset M C P of
the parties to corrupt. Each corrupted party P; € M hands
over its input to A. The parties Pi,..., P, now engage in
an execution of a real n-party protocol II. The adversary A
sends all messages on behalf of the corrupted parties, and
may follow an arbitrary polynomial-time strategy. In con-
trast, the honest parties follow the instructions of II. Fur-
thermore, at any point during the protocol execution, the
adversary may make leakage queries of the form L and learn
L(statep\ar), where statepy ;s denotes the concatenation of
the protocol states state; of each honest party P;. We allow
the adversary to choose the leakage queries adaptively.

Honest parties have the ability to toss fresh coins at any
point in the protocol, and at that point these coins are added
to the state of that party. At the conclusion of the protocol
execution, each honest party P; generates an output accord-
ing to II. Malicious parties may output an arbitrary PPT
function of the view of A.

An adversary A who obtains at most A bits of leakage is re-
ferred to as a A-leakage real adversary. Let Gen,, denote the
CRS generation algorithm. Further, let W-REALY (1%, crs, Z, 2)
be the random variable that denotes the values output by the
parties at the end of the protocol IT (using crs + Geny (1%) as
the CRS). Then, the overall output of the real-world experi-
ment is defined as the tuple (crs, W-REALY 5, (1%, crs, 7, 2)).

We now state the formal security definition.

DEFINITION 2.14
A protocol I1 evaluating a functionality f is a A-weakly leakage-
resilient MPC protocol if for every PPT A-leakage real ad-
versary A, there exists a A-leakage ideal adversary S =
(8%, 8%%), corrupting the same parties as A, such that for
every input vector T, every auziliary input z € {0,1}", and
every subset M C P, it holds that the distribution

k =
{crs, W_IDEALéexeC(Crsytrap%M(1 » % Z)}kEN

is computationally indistinguishable from the distribution

{crs'7 W-REALY ), (1%, crs’, Z, z)}

)
keEN

where (crs, trap) < S*(1%), and crs’ < Geny (1¥).

THEOREM 2.15 ([BGG™T11]). Based on the DDH as-
sumption, for every poly-size function f, for every leakage
bound X € N, and any number of parties and corrupted par-
ties, there exists a protocol 11 in the common random string
model for computing f that is A-weakly leakage resilient as
per Definition 2.14.

REMARK 2.16. We note that Theorem 2.15 holds even if
we allow the input vector & and the auxiliary input z to be ar-
bitrary poly-time computable functions of the crs. We elimi-
nated this dependency from Definition 2.14 only for the sake
of simplicity of notation.

(A-WEAKLY LEAKAGE-RESILIENT MPC).



REMARK 2.17  (STANDALONE VvS. UC SECURITY). The
main result in [BGG" 11] actually achieves a stronger notion
of universally composable (UC) security, at the cost of addi-
tionally relying on the decisional linear assumption over bi-
linear groups. Indeed, their UC-secure WLR-MPC' construc-
tion relies on a leakage-resilient UC-NIZK system, whose
only known construction [GJS11, GOSO06] is based on the
decisional linear assumption in the bilinear groups setting.

However, for the present paper, it suffices to obtain a
“standalone” secure construction of WLR-MPC. Thus, it is
possible to replace the UC-NIZK system with a standalone
secure interactive weakly leakage-resilient ZKPoK system.
This, in turn, can be based on the DDH assumption. The
resulting WLR-MPC' achieves standalone security based on
only the DDH assumption in the CRS model.

Security against disjoint leakage.

In Definition 2.14, the real-world adversary A is allowed
to obtain joint leakage on the secret states of the honest par-
ties. In the present work, we consider a weaker adversarial
model, in which the leakage on each honest party in the real
world is disjoint (i.e., A is not allowed to leak on the joint
secret states of the honest parties). Theorem 2.15 clearly
still applies to this setting. However, we note that the ideal
world guarantee does not become stronger when we consider
this set of restricted adversaries: that is, even to simulate
such adversaries, the simulator S needs joint leakage on the
inputs of all the honest parties.”

2.6.1 Security for randomized functions

We note that Theorem 2.15 holds for deterministic func-
tions. In this work, we need to use a weak leakage re-
silient protocol for randomized functions (since the modules
in the OCL leakage resilient circuit compute randomized
functions). We show that in our setting, where leakage in the
real world is disjoint, the number of parties is polynomially
related to the security parameter, and a constant fraction of
the parties are honest, then we can construct weak leakage
resilient protocols for randomized functions.

THEOREM 2.18  (INFORMAL). Theorem 2.15 holds also
for randomized functions if we restrict the adversaries to
leak on the honest parties disjointly, when the number of
parties is polynomially related to the security parameter, and
e-fraction of them are honest for some constant € > 0.

Due to lack of space we defer the proof of this theorem to
the final version.

3. OUR MODEL

In this section, we present the MPC model and the secu-
rity definition considered in this paper. We start by giving a
brief overview of our model and then proceed with a formal
description.

Overview. We consider the setting of n parties P = { Py, ..., P,

within a synchronous point-to-point network with authenti-
cated broadcast channel [DS83] who wish to jointly compute

7 As mentioned in Section 1.4, if we could simulate real-world
adversaries that obtain only disjoint leakage queries, with a
simulator that obtains only disjoint leakage queries, then
this would almost immediately give us a result similar to
ours: An MPC protocol with preprocessing that is secure
against continual leakage.

}
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any ppt function over their private inputs. Specifically, we
consider the case where the parties wish to perform arbitrar-
tly many evaluations of functions of their choice. We refer
to a protocol that allows computation of multiple functions
(over a given set of inputs) as a multi-function MPC proto-
col. Unlike the standard MPC setting, we consider security
of a multi-function MPC protocol against “leaky” adversaries
that may (continuously) leak on the secret state of each hon-
est party during the protocol execution.

To formally define security, we turn to the real/ideal paradigm.

Very briefly, we consider a real-world execution where an
adversary, who corrupts any arbitrary number of parties in
the system, may additionally obtain arbitrary bounded, in-
dependent leakage on the secret state of each honest party.
However, unlike the recent works on leakage-resilient interac-
tive protocols [GJS11, BCH11, BGK11, DHP11, BGG*11],
we consider the standard ideal world model, where the ad-
versary does not learn any information on the honest party
inputs.

Note that if we do not put any restriction on the real-
world adversary, and in particular, if he is allowed to ob-
tain leakage throughout the protocol execution, then it is
impossible to realize the standard ideal world model, since
the adversary may simply leak on the inputs of the honest
parties, while this information cannot be simulated in the
ideal world. With this in mind, we (necessarily) allow for
a “leak-free” one-time preprocessing stage that happens at
the beginning of the real-world execution. Furthermore, to
withstand continual leakage attacks, we (necessarily) allow
for periodic updates of the secret values of the parties. We
allow leakage to occur during this update procedure as usual.

We now proceed to give a formal description of our model
in the remainder of this section. In Section 3.1, we describe
the ideal world experiment. In Section 3.2, we describe the
real world experiment. Finally, in Section 3.3, we present
our security definition.

Throughout this work, we assume that the functions to be
evaluated give the same output to all parties. This is for sim-
plicity of exposition, since otherwise, if the output itself is a
secret value (given to an honest party) then this value can
be leaked. This can be handled by complicating our security
guarantees, and, indeed, one can tweak our construction to
ensure that the adversary learns only leakage information on
such outputs. However, for the sake of simplicity, we choose
to avoid this issue in this manuscript.

3.1 Ideal World

In the ideal world, each party P; sends her input z; to
a trusted third party. Whenever the adversary A sends
a poly-size circuit f to the trusted party, it sends back
f(z1,...,25). Since we consider the case of dishonest ma-
jority, we can only obtain security with abort: i.e., the ad-
versary first receives the function output f(z1,...,z,), and
then chooses whether the honest parties also learn the out-
put, or to prematurely abort. The adversary can query the
trusted party many times with various functions f;. More-
over, these functions can be adaptively chosen, based on the
outputs of previous functions. The ideal world model is for-
mally described below.

Inputs: Each party P; obtains an input z;. The adversary
is given auxiliary input z. He selects a subset of the



parties M C P to corrupt, and is given the inputs x,
of each party P, € M.

Sending inputs to trusted party: Each honest party P;
sends its input x; to the ideal functionality. For each
corrupted party P; € M, the adversary may select any
value z; and send it to the ideal functionality.

Trusted party computes output: Let zf,...,2), be the
inputs that were sent to the trusted party. Then, the
following is repeated for any (unbounded) polynomial
number of times:

e Function selection: The adversary chooses a
poly-size circuit f;, and sends it to the ideal func-
tionality.

Adversary learns output: The ideal function-
ality sends the evaluation f;(z1, ..., z,) to the ad-
versary. The adversary replies with either continue
or abort.

Honest parties learn output: If the adver-
sary’s message was abort, then the trusted party
sends L to all honest parties and the experiment
concludes. Otherwise, if the adversary’s message
was continue, then it sends the function output
fi(zh, ..., z7,) to all honest parties.

Outputs: Honest parties output all the messages they ob-
tained from the ideal functionality. Malicious parties
may output an arbitrary PPT function of the adver-
sary’s view.

The overall output of the ideal-world experiment consists
of the outputs of all parties. For any ideal-world adversary
S with auxiliary input z € {0,1}", any input vector Z, any
set of functions {f; }5:1 chosen by the adversary, and secu-
rity parameter k, we denote the output of the corresponding
ideal-world experiment by

IDEALS,IM (1k7 53 2, {f] ?:1) .

Note that this is a slight abuse of notation since the functions
{fj}}—, may be chosen adaptively.

3.2 Real World

The real world execution begins by an adversary A se-
lecting any arbitrary subset of parties M C P to corrupt.
The parties then engage in an execution of a real m-party
multi-function MPC protocol II = (Ipye, input, Honiine) that
consists of three stages, namely, (a) a preprocessing phase,
(b) an input phase, and (c) an online phase, as described be-
low. We assume that honest parties have the ability to toss
fresh coins at any point. Throughout the execution of II, the
adversary A sends all messages on behalf of the corrupted
parties, and may follow an arbitrary polynomial-time strat-
egy. In contrast, the honest parties follow the instructions of
II. Furthermore, at any point during the protocol execution
(except during the preprocessing and the input phases), the
adversary may leak on the entire secret state of each honest
parties, via an MPC' leakage query, defined as follows.

DEFINITION 3.1. An MPC leakage query is defined by
Leak(i, L), where ¢ € [n] and L : {0,1}* — {0,1} is a
poly-size circuit. When an adversary sends a leakage query
Leak(s, L), he receives the evaluation of L on the entire secret
state of party P;.
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We now formally describe the different phases in the pro-
tocol.

Preprocessing phase: This phase is interactive and leak-
free, and is run only once. It is independent of the
inputs of the parties, and is independent of the func-
tions that will later be evaluated. Thus, this phase
can be run in the beginning of time, before the parties
even know what their inputs are, or what functions
they would like to evaluate.

We assume that no leakage occurs during the run of
this preprocessing phase, but we do allow leakage to
occur as soon as the preprocessing phase ends. At the
end of this phase each party P; has an (initial) secret
state statel”.

Input phase: This phase is non-interactive and leak-free,
and depends only on the inputs z1, ..., , (independent
of the functions to be computed). Whenever a party
P; gets (or chooses) a secret input z;, she does some
local computation which may depend on her secret in-
put x; and on her secret state statefi. She then sends
a message to all parties, and erases her secret input x;.
One may think of this as a “hot potato” model, where
the parties never store their inputs for very long (since
they are concerned with leakage), but rather immedi-
ately share their input as if it were a “hot potato”.

We assume that the party P; is not leaked upon during
the execution of this phase. However, leakage may
occur between the preprocessing phase and the input
phase, and leakage may occur immediately after the
input phase.

We emphasize that each party can change her input
as often as she wants by simply re-running the input
phase with the new input.®

Online phase: This phase takes place in a leaky environ-
ment. During this phase, the parties carry out an un-
bounded number of function evaluations on their in-
puts, and update their respective secret states. At
any point during this phase, A may make adaptively-
chosen leakage queries, as per Definition 3.1, in the
manner as described below.

Whenever A wishes to compute a function f; (repre-
sented as a poly-size circuit), all parties execute the
function evaluation protocol Ilcomp, described below.
Whenever A wants the honest parties to update their
secret states, all parties execute the update protocol

ITypdate, described below. We let oniine = (comp, Hupdate )-

We begin at leakage time period £ = 1; after each up-
date procedure, £ is incremented.

e Computation procedure:

1. All parties execute protocol Icomp(f;), where
honest parties P; act in accordance with in-
put statefi. Note that the secret state of par-
ties may change during the execution of this
protocol, as dictated by Ilcomp.

8For simplicity, in the security proof in Section 5, we assume
that the parties run the input phase only once, however the
proof extends readily to the case that the parties rerun the
input phase many times with different inputs.



2. At the conclusion of the computation phase,
each honest party P; outputs his final mes-
sage of the protocol (which should correspond
to the evaluation of f;). Malicious parties
may output an arbitrary PPT function of the
view of A.

e ('" Update procedure:

1. All parties execute protocol Ilypdate, Where
honest parties P; act in accordance with in-
put state, "

. At the conclusion of the update phase, each
honest party P; sets statef}rl to be P;’s output

from Ilypdate. Each honest P; erases statef",
3. Increment £ < ¢ + 1.

Leakage: Initialize each leaked, to 0. Each leakage query
(i, L) made by A during the £** time period is answered
as follows.

e During the computation phase: if leaked, > A,
then A receives (). Otherwise, A receives the eval-
uation of L on the current secret state of party P;,
and leaked; < leaked, + 1.

In /th update phase: if either leaked;, > A or
leakedst1 > A, then A receives (). Otherwise, A
receives the evaluation of L on the current secret
state of party P;, and both leaked, < leaked, + 1
and leakedyt1 < leakedey1 + 1.

We emphasize that the A’s leakage queries may be
made on any party, adaptively chosen based on all
information received up to that point (including re-
sponses to previous leakage queries). The only re-
striction is that the number of bits leaked between
the execution of any two consecutive update protocols
is bounded. Note that the leakage queries made dur-
ing the £’th update phase (where parties transition be-
tween their £’th and (£+1)’st secret states) are counted
against both the £’th and (¢ + 1)’st time period, where
the £’th time period is the time period where the party
stores her £’th secret state. The reason for this “dou-
ble counting” is that during the ¢’th update phase, the
adversary can leak both on the ¢’th secret state and
on the ¢ + 1’st secret state of the party.

We refer to an adversary who corrupts ¢ parties M C P
and makes up to A leakage queries in each time period
as a (t, \)-continual leakage adversary.

For any adversary A with auxiliary input z € {0,1}",
any inputs {z;}i_;, any set of functions {f;}*_, chosen
(adaptively) by the adversary, and any security parameter
k, we denote the output of the multi-function MPC protocol

II= (HPre, Hinput, 1_[Online) by

REALY (1’“, Z, 7, {fj}le).

Loosely speaking, we say that a protocol II is a leakage-
resilient multi-function MPC protocol if any adversary, who
corrupts a subset of parties, receives leakage information as
described above, and runs the protocol with honest parties
on any (unbounded) sequence of functions fi, ..., fp, gains no
information about the inputs of the honest parties beyond
the output of the functions f;(z1,...,zn) for j = 1,...,p. We
formalize this in the next subsection.
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3.3 Security Definition

In what follows, we formally define our model of security;
i.e., what it means for a real-world protocol to emulate the
desired ideal world.

DEFINITION 3.2  (LEAKAGE-RESILIENT MPC). A multi-
function evaluation protocol II = (Ipre, Hinput, Honline) %S said
to be \-leakage-resilient against ¢ malicious parties if for ev-
ery PPT (t,\)-continual leakage MPC adversary A in the
real world, there erists a PPT adversary S corrupting the
same parties in the ideal world such that for every input
vector T, every auziliary input z, and any (adaptively cho-
sen) set of functions {f;})_, where p = poly(k), it holds
that

IDEALS,M(lk,f,z,{fj ;’:1) ~e REAL}M(ﬂ“,f,z,{fj}g?:l).

Note that we do not allow the simulator to request leakage
on honest parties’ inputs in the ideal world, as was done
in [BCH11, DHP11, BGG™11], and thus model a stronger
notion of secrecy than what was achieved in prior works.®

4. OUR CONSTRUCTION

In this section, we construct a leakage-resilient multi-function
MPC protocol, as defined in Section 3. Our construction
uses the following ingredients:

1. (C,Update): a A-LDS secure circuit compiler, as in
Theorem 2.11. Recall for a circuit C, the compiler
C: C + (Suby,...,Sub,,) yields a collection of modules
whose sequential execution evaluates C', and which are
secure in the LDS model (see Section 2.5 for details).

Elect: a public-coin protocol for electing m disjoint
committees (where m is the number of modules from
above), each of size approximately k, as in Lemma 2.6.

(Geneq, Com, Rec, Seq = (Seq, Seq)): a crs-based equiv-
ocal commitment scheme, as in Lemma 2.5.

(Gen, Enc, Dec, Eval): a fully homomorphic public-key
encryption (FHE) scheme that is certifiable with re-
spect to an efficiently testable set R C {0,1}P°*) | a5
described in Section 2.4.

(Gennizk, P, V, Snizk = (Size, Sr’:irz"k‘)f)): a non-interactive
zero-knowledge (NIZK) proof of knowledge (as in Lemma

2.3) for the NP language

L ={(pk,&): 3 (x,r) s.t. r € R, & = Encpk(x;7)},
(1)
where R C {0,1}P°Y®) s the set for which the FHE
scheme is certifiable.

MPC(F): a standard multiparty computation protocol
for evaluating a function F', with no leakage resilience
guarantees, such as [GMWS87].

(Genw, MPCy(F)): a A\-weakly leakage-resilient multi-
party computation (WLR-MPC) protocol for evaluat-
ing a function F' in the common random string model,
as given by Theorem 2.18.

With the (necessary) addition of a one-time leak-free pre-
processing phase.



THEOREM 4.1. Fix any constants €,0 > 0. Then, assum-
ing the existence of the ingredients 1 - 7 listed above (where
the LDS circuit compiler and WLR-MPC protocol are secure
with leakage parameter \), there exists a \-leakage-resilient

multi-function evaluation MPC protocol 11 = (Ilpre, Winput, Hupdate)

forn > k® parties, tolerating t = (1 — e)n corrupted parties.

Remark.

The reason we need the number of parties to be polyno-
mially related to the security parameter is two-fold. First,
in the preprocessing phase, the protocol Ilpre elects commit-
tees £1,...,Em, and security of the protocol relies on the
fact that these committees are disjoint and each committee
contains a constant fraction of honest parties. Thus, if n is
a constant, then the resulting security guarantee is that the
advantage of any PPT distinguisher in the security game is
bounded (from below) by a constant. More generally, the
advantage is > 27" (see Lemma 2.6).

The second reason we the number of parties must be large
is that the number m of disjoint committees &1, ...,E, we
need to elect is large. This is because the number of com-
mittees is exactly the number of modules generated by the
LDS compiler, when applied to the decryption circuit Decg
of the underlying FHE scheme. Since the only LDS com-
piler we know (that does not use secure hardware) requires
m = O(|Decg|), the number of modules must be at least the
security parameter of the underlying FHE scheme (which we
can set to be k°).

We now present the protocol II = (Ilpre, [Tinput, [lonline ),
where Ioniine = (Ilcomp, [Tupdate). At a high level, IT is defined
as follows:

Preprocessing phase Ilp.: In the preprocessing phase, the
parties run a (standard) MPC to collectively generate
a key pair (pk,sk) for the FHE scheme, and to secret
share sk in such a way that (a) learning the shares
of corrupted parties, and leakage on each remaining
share, does not damage the security of the FHE, but
(b) collectively, the shares can be used to evaluate the
decryption circuit in a leaky environment. More specif-
ically, shares are generated by running the LDS com-
piler on the decryption circuit Decq(+) (with sk hard-
wired) to obtain a sequence of modules Suby, ..., Sub,;
the parties elect corresponding (disjoint) committees
&1, ...,Em, and secret share each Sub; among parties in
&;, using a standard secret sharing scheme (e.g., the
simple xor scheme). To ensure that parties provide the
correct secret shares of the Sub;’s in future computa-
tions, within the MPC the parties collectively generate
and publish commitments to each correct share.

In addition, the preprocessing phase is used to gen-
erate crs setup information for subsidiary tools used
throughout the protocol. This is also done via a (stan-
dard) MPC.

(Note that the preprocessing procedure is independent
of parties’ secret inputs and functions to be evaluated.)

Input phase Ili,:: Each time a party P; wishes to sub-
mit a new secret input x;, she computes and publishes
an encryption Z; of z; under the FHE scheme (specif-
ically, under the public key pk for the FHE that was
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generated during the preprocessing phase). To ensure
that malicious parties do not send malformed cipher-
texts, which could ruin the correctness of homomor-
phic evaluation later down the line (and potentially
damage security), each party accompanies her pub-
lished ciphertext &; with a NIZK proof of knowledge
that the ciphertext is properly formed.

Online phase Ilonine: The online phase consists of two parts:
the computation phase, in which parties collectively
evaluate a queried function f on all inputs, and the
update phase, in which parties collectively refresh their
secret states.

Computation phase Ilcomp: Each time the adver-
sary requests the evaluation of a function f on all par-
ties’ inputs, two steps take place. First, each party
(individually) homomorphically evaluates the function
f on the encrypted vector of inputs & = (Z1, ..., &n).
Note that the result, gy, is an encryption of the de-
sired value f(Z). Next, the parties jointly decrypt,
using their shares of sk from the preprocessing phase.
Namely, the parties execute the sequence of modules
Subs, ..., Sub,, obtained by the LDS compiler applied
to Decs(+), where the input to the first module Sub;
is g¢. To emulate the execution of each module Sub;,
the parties of committee £; run a WLR-MPC protocol
among themselves. Within the WLR-MPC, the par-
ties of £; combine their secret shares Sub;; (checking
first to make sure each party’s share agrees with the
corresponding published commitment) and execute the
computation dictated by Sub;. Communication be-
tween modules is performed by having all parties of
committee &; send the appropriate message to all par-
ties of the next committee, £+1. The output of the
final module, Sub,,, is the evaluation f(Z).

Update phase Ilypgate: Each time the adversary re-
quests that parties update their secret states, the par-
ties execute the update procedure of the LDS compiler,
where each module computation is performed via a
WLR-MPC among the parties of the corresponding
committee, as above. The only difference here is that
the secret state Sub; of each module is also changing.
Thus, during each execution of a module Subj, the cor-
responding committee must also generate fresh secret
shares for its parties, and new commitment and de-
commitment information for each share. To provide
the required correctness and secrecy guarantees, this
process takes place as part of the committee’s WLR-
MPC execution.

The formal descriptions of Ilpre, Ilinput, Ilcomp, and Ilypdate
appear in Figures 1, 2, 3, and 4, respectively.

REMARK 4.2. Throughout the protocol description (as well
as throughout the proof), we define abort to be the action of
broadcasting the message “abort” to all parties. At any point
in which a party receives an “abort” message, he runs abort
and exits the protocol.

5. PROOF OF SECURITY

PRrROOF OF THEOREM 4.1. Let A be any real-world PPT
adversary for II. Denote by M C P the set of parties cor-
rupted by A.



Preprocessing Phase:
Input: 1*. No leakage allowed.

1. The parties elect m disjoint committees &; of size ap-
proximately &’ by running Elect. Here, k' is the secu-
rity parameter for the FHE scheme and m = poly(k’)
is the number of modules produced by the LDS com-
piler when run on the decryption circuit Decg for this
security parameter. We take k' = kKW as large as
possible while maintaining m - k"2 < n.

2. All parties engage in an execution of the (stan-
dard) MPC protocol MPC(Fus) to compute the
(randomized) functionality Fes described as fol-
lows. Functionality Fes does not take any inputs
and computes the following: (a) a CRS crsy <+
Gen,, (1%) for the weakly leakage-resilient MPC proto-
col (Genw, MPC,(F)), (b) a CRS crsi, «+ Geneq(1")
for each party P; for the equivocal commitment
scheme (Geneq, Com, Rec, Seq), and (c) a CRS crsly <
Gennik (1F) for each party P; for the NIZK proof of
knowledge system (Gennizk, P, V,Snizc). Denote by crs
the tuple ({crsiy, crspi ey, crsw).

3. All parties engage in an execution of the (standard)
MPC protocol MPC(Fg, ... ¢,..as) to collectively com-
pute the randomized functionality Fe, ... e, s (that
does not take any inputs) defined as follows:

The (randomized) function:

Generate a key pair (sk, pk) < Gen(lk,) for the
FHE scheme.

Evaluate the LDS circuit transformation on the
decryption circuit for sk:

(Suby, ..., Suby, ) + C(Deca).

(We abuse notation and denote by Sub; both
the computation of the submodule and the secret
state corresponding to the submodule.)

For each j € [m], secret share Sub; = Subj;; &
@ Subj,‘gﬂ among the parties in the j'th com-
mittee, &;.

For each share Subj; generated in the previ-
ous step, compute a commitment (c;i,dj;)
Com(crsey, Subj;), where P, is the i’th party in
&; (i.e., the party that receives the share Sub; ;).

Output: The outputs are as follows.

All parties:
Party i of &;:

Pk, {cjitjem el
Subjs, dj

4. Each party erases all intermediate values of the MPC

executions.

(Note that Steps 2 and 3 can be combined into a single
multi-party computation execution, but have been split into
two separate executions for ease of explanation and proof).

Input Phase: Party P; wishes to submit a new private
input, z;. No leakage allowed.

Public inputs: pk, {crsiyi ;.

Private input: «x;, held by party P;.

Party P; performs the following steps:

1. Sample a value r; < R C {0,1}P°%®) yia rejection
sampling. Recall the FHE scheme is certifiable with
respect to the set R C {0, 1}P°Y ) (see Definition 2.7).

2. Encrypt &; = Encpk(zi;74).

3. Compute a NIZK proof of knowledge that (pk, ;) € L
using witness (z;,r;) and CRS crsy,. (See Equa-
tion (1) above for the definition of L). That is,
i = P(crspia, (Pk, 24), (T4, 71))-

4. Send the pair (#;,7;) to all parties.

(It suffices to send it to parties in &;.)

5. Erase initial input z;, together with all intermediate
values of the input phase.

Figure 1: Protocol Ilp.: Preprocessing phase.

Figure 2: Protocol Iiyue: Input phase.

We construct an adversary S in the ideal world who sim-
ulates the real-world view of A by simulating the honest
parties in the real world experiment. We do so by a se-
quence of intermediate steps, where we show how to sim-
ulate these values given less and less information, eventu-
ally given only the function evaluations f(z1,...,2Z»n), as in
the ideal-world experiment. More explicitly, we consider the
following sequence of hybrid experiments. We note that all
ideal functionalities in the hybrid experiments are implic-
itly with abort: i.e., the ideal functionality first outputs to
only the adversary, who decides whether outputs are also
delivered to honest parties, or whether the protocol ends in
abort.

In what follows we describe all of our hybrid experiments.
We defer the construction of the corresponding simulator
and the proof of indistinguishability to the full version. For
each hybrid, we include (in the parentheses) the primary
reason why Hybrid ¢ can be simulated from Hybrid ¢ — 1.

Hybrid 0. The real world: i.e., the adversary interacts with
honest parties in the real-world experiment running II.

Hybrid 1. (Elect protocol) The same as the real-world ex-
periment, except that if any of the committees &1, ..., Em
elected during the preprocessing phase has fewer than
5k parties, or if the fraction of honest parties in any
committee is less than £, the experiment immediately
concludes with output fail. We assume for simplicity
of notation (later on) that, if the experiment does not

fail, the first party of each committee £; is honest.

Hybrid 2. (MPC security) The same as Hybrid 1, except
instead of collectively generating the CRS values (for
the equivocal commitment scheme, the WLR-MPC,
and the NIZK proof system) via an MPC protocol
during the preprocessing phase, we assume a setup
model where these values are (honestly) generated be-
forehand, and all parties run with these CRS values
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Computation Phase:

Public inputs: f, pk, £ = (Encpk(z1), ..., Encok(xn)), crs =
({Crsém crszizk}?:h CI'SW), 517 ey Em, {cj7i}j€[m],i€[\5j 11-
Private inputs: (Subj;,d; ), held by party 4 of &;.

1. All parties homomorphically evaluate f on the en-
crypted input vector: § = Evalp(Z, f).

(It suffices that only parties in & compute 4.)

The parties execute the Decryption Cascade with
input; = 9.

Decryption Cascade:

1. Forj=1,....,m:

The parties in &£; engage in an execution of the A-
weakly leakage-resilient MPC protocol MPC,,(Fj;) us-
ing CRS crsy to compute the (randomized) function-
ality F; defined as follows:

Input: (Subj,i,dj,i,input;), held by party i of &;.
The function Fj}:

(a) If any of the input,’s are inconsistent, or
Subj; # Rec(crsg, ¢, dji) for any i, where
P, is the ¢’th party in committee &; (i.e.,
if any party’s share does not agree with the
corresponding published commitment), then
abort.

Otherwise, let Sub; = @lf:ﬁ‘ Sub; ;.
Evaluate the j’th module on input;: that is,
input;  , := Sub;(input;).

(b)
()

Output: All parties learn input; ;.

At the conclusion of the WLR-MPC execution, each
party in &; erases all intermediate values generated
during the WLR-MPC, keeping only (Subj,;,d; ;).

Each party in &; sends the value of input;_ ; to all par-
ties in Ej4+1 (where 41 := P the set of all parties).

If any party in &1 receives disagreeing values of
input;; from parties in &;, then abort.

2. Output input,, ; as the desired evaluation f(x).

Figure 3: Protocol IIcomp: Compute phase.

Update Phase:
Public inputs: &, ...

{ciitiemicne; -
Private inputs: (Subj i, d;,;), held by party ¢ of &;.

,Em, Crs

({chgq7 Crsflizk}?:l ’ CrSW)7

All parties run the Update protocol of the LDS compiler, as
follows.

1. Each time the parties in committee &;, who are sim-
ulating submodule Sub;, receive a message msg; from
the parties in committee £;_1, who are simulating sub-
module Subj;_;, they compute the function G that
would have been computed by Sub; upon receiving
the message input; when running the Update protocol.

(The parties in committee £ start with msg, 2 1).

The computation of G is done by running an execution
of the A\-weakly leakage-resilient MPC protocol using
crsw to collectively execute the following (randomized)
function:

Input: (Suby,i,d;,:, msg;), held by party i of &;,
crs, {cji}ie(ie;)), held by all parties.

The (randomized) function:

(a) If any of the msg;’s are inconsistent, or
Subj; # Rec(crsey, ¢j,i,dj,:) for any i, where
P, is the ¢’th party in committee &; (i.e.,
if any party’s share does not agree with the
corresponding published commitment), then
abort. Otherwise, let Sub; = @lli]l‘ Sub; ;.
Evaluate (Subj,msg;,;) < G(Subj, msg;).
Here, Sub denotes an updated version of the
submodule information, and msg;,; denotes
the message to be sent to submodule j+ 1 as
dictated by Update.

Secret share the new value Sub} = Subj;; @
P Sub;7‘57,| into |€;| shares using the xor
secret sharing scheme.

For each share Sub’;; generated in the pre-
vious step, compute a new commitment
(¢, dj;) < Com(crsg, Subj;), where P, is
the ¢’th party in committee &;.

Output: The outputs are as follows.

All parties:
Party ¢ of &;:

msg,.1, {Cl',i}ie[lsj\]
Sub;"i, d;,l

At the conclusion of the WLR-MPC execution, each
party in &£; erases all intermediate values generated
during the WLR-MPC, keeping only (Subj i, d;;).

All the parties of &; send msg,,; to all parties in £;41.

Each party in &; sends all new commitments
{c}.i}iee; to every party. If any disagreeing values
are sent by parties in £;, then abort.

At the conclusion of the update phase, each party erases
their initial input together with all intermediate values of
the update phase.
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Figure 4: Protocol Ilypdate: Update phase.




as shared common knowledge. We denote this ideal
functionality by crs.

Ideal functionalities in Hybrid 2: crs.

Hybrid 3. (CRS simulation) The same as Hybrid 2, except
that some of the CRS values are generated using the
simulation algorithms. More specifically,

e For the first party in each committee, its crs for
the equivocal commitment scheme is generated
using the simulator; i.e., for each such party P;,
(crsiy, trap’) < S&(1%).

e For each malicious party P, we generate its crs for
the NIZK proof of knowledge using the simulator,
by computing (crsty, trap®) < S5 (1%).

e The crs for the WLR-MPC protocol is simulated
by computing (crsw, trap,,) < Sg=(1%).

The remaining crs values are generated honestly, as be-

Explicitly, Fp,. has a trapdoor trap?, for the first party
of each committee &£;, hardwired into it. Just as Fpre,
the functionality Fp,. takes no inputs; it samples a key
pair for the FHE scheme, evaluates the LDS trans-
formation of the circuit Dec(-), and generates secret
shares Subj; for each of the resulting secret modules.
Further, F{,. honestly generates a commitment

(Cj,i7 d]',i) — Com(lk, Subm)

to Subj; as usual for the secret share of all but the
first party in each committee. For the first party in
each committee (which is assumed to be honest), Fy,.
generates a simulated commitment

(’C‘j’l,d?yl, djl-,l) — <S'e°c‘,"“(crsgq,trapj)7

Subj 1
. — Js
and sets dj,1 =d; ;7.

Ideal functionalities in Hybrid 6: crsSim, Fp.., {F;}, {G;}.

fore. We denote this new ideal functionality by crsSim. Hybrid 7. (Equivocal commitments) Same as Hybrid 6, ex-

Ideal functionalities in Hybrid 3: crsSim.

Hybrid 4. (MPC security) The same as Hybrid 3, except
that the second MPC in the preprocessing phase (which
generates a key pair for the FHE scheme, runs the LDS
transformation, etc) is replaced by the corresponding
ideal (randomized) functionality Fpr. Note that Fpre
takes no inputs.

Overall, this hybrid is the same as the real world, ex-
cept that the preprocessing phase consists only of the

execution of Elect and one-time oracle access to crsSim
and Fpre.

Ideal functionalities in Hybrid 4: crsSim, Fpre.
Hybrid 5. (WLR-MPC security) The same as Hybrid 4,

except each underlying weakly leakage-resilient MPC
execution in the decryption cascade is replaced with

cept that the ideal functionalities {G;} are modified
in the same fashion as the step above. Namely, we re-
place each G; with a new ideal functionality G with
the following differences. G; has a trapdoor trap?, for
the first party of each committee £;, hardwired into
it. G;- accepts the same inputs as G, and carries out
the same computation as G, with the following excep-
tion: For the first party in each committee, instead of
honestly generating a commitment to the secret share
Suby, 1, the functionality G; generates a simulated com-
mitment (Ejyl,d‘?yl,d}yl) — Secgm(crsgq,trapj), and sets
dj1 = J?:ij‘l. (Note that the ideal functionalities {F;}
in the decryption cascade do not generate new secret
shares and thus do not need to be modified in this
fashion).

Ideal functionalities in Hybrid 7: crsSim, Fp.., {F;}, {G}}.

J

the ideal functionality F}; that accepts inputs from all Hybrid 8. (Binding of Com) Similar to Hybrid 7, except

parties in &£; and replies with the evaluation of F} on
these inputs (as described in Figure 3). Similarly, each
WLR-MPC execution in the update phase is replaced
with the ideal functionality G; that accepts inputs
from parties and replies with the evaluation of G; on
these inputs (as described in Figure 4).

The adversary no longer makes leakage queries of the
form Leak(i, L), as he did in all previous hybrids. In-
stead, leakage queries are of the form Leak(L), and are
made directly to the ideal functionalities {F}},{G;}.
The corresponding ideal functionality evaluates the queried
function L on the collection of received inputs from
parties. As before, leakage time periods span from the
beginning of one Update procedure to the end of the
next, and the adversary may make no more than A
leakage queries in any time period.

Ideal functionalities in Hybrid 5: crsSim, Fpre, {F; },{G;}.

Hybrid 6. (Equivocal commitments) Same as Hybrid 5, ex-
cept that the ideal functionality Fpre is replaced by a
slightly modified functionality F¢,.. Loosely speaking,
FY,. is the same as Fpye, except that for the first party
in each committee (which is assumed to be honest),
F{,. generates a simulated commitment to the party’s
secret share.
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that all secret shares are eliminated, and committees
interact directly with the m modules (Suby, ..., Sub,,).
More specifically, the following changes are made:

e The ideal functionality crsSim is replaced by a
slightly modified functionality crsSim’, which ex-
ecutes exactly as crsSim, but in addition sends to
the adversary all trapdoors for simulated equivo-
cal commitment crs values (for the first party in
each committee).

e The ideal functionality F,. is replaced by a sim-
ple ideal functionality Fpk that takes no inputs,
generates a key pair (pk,sk) for the FHE scheme,
and publishes pk.

e The sequence of ideal functionalities {F}}, {G}},
as introduced in the previous steps, are replaced
by the corresponding (LDS model) interactions
with the m modules (Subi,...,Sub,,) generated
by the LDS compiler:

(Suby, ..., Sub,,) < C(Decw(+)).
Namely,

— The decryption cascade takes place as follows.
For each j = 1,...,m, beginning with & and



input; = ¢, all parties in committee £; send
input; to the corresponding module Sub;. If
all input;’s are consistent, they receive back
input,,; < Subj(input;). The parties of &;
then send input;,; to all parties in the next
committee £j4+1, who (if the received values
are consistent) repeat the same process. At
the conclusion of the decryption cascade, the
parties of the final committee &£, send the
resulting value input,,, | ; (which is supposedly
f(Z)) to all parties.

— The update procedure is similar to the de-
cryption cascade. The modules execute the
LDS update procedure, interacting with each
other via the committees &1, ..., Em.

Instead of making leakage queries to the ideal function-
alities {F}}, {G;}, the adversary now makes queries of
the form Leak(j, L), and receives the evaluation of L
on the secret state of the jth module, Sub;. As before,
leakage time periods span from the beginning of one
Update procedure to the end of the next, and the ad-
versary may make no more than A leakage queries in
any time period.

Ideal functionalities in Hybrid 8: crsSim’, Fy, {Sub;}.

Hybrid 9. (LDS security) Same as Hybrid 8, except that
all modules Sub; are removed. Instead, parties inter-
act with an ideal decryption functionality Decs, as de-
scribed below.

In the preprocessing phase, the parties execute Elect,
and are given pk and crs values (where some of the crs
values are generated with trapdoors, as described in
Hybrid 3). The input phase takes place as usual. In
the online phase, for each function f that is queried
by the adversary, the parties homomorphically com-
pute the corresponding ciphertext § = Evalu(Z, f).
All parties in the first committee, £, send g to the
ideal decryption functionality Decs(-) with abort. If
all received ¢’s are consistent, the ideal functionality
responds by sending the resulting decryption Decq (%)
to the adversary, where sk is the decryption key that
was generated by Fuk. If the adversary allows, Decy(9)
is also sent to all honest parties; otherwise, the exper-
iment concludes in abort. The update phase no longer
takes place. No leakage queries are allowed at any
point of the experiment.

Ideal functionalities in Hybrid 9: crsSim’, Fik, Decg.

Hybrid 10. (Soundness/PoK of NIZK, certifiability of FHE)
Differs from Hybrid 9 in the following ways:

e The ideal functionalities crsSim’, Fp, and the ex-
ecution of Elect, are removed from the preprocess-
ing phase.

e The input phase no longer takes place.

e The ideal decryption functionality Decs is replaced

by the ideal-world functionality Evaluate, which
takes input x; from each party and evaluates func-
tions f queried by the adversary on the set of all
parties’ inputs Z, as defined in Section 3.1.

e In addition, the adversary is given as auxiliary
input

Z = (Pk7 {Z%iycrsiizkyﬂ'i}i¢1\/1)7

where (pk,sk) < Gen(1*), and for each honest

party P, the triple (crsyiy, &3, ) is computed us-

ing the real input x; of P;. That is, the values in

the triple are computed by crsi., « Gennizk(lk); r;

R; & = Encp(i573); i 4= P(ersye, (&0, pk) (i, 74)).-
Overall, Hybrid 10 is the following.

Parties begin by submitting their inputs to the ideal
functionality Evaluate. More specifically, each honest
party P; submits his input x;. The adversary is given
the corresponding auxiliary input z’, computed as a
function of the honest parties’ inputs {x;};¢a. Upon
receiving z’, the adversary submits the inputs of ma-
licious parties to Evaluate.

The preprocessing and input phases no longer take
place. During the online phase, for each function f
that is queried by the adversary, Evaluate responds by
sending the adversary the evaluation of f on the set
of all submitted inputs (x1,...,x,). If the adversary
allows, the evaluation is also sent to all honest parties;
otherwise, the experiment concludes in abort.

Note that Hybrid 10 is nearly the ideal-world experi-
ment. Indeed, the only difference is that the adversary
is given the auxiliary input 2’.

Ideal functionalities in Hybrid 10: Evaluate.

Hybrid 11. (Security of FHE, ZK of NIZK) The ideal world:
i.e., the adversary only receives f(x1, ..., x,) for each f
selected to be computed. Note that this is the same as
Hybrid 10, except that the adversary no longer receives
the auxiliary input. (See Section 3.1 for the detailed
experiment).

The output of each hybrid experiment consists of the out-
puts of all parties, where honest parties output in accor-
dance with the dictated protocol, and malicious parties may
output any efficiently computable function of the view of
the adversary. For every adversary A, with auxiliary input
z € {0,1}" running in hybrid experiment ¢ with initial in-
puts &, we denote the output of the corresponding hybrid ¢
experiment by

HYB, (Az, 1*, 2, {wi}?:l) :

It remains to prove that for every £ = 0,...,10 and for
every adversary A, running in Hybrid ¢, there exists an ad-
versary Agy1 running in Hybrid (¢ + 1) such that

HYB, (A[, 1% 2, {xi}?zl) ~c HYBri1 (AZH, 1%, 2, {1:,-};;1) .

Note that once we show this, the theorem will follow, as
this will imply that for each adversary A in the real-world
experiment (Hybrid 0), there is an adversary .4;1 in the
ideal-world experiment (Hybrid 11), such that

HYB, (A, 1*, 2, {m,.};;l) ~. HYB1, (,411, 1%, 2, {xi};;l)

as desired. We defer these indistinguishability proofs to the
full version of this manuscript.

O
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