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Abstract

In this paper, we initiate a study of zero knowledge proof systems in the presence of side-
channel attacks. Specifically, we consider a setting where a cheating verifier is allowed to obtain
arbitrary bounded leakage on the entire state (including the witness and the random coins) of the
prover during the entire protocol execution. We formalize a meaningful definition of leakage-resilient
zero knowledge (LR-ZK) proof system, that intuitively guarantees that the protocol does not yield
anything beyond the validity of the statement and the leakage obtained by the verifier.

We give a construction of LR-ZK interactive proof system based on standard general assump-
tions. To the best of our knowledge, this is the first instance of a cryptographic interactive protocol
where the adversary is allowed to perform leakage attacks during the protocol execution on the
entire state of honest party (in contrast, prior work only considered leakage prior to the protocol
execution, or very limited leakage during the protocol execution). Next, we give an LR-NIZK proof
system based on standard number-theoretic assumptions.

Finally, we demonstrate the usefulness of our notions by giving two concrete applications:

• We initiate a new line of research to relax the assumption on the “tamper-proofness” of
hardware tokens used in the design of various cryptographic protocols. In particular, by
making use of our LR-ZK proof system (and the framework of Lin et al. [STOC’09]), we give
a construction of a universally composable multiparty computation protocol in the leaky token
model (where an adversary in possession of a token is allowed to obtain arbitrary bounded
leakage on the entire state of the token) based on standard general assumptions.

• Next, we extend our notion of LR-NIZK to include the property of simulation extractability.
Then, by adapting the approach of Katz and Vaikuntanathan [Asiacrypt’09] and Dodis et al.
[Asiacrypt’10, FOCS’10] (for constructing “standard” leakage-resilient signature schemes) to
the setting of “full-leakage” (where the adversary can leak on the entire state as opposed to
only the secret key), we obtain simple, generic constructions of fully leakage-resilient (FLR)
signatures in the bounded leakage model as well as the continual leakage model. In contrast
to the recent constructions of FLR signature schemes, our scheme is also secure in the “noisy
leakage” model. We supplement our result by showing that a simulation-extractable LR-NIZK
proof system is implied by the UC-NIZK of Groth et al. [Eurocrypt’06].

∗This is a preliminary full version of our CRYPTO’11 paper.
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1 Introduction

Zero knowledge proof systems, introduced in the seminal work of Goldwasser, Micali and Rackoff
[GMR85], have proven fundamental to cryptography. Very briefly, a zero knowledge proof system is
an interactive proof between two parties – a prover, and a verifier – with the remarkable property that
the verifier does not learn anything beyond the validity of the statement being proved. Subsequent
to their introduction, zero knowledge proofs have been studied in various adversarial settings such as
concurrency attacks [DNS98], malleability attacks [DDN00], reset attacks [CGGM00], to list a few,
with very successful results. Over the years, zero knowledge proofs (and its various strengthened
notions) have turned to be extremely useful, finding numerous applications in the design of various
cryptographic protocols.

We note that the standard definition of zero knowledge proofs, like most classical security notions,
assumes that an adversary is given only black-box access to the honest party algorithms. Unfortu-
nately, over the last two decades, it has become increasingly evident that such an assumption may
be unrealistic when arguing security in the real world where the physical implementation (e.g. on a
smart card or a hardware token) of an algorithm is under attack. Motivated by such a scenario, in
this paper, we initiate a study of zero knowledge proof systems in the presence of side-channel attacks
[Koc96, AK96, QS01, GMO01, OST06, HSH+08].Specifically, we study zero knowledge proofs in the
intriguing setting where a cheating verifier, in addition to receiving a proof of some statement, is able
to obtain arbitrary bounded leakage on the entire state (including the witness and the random coins)
of the prover during the entire protocol execution. We note that while there has been an extensive
amount of research work on leakage-resilient cryptography in the past few years, to the best of our
knowledge, almost all prior work has either been on leakage resilient primitives such as encryption
and signature schemes [DP08, AGV09, Pie09, DKL09, ADW09a, NS09, KV09, DGK+10, FKPR10,
ADN+10, KP10, BKKV10, DHLW10a, DHLW10b, LRW11, MTVY11, BSW11, LLW11], or leakage-
resilient (and tamper-resilient) devices [ISW03, IPSW06, FRR+10, Ajt11], while very limited effort
has been dedicated towards constructing leakage-resilient interactive protocols. To the best of our
knowledge, the recent works on correlation extractors [IKOS09], and leakage-resilient identification
and authenticated key agreement protocols [ADW09a, DHLW10b, DHLW10a] come closest to being
considered in the latter category. However, we stress that in all these works, either leakage attacks are
allowed only prior to the protocol execution, or very limited leakage is allowed during the protocol
execution; in contrast, we consider the setting where the adversary can obtain leakage on the entire
state of the honest party during the protocol execution.

We find it imperative to stress that handling leakage attacks on interactive protocols can be
particularly challenging. On the one hand, for the leakage attacks to be meaningful, we would want to
allow leakage on the secret state of the protocol participants. However, the state of a party typically
includes a secret value (witness and random coins of the prover in the case of zero knowledge proofs)
and any leakage on that secret value might immediately violate a security property (e.g., the zero
knowledge property) of the protocol. Then, coming back to setting of zero knowledge proofs, it is not
immediately clear how to even define “leakage-resilient zero knowledge.”

How to define Leakage-Resilient Zero Knowledge? One possibility is to pursue an assump-
tion such as only computation leaks information [MR04] (i.e., assuming that there is no leakage in
the absence of computation). While this is a valuable and interesting approach, we note that this
assumption is often problematic (e.g. cold-boot attacks [HSH+08]). In our work here, therefore, we do
not make any such assumption. We seek a general definition maximizing the potential applicability
of that definition to different application scenarios.

Another possibility is to allow a “leakage-free pre-processing phase” prior to the actual protocol
execution, in an attempt to render the leakage attacks during the protocol useless. We note, however,
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that allowing pre-processing would limit the applicability of our notion. In particular, such a definition
would be problematic for scenarios where the statement to be proven is generated “online” (thereby
eliminating the possibility of pre-processing the witness “safely”). Furthermore, we give strong evi-
dence that such an approach is unlikely to yield better guarantees than what we are able to achieve
(see Section C for further discussion on this issue ).

Indeed, our goal is to obtain a meaningful and appropriate definition of zero knowledge in the
model where an adversarial verifier can obtain leakage on any content (state) of the prover machine
at any time. We do not consider any “leakage-free” time-period; in particular, any pre-processing
phase is subject to leakage as well. However, in such a setting, it is important to note that since the
adversary could simply choose to leak on the witness (and no other prover state), the zero knowledge
simulator must be able to obtain similar amount of leakage in order to perform correct simulation.
We shall see that even with this limitation, our notion turns out to be both quite nontrivial to obtain
and very useful in application scenarios.

Our Definition – Informally. To this end, we consider a definition of leakage-resilient zero knowl-
edge that provides the intuitive guarantee that the protocol does not yield anything beyond the validity
of the statement and the leakage obtained by the adversary. In other words, whatever an adversary
“learns” from the protocol (with leakage) should be no more than what she can learn from only the
leakage without running the protocol. To formalize the above intuition, as a first step, we consider a
leakage oracle that gets as private input the witness of the honest prover; the zero knowledge simulator
is then given access to such a leakage oracle. More concretely, we consider a parameter λ, and say
that an interactive proof system is λ-leakage-resilient zero knowledge (LR-ZK) if for every cheating
verifier, there exists a simulator with access to a leakage oracle (that gets the honest prover’s witness
as private input) that outputs a view of the verifier (indistinguishable from the real execution), with
the following requirement. Let ℓ bits be an upper bound on the total amount of leakage obtained
by the adversarial verifier. Then the simulator is allowed to obtain at most λ · ℓ bits of leakage. (In
Section B, we show that constructing an LR-ZK proof system with λ < 1 is in fact impossible. )

Applications of Our Definition. Now that we have a definition for LR-ZK proof system, one may
question how meaningful it is. As we now discuss, the above definition indeed turns out to be very
useful. Intuitively, our definition is appropriate for a scenario where a leakage-resilient primitive A
is being used in conjunction with a zero knowledge proof system (where the proof system is used to
prove some statement about A), in the design of another cryptographic protocol B. The reason for
this is that our definition of LR-ZK allows us to directly reduce the leakage-resilience property of B
on the leakage-resilience property of A.

As an application of our LR-ZK interactive proof system, we first construct a universally compos-
able (UC) multiparty computation protocol in the leaky token model (which is a relaxation of the model
of Katz [Kat07] in that a malicious token user is now allowed to leak arbitrary bounded information
on the entire state of the token). Very briefly, we use leakage-resilient hard relations [DHLW10b] and
hardware tokens that implement the prover algorithm of our LR-ZK proof system where we prove the
validity of an instance of the hard relation; then the leakage on the state of the token can be easily
“reduced” to leakage on (the witness corresponding to) an instance of the hard relation.

Next, we are able to extend the notion of LR-ZK to the non-interactive setting in a natural way.
Then, as an application of LR-NIZKs, we give generic constructions of fully leakage-resilient (FLR)
signature schemes (where leakage is allowed on the entire state as opposed to only the secret key).
Very briefly, we use leakage-resilient hard relations in conjunction with “simulation-extractable” LR-
NIZKs (see below); we are then able to reduce the leakage-resilience property of the signature scheme
to that of the hard relation. We now summarize our results.
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1.1 Our Results

We first study the possibility of constructing leakage-resilient zero knowledge protocols and obtain the
following results:

• We construct a (1 + ǫ)-leakage-resilient zero knowledge interactive proof system (where ǫ is
any positive constant) based on standard general assumptions (specifically, the existence of a
statistically hiding commitment scheme that is public-coin w.r.t. the receiver). To the best of our
knowledge, this is the first instance of a cryptographic interactive protocol where an adversary
is allowed to obtain arbitrary bounded leakage on the entire state of the honest parties during
the protocol execution.

• Next, we consider the non-interactive setting and show that any NIZK proof system with honest
prover state reconstruction property [GOS06] is an LR-NIZK proof system for λ = 1. As a
corollary, we obtain an LR-NIZK proof system from [GOS06] based on the decisional linear
assumption.

We supplement our above positive results by proving the impossibility of constructing an LR-ZK proof
(or argument) system for λ < 1. Then, as applications of leakage-resilient zero knowledge, we obtain
the following results:

• We initiate a new line of research to relax the assumption on the “tamper-proofness” of hardware
tokens used in the design of various cryptographic protocols. In particular, assuming semi-
honest oblivious transfer, we give a construction of a universally composable (UC) multiparty
computation protocol in the leaky token model, where the token user is allowed to obtain arbitrary
bounded leakage on the entire state of the token. We stress that all prior works on designing
cryptographic protocols using hardware tokens, including the work on UC secure computation
[Kat07, CGS08, MS08, DNW09], made the implicit assumption that the tokens are completely
leakage-resilient.

• Next, we extend the notion of leakage-resilient NIZKs to incorporate the property of simulation-
extractability [Sah99, DDO+01] (also see [PR05] in the context of interactive proofs), in partic-
ular, the “true” variant [DHLW10b]. We are then able to adapt the approach of Katz and
Vaikuntanathan [KV09], and in particular, Dodis et al [DHLW10b, DHLW10a] (who use a
leakage-resilient hard relation in conjunction with a true simulation-extractable NIZK argument
system to construct leakage-resilient signatures) to the setting of full leakage. As a result, we
obtain simple, generic constructions of fully leakage-resilient signature schemes in the bounded
leakage model as well as the continual leakage model. Similar to [DHLW10b, DHLW10a], our
signature scheme inherits the leakage-resilience properties (and the leakage bounds) of the hard
relation used in its construction.1 In contrast to the recent constructions of FLR signature
schemes by [MTVY11, BSW11, LLW11] in the standard model2, our scheme is also secure in
the noisy leakage model [NS09]. We supplement our result by showing that a true simulation-
extractable leakage-resilient NIZK argument system is implied by the UC-NIZK of Groth et al.
[GOS06], which can be based on the decisional linear assumption.

1Specifically, our signature scheme is fully leakage-resilient (FLR) in the bounded (resp., continual) leakage model if
the hard relation is leakage-resilient in the bounded (resp., continual) leakage model.As such, if we use the key pairs from
the encryption scheme of Lewko et al [LLW11] as a hard relation, then our signature scheme can tolerate leakage during
the update process as well.

2Earlier, FLR signature schemes were constructed either only in the random oracle model [ADW09a, DHLW10b,
BKKV10], or were only “one-time” [KV09]
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We study two more questions which are very closely related to the setting of leakage-resilient zero
knowledge. First, we consider the scenario in which a malicious prover can obtain arbitrary leakage
on the random coins of the verifier during the protocol execution. The question that we investigate
is whether it is possible to construct interactive proofs that remain sound even in such a scenario.
We refer to such proofs as leakage-sound proofs. Secondly, we consider the question of constructing
an interactive proof system that simultaneously satisfies the two notions of leakage-soundness (c.f.
Definition 12) and leakage-resilient zero knowledge (c.f. Definition 8). We call such an interactive
proof system simultaneous leakage-resilient zero knowledge. We obtain positive results for both these
settings. We refer the reader to Section 7 for details.

1.2 Our Techniques

We now briefly discuss the main techniques used to obtain our positive results on leakage-resilient
zero knowledge proof systems. Recall that our goal is to realize a definition where a cheating verifier
does not learn anything from the protocol beyond the validity of the statement and the leakage
information obtained from the prover. Further, recall that in our definition, simulator is given access
to a leakage oracle that gets the honest prover’s witness as private input and accepts leakage queries
on the witness string. (In contrast, the verifier is allowed to make leakage queries on the entire state,
including the witness and the random coins used by the prover thus far in the protocol execution.)
Then, during the simulation, on receiving a leakage query from the verifier, our simulator attempts to
convert it into a “valid” query to the leakage oracle. Now, note that the simulator may be cheating
in the protocol execution (which is typically the case since it does not possess a valid witness); then,
since the verifier can arbitrarily leak on both the witness and the random coins (which completely
determine the actions of the prover thus far), at every point in the protocol execution, the simulator
must find a way to “explain its actions so far”. Note that this is reminiscent of adaptive security
[Bea96, CFGN96, CLOS02, LZ09] in the context of secure computation protocols. We stress, however,
that adaptive security does not suffice to achieve the property of leakage-resilient zero knowledge in
the interactive proofs setting, as we explain below.

Recall that the notion of adaptive security corresponds to the setting where an adversary is allowed
to corrupt parties during the protocol execution (as opposed to static corruption, where the parties
can only be corrupted before the protocol begins). Once a party is corrupted, the adversary learns
the entire state (including the input and random coins) of that party. The adversary may choose to
corrupt several parties (in the case of multi-party protocols) throughout the course of the protocol.
The notion of adaptive security guarantees security for the remaining uncorrupted parties.

While adaptive corruption itself is not our focus, note that in our model, a cheating verifier may
obtain leakage on the prover’s state at several points during the protocol execution. Furthermore,
the honest prover may not even be aware as to what was leaked. Our goal is to guarantee that the
adversary does not learn anything beyond the leaked information. Then, in order to provide such a
guarantee, note that our simulator must continue to simulate the prover even after leakage happens, in
a way that is consistent with the leaked information even though it does not know the prover’s witness
or what information was leaked. In contrast, the simulator for adaptively secure protocols does not
need to simulate a party once it is corrupted.3 In summary, we wish to guarantee some security
for the honest party even after leakage happens, while adaptive security does not provide any such
guarantees. We stress that this difference is crucial, and explains why known techniques for achieving
adaptive security do not suffice for our purposes. Nevertheless, as we explain below, adaptive security
serves as a good starting point for our purpose.

Recall that the main challenge in the setting of adaptive security is that whenever an adversary
chooses to corrupt a party, the simulator must be able to explain its random coins, in a way that

3Indeed, for this reason, known adaptively secure ZK protocols are not leakage-resilient.
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is consistent with the party’s input and the messages it generated so far in the protocol. The main
technique for overcoming this challenge is to allow the simulator to equivocate. For our purposes,
we will also make use of equivocation so that the leakage queries can be answered correctly by the
simulator. However, since our simulator would need to simulate the prover even after leakage happens
(without the knowledge of the prover’s witness or the information that was leaked), we do not want
this equivocation to interfere with the simulation of prover’s messages. In other words we want to
be able to simulate the prover’s messages independent of what information is being leaked but still
remain consistent with it. Our solution is to have two separate and independent ways of cheating at
the simulator’s disposal. It will use one way to cheat in the protocol messages and the second way is
reserved for answering the leakage queries correctly. Furthermore, we would need to make sure that
the simulator does not “step on its own toes” when using the two ways to cheat simultaneously.

We now briefly discuss the actual construction of our protocol in order to illustrate the above
ideas. We recall two well-known ways of constructing constant-round zero knowledge protocols –
the Feige-Shamir [FS89] approach of using equivocal commitments (also used in adaptive security),
and the Goldreich-Kahan [GK96] approach of requiring the verifier to commit to its challenges in
advance. Now, armed with the intuition that our simulator will need two separate ways of cheating,
we use both the above techniques together. Our protocol roughly consists of two phases: in the first
phase, the verifier commits to a challenge string using a standard challenge-response based extractable
commitment scheme (in a manner similar to [Ros04]); in the second phase, we execute the Blum-
Hamiltonicity protocol instantiated with an equivocal commitment scheme. While leakage during the
first phase can be handled easily by our simulator, handling leakage during the second phase makes
use of the ideas discussed above.

Unfortunately, although the above construction seems to satisfy most of our requirements, it fails
on the following account. Recall that our goal is to obtain a leakage-resilient zero knowledge protocol
with nearly optimal precision (i.e., λ = 1+ǫ) with respect to the leakage queries of the simulator. Now
note that in the above construction, the simulator would need to extract the verifier’s challenge in the
first phase by means of rewinding before proceeding to phase two of the protocol. Then, depending
upon the verifier’s behavior, the simulator may need to perform several rewinds in order to succeed in
extraction. Now, note that a cheating verifier may be able to make a different leakage query during
each rewind, thus forcing our simulator to make a new query as well to its leakage oracle. As a
result, depending upon the number of such rewinds, the total leakage obtained by the simulator may
potentially become a polynomial factor of the leakage obtained by the adversary in a real execution.

In order to obtain a precision in the leakage queries of the simulator, we borrow techniques from
the work on precise zero knowledge pioneered by Micali and Pass [MP06]. We remark that in the
context of precise ZK, (for fundamental reasons of modeling) it is typically not possible to obtain a
precision of almost 1. In our case, however, we are able to achieve a precision of λ = 1+ ǫ (where ǫ is
any positive constant) with respect to the leakage queries of the simulator.

Finally, we note that in the case of non-interactive zero knowledge, since the simulator does not
need to simulate any “future messages” after the leakage, we are indeed able to show that an adaptively
secure NIZK is also a leakage-resilient NIZK. Specifically, we show that any NIZK with honest prover
state reconstruction property, as defined by Groth et al. [GOS06] (in the context of adaptive security),
is also a leakage-resilient NIZK with λ = 1.

Roadmap. We start by recalling some basic definitions in Section 2. Then in Section 3 we introduce
the notion of leakage-resilient zero knowledge protocols and give a concrete construction of a leakage-
resilient zero knowledge proof system. Next we extend our results to the non-interactive setting in
Section 4. Finally, as applications for our results we give a construction of Universally Composable
secure protocols with leaky tokens (Section 5) and a construction of a fully leakage-resilient signature
scheme (Section 6). We conclude with a note on leakage soundness in Section 7.
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2 Preliminaries

2.1 Basic Definitions: Interactive Case

We first recall the standard definitions of interactive proofs and zero knowledge [GMR85]. For conve-
nience, we will follow the notation and presentation of [PR05]. Let P (called the prover) and V (called
the verifier) denote a pair of interactive Turing machines that are running a protocol with each other
on common input x. Throughout our text, we will always assume V to be a polynomial-time machine.
Let 〈P, V 〉(x) be the random variable representing the output of V at the end of the protocol. If the
machine P is polynomial-time, it is assumed that it has a private input w.

Definition 1 (Interactive proof system) A pair of interactive Turing machines 〈P, V 〉 is called
an interactive proof system for a language L if the following two conditions hold:

• Completeness: For every x ∈ L,

Pr[〈P, V 〉(x) = 1] ≥ 1− negl(|x|)

• Soundness: For every x /∈ L, and every interactive Turing machine P ∗,

Pr[〈P ∗, V 〉(x) = 1] ≤ negl(|x|)

If the soundness condition in the above definition is valid only against ppt Turing machines, then
we say that 〈P, V 〉 is an argument system.

Zero Knowledge. An interactive proof 〈P, V 〉 is said to be zero-knowledge if, informally speaking,
the verifier V learns nothing beyond the validity of the statement being proved. This intuition is
formalized by requiring that the view of every probabilistic polynomial-time (ppt) cheating verifier
V ∗, represented by viewV ∗(x, z), generated as a result of its interaction with P can be “simulated”
by a ppt machine S (referred to as the simulator). Here, the verifier’s view consists of the common
input x, its random tape, and the sequence of prover messages that it receives during the protocol
execution. The auxiliary input of V ∗ and S is denoted by z ∈ {0, 1}∗.

Definition 2 (Zero knowledge) An interactive proof system 〈P, V 〉 for a language L is said to be
zero knowledge if for every ppt verifier V ∗, there exists a ppt algorithm S such that for every x ∈ L,
every z ∈ {0, 1}∗, viewV ∗(x, z) and S(x, z) are computationally indistinguishable.

One can consider stronger variants of zero knowledge where the output of S is statistically close
(or identical) to the verifier’s view. In this paper, unless otherwise specified, we will focus on the
computational variant only.

2.2 Basic Definitions: Non-Interactive Case

Here we recall the standard definition of non-interactive zero knowledge (NIZK) proof systems. For
convenience, we will follow the notation and presentation of [GOS06].

Let R be an efficiently computable relation that consists of pairs (x,w), where x is called the
statement and w is the witness. Let L denote the language consisting of statements in R. A non-
interactive proof system for a language L consists of a setup algorithm K, a prover P and a verifier V .
The setup algorithm K generates a common reference string σ. The prover P takes as input (σ, x,w)
and checks whether (x,w) ∈ R; if so, it produces a proof string π, else it outputs fail. The verifier
V takes as input (σ, x, π) and outputs 1 if the proof is valid, and 0 otherwise.
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Definition 3 (Non-interactive proof system) A tuple of algorithms (K,P, V ) is called a non-

interactive proof system for a language L with a ppt relation R if the following two conditions hold:

• Completeness: For all adversaries A,

Pr[σ ← K(1k); (x,w) ← A(σ);π ← P (σ, x,w) : V (σ, x, π) = 1 if (x,w) ∈ R] ≥ 1− negl(k)

• Soundness: For all adversaries A,

Pr[σ ← K(1k); (x, π)← A(σ) : V (σ, x, π) = 1 if x /∈ L] ≤ negl(k)

If the soundness condition holds only against ppt adversaries, then we say that (K,P, V ) is a non-
interactive argument system.

Definition 4 (Zero Knowledge) A non-interactive proof system (K,P, V ) for a relation R is said
to be zero knowledge if there exists a simulator S = (S1,S2) such that for all adversaries A,

Pr[σ ← K(1k) : AP (σ,·,·)(σ) = 1]
c
≡ Pr[(σ, τ)← S1(1

k) : AS′(σ,τ,·,·)(σ) = 1],

where S ′(σ, τ, x, w) = S2(σ, τ, x) if (x,w) ∈ R and outputs fail otherwise.

We now state an extension of the zero knowledge property, called honest prover state reconstruction,
that is central to our positive result on leakage-resilient NIZK. We recall the notion as defined by Groth,
Ostrovsky and Sahai [GOS06].

Definition 5 (Honest prover state reconstruction) We say that a non-interactive proof system
(K,P, V ) for a relation R has honest prover state reconstruction if there exists a simulator S =
(S1,S2,S3) such that for all adversaries A,

Pr[σ ← K(1k) : APR(σ,·,·)(σ) = 1]
c
≡ Pr[(σ, τ)← S1(1

k) : ASR(σ,τ,·,·)(σ) = 1],

where PR(σ, x,w) computes r ← {0, 1}ℓP (k); π ← P (σ, x,w; r) and returns (π,w, r, ) and SR(σ, τ, x, w)
computes ρ ← {0, 1}ℓS (k); π ← S2(σ, τ, x; ρ); r ← S3(σ, τ, x, w, ρ) and returns (π,w, r); both of the
oracles outputting fail if (x,w) /∈ R.

2.3 Leakage-Resilient Primitives

Here we recall the notion of leakage-resilient hard relations as defined by Dodis, Haralambiev, Lopez-
Alt, Wichs [DHLW10b].

To model leakage attacks, the adversary is given access to a leakage oracle, which she can adaptively
access to learn leakage on the secret value. A leakage oracle Lk,ℓ

x (·) is parametrized by a secret value x,
a leakage parameter ℓ, and a security parameter k. A query to the leakage oracle consists of a function
fi : {0, 1}

∗ → {0, 1}ℓi , to which the oracle answers with fi(x). We only require that the functions fi
be efficiently computable, and the total number of bits leaked is

∑
i ℓi ≤ ℓ.

Definition 6 (Leakage-resilient hard relation.) A relation R with a ppt sampling algorithm kgen(·)
is an ℓ-leakage resilient hard relation if:

• For any (x, y)← kgen(1k), we have (x, y) ∈ R.

• There is a poly-time algorithm that decides if (x, y) ∈ R.
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• For all ppt adversaries AL
k,ℓ
x (·) with access to the leakage oracle Lk,ℓ

x (·), we have that

Pr
[
R(x∗, y) = 1 | (x, y)← kgen(1k);x∗ ← AL

k,ℓ
x (·)(y)

]
≤ negl(k)

Notice that without loss of generality, we can assume that A queries Lk,ℓ
x (·) only once with a

function f whose output is ℓ bits.

We also recall the notion of second-preimage resistant (SPR) relation, as defined in [DHLW10b].

Definition 7 (Second-preimage resistant relation.) A relation R with a randomized ppt sam-
pling algorithm kgen(·) is second-preimage resistant if:

• For any (x, y)← kgen(1k), we have that (x, y) ∈ R.

• There is a poly-time algorithm that decides if (x, y) ∈ R

• For any ppt algorithm A, we have that

Pr
[
R(x∗, y) = 1 ∧ x∗ 6= x | (x, y)← kgen(1k);x∗ ← A(y)

]
≤ negl(k)

The average-case pre-image entropy of the SPR relation is defined as Havg(R) = H̃∞(X | Y ) , where

the random variables (X,Y ) are distributed according to gen(1k), and H̃∞(X | Y ) is the average-
conditional min-entropy of X conditioned on Y .

Leakage-resilient hard relations from SPR relations. Dodis et al show that any SPR relationR
is an ℓ-leakage-resilient hard relation with ℓ = Havg(R)−ω(log k). Finally, we note that SPR relations
are implied by the existence of one-way functions. We refer the reader to [ADW09b, DHLW10b] for
more details.

2.4 Building Blocks

Here, we briefly recall some basic cryptographic primitives that we use in our main construction in
Section 3.2.

Naor’s Statistically Binding Commitment Scheme [Nao89]. In our main construction, we will
use Naor’s statistically binding bit commitment scheme based on one way functions. The commitment
phase consists of two rounds: first, the verifier sends a 3k bit random string r, where k is the security
parameter. The committer chooses a seed s for a pseudo-random generator g : {0, 1}k → {0, 1}3k ; if
it wishes to commit to 0, then it sends g(s), else it sends g(s) ⊕ r. The decommitment phase simply
involves the committer sending s to the receiver.

Public-coin Statistically Hiding String Commitment. We will also use a statistically hiding
commitment scheme 〈C,R〉 that is public-coin with respect to the receiver. Such schemes can be
constructed in constant rounds using collision-resistant hash functions [NY89, HM96, DPP97].

3 Leakage-Resilient Zero Knowledge: Interactive Case

In this section, we discuss our results on leakage-resilient zero knowledge in the interactive setting.
We start by describing our model and our definition of leakage-resilient zero knowledge.
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3.1 Our Definition

We consider the scenario where a malicious verifier can obtain arbitrary bounded leakage on the entire
state (including the witness and the random coins) of the prover during the protocol execution. We
wish to give a meaningful definition of zero knowledge interactive proofs in such a setting. To this end,
we first modify the standard model for zero knowledge interactive proof system in order to incorporate
leakage attacks and then proceed to give our definition. We refer the reader to Section 2.1 for the
standard definitions of interactive proofs and zero knowledge.

We model the prover P and the verifier V as interactive turing machines that have the ability to
flip coins during the protocol execution (such that the random coins used by a party in any round are
determined only at the beginning of that round). In order to incorporate leakage attacks, we allow a
malicious verifier V ∗ to make adaptive leakage queries on the state of the prover during the protocol
execution. A leakage query to the prover consists of an efficiently computable function fi (described
as a circuit), to which the prover responds with fi(state), where state is a variable that denotes
the “current state” of the prover at any point during the protocol execution. The variable state is
initialized to the witness of the prover. At the completion of each step of the protocol execution (that
corresponds to the prover sending a protocol message to the verifier), the random coins used by the
prover in that step are appended to state. That is, state := state‖ri, where ri denote the random
coins used by the prover in that step. The verifier may make any arbitrary polynomial number of
such leakage queries during the protocol execution. Unlike prior works, we do not require an a-priori
bound on the total leakage obtained by the verifier in order to satisfy our definition (described below).
Nevertheless, in order for our definition to be meaningful, we note that the total leakage obtained by
the verifier must be smaller than the witness size.

We model the zero knowledge simulator S as a ppt machine that has access to a leakage oracle
Lk,λ
w (·) that is parameterized by the honest prover’s witness w, a leakage parameter λ (see below),

and the security parameter k. A query to the oracle consists of an efficiently computable function
f(·), to which the oracle answers with f(w). In order to bound the total leakage available to the
simulator, we consider a parameter λ and require that if the verifier obtains ℓ bits of total leakage in
the real execution, then the total leakage obtained by the simulator (from the leakage oracle) must be
bounded by λ · ℓ bits. Finally, we require that the view output by the simulator be computationally
indistinguishable from the verifier’s view in the real execution. We formalize this in the definition
below.

Definition 8 (Leakage-Resilient Zero Knowledge) An interactive proof system 〈P, V 〉 for a lan-
guage L with a witness relation R is said to be λ-leakage-resilient zero knowledge if for every ppt

machine V ∗ that makes any arbitrary polynomial number of leakage queries on P ’s state (in the man-
ner as described above) with ℓ bits of total leakage, there exists a ppt algorithm S that obtains at most

λ ·ℓ bits of total leakage from a leakage oracle Lk,λ
w (·) (as defined above) such that for every (x,w) ∈ R,

every z ∈ {0, 1}∗, viewV ∗(x, z) and SL
k,λ
w (·)(x, z) are computationally indistinguishable.

Some observations on the above definition are in order.

Leakage parameter λ. Note that when λ = 0, no leakage is available to the simulator (as is the case
for the standard zero knowledge simulator). In this case, our definition guarantees the standard zero
knowledge property. It is not difficult to see that it is impossible to realize such a definition. In fact,
as we show in Section B, it is impossible to realize the above definition for any λ < 1, where ǫ is any
constant less than 1. On the other hand, in Section 3.2, we give a positive result for λ = 1 + ǫ, where
ǫ is any positive constant. The meaningfulness of our positive result stems from the observation that
when λ is close to 1, very roughly, our definition guarantees that a malicious verifier does not learn
anything from the protocol beyond the validity of the statement being proved and the leakage obtained
from the prover.
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Leakage-oblivious simulation. Note that in our definition of leakage resilient zero-knowledge,
(apart from the total output length) there is no restriction on the nature of leakage queries that the
simulator may make to the leakage oracle. Then, since the simulator has indirect access to the honest
prover’s witness (via the leakage oracle), it may simply choose to leak on the witness (regardless of
the leakage queries of the verifier) in order to help with the simulation of protocol messages instead
of using the leakage oracle to only answer the leakage queries of the verifier. We stress that this issue
should not affect any potential application of leakage resilient zero-knowledge that one may think of.
Nonetheless, we think that this is an important issue since it relates to the meaningfulness of the
definition. To this end, we note that this issue can easily handled by putting a restriction on how the
simulator accesses the leakage oracle. Specifically, we can model the interaction between the simulation
and the oracle such that the simulator is not allowed to look at the oracle’s responses to its queries.
The simulator is still allowed to look at the leakage queries of the verifier, and use them to create new
queries for the oracle; however, the oracle’s responses are sent directly to the verifier and the simulator
does not get to seem them. We call such simulators leakage-oblivious. We note that the simulator that
we construct for our protocol 〈P, V 〉 (described in the next subsection) is leakage-oblivious.4

3.2 Our Protocol

We now proceed to give our construction of a leakage-resilient zero knowledge interactive proof system
as per Definition 8. Very roughly speaking, our protocol can be seen as a combination of Feige-Shamir
[FS89] and Goldreich-Kahan [GK96], in that we make use of equivocal commitments from the prover’s
side, as well as require the verifier to commit to all its challenges in advance. Note that while either of
the above techniques would suffice for standard simulation, interestingly, we need to use them together
to help the simulator handle leakage queries from a cheating verifier. We now describe our protocol
in more detail.

Let P and V denote the prover and verifier respectively. Our protocol 〈P, V 〉 proceeds in three
stages, described as follows. In Stage 1, V commits to its challenge and a large random string r′ using
a challenge-response based PRS [PRS02] style preamble instantiated with a public-coin statistically
hiding commitment scheme (see Section 2.4). In Stage 2, P and V engage in coin-flipping (that was
initiated in Stage 1 when V committed to r′) to jointly compute a random string r. Finally, in Stage
3, P and V run k (where k denotes the security parameter) parallel repetitions of the 3-round Blum
Hamiltonicity protocol, where P uses Naor’s commitment scheme (see Section 2.4) to commit to the
permuted graphs in the first round. Here, for each bit commitment i, P uses a different substring
ri (of appropriate length) of r as the first message of Naor’s commitment scheme. Protocol 〈P, V 〉 is
described in Figure 1. Intuitively, the purpose of multiple challenge response slots in Stage 1 is to
allow the simulator to extract the values committed by V ∗ with minimal use of the leakage oracle.
With the knowledge of the extracted values, the simulator can force the output of the coin-flipping to
a specific distribution of its choice. This, in turn, allows the simulator to convert Naor’s commitment
scheme into an equivocal commitment scheme during simulation.

Theorem 1 If public-coin statistically hiding commitment schemes exist, then the protocol 〈P, V 〉,
parameterized by ǫ, is a (1 + ǫ)-leakage-resilient zero knowledge proof system.

We note that statistically hiding commitment schemes imply one-way functions, which in turn
suffice for Naor’s statistically binding commitment scheme used in our construction.

4Indeed, since we cannot rule out of obfuscation of arbitrary functionalities, we do not know how to obtain a formal
proof without making the simulator leakage-oblivious.
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Common Input: A k-vertex graph G.
Private Input to P : A Hamiltonian Cycle H in graph G.
Parameters: Security parameter 1k, n = ω(log(k)), t = 3k4, ǫ > 0. Without loss of generality, we
assume that 1

ǫ
is an integer.

Stage 1 (Commitment phase)

V ⇄ P : Commit to a t-bit random string r′ and (n
2

ǫ
)-pairs of random shares

{
r′

0
i,j , r

′1
i,j

}i= n
ǫ
,j=n

i=1,j=1

(such that r′
0
i,j ⊕ r′

1
i,j = r′ for every i ∈ [n

ǫ
], j ∈ [n]) using a public-coin statistically hiding

commitment scheme. Similarly commit to a k-bit random string ch and (n
2

ǫ
)-pairs of random

shares
{
ch0

i,j , ch
1
i,j

}i= n
ǫ
,j=n

i=1,j=1
(such that ch0

i,j ⊕ ch1
i,j = ch for every i ∈ [n

ǫ
], j ∈ [n]) using a

public-coin statistically hiding commitment scheme.

Challenge-response slots: For every i ∈ [n
ǫ
],

P → V : Choose n-bit random strings αi = αi,1, . . . , αi,n and βi = βi,1, . . . , βi,n. Send αi, βi

to V .

V → P : For every j ∈ [n] , V ∗ decommits to r′
αi,j

i,j and ch
βi,j

i,j .

Stage 2 (Coin-flipping completion phase)

P → V : Choose a t-bit random string r′′ and send it to V .

V → P : Decommit to r′ and r′0i,j , r
′1
i,j for every i ∈ [n

ǫ
], j ∈ [n]. Let r = r′ ⊕ r′′.

Stage 3 (Blum Hamiltonicity protocol)

P → V : Let r = r1, . . . , rk3 , where |ri| = 3k for every i ∈ [k3]. For every i ∈ [k],

• Choose a random permutation πi and prepare an isomorphic copy of G, denoted Gi =
πi(G).

• For every j ∈ [k2], commit to bit bj in the adjacency matrix of Gi using Naor’s commit-
ment scheme with ri×j as the first message.

V → P : Decommit to ch and ch0
i,j , ch

1
i,j for every i ∈ [n

ǫ
], j ∈ [n].

P → V : Let ch = ch1, . . . , chk. For each i ∈ [k], if chi = 0, decommit to every edge in Gi and
reveal the permutation πi. Else, decommit to the edges in the Hamiltonian Cycle in Gi.

Figure 1: Protocol 〈P, V 〉

3.3 Proof of Theorem 1

We start by arguing that protocol 〈P, V 〉 is complete and sound. Then we argue that the protocol is
(1 + ǫ)-leakage-resilient zero knowledge.

Completeness. The completeness of our protocol follows directly from the completeness of Blum’s
Hamiltonicity protocol.

Soundness. Before we jump into the proof, we recall and build some notation related to Naor’s
commitment scheme (cf. Section 2.4) that we will need in our proof. This commitment scheme is
statistically binding as long as the first message sent by the receiver does not come from a special
set B ⊂ {0, 1}3k , where B is the set of all strings r = g(s0) ⊕ g(s1) such that s0, s1 ∈ {0, 1}

k and

g : {0, 1}k → {0, 1}3k is a pseudorandom generator. It follows from inspection that |B|
23k

is negligible in
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k. However, observe that if the first message of receiver is in fact chosen from the set B, then Naor’s
commitment is no longer statistically binding and allows for equivocation.

The proof of soundness of 〈P, V 〉 follows in two steps. First we argue that no cheating prover P ∗

can force the string r computed via coin flipping to lie in the set B. Then, given that r 6∈ B, it follows
that the prover’s commitments in Stage 3 are statistically binding. From this soundness follows by a
standard argument in the same manner as [PRS02, Ros04]. Next, we give more details.

Stage 1 all together can be thought of as a statistically hiding commitment to r′ and challenge
string ch. We note that coin flipping phase (Stage 2) generates an output r which is t = 3k4 bits
long and is used for k3 Naor’s bit commitments. For simplicity of exposition, we restrict ourselves to
the first 3k bits of r. These correspond to the bits that will be used as the first message of Naor’s
commitment scheme for the first bit commitment by the prover in Stage 3. We argue that a cheating
prover can not force these 3k bits to lie in set B. We can argue about the remaining bits of r in
an analogous manner. Consider r0, r1 ∈ {0, 1}

3k with the property that there does not exist any
r∗ ∈ {0, 1}3k such that r0 ⊕ r∗ ∈ B and r1 ⊕ r∗ ∈ B. We argue that if a cheating prover P ∗ can force
the first 3k bits of r to lie in B with non-negligible probability ε, then we can construct an adversary
A that can distinguish between a statistically hiding commitment to r0 and a commitment to r1 with
probability 1

2 + ε
2 , thus obtaining a contradiction. Consider the adversary A that takes an input a

statistically hiding commitment to rb (where rb is either r0 or r1) from an external challenger, and
uses P ∗ to determine b. A forwards the commitment to rb from the external challenger to P ∗ as its
commitment to the first 3k bits of r′. It generates the commitments to the remaining bits of r′ and
the challenge string ch on its own. Let r′′ be the string sent by P ∗. Let r∗ be the first 3k bits of r′′.
A outputs b = 0 if r0 ⊕ r∗ ∈ B, and b = 1 if r1 ⊕ r∗ ∈ B, and randomly guesses b ∈ {0, 1} otherwise.

Finally, note that the commitment to challenge ch from the verifier is statistically hiding and Naor’s
commitment from the prover is statistically binding. From this it follows by standard argument that
if a cheating prover can convince verifier of a false theorem then we can use this prover to break the
statistical hiding property of the statistically hiding commitment scheme.

Leakage-Resilient Zero Knowledge. Now we argue that the protocol 〈P, V 〉 (cf. Figure 1) is
(1 + ǫ)-leakage-resilient zero knowledge. For this we need to construct a simulator that simulates the

view of every cheating verifier V ∗. Our simulator has access to a leakage oracle Lk,λ
w (·) to help it with

the leakage queries, such that if V ∗ queries for a total of ℓ bits of leakage then the simulator is allowed
to leak (1 + ǫ) · ℓ bits. Without loss of generality, we assume that immediately after every protocol
message sent by the prover, the cheating verifier makes exactly one leakage query. However, we do
not restrict the output length or the nature of these queries. In particular, these queries could change
adaptively depending on the messages of the prover and the leakage itself. We stress that the above
assumption has been made only to simplify exposition, and indeed, our simulator can handle arbitrary
number of leakage queries as well.

We start by describing our simulator in the next section. We then discuss bounds on the total
leakage required by the simulator, and finally give a proof that the view of a cheating verifier interacting
with a real prover is computationally indistinguishable from the view of the verifier interacting with
our simulator.

3.3.1 Description of S

We start by giving an informal description of the simulator, and then proceed to a more formal
treatment.

Informal description of S. The purpose of Stage 1 in our protocol is to help the simulator in the
extraction of r′ and ch. Once a successful extraction of these values is completed, the simulator can
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simulate in a “straight line” manner. Further, note that typically extraction in a “stand-alone setting”
(in the absence of leakage) can be performed in expected polynomial time by rewinding multiple times
in only one slot. Therefore, at first it might seem unnatural that we use n = ω(log(k)) slots. However
we stress that rewinding in our case is complicated by the fact that the simulator has to respond to
the leakage queries of the verifier. Whenever the simulator rewinds V ∗, it might ask for a new leakage
query (different from the one it asked on the “main” thread of execution); as a result, the total leakage
required by the simulator might grow with the number of rewindings.

We deal with this issue by using the following rewinding strategy. Consider the ith challenge
response slot in Stage 1. We will refer to the main thread of execution with the verifier (that is output
by the simulator) as the main thread and the execution thread created as a result of rewinding as
the look-ahead thread. Now, consider the leakage query made by V ∗ immediately after the after the
simulator sends a random challenge in the the ith slot on the main thread. Suppose that the output
length of this query is ℓm bits. The simulator will respond to this query using the leakage oracle Lk,λ

w (·)
(in the manner as described later). Now, the simulator rewinds V ∗ once (in that slot) and creates
a look-ahead thread, where it sends a new random challenge. The verifier may now ask for a new
leakage query. Suppose that the output length of this query is ℓa bits. If ℓa ≤ ℓm, then the simulator
responds to this query using the leakage oracle Lk,λ

w (·) and aborts the look-ahead thread otherwise.
The simulator will follow the same strategy for each slot.

Now, based on a standard “swapping argument”, we can say that in each slot, in which V ∗ does
not abort in the main thread, the simulator is able to extract r′ and ch with a probability at least 1/2.
If V ∗ does not cause an abort in the main thread, then the simulator has n rewinding opportunities,
and it will be able to extract r′ and ch with overwhelming probability. This is still not good enough
as the simulator might need leakage that is twice in size than what the verifier queries (whereas we
want a precision of (1 + ǫ)). We fix this issue by having the simulator rewind in only those slots in
which the leakage queries have “short output length.”

We now proceed to give a formal description of the simulator. We split the simulator into three
key parts, that correspond to the three stages of the protocol 〈P, V 〉 (cf. Figure 1). We go over these
step by step.

Description of S in Stage 1. Recall that in Stage 1 of the protocol, the verifier commits to

a string r′ and its shares shares
{
r′0i,j, r

′1
i,j

}i=n
ǫ
,j=n

i=1,j=1
, as well as a challenge string ch and its shares

{
ch0i,j, ch

1
i,j

}i=n
ǫ
,j=n

i=1,j=1
. Following these commitments, there are n

ǫ
challenge-response slots between S

and the verifier. For each p ∈ {0, . . . , n− 1} consider the set of slots p
ǫ
+ 1 to p+1

ǫ
. Among these slots,

consider the slot i in which the output length of the verifier’s leakage query is the smallest (let this
length be ℓmi ). The simulator rewinds to the point in the ith slot where the challenge was sent and
sends a new random challenge. At this point V ∗ might make a new leakage query. Let the output
length of this query be ℓai bits. If ℓai ≤ ℓmi , then S uses the leakage oracle to answer the leakage query
(in the manner as discussed below). Now, if V ∗ decommits correctly (as per the random challenge),
then the simulator uses the decommitted values (obtained on the main thread and the look-ahead
thread) to extract both r′ and ch. It then aborts the look ahead. Further note that we consider one
such slot i for each set of slots p

ǫ
+ 1 to p+1

ǫ
(where p ∈ {0, . . . , n−1}). If the simulator fails to extract

r′ and ch before the completion of Stage 1, then it aborts. This rewinding strategy is demonstrated
more formally in Figure 2. Note that leakage queries have been explicitly marked by the և arrow.

Leakage Queries in Stage 1. Let R(·), which takes the prover’s witness w as input, be a function that
outputs the value of random coins of an honest prover which when used along with the prover’s witness
will result in the messages generated by the simulator. More specifically, the honest prover strategy
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Common Input: A k-vertex graph G.
Private Input to L(·): A Hamiltonian Cycle H in graph G (same as real prover).
Parameters: Security parameter 1k, n = ω(log(k)), t = 3k4, ǫ > 0. Without loss of generality, we
assume that 1

ǫ
is an integer.

V ∗
⇄ S: S acts just like a real prover and obtains the commitments to r′

{
r′

0
i,j , r

′1
i,j

}i=n
ǫ
,j=n

i=1,j=1
, ch and

{
ch0

i,j , ch
1
i,j

}i= n
ǫ
,j=n

i=1,j=1
from V ∗.

S և V ∗: V ∗ could make multiple leakage queries in the above step. S uses Lk,λ
w (·) to answer all these

leakage queries (in the manner as described in the main text). V ∗ could abort as well, in which
case S aborts.

Challenge Response: For every p ∈ 0, . . . , (n− 1),

1. For every q ∈ 1, . . . , 1/ǫ, do the following. Let i = p/ǫ+ q.

(a) S → V ∗: Choose n-bit random strings αi = αi,1, . . . , αi,n and βi = βi,1, . . . , βi,n. Send
αi, βi to V .

S և V ∗: S uses Lk,λ
w (·) to answer the leakage queries (in the manner as described in the main

text). Let the output length of the leakage query be ℓmi bits.

(b) V ∗ → S: For every j ∈ [n] , V ∗ decommits to r′
αi,j

i,j and ch
βi,j

i,j .

2. S → V ∗: S rewinds V ∗ to Step 1a of slot i such that i = minj∈{ p

ǫ
+1,..., p+1

ǫ
} ℓ

m
j . It chooses

fresh n-bit random strings α′
i = α′

i,1, . . . , α
′
i,n and β′

i = β′
i,1, . . . , β

′
i,n and sends α′

i, β
′
i to V .

S և V ∗: Let the output length of the leakage query be ℓai bits. If ℓai ≤ ℓmi , then S uses Lk,λ
w (·) to

answer the leakage queries. Otherwise it aborts.

3. V ∗ → S: For j ∈ [n] , V ∗ opens r′
αi,j

i,j and ch
βi,j

i,j or it aborts. In either case S aborts the look
ahead thread.

Note on leakage queries. All messages played by the simulator in Stage 1 are public coin; therefore,
any leakage query from V ∗ can be reduced to a leakage query on only the witness (as described in
the main text).

Figure 2: Rewindings in Stage 1.

with the prover’s witness w and the random coins R(w) will generate the exact same messages as
the simulator. The function R(·) is initialized with the null string. Now note that in this stage, all
messages played by an honest prover are public coin. Then, R(·) at any point in Stage 1 is just the
concatenation of all the protocol messages sent by the simulator so far. Now consider a leakage query
f of the adversarial verifier that takes as input the prover’s witness and the random coins used by the
prover so far. On receiving such a query f , the simulator creates a new query f ′ (that takes as input
only the prover’s witness w) such that f ′(w) = f(w,R(w)). It then queries the leakage oracle with f ′

to obtain f ′(w) and returns it to the cheating verifier.

Description of S in Stage 2. Let r′ be the random string (not including the challenge ch) extracted
by the simulator in Stage 1. For every v ∈ {0, . . . , k3−1}, the simulator chooses r′′v = r′v⊕g(s0v)⊕g(s1v)
(where s0v, s

1
v ∈ {0, 1}

k are randomly chosen) and sends it to V ∗. Here, r′′v and r′v denote 3k bit long
substrings of r′′ and r′ respectively, between positions 3vk + 1 and 3(v + 1)k. Now, if V ∗ decommits
to a value different from the extracted string r′, then S aborts.
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Leakage Queries in Stage 2. All messages played by an honest prover in Stage 2 are also public coin
and just like in Stage 1, R(·) at any point in Stage 2 is just the concatenation of all the protocol
messages sent by the simulator so far. The leakage queries of the cheating verifier are handled using
R(·) in the same way as described earlier in Stage 1.

Description of S in Stage 3. Let ch denote the challenge string extracted by the simulator at
the end of Stage 1. Let ch = ch1, . . . , chk. For each i ∈ [k], if chi = 0, then the simulator chooses a
random permutation πi and commits to Gi = πi(G); otherwise, it commits to a random k-cycle graph
Gi. Depending upon the verifier’s challenge, it reveals the permutation πi and decommits to the graph
Gi or it decommits to the edges corresponding to the cycle in Gi. If the challenge string sent by V ∗

is different from ch, then S aborts.

Leakage Queries in Stage 3. The leakage queries in this Stage need to be handled carefully. Observe
that during Stage 3, for every i ∈ [k], an honest prover chooses a random permutation πi and commits
to Gi = πi(G). Note that during this process, an honest prover would have flipped coins to generate
a random permutation πi and commitments to Gi. To emulate honest prover behavior, S must be
able to reconstruct the permutation πi and the randomness used in generating commitments to Gi as
a function of the witness only. Furthermore, this randomness must be consistent with what S later
reveals (while decommitting) in Stage 3. There are two cases.

1. If chi = 0, then, as mentioned earlier, S chooses a random permutation πi and commits to
Gi = πi(G). Let R′ denote the random coins used by S to generate the commitments. In this
case S updates R(·) as R(·)‖πi‖R

′.

2. The case when chi = 1 is slightly more involved. In this case, as mentioned earlier, S commits
to a random k-cycle graph Gi. For the edges that are not part of the cycle, it commits in a way
so that it can equivocate. Observe that later in the simulation S will actually reveal the cycle
and decommit the edges on the cycle. Hence the cycle and the openings to the commitments
that correspond to the edges of the cycle are fixed. Now, intuitively, by “using the witness” S
can map the cycle in G with the cycle in Gi and obtain a permutation πi. S then computes
G∗ = πi(G) and uses equivocation to explain commitments that it sent earlier as if they were
for G∗. However, it must do all this in a setting where it has access to the witness only via the
leakage oracle.

More formally, consider a string ρ that consists of the following values. First, for each edge
belonging to the cycle in Gi, ρ consists of the random coins that S used when it committed to
bit 1 for that edge. Further, for each other edge (not in the cycle) or a non-edge, ρ consists of
both the random coins that result in a commitment to bit 1 and the random coins that result in
a commitment to bit 0. Note that the simulator can compute the random coins for both cases
since it can equivocate. Now consider the function R′(G, ρ,w) that works as follows. It first
superimposes the cycle graph Gi onto G such that the cycle in G (determined by w) maps to
the cycle in Gi. Note that this can be done in multiple ways. The function R′ picks one such
mapping randomly. It then obtains the permutation πi that would lead to this mapping. Now,
let G∗ denote the graph such that πi(G) = G∗. Note that G∗ consists of the same k-cycle as in
Gi, while the remaining structure of the graph may be different. Now, the function R′ determines
the random coins (from ρ) that when used to commit to (the adjacency matrix for) G∗ would
result in the same commitment string as the one that S sent earlier (when it committed to Gi).
For the edges corresponding to the cycle in G∗, R′ selects from ρ the (unique) random coins
corresponding to the edges belonging to the cycle in Gi. Further, for each other edge (not in
the cycle) or non-edge in G∗, (depending upon whether it is an edge or a non-edge) R′ selects
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the appropriate corresponding random coins from ρ (where the correspondence is determined by
the mapping obtained above). Let R′′ denote the concatenation of all the random coins selected
from ρ in the above manner. Finally, R′ outputs πi‖R

′′. Now the simulator updates the function
R(·) as R(·)‖R′(G, ρ, ·).

The leakage queries of the cheating verifier are handled using R(·) in the same way as described earlier
in Stage 1.

3.3.2 Total leakage queries by S

Lemma 1 If in a protocol execution V ∗ makes queries with a total leakage of ℓ bits then the simulator
S only requires (1 + ǫ) · ℓ bits of leakage.

Proof. This follows directly from the construction of our simulator. Consider the first 1
ǫ
slots in

Stage 1 of the protocol. In the first 1
ǫ
slots, consider the slot where the verifier makes a leakage query

with the smallest output length. Let f denote this leakage query. It follows from the simulator’s
description that the simulator rewinds once in this slot, and the verifier makes at most one leakage
query on the look-ahead thread created as a result of the rewinding. Let f∗ denote the leakage query
made by the verifier on the look-ahead thread. Note that the output length of f∗ is no more than the
output length of f . Now, suppose that the total leakage obtained by the verifier during the first 1/ǫ
slots on the main thread is ℓ1 bits (such that

∑
i ℓi = ℓ). Then, by piegonhole principle, the output

length of f (and therefore, f∗) cannot be greater than ǫ · ℓ1. Thus the total leakage obtained by the
verifier during the first 1

ǫ
slots is (1 + ǫ) · ℓ1.

The same reasoning applies to each set of 1
ǫ
slots, and therefore, the total leakage is upper bounded

by (1 + ǫ) · ℓ. �

3.3.3 Indistinguishability of the views

We now need to prove that view of V ∗ generated in interaction with the real prover is indistinguishable
from the view generated when interacting with the simulator S. We start by describing our hybrids.

H0 This hybrid corresponds to the view of the verifier V ∗ in interaction with S when it has the
witness and follows honest prover strategy. This corresponds to the real interaction. Leakage
queries are answered directly based on the witness and the public coins used by the simulator.

H1 This hybrid is just like in H0, except that the simulator S rewinds V ∗ in n challenge response
slots of Stage 1 as explained in Figure 2. S aborts if the main thread reaches end of Stage 1 but
r′ and ch have not been extracted. The simulator has the witness and the leakage queries are
answered in the same way as in H0.

H2 This hybrid is just like in H1, except that S aborts if V ∗ opens r′ and ch differently from the
extracted values. Leakage queries are answered in the same way as in H1.

H3 This hybrid is same as H2, except that instead of sending a random string r′′ to V ∗, S does the
following. For every v ∈ {0, . . . , k3−1}, S chooses r′′v = r′v⊕ g(s0v)⊕ g(s1v) (where s

0
v, s

1
v ∈ {0, 1}

k

are randomly chosen) and sends it to V ∗. (Here, r′′v and r′v denote 3k bit long substrings of r′′

and r′ respectively, between positions 3vk + 1 and 3(v + 1)k.) Further, the vth commitment in
Stage 3 is made by sending g(s0v). It can be opened to 0 by sending s0v and to 1 by sending s1v.
The simulator has the witness and the leakage queries are answered in the same way as in H2.
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H4 H4 is different from H3 only in the commitments that prover makes in the Stage 3. Let ch =
ch1, . . . , chk be the challenge string that S extracted in Stage 1. For each i ∈ [k], if chi = 0,
then S chooses a random permutation πi and commits to Gi = πi(G). Else, S commits to a
random k-cycle graph Gi. Depending upon the verifier’s challenge, it reveals the permutation πi
and decommits to the graph Gi or it decommits to the edges corresponding to the cycle in Gi.
Leakage queries are handled as described in the description of the simulator. Note that simulator
only needs access to a leakage oracle to answer the leakage queries. Note that H4 corresponds
to the simulator described earlier.

Indistinguishability of H0 and H1. The only difference between hybrids H0 and H1 is that the
simulator may abort in H1 at the end of Stage 1. Now, consider the event E that the prover in H1

reaches the end of the Stage 1 (Commitment Phase) but fails to extract r and ch (and thus aborts).
From Lemma 2 (given below) it follows that the probability of event E is negligible and therefore the
hybrids H0 and H1 are statistically close.

Indistinguishability of H1 and H2. We note that V ∗ can not open commitments to r′ and ch
differently from the extracted values, because the commitment 〈C,R〉 being used is computationally
binding. If V ∗ opens any of the commitments in two different ways with a non-negligible probability
then we can use V ∗ to construct an adversary that breaks the computational binding property of the
used commitment scheme. Then, it follows that H1 and H2 are computationally indistinguishable.

Indistinguishability of H2 and H3. If an adversary can distinguish between hybrids H2 and H3

then we can use this adversary to break the security of the pseudo-random generator used in our
instantiation of Naor’s commitment scheme. For this consider a sequence of hybrids H2,0 . . .H2,k3 . In
H2,i the bits in r that correspond to the first i commitments are created in a way as specified in the
hybrid H3, the rest are created as in H2. Observe that hybrid H2,0 is same as hybrid H2 and hybrid
H2,k3 is same as hybrid H3. Now we argue that if an adversary D can distinguish between hybrids H2,i

and H2,i+1 then we can use this adversary to construct an adversary A that can distinguish a random
string from a pseudorandom string. The argument depends on the value being committed. A obtains
a string a and it is supposed to guess if it is random or pseudorandom. It picks a random string s1

and evaluates g(s1). It forces the bits of r that corresponding to the ith commitment to g(s1) ⊕ a.
And sends its commitment as g(s1) if it needs to commit to 0 and as a if it needs to commit to 1. The
distinguishing advantage of D directly translates to the distinguishing advantage of A.

Indistinguishability of H3 and H4. Finally, we note that hybrids H3 and H4 are identical. The
only change in H4 form H3 is that the simulator does not know the witness and hence does not know
the openings of the commitments that it does not open in the protocol. But even though S does
not know the openings and can not compute them efficiently, the openings itself come from the same
distribution as H3. And the simulator having access to the leakage oracle can evaluate these openings
and answer leakage queries correctly. It follows from the description of the simulator that it responds
to the leakage queries in exactly the same manner as hybrid H3, therefore the view of the cheating
verifier with respect to the leakage queries is identical in hybrids H3 and H4.

Lemma 2 Consider the event E that the simulator reaches the end of the Stage 1 but fails to extract
r and ch. Then,

Pr[E] ≤
1

2n

Proof. Consider the event Ei such that:
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1. In the ith challenge response slot V ∗ responds to the challenge in the main thread after a leakage
query of output length ℓmi .

2. When V ∗ is rewound in the ith challenge response slot then V ∗ makes a query with output
length ℓai in the look ahead thread such that ℓai > ℓmi or it aborts after a leakage query of length
ℓai ≤ ℓmi .

Lets say that the challenge sent in the main thread is c and the challenge sent in the look ahead is c′

such that the event Ei happens. We ignore the case in which c = c′ as this happens with negligible
probability. It can been seen that since both c and c′ are chosen randomly, it is equally likely that
challenge c′ was chosen in the main thread and c was chosen in the look ahead thread. In that case,
V ∗ would not abort in the look ahead thread and if it does not abort in the main thread then the
output length of the leakage query in the look ahead would be smaller than the output length of the
leakage query in the main thread. In nutshell, we have argued that for every choice of challenges which
leads to event Ei there exists another choice which does not lead to event Ei. Hence, Pr[Ei] ≤ 1/2.
This holds for every i by the same argument. Note that each Ei is an independent event and since
the simulator gets to rewinds in k different slots the probability that it fails to extract in all of them
is negligible.

Pr[E] =Pr[

k∧

i=1

Ei]

=
k∧

i=1

Pr[Ei]

≤
1

2n

�

3.4 Leakage-Resilient Zero Knowledge Proofs of Knowledge

Very informally, an interactive proof system is a proof of knowledge if not only does the prover convince
the verifier of the validity of the statement, but it also possesses a witness for the statement. This
intuition is formalized by showing the existence of an extractor machine, that is able to extract a
witness from a prover that succeeds in convincing an honest verifier. The proof of knowledge property
can be useful in several applications. In particular, in our construction of a UC secure computation
protocol (see Section 5) in the “leaky token model”, we will need a λ-leakage-resilient zero knowledge
proof of knowledge (LR-ZKPOK) system.

We note that the protocol 〈P, V 〉 described earlier is not a proof of knowledge. Very roughly, note
that since the verifier challenge (to be used in Stage 3) is committed to in advance in Stage 1, the
standard extractor algorithm for Blum’s Hamiltonicity protocol cannot be used here. To this end, we
now briefly discuss how to modify protocol 〈P, V 〉 to incorporate the proof of knowledge property.

In the modified protocol, in Stage 3, the verifier simply reveals the value ch (without decommitting)
and additionally engages in an execution of a public-coin zero knowledge proof of knowledge 〈P ′, V ′〉
to prove that the revealed value ch is correct. Now, during the rewindings, the extractor algorithm
can simply send a random challenge string and use the simulator for 〈P ′, V ′〉 to convince the prover
that the revealed value is correct.

We note that while the above modification seems to work fine for extraction purposes, we need
to verify that it does not adversely affect the leakage-resilient zero knowledge property of the original
protocol. Specifically, note that since a cheating verifier is allowed to make arbitrary leakage queries in
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our model, we would require that protocol 〈P ′, V ′〉 remains sound even when P ′ (played by the verifier
of 〈P, V 〉) can obtain arbitrary leakage information from V ′ (played by the prover of 〈P, V 〉). To this
end, we note that since 〈P ′, V ′〉 is public-coin, leakage queries do not reveal any useful information
to P ′ as long as it cannot leak on future random coins, which is indeed the case in our model. We
note that proof of Theorem 1 given in previous subsection can be easily extended to account for these
changes.

4 Leakage-Resilient NIZK

In this section, we discuss our results on leakage-resilient NIZKs. To begin with, we describe our
(leakage) model and give our definition of leakage-resilient NIZKs. We refer the reader to Section 2.2
for the standard definition of non-interactive zero knowledge proof systems. Below, we will follow the
notation introduced in Section 2.2.

4.1 Our Definition

We consider the scenario where a malicious verifier can obtain arbitrary leakage on the witness and
the random coins used by an honest prover to generate the proof string. To model leakage attacks,
we allow the cheating verifier to make adaptive leakage queries on the honest prover’s witness and the
random coins used to generate the proof string. A leakage query to the prover consists of an efficiently
computable function f , to which the prover replies with f(w‖r), where w and r denote the prover’s
witness and random coins respectively. It is easy to see that in the non-interactive proofs setting, a
cheating verifier who is allowed multiple leakage queries enjoys no additional power than one who is
allowed only one leakage query. Therefore, for simplicity of exposition, from now on, we only consider
cheating verifiers who make only one leakage query. We note that our definition given below can be
easily adapted to incorporate multiple leakage queries. 5

We model the zero knowledge simulator S as a ppt machine that has access to a leakage oracle
Lk
w(·) that is parameterized by the honest prover’s witness w and the security parameter k. (Unlike the

interactive proofs setting, here we do not consider the leakage parameter λ for simplicity of exposition.)
The leakage oracle accepts queries of the form f (where f(·) is an efficiently computable function) and
outputs f(w). In order to bound the total leakage available to the simulator, we require that if the
verifier obtains ℓ bits of total leakage from the honest prover, then the total leakage obtained by the
simulator (from the leakage oracle) must be bounded by ℓ bits.

Definition 9 (LR-NIZK) A non-interactive proof system (K,P, V ) for a ppt relation R is said to
be a leakage-resilient NIZK if there exists a simulator S = (S1,S2,S3) such that for all adversaries A,

Pr[σ ← K(1k) : APR(σ,·,·,·)(σ) = 1]
c
≡ Pr[(σ, τ) ← S1(1

k) : ASRLk
w(·)(σ,τ,·,·,·)(σ) = 1],

where PR(σ, x,w, f) computes r ← {0, 1}ℓP (k); π ← P (σ, x,w; r); y = f(w‖r) and returns (π, y), while

SRLk
λ
(·)w(σ, τ, x, w, f) computes r ← {0, 1}ℓS (k); π ← S2(σ, τ, x; r); f

′ ← S3(σ, τ, x, r, f); y ← Lk
w(f

′)
and returns (π, y). Here, the leakage query f ′ made to Lk

w(·) is such that its output length is no more
than the output length of f . Both the oracles PR and SR output fail if (x,w) /∈ R.

5As in the case of leakage-resilient zero knowledge interactive proofs, we do not require an a-priori bound on the
total leakage obtained by the verifier in order to satisfy our definition (described below). Nevertheless, in order for our
definition to be meaningful, we note that the total leakage obtained by the verifier must be smaller than the witness size.

20



4.2 Our Result

We now show that every NIZK proof system with the honest prover state reconstruction property (see
Section 2.2 for a formal definition) is in fact a leakage-resilient NIZK. An immediate corollary is that
the Groth et al. [GOS06] NIZK proof system is a leakage-resilient NIZK proof system.

Theorem 2 A NIZK proof system (K,P, V ) for a relation R with honest prover state reconstruction
is a leakage resilient NIZK for R.

Proof. Given that (K,P, V ) is a NIZK proof system with honest prover state reconstruction, let
S ′ = (S ′1,S

′
2,S

′
3) denote a simulator for (K,P, V ) as per Definition 5. Then, given such a simulator

S ′, we show how to construct a simulator S = (S1,S2,S3) that satisfies Definition 9.
The machine S1 is identical to S ′1 in that on input 1k, it samples a CRS string σ along with a

trapdoor τ . Similarly, the machine S2 is identical to S ′2 in that on input a CRS string σ, trapdoor τ ,
statement x and randomness ρ, it outputs a proof string π. The machine S3 works as follows. It takes
as input a CRS string σ, trapdoor τ , statement x, randomness ρ, and a leakage query f , and outputs
the description of a function f ′ (that only takes the witness w as input), described as follows. The
function f ′ on input the witness w first runs the machine S ′3(σ, τ, x, w, ρ) to obtain a random string
r and then computes and outputs f(w‖r). Note that f ′ has the CRS σ, trapdoor τ , statement x,
and randomness ρ hardwired in it. Furthermore, it follows from the description of f ′ that the output
lengths of f ′ and f are equal.

We now argue that the simulated view of the adversary is indistinguishable from its real view.
To this end, first note that the adversary’s real (resp., simulated) view only consists of the proof
string π∗ (resp., π) and the leakage y∗ (resp, y) obtained from the honest prover (resp., simulator
S). Further, note that y∗ is a function of the witness w and the honest prover’s randomness (say) r∗

(used to compute π∗), while y is a function of w and the honest prover’s state r reconstructed by S ′3.
Then, observe that to argue the indistinguishability of adversary’s views, it suffices to argue that the
joint distribution of (π,w, r) is indistinguishable from the joint distribution of (π′, w, r′). However, we
note that this already follows from the honest prover state reconstruction property of (K,P, V ). This
completes the proof. �

5 UC with Leaky Tokens

Starting with the work of Goldreich and Ostrovsky on software protection [GO96], tamper-proof
hardware tokens have been used for a variety of cryptographic tasks such as achieving universal
composability [Kat07, CGS08, MS08, DNW09], one-time-programs [GKR08], unconditionally secure
protocols [GIS+10, GIMS10], compilers for leakage-resilient computation [JV10, GR10], etc. To the
best of our knowledge, all prior works using tamper-proof hardware tokens make the assumption that
the tokens are completely leakage-resilient (i.e., a token does not leak any information to an adversary
in possession of the token). Here, we start a new line of research to investigate whether it is possible
to relax this assumption for various cryptographic tasks. In particular, in this section, we study the
feasibility of doing universally composable secure computation using “leaky” tokens. More specifically,
we start with the tamper-proof hardware token model of Katz [Kat07] and modify it appropriately to
incorporate “bounded” leakage. Then, by making use of leakage-resilient hard relations [DHLW10b]
and our leakage-resilient zero knowledge proof of knowledge, we give a construction for a universally
composable multi-party computation protocol in the leaky token model.

The rest of this section is organized as follows. We first recall the hardware token model of Katz
and describe our modification to incorporate leakage attacks in Section 5.1. Next, in Section 5.2, we
recall the notion of “UC-puzzles” [LPV09] that is central to our positive result. Finally, we describe
our positive result in Section 5.3.
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5.1 Tamper-proof Hardware Setup

In the tamper-proof hardware model [Kat07], it is assumed that all parties in the system can exchange
tamper-proof hardware tokens with each other. Specifically, in this model, a party can take some
software code and “seal” it inside a tamper-proof hardware token; the party can then give this token
to another party, who can then access the embedded software in a black-box manner. Here, the first
party is referred to as the token creator, while the other party is referred to as the token’s user. This
setup is modeled by a “wrapper” functionality Gwrap that accepts two types of messages: the first type
is used by a party P to create a hardware token (encapsulating an interactive protocol M) and to
“send” this token to another party P ′. Gwrap enforces that P can send at most one token to P ′ which
is used for all their protocol interactions throughout their lifetimes (and not just for the interaction
labeled by the sid used when the token is created). Once the token is “created” and “sent” to P ′, this
party can interact with the token in an arbitrary black-box manner. This is formalized by allowing
P ′ to send messages of its choice to M via the wrapper functionality Gwrap. Note that each time M
is invoked, fresh random coins are chosen for M . Finally, note that Gwrap prevents the token creator
P from sending any messages to the token once it is “sent” to P ′. The functionality Gwrap (as defined
in [Kat07])) is described in Figure 3.

Functionality Gwrap

Gwrap is parameterized by a polynomial p and an implicit security parameter k.

Creation. Upon receiving (create, sid, P, P ′,M, n) from P , where P ′ is another user in the system and
M is an interactive Turing machine, do:

• Send (create, sid, P, P ′) to P ′.

• If there is no tuple of the form (P, P ′, ⋆, ⋆, ⋆, ⋆) stored, then store (P, P ′,M, n, 0, ∅).

Execution. Upon receiving (run, sid, P,msg) from P ′, find the unique stored tuple (P, P ′,M, n, i, state)
(if no such tuple exists, then do nothing). Then, choose random r ← {0, 1}p(k). Run
M(msg; r; state) for at most p(k) steps, and let out be the response (set out = ⊥ if M does
not respond in the allotted time). Send (sid, P, out) to P ′, and:

Case 1 (i < n− 1): Store (P, P ′,M, n, i+ 1, (msg‖r‖state)) and erase (P, P ′,M, n, i, state).

Case 2 (i = n− 1): Store (P, P ′,M, n, 0; ∅) and erase (P, P ′,M, n, i, state).

Figure 3: The wrapper functionality [Kat07].

The Leaky Token Model. We wish to weaken the assumption about the “tamper-proofness” of
the hardware tokens by allowing “bounded” leakage of the secret state of a token to its user. To
this end, we consider a modified wrapper functionality Gℓwrap parametrized by a leakage-parameter ℓ
that defines the “total” leakage available to a token user over all the executions of the token. More
concretely, the new wrapper functionality Gℓwrap is defined in the same manner as Gwrap, except that

Gℓwrap accepts special leak queries (from the token user) that consist of a length-decreasing function

fi : {0, 1}
∗ → {0, 1}ℓi (described as a circuit), to which the functionality answers with f(M,state),

where M denotes the code of the interactive Turing machine encapsulated in the token and state
denotes the current state of M consisting of all the protocol messages received from the user and
the random coins used so far by M in the current protocol execution. The token user can make any
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arbitrary polynomial number of such leakage queries over multiple protocol executions with M ; we
only require that the functions fi be efficiently computable, and the total number of bits leaked (over
all executions) is

∑
i ℓi = ℓ. The functionality Gℓwrap is described in Figure 4.

We stress that by allowing leakage on M , we essentially allow the token user to obtain leakage
on any secret values hardwired into M . We also stress that it is important for our purposes that
the wrapper functionality Gℓwrap flip fresh random coins (to be used by M) during each round of a
protocol execution between M and the token user. (In contrast, in the original model of Katz [Kat07],
the wrapper functionality may choose and a fix a random tape for M before the start of a protocol
execution.6)

Functionality Gℓ
wrap

Gℓwrap is parameterized by a polynomial p, a leakage parameter ℓ and an implicit security parameter k.

Creation. Upon receiving (create, sid, P, P ′,M, n) from P , where P ′ is another user in the system and
M is an interactive Turing machine, do:

• Send (create, sid, P, P ′) to P ′.

• If there is no tuple of the form (P, P ′, ⋆, ⋆, ⋆, ⋆, ⋆) stored, then store (P, P ′,M, n, 0, ∅, ℓ).

Execution. Upon receiving (run, sid, P,msg) from P ′, find the unique stored tuple
(P, P ′,M, n, i, state, δ) (if no such tuple exists, then do nothing). Then, choose random
r ← {0, 1}p(k). Run M(msg; r; state) for at most p(k) steps, and let out be the response (set
out = ⊥ if M does not respond in the allotted time). Send (sid, P, out) to P ′, and:

Case 1 (i < n− 1): Store (P, P ′,M, n, i+ 1, (msg‖r‖state), δ) and erase (P, P ′,M, n, i, state, δ).

Case 2 (i = n− 1): Store (P, P ′,M, n, 0; ∅, δ) and erase (P, P ′,M, n, i, state, δ).

Leakage. Upon receiving (leak, sid, P, f), find the unique stored tuple (P, P ′,M, n, i, state, δ) (if no
such tuple exists, then do nothing). If |f | > δ, then do nothing. Otherwise, do:

• Compute z = f(M‖state) and send (sid, P, z) to P ′.

• Store (P, P ′,M, n, i, state, δ − |f |) and erase (P, P ′,M, n, i, state, δ).

Figure 4: The new wrapper functionality Gℓwrap that allows ℓ bits of leakage.

5.2 UC-Security via UC-Puzzles

In order to obtain our positive result, we build on the recent work of Lin, Pass and Venkitasubrama-
niam [LPV09] which puts forward a unified framework for designing UC secure protocols from known
setup assumptions like CRS [CF01, CLOS02], tamper-proof hardware tokens [Kat07], key registration
[BCNP04], etc. As observed by Lin et al., it is implicit from prior works (see e.g. [CLOS02]) that
the task of constructing UC-secure protocols for any well-formed functionality [CLOS02] reduces to
the task of constructing a “concurrent simulation-sound” zero knowledge protocol (ssZK) with “UC
simulation” property7.8 Very informally, these properties can be described as follows (the text is taken

6Note that in this case, if a token user were allowed leakage queries, then it would be able to leak on the entire random
tape of M at the start of the protocol execution. We do not consider such a model in this paper.

7Formally, this can be modeled as implementing a specific “zero knowledge proof of membership” functionality.
8Intuitively, this is because given a functionality f , we can start with a semi-honest secure computation protocol Π

for f , and then “compile” Π with an ssZK protocol to obtain a UC-secure protocol against active adversaries.
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almost verbatim from [LPV09]):

UC simulation: For every ppt adversary A receiving “honest” proofs of statements x using wit-
ness w, where (x,w) are chosen by the environment Z, there exists a simulator S (that only
gets statements x as input) such that no Z can distinguish (except with negligible probability)
whether it is interacting with A or S.

Concurrent simulation-soundness: An adversary who receives an unbounded number of concur-
rent simulated proofs, of statements chosen by Z, cannot prove any false statements (except
with negligible probability).

Lin et al. consider a modular approach towards constructing an ssZK protocol. They observe
that a general technique for realizing the “UC simulation” property is to have the simulator obtain a
“trapdoor” which is hard to compute for the adversary. This is formalized in the form of (two party)
“UC-puzzle” protocols that enable the simulator to obtain such a trapdoor string (but prevent the
adversary from doing so), as described below.

UC-puzzle. Let G denote a setup functionality. A UC-puzzle is a pair (〈S,R〉,R), where 〈S,R〉
is a protocol between two parties—a sender S, and a receiver R—in the G-hybrid model and R ⊆
{0, 1}∗×{0, 1}∗ is an associated ppt computable relation. A UC-puzzle must satisfy the following two
properties.

Soundness No ppt adversarial receiver R∗ after an execution with an honest sender S can find (except
with negligible probability) a trapdoor σ ∈ R(trans), where trans is the transcript of the puzzle
execution.

Statistical Simulatability Let A be a real world adversary (in an environment Z) that participates as
a sender in multiple concurrent executions of a UC-puzzle. Then, for every such A, there exists
a simulator S interacting only with Z such that no (possibly unbounded) Z can distinguish
between an execution with A from an execution with S, except with negligible probability.
Further, for every completed puzzle execution, except with negligible probability, S outputs a
trapdoor σ ∈ R(trans), where trans is the transcript of that puzzle execution.

Now that we have a means for“UC simulation”, in order to achieve “simulation-soundness”, Lin
et al define and construct a strongly non-malleable witness indistinguishable (SNMWI) argument of
knowledge from one way functions. Lin et al. then give a construction for an ssZK protocol from a
UC-puzzle and an SNMWI protocol.

We note that following the work of [LPV09], the task of constructing UC secure protocols from
any setup assumption reduces to the task of constructing a UC-puzzle (in the hybrid model of the
corresponding setup). We obtain our positive result by following the same route, i.e., constructing a
UC-puzzle in the leaky token model. We in fact construct a “family of UC-puzzles” in the Gℓwrap-hybrid
model. More details follow in the next subsection.

5.3 Our Protocol

Recall that in the hardware token model, each pair of parties in the system exchange hardware tokens
with each other. Now consider a system with m parties P1, . . . , Pm. For each pair of parties (Pi, Pj),
we will construct two different UC-puzzles, (a) one where Pi (resp., Pj) acts as the puzzle sender
(resp., receiver) and (b) the other where the roles of Pi and Pj are reversed. This gives us a family of
m2 UC-puzzles.
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Now, given such a family of UC-puzzles, we can construct a family of ssZK protocols where the
protocols in the family are concurrent simulation-sound with respect to each other. Specifically, for
each pair of parties (Pi, Pj), we can construct two different ssZK protocols, (a) one where Pi (resp.,
Pj) acts as the prover (resp., verifier), and (b) the other, where the roles of Pi and Pj are reversed.
Finally, in order to construct a UC-secure protocol for any well-formed functionality f , we can start
with a semi-honest protocol Π for f , and then “compile” Π with the above family of ssZK protocols
in the following manner. Whenever a party Pi sends a protocol message to Pj , it proves that it has
“behaved honestly so far in the protocol” by running an execution of the “appropriate” ssZK protocol
(i.e., where Pi and Pj play the roles of the prover and verifier respectively) from the above family.

We now give the construction of a family of UC-puzzles in the Gℓwrap-hybrid model. Specifically, we
construct a family of protocol and relation pairs (〈Sij , Rij〉,Rij), where i, j ∈ [m]. Here the choice of
notation is to highlight that party Pi (resp., Pj) plays the role of the sender (resp., receiver) in protocol
〈Sij , Rij〉. We will then prove that each pair (〈Sij , Rij〉,Rij) is a UC-puzzle in the Gℓwrap-hybrid model.

Our construction of a UC-puzzle in the Gℓwrap-hybrid model is very similar to that of Lin et al
[LPV09] (in the Gwrap-hybrid model). Specifically, instead of using a standard witness-hiding proof
of knowledge protocol, we use a λ-leakage-resilient zero knowledge proof of knowledge (LR-ZKPOK)
protocol (see Section 3.2). Further, instead of using an ordinary one-way function, we use an ℓ′-
leakage-resilient hard relation, as defined by Dodis, Haralambiev, Lopez-Alt, Wichs [DHLW10b], for
ℓ′ = λ · ℓ. We refer the reader to Section 2.3 for a discussion on leakage-resilient hard relations. We
now proceed to describe our construction.

Description of 〈Sij,Rij〉. The interactive Turing machine Sij , when invoked with the inputs the
identity of the sender Pi, the identity of the receiver Pj and the session id sid, proceeds as follows.
It first checks whether this is the first time interacting with party Pj . If so, it first samples a pair
(x, y) from an ℓ′-leakage resilient hard relation Rℓ′ and then “creates” and “gives” Pj a token, which
encapsulates the interactive Turing machine M that gives a λ-LR-ZKPOK of the statement that
there exists an x such that (x, y) ∈ Rℓ′ . In order to “give” the token to Pj , Sij sends the mes-
sage (create, sid, Pi, Pj ,M, n) to Gℓwrap, where n denotes the round-complexity of our λ-LR-ZKPOK
protocol. To actually challenge Pj , Sij simply sends y as the puzzle to the receiver.

The interactive Turing machine Rij, on receiving y from Sij , engages in an execution of our λ-LR-
ZKPOK protocol with M (via Gℓwrap) where M proves that there exists an x such that (x, y) ∈ Rℓ′ .
More specifically, in order to send a protocol message msg to M , Rij sends (run, sid, Pi,msg) to
Gℓwrap. An adversarial receiver Rij may additionally send leakage queries (leak, sid, P, f) to Gℓwrap,
who responds with f(M‖r) (where r denotes the random coins used by M “so far”) as long as the
total leakage (over all queries) is bounded by ℓ.

Description of Rij. The puzzle relation Rij is simply {(x, y)|(x, y) ∈ Rℓ′}.

This completes the description of (〈Sij , Rij〉,Rij). We now prove that (〈Sij , Rij〉,Rij) is a UC-puzzle
in the Gℓwrap-hybrid model. To this end, we first argue that it satisfies the Soundness property.

(〈Sij,Rij〉,Rij) satisfies Soundness. The Soundness property follows from the following hybrid
argument:

H0 : This hybrid corresponds to the real execution between Sij and R∗
ij as described above. Gℓwrap

answers any leakage query from R∗
ij as long as the total leakage is bounded by ℓ. Let p0 denote

the probability that R∗
ij outputs a trapdoor x ∈ R(y) in this experiment.
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H1 : This hybrid is the same as H0, except that we replace the honest execution of the λ-LR-ZKPOK
between the token and R∗

ij (via Gℓwrap) with a simulated execution. Specifically, we run the

simulator for our LR-ZKPOK protocol that provides a simulated proof9 to R∗
ij. The leakage

queries made by R∗
ij are answered by the simulator in the following manner. On receiving a

leakage query f from R∗
ij , the simulator prepares a query f ′ to the leakage oracle in the same

manner as described in Section 3.2), except for the following change. The function f ′ now has
the code of the honest prover algorithm for our λ-LR-ZKPOK hardwired in it; f ′ internally
computes the machine code M (using the above information) in order to compute leakage on
M . Here, the leakage oracle is implemented by the puzzle sender. Note that by definition (of
λ-leakage resilient zero knowledge), the simulator (and therefore in turn, R∗

ij) obtains at most
λ · ℓ bits of leakage. Let p1 denote the probability that R∗

ij outputs a trapdoor x ∈ R(y) (where
y is the puzzle) in H1.

Now, note that it follows from the λ-leakage resilient zero knowledge property of our LR-ZKPOK
that the views of R∗

ij in H0 and H1 are computationally indistinguishable. Therefore, we have
that |p1 − p0| ≤ negl(k) (where k is the security parameter).

H2 : This hybrid is the same as H1, except that the puzzle y is taken from an external party who
samples (x, y) ∈ Rℓ′ . The leakage queries from the simulator are forwarded to the external party
and the responses are sent back to the simulator. Let p2 denote the probability that R∗ outputs
a trapdoor x ∈ R(y) in H2.

Note that the views of R∗
ij in H1 and H2 are identical. Therefore, we have that p1 = p2. Now,

observe that in H2, R
∗
ij obtains no information on x apart from λ · ℓ bits of leakage. Then, since

Rℓ′ is an ℓ′-leakage resilient hard relation (where ℓ′ = λ · ℓ), it follows that p2 must be negligible
(in the security parameter). Finally, since |p2 − p0| ≤ negl(k), we have that p0 ≤ negl(k).

We now argue that (〈Sij , Rij〉,Rij) satisfies the Statistical Simulatability property.

(〈Sij,Rij〉,Rij) satisfies Statistical Simulation. The proof for Statistical Simulatability property
follows exactly as in [LPV09]. We recall the argument here for completeness. The text below is taken
almost verbatim from [LPV09].

To simulate a concurrent puzzle execution with an adversarial sender A and the environment
Z, S internally emulates each execution with A and acts as the wrapper functionality Gℓwrap for A.

Whenever A sends a message (create, sid, Pi, Pj ,M
∗) to Gℓwrap, S obtains the message. Later, to

extract the trapdoor of a puzzle y challenged by A (controlling Pi) to Pj , S simply rewinds M∗ in
the LR-ZKPOK protocol to extract the witness. Note that since M∗ cannot receive messages from
other parties except Pj , it would never expect any new messages from parties other than Pj during
rewindings. Therefore, the extraction can be finished in isolation without intervening the adversary
A and environment Z. Hence we achieve perfect simulation.

Leakage Parameter ℓ. As discussed in Section 2.3, assuming one-way functions, it is possible to
construct ℓ-leakage-resilient hard relations in the bounded leakage model for optimal value of ℓ, namely,
ℓ = (1−o(1))ξ, where ξ is the length of the secret (i.e., the witness for an instance of the hard relation).

9Note that simulation of our LR-ZKPOK involves rewinding of the adversary which is not allowed in the UC frame-
work. However, we stress that the rewinding is performed here only for a “soundness” argument, which can be done
outside the UC framework. Elaborating further, we note that the ZK proof being given is independent of everything else
in the system (except, of course, the instance of the hard relation). Therefore, we can think of the proof in isolation of
the rest of the system. Now, in this setting the adversary (or, more generally the whole environment) can be used to
break the zero knowledge property of our protocol in the stand-alone setting. We note that this idea has been used in
several previous works, see [BS05, CGS08].
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(See Section 2.3 for more details.) Combining this with our result on (1 + ǫ)-LR-ZKPOK (where ǫ is

a positive constant) in section 3.2, we have that ℓ = (1−o(1))ξ
1+ǫ

.

Family of ssZK protocols. We note that given the family of UC-puzzles (〈Sij , Rij〉,Rij), the
construction of a family of ssZK protocols easily follows from the techniques as described in [LPV09].
We refer the reader to [LPV09] for more details.

6 Fully Leakage-Resilient Signatures

In this section, we give a generic constructions of fully leakage-resilient (FLR) signature schemes by
building on our notion of leakage-resilient NIZKs.

In order to discuss our approach, we first briefly recall the leakage-resilient signature scheme in
[DHLW10b] (which in turn is based on the construction of [KV09]). Dodis et al. gave a generic
construction of a leakage-resilient signature scheme in the bounded-leakage model from a leakage-
resilient hard relation, and a tag-based true simulation-extractable (tSE) NIZK argument system.
Very roughly, a tSE-NIZK system guarantees the existence of an extractor algorithm that can extract
the witness for a NIZK proof output by an adversary that has oracle access to simulated proofs of
true statements under tags of his choice (the tag used in the proof output by the adversary must be
different from the tags used in the simulated proofs). We note that the approach of Dodis et al. is
quite general, in that if we use a hard relation that is secure in the continual-leakage (CTL) model
(as opposed to only the bounded-leakage model), the resultant signature scheme is also secure in the
CTL model. Indeed, this is the approach followed in [DHLW10a].

In order to construct FLR signatures (that allow leakage on the entire state as opposed to
only the secret key), we extend our notion of leakage-resilient NIZK to incorporate true simulation-
extractability. Then, given a true simulation-extractable leakage-resilient (tSE-LR) NIZK argument
system, we note that the construction of [DHLW10b] (resp., [DHLW10a]) can be easily modified to
obtain FLR signatures in the bounded-leakage model (resp., CTL model). Finally, we note that a
tSE-LR-NIZK argument system is implicit from the UC-secure NIZK of [GOS06].

The rest of this section is organized as follows. We first define the notion of true simulation-
extractable leakage-resilient NIZK and give a construction for the same in Section 6.1. Next, we
present our construction of an FLR signature scheme in the bounded-leakage model in Section 6.2.
Finally, in Section 6.3, we briefly discuss fully leakage-resilient signatures in the CTL model.

6.1 True Simulation-Extractable Leakage-Resilient NIZK

In this section we define tag-based tSE-LR-NIZK system and give a construction for the same. Our
definition can be seen as an extension of the notion of tSE-NIZKs, as defined in [DHLW10b]. Very
roughly, tSE-LR-NIZK extends the notion of tSE-NIZK by allowing the adversary to obtain (in ad-
dition to simulated proofs) leakage on the witness and randomness used to generate the simulated
proofs. We note that our original definition of LR-NIZK (c.f. Definition 9) does not include tags, but
we stress that it can be easily extended to do so.

Definition 10 (True simulation-extractability) Let (K,P, V ) be a leakage-resilient NIZK system
for a relation R with a simulator S = (S1,S2,S3) and a leakage oracle Lk

w(·). We say that (K,P, V )
is true simulation-extractable with tags if there exists a ppt extractor algorithm E such that for all
adversaries A, we have Pr[A wins] ≤ negl(k) in the following experiment:

1. (σ, τ)← S1(1
k).
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2. (x∗, tag∗, π∗)← ASRLk
w(·)(σ,τ,·,·,·,·), where SRL(·)(σ, τ, x, w, tag, f) computes r ← {0, 1}ℓS (k); π ←

S2(σ, τ, x, tag; r); f
′ ← S3(σ, τ, x, r, f); y ← Lk

w(f
′) and returns (π, y) (or fail if x /∈ L). Note

that A can query SRL(·) multiple times in an adaptive manner.

3. w∗ ← E(σ, τ, x∗, tag∗, π∗).

4. A wins if: (a) the pair (x∗, tag∗) was not part of a simulator query, (b) V (σ, x∗, tag∗, π∗) = 1,
and (c) R(x∗, w∗) = 0.

Our Construction. A tag based tSE-LR-NIZK argument system (K,P,V) follows directly from the
UC-secure NIZK constructed by Groth, Ostrovsky and Sahai [GOS06]. In fact it is relatively easier to
construct tSE-LR-NIZK (as opposed to obtaining UC-security). For the sake of completeness, we give
the complete construction and proof in Appendix A. A large part of the construction and the proof
has been taken verbatim from [GOS06].

6.2 Fully Leakage-Resilient Signatures in the Bounded Leakage Model

We first recall the definition of FLR signatures in the bounded-leakage model from [BSW11]. Some
of the text below is taken verbatim from [BSW11]. Very roughly, we say that a signature scheme
is fully leakage-resilient in the bounded-leakage model if it is existentially unforgeable against any
ppt adversary that can obtain polynomially many signatures over messages of her choice, as well as
bounded leakage information on the secret key and the randomness used by the signing algorithm
throughout the lifetime of the system.10 We define a variable state that is initialized to the secret
key. On each signature query from the adversary, the random coins used by the signing algorithm
are appended to state. The adversary can leak any ppt information on state as long as the total
amount is bounded by the leakage parameter ℓ.

Definition 11 (FLR security – bounded leakage) A signature scheme (KeyGen, Sign, Verify)
is ℓ-fully-leakage-resilient in the bounded leakage model if for all ppt adversaries A, we have that
Pr[A wins] ≤ negl(k) in the following experiment:

1. Compute (pk, sk)← KeyGen(1k, ℓ), and set state = sk. Give pk to the adversary.

2. Run the adversary A on input tuple (1k, pk, ℓ). The adversary may make adaptive queries to the
signing oracle and the leakage oracle, defined as follows:

Signing queries: On receiving a query mi, the signing oracle samples ri ← {0, 1}
∗, and com-

putes Φi ← Signsk(mi; ri). It updates state := state‖ri and outputs Φi.

Leakage queries: On receiving as input the description of a polynomial-time computable func-
tion fj : {0, 1}

∗ → {0, 1}ℓj , the leakage oracle outputs f(state).

3. At some point, A stops and outputs (m∗,Φ∗).

4. A wins in the experiment iff:

• Verifypk(m
∗,Φ∗) = 1, and

• m∗ was not queried to the signing oracle, and

•
∑

j ℓj ≤ ℓ.

10We note that in the original definition of [BSW11], the adversary can obtain leakage even on the randomness used in
the key-generation algorithm. In our main discussion, for the sake of simplicity, we do not consider this case. We stress,
however, that our construction satisfies the original definition of [BSW11], as discussed later in the section.

28



Our Construction. We now give a generic construction of fully leakage-resilient signatures based
on leakage-resilient hard relations and tSE-LR-NIZK arguments. Let Rℓ be an ℓ-leakage-resilient hard
relation with a ppt sampling algorithm kgen(·). Let (K,P, V ) be a tag-based tSE-LR-NIZK argument
system for a relation R. The signature scheme (KeyGen, Sign, Verify) is described as follows.

• KeyGen(1k, ℓ): Sample (x, y)← kgen(1k), σ ← K(1k). Output sk = x and pk = (σ, y).

• Signsk(m): Output Φ = π, where π ← P (σ, y,m, x). (Here m is the tag in the argument.)

• Verifypk(m,Φ): Output V (σ, y,m,Φ).

Theorem 3 If Rℓ is an ℓ-leakage-resilient hard relation and (K,P, V ) is a tag-based true simulation-
extractable leakage-resilient NIZK argument system, then (KeyGen, Sign, Verify) is an ℓ-fully-leakage-
resilient signature scheme in the bounded-leakage model.

Proof. Consider the following series of experiments:

Hybrid H0. This hybrid corresponds to the fully-leakage-resilience experiment as described in Def-
inition 11. Let p0 denote the probability that A outputs a successful forgery in this experiment.

Hybrid H1. This hybrid is the same as H0, except for the following changes. First, during the key
generation process, instead of sampling a CRS honestly, we now run the simulator of the NIZK system
to generate the CRS. Further, on receiving a query mi from A, instead of giving an honestly generated
NIZK argument to A, the signing oracle works as follows. It runs the simulator for our NIZK system
with a leakage query fi and obtains a simulated argument πi and the description of a function f ′

i .
Here, the function fi is such that it takes as input the witness and random coins of the NIZK prover
algorithm (simulator in this case) and simply outputs all the random coins. Further, f ′

i is the function
output by the simulator that takes as input only the witness and produces the same output as fi (c.f.
Definition 9). The signing oracle outputs Φi = πi and gives f ′

i (as private input) to the leakage oracle.
The leakage oracle on receiving a leakage query fj from A works as follows. Let f ′

1, . . . , f
′
i denote

the list of functions that the leakage oracle has received from the signing oracle so far. Then, the
leakage oracle first prepares a function f∗

j that takes as input only the secret key sk (which is the
witness for each proof generated by the simulator above), described as follows. The function f∗

j on
input the secret key sk first computes r1 ← f ′

1(sk), . . . , ri ← f ′
i(sk) to generate state = sk‖r1‖ . . . ‖ri

and then outputs fj(state).
Let p1 denote the probability that A outputs a successful forgery in this experiment. Now, it

follows from the leakage-resilient zero knowledge property of (K,P, V ) that the views of A in H0 and
H1 are indistinguishable. Then, we have that |p1 − p0| ≤ negl(k).

Hybrid H2. This hybrid is the same as H1, except that the public key component y is now taken
from an external party P who samples a pair (x, y) ← kgen(1k) such that (x, y) ∈ Rℓ. Further,
instead of computing the response a leakage query fj on its own, the leakage oracle now prepares a
query f∗

j (as in the previous hybrid) and forwards it to the external party P . The response from P is
sent back to A.

Let p2 denote the probability that A outputs a successful forgery in this experiment. Now, note
that the views of A in H1 and H2 are identical. Then, we have that p2 = p1.

Now, let (m∗,Φ∗) denote the forgery output by A. We now run the extractor for the simulation-
extractable leakage-resilient on input the CRS, the CRS trapdoor, tag∗ = m∗, and π∗ = Φ∗ to obtain
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a witness x∗ = w∗. It follows from the simulation-extractability of our NIZK argument system that x∗

is such that (x∗, y) ∈ Rℓ, except with negligible probability. That is, we have obtained a pre-image of y
with probability p = p2−negl(k). Then, it follows from the ℓ-leakage resilience of Rℓ that p ≤ negl(k).
Combining this with above, we have that p0 ≤ negl(k). This concludes the proof.

Leakage parameter ℓ. As discussed in Section 2.3, assuming one-way functions, it is possible to
construct ℓ-leakage-resilient hard relations in the bounded leakage model for optimal value of ℓ, namely,
ℓ = (1−o(1))ξ, where ξ is the length of the secret (i.e., the witness for an instance of the hard relation).
(We refer the reader to Section 2.3 for more details.) Then, instantiating our signature scheme with
such a hard relation, we have that ℓ = (1− o(1))ξ, where ξ is the length of the secret key.

Leakage during Key Generation. We note that the signature scheme described above can in fact
tolerate leakage during the key generation algorithm (thus satisfying the original definition of Boyle
et al [BSW11]) if it is possible to sample CRS for the tSE-LR-NIZK argument system in an oblivious
manner (i.e., without first computing a trapdoor string). Note that this is possible if the CRS is a
common random string. As we show in Section A, our construction of tSE-LR-NIZK argument system
indeed satisfies this property.

6.3 Fully Leakage-Resilient Signatures in the Continual Leakage Model

In Section 6.2, we considered FLR signature schemes in the bounded-leakage model, where the adver-
sary is allowed to obtain only some bounded leakage on the secret state during the entire lifetime of
the system. A more realistic model is the continual-leakage model (CTL), first studied by Dodis et al.
[DHLW10a] and Brakerski et al [BKKV10]. We briefly recall the CTL model in the context of FLR
signature schemes [BSW11, MTVY11]. Very roughly, in this model, the adversary is allowed to leak
continuously from the secret state, with no bound on the total leakage obtained during the lifetime
of the system. However, there are two restrictions: First, it is assumed that the a user can “refresh”
(or update) the secret key regularly, and that the total leakage between two successive updates is
bounded. Second, there is no leakage during the update process.11 As in the bounded-leakage model,
a variable state is considered that is initialized to the secret key, and is constantly updated with the
randomness used by the signing algorithm. However, at the end of an update, state is set to the
updated secret key (such that no leakage is possible on the old secret state). We refer the reader to
[BSW11] and [MTVY11] for a detailed definition of a fully leakage-resilient signature scheme in the
continual leakage model.

We now briefly discuss how to extend our construction of FLR signature scheme from Section 6.2
to the CTL model. We note that if we substitute the leakage-resilient hard relation in our previous
construction with a continual leakage-resilient hard relation [DHLW10a], we immediately obtain a
FLR signature scheme in the CTL model. An alternative way of looking at this is as follows. If we
substitute the tSE-NIZK used in the construction of a (standard) leakage-resilient signature scheme
in the CTL model in [DHLW10a] with our true simulation-extractable leakage-resilient NIZK, we
immediately obtain an FLR signature scheme in the CTL model. The construction and proof details
easily follow from Section 6.2 and [DHLW10a] and are therefore omitted.

11As observed in [BKKV10], and by Waters (noted in [DHLW10a]), there is general technique that can be used
to tolerate up to logarithmic bits of leakage during the update process. More recently, Lewko et al [LLW11] give a
construction for FLR signature scheme and an encryption scheme that tolerates constant fraction of leakage during the
update process. We note that if we use the key pairs of the encryption scheme of [LLW11] as a hard relation, then our
construction of FLR signatures will inherit the leakage bounds of their encryption scheme.
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6.4 Security in the Noisy Leakage Model

We note that FLR signature schemes in the bounded leakage model (as well as the CTL model) were
given only very recently (in the standard model) by Malkin et al. [MTVY11] and Boyle et al.[BSW11].
However, these schemes are not secure in the noisy leakage model, formalized by Naor and Segev [NS09].
Noisy leakage is a realistic generalization of bounded leakage, in which the leakage is not necessarily
of bounded length, and it is only guaranteed that the secret key still has some min-entropy even given
the leakage. We note that our signature scheme, when instantiated with a hard relation secure in the
noisy leakage model, is also secure in this model.

At a high level, constructions of reductions, from adversaries breaking unforgeability of known FLR
signature schemes [MTVY11, BSW11] to underlying hard problems, rely on partitioning the message
space into two parts - the first on which the reduction can generate signatures and the second on which
it can not. These reductions break the underlying hard problem when all the adversary’s signature
queries come from the first partition while the forgery comes from the second partition. Further the
signatures generated by the reduction on messages of first partition do not information theoretically
fix the secret key. Therefore leakage of a signature from this partition would allow an adversary to
break unforgeability without severely reducing the entropy of the secret key. Because of these reasons,
the above scheme are not secure in the noisy leakage model.

On the other hand, in our scheme every signature information theoretically fixes the secret key.
However, in the proof, a reduction can not answer the adversary’s signature queries with these signa-
tures that information theoretically fix the secret key. Our reduction solves this problem by providing
“simulated signatures” instead which do not fix the secret key information theoretically, yet are com-
putationally indistinguishable from the “real signatures.” This allows us to achieve security in the
noisy leakage model. We defer the details to the full version.

7 Leakage-Soundness and Simultaneous Leakage-Resilient ZK

7.1 Leakage-Sound Interactive Proofs

We now consider the opposite scenario where a malicious prover can obtain arbitrary leakage on the
random coins of the verifier during the protocol execution. The question that we wish to investigate
is whether it is possible to construct interactive proofs that remain sound even in such a scenario.
Towards that goal, (as done previously) we model P and V as interactive turing machines that have
the ability to flip coins during the protocol execution. At any point during the protocol execution,
a malicious prover P ∗ may send a leakage query f (where f(·) is an arbitrary ppt length-decreasing
function, described as a circuit) to the verifier. An honest verifier V , on receiving such a leakage
query, computes f on her random coins used thus far in the protocol (i.e., the prover cannot leak on
the future random coins of the verifier) and returns the output to the prover. In order to bound the
leakage obtained by a cheating prover, we consider a leakage parameter ℓ and require that |f(·)| ≤ ℓ
for every leakage query f(·).The prover may make any arbitrary polynomial number of leakage queries
during the protocol execution, as long as the total leakage size is bounded by ℓ.

Informally speaking, we say that an interactive proof system is leakage-sound if it satisfies the
soundness property even with respect to a cheating prover that can obtain leakage on the random
coins of the verifier.

Definition 12 (Leakage-sound interactive proof system) An interactive proof system 〈P, V 〉 for
a language L is said to be ℓ-leakage-sound interactive proof system if for every x /∈ L, and every in-
teractive Turing machine P ∗ that makes any arbitrary polynomial number of leakage queries on the
verifier’s random coins (thus far in the protocol execution; in the manner as described above) such that
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the total leakage size is bounded by ℓ, the following holds:

Pr[〈P ∗, V 〉(x) = 1] ≤ negl(|x|)

If the soundness condition in the above definition is valid only against ppt Turing machines,
then we say that 〈P, V 〉 is a leakage-sound interactive argument system. We note that any public coin
interactive proof system is already leakage-sound for any arbitrary amount of leakage from the verifier.

7.2 Simultaneous Leakage-Resilient Zero Knowledge

We finally consider the scenario where a cheating prover can obtain leakage on the random coins of
an honest verifier while at the same time, a cheating verifier can obtain leakage on the honest prover’s
witness and random coins. We wish to investigate whether it is possible to construct an interactive
proof system that simultaneously satisfies the two notions of leakage-soundness (c.f. Definition 12)
and leakage-resilient zero knowledge (c.f. Definition 8). We call such an interactive proof system
simultaneous leakage-resilient zero knowledge, as stated below formally.

Definition 13 (Simultaneous leakage-resilient zero knowledge proof system) An interactive
proof system 〈P, V 〉 for a language L is said to be ℓ-simultaneous leakage-resilient zero knowledge proof

system if it is ℓ-leakage-sound as per Definition 12 and leakage-resilient zero knowledge as per Defini-
tion 8.

We note that our protocol presented in Figure 1 is already simultaneous leakage-resilient zero
knowledge. In order to argue leakage soundness we start by observing that the commitment from the
verifier to the prover is statistically hiding. At a high level this means that the commitment provided
by the verifier can be opened to any value, and therefore leakage on the committed value and the
randomness used in generating the commitment can be reduced to a leakage query (running possibly
in unbounded time) on the message alone. In our protocol, the verifier provides a commitment to its
challenge string. Therefore given the leakage, as long as at least ω(log k) bit of entropy remains in the
challenge string, soundness will be preserved. Finally, in order to achieve ℓ-leakage-soundness we will
need to consider ℓ+ ω(log k) repetitions of the Blum’s protocol in our protocol presented in Figure 1.

Finally we note that, our construction of leakage resilient NIZKs (In Section 4) is simultaneous
leakage-resilient zero knowledge for any arbitrary amount of leakage from the verifier. This follows
trivially from the fact that in our construction of NIZKs the verifier is deterministic, and is not involved
in any interaction.
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Appendix

A True Simulation-Extractable Leakage-Resilient NIZK

A tag-based simulation-extractable leakage-resilient (tSE-LR) NIZK argument system (K,P,V) follows
directly from the UC NIZK of Groth, Ostrovsky and Sahai [GOS06]. In fact it is (relatively) easier
to construct tag-based tSE-LR-NIZK argument system. In our construction, we can use tags directly
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while this was not feasible in the construction of UC-NIZK in [GOS06]. Also, unlike their construction,
here we do not provide perfect security. A large part of the construction and the proof has been taken
verbatim from [GOS06]. We provide the construction for (K,P,V) in this section. We start by listing
the tools needed in the construction.

A.1 Tools

We will use a non-interactive zero knowledge argument system (K,P, V ) with honest prover state
reconstruction (cf. Definition 4 and Definition 5). Let (S1, S2, S3) denote the simulator for (K,P, V ).
In addition, we use the following cryptographic tools.

Encryption with pseudorandom ciphertexts. A public-key cryptosystem (Kpseudo, E,D) has
pseudorandom ciphertexts of length ℓE(k) if for all non-uniform polynomial time adversaries A we
have

Pr
[
(pk,dk)← Kpseudo(1

k) : AEpk(·)(pk) = 1
]

≈ Pr
[
(pk,dk)← Kpseudo(1

k) : ARpk(·)(pk) = 1
]
, (1)

where Rpk(m) runs c← {0, 1}ℓE (k) and every time returns a fresh c. We require that the cryptosystem
has errorless decryption.

Trapdoor permutations over domain {0, 1}ℓE(k)−1 imply pseudorandom cryptosystems as we can
use the Goldreich-Levin hard-core bit [GL89] of a trapdoor permutation to make a one-time pad.
Trapdoor permutations over {0, 1}ℓE(k)−1 can for instance be constructed from the RSA assumption
asusming ℓE(k) is large enough [CFGN96]. These can also be constructed from other special number
theoretic assumptions as described in [GOS06].

Tag-based simulation-sound trapdoor commitment. A tag-based commitment scheme has
four algorithms (Ktag−com, commit,Tcom,Topen). The key generation algorithm Ktag−com produces
a commitment key ck as well as a trapdoor key tk. There is a commitment algorithm that takes
as input the commitment key ck, a message m and any tag tag and outputs a commitment c =
commitck(m, tag; r). To open a commitment c with tag tag we reveal m and the randomness r.
Anybody can now verify c = commitck(m, tag; r). As usual, the commitment scheme must be both
hiding and binding.

In addition, to these two algorithms there are also a couple of trapdoor algorithms Tcom,Topen
that allow us to create an equivocal commitment and later open this commitment to any value we
prefer. We create an equivocal commitment and an equivocation key as (c,ek)← Tcomtk(tag). Later
we can open it to any message m as r ← Topenek(c,m, tag), such that c = commitck(m, tag; r). We
require that equivocal commitments and openings are indistinguishable from real openings. For all
non-uniform polynomial time adversaries A we have

Pr
[
(ck,tk)← Ktag−com(1

k) : AR(·,·)(ck) = 1
]

≈ Pr
[
(ck,tk)← Ktag−com(1

k) : AO(·,·)(ck) = 1
]
, (2)

whereR(m, tag) returns a randomly selected randomizer andO(m, tag) computes (c,ek)← Tcomtk(m, tag);
r ← Topenek(c,m, tag) and returns r. Both oracles ignore tags that have already been submitted
once.

The tag-based simulation-soundness property means that a commitment using tag remains bind-
ing even if we have made equivocations for commitments using different tags. For all non-uniform

37



polynomial time adversaries A we have

Pr
[
(ck,tk)← K(1k); (c, tag,m0, r0,m1, r1)← A

O(·)(ck) : tag /∈ Q and (3)

c = commitck(m0, tag; r0) = commitck(m1, tag; r1) and m0 6= m1

]
≈ 0,

whereO(commit, tag) computes (c,ek)← Tcomtk(tag), returns c and stores (c, tag,ek), andO(open, c,m, tag)
returns r ← Topenck(ek, c,m, tag) if (c, tag,ek) has been stored, and where Q is the list of tags for
which equivocal commitments have been made by O.

The term tag-based simulation-sound commitment comes from Garay, MacKenzie and Yang [GMY06],
while the definition presented here is from MacKenzie and Yang [MY04]. The latter paper offers a
construction based on one-way functions.

A.2 Construction of True Simulation-Extractable Leakage-Resilient NIZK

The issues that come up in the UC NIZK construction of Groth, Ostrovsky and Sahai [GOS06]
also come up in our construction of true simulation-extractable leakage resilient NIZKs. The two
key hurdles that come up in the construction are: First, the simulator S has to simulate the NIZK
arguments (let Π be one of them) without knowing the witness. Furthermore, given the witness S must
be able to simulate the randomness that would explain Π. S needs to do this in order to answer the
leakage queries. The second problem is that if an adversary generates an acceptable NIZK argument
Π for a statement C then S must use Π and output a witness w such that C(w) = 1.

The main idea in overcoming these hurdles is to commit to the witness w and make a NIZK
argument with honest prove state reconstruction such that the commitment contains a witness w such
that C(w) = 1. The honest prover state reconstruction property of the NIZK argument helps us to
simulating the leakage queries. But, this leaves us with the commitment scheme. On one hand, when
S simulates NIZK arguments we want to make equivocal commitments that can be opened arbitrarily
since S does not know the witness and may need to answer leakage queries. On the other hand, when
S sees an adversarially generated NIZK proof then we want to be able to extract the witness.

We construct such a commitment scheme, just like in [GOS06], from the tools specified in the
previous section in a manner related to the construction of a UC commitment by Canetti et al.
[CLOS02]. We use a tag-based simulation-sound trapdoor commitment scheme to commit to each bit
of w. If w has length ℓ this gives us commitments c1, . . . , cℓ. S can use the trapdoor key tk to create
equivocal commitments that can be opened to arbitrary bits. This enables S to simulate the leakage
queries made by the verifier.

We still have an extraction problem since S may not be able to extract a witness from tag-
based commitments created by the adversary. To solve this problem we encrypt the openings of the
commitments. Now S can extract witnesses, but we have reintroduced the problem of equivocation.
In a simulated commitment there may be two different openings of a commitment ci to respectively
0 and 1, however, if the opening is encrypted then we are stuck with one possible opening. This is
where the pseudorandomness property of the cryptosystem comes in handy. S can simply make two
ciphertexts, one containing an opening to 0 and one containing an opening to 1. Since the ciphertexts
are pseudorandom, S can later open the ciphertext containing the desired opening and plausibly claim
that the other ciphertext was chosen as a random string. To recap, the idea so far to commit to a bit
b is to make a commitment ci to this bit, and create a ciphertext ci,b containing an opening of ci to b,
while choosing ci,1−b as a random string.

The commitment scheme is once again equivocable, however, once again we must be careful that S
can extract a message from an adversarial commitment during the simulation. We stress that this is
not a problem as the adversary can not produce equivocable commitments using a tag different from
the tags on which it gets commitments from S.
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The resulting protocol can be seen in Figure 5. We use the notation from Section A.1.

Common reference string generation:

1. (ck,tk)← Ktag−com(1
k)

2. (pk,dk)← Kpseudo(1
k)

3. (σ, τ)← S1(1
k)

4. Return Σ = (ck, pk, σ)

Proof: On input (Σ, C,w) such that C(w) = 1 do

1. For i = 1 to ℓ select ri at random and let ci := commitck(wi, tag; ri)

2. For i = 1 to ℓ select Rwi
at random and set ci,wi

:= Epk(ri;Rwi
) and choose ci,1−wi

as
a random string.

3. Let c := (c1, c1,0, c1,1, . . . , cℓ, cℓ,0, cℓ,1)

4. Create an NIZK proof π for the statement that there exists w and randomness such
that c has been produced as described in steps 1,2 and 3 and C(w) = 1.

5. Return Π = (tag, c, π)

Verification: On input (Σ, C,Π)

1. Parse Π = (tag, c, π)

2. Verify the NIZK proof π

3. Return 1 if the check works out, else return 0.

Figure 5: Simulation Extractable Leakage Resilient NIZK argument (K,P,V).

Theorem 4 The protocol (K,P,V) described in Figure 5 is a true simulation-extractable leakage-
resilient non-interactive zero knowledge argument system.

Proof. Soundness and completeness of (K,P,V) follow directly from the soundness and completeness
of the underlying NIZK. We are left to argue two things. First we need to argue that the protocol
(K,P,V) is leakage resilient non-interactive zero-knowledge. Secondly, we need to argue that we can
extract a witness from a valid proof generated by an adversary.

Simulating Σ. S chooses the common reference string in the following way: It selects, (ck,tk) ←
Ktag−com(1

k); (pk,dk) ← Kpseudo(1
k) and (σ, τ) ← S1(1

k). It sets the CRS as Σ := (ck, pk, σ).
This means S is able to create and equivocate simulation-sound trapdoor commitments, decrypt
pseudorandom ciphertexts and simulate NIZK proofs and later upon learning a witness simulate
convincing randomness used for generating the proof.

Simulating Proofs. S needs to simulate a proof that there exists w such that C(w) = 1, how-
ever, it may not use w. S uses tag specified by A and forms ℓ equivocal commitments (ci,eki) ←
Tcomtk(tag). S then simulates openings of the ci’s to both 0 and 1. For all i = 1 to ℓ and b = 0
to 1 it computes ρi,b ← Topeneki

(ci, b, tag). It selects ri,b at random and sets ci,b := Epk(ρi,b; ri,b).
S sets c := (c1, c1,0, c1,1, . . . , cℓ, cℓ,0, cℓ,1). Let x be the statement that there exists a witness w and
randomness such that c has been correctly generated using w and C(w) = 1. S chooses randomness
ρ and simulates the NIZK proof for x being true as π ← S2(σ, τ, x; ρ). Let Π = (tag, c, π) and return
it as the simulated proof.
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Simulating Leakage. For any simulated proof Π generated by S it might need to answer a leakage
query on the witness and randomness used to generate the proof Π. For this the simulator has access
to a leakage oracle L(·).

We now describe how given the witness S can simulate the randomness that would lead Pi to
produce such an proof Π. Since S created ci, ci,0, ci,1 such that ci,0 contains a 0-opening of ci and ci,1
contains a 1-opening of ci it can produce good looking randomness to claim that the party committed
to wi. This gives us convincing randomness for constructing all these commitments and for producing
the ciphertext c. S can now run the simulator algorithm S3 to simulate randomness that would lead
the prover to have produced the proof π. Hence any leakage query made on the witness and the
randomness can be reduced to a leakage query made just on the witness and the simulator can use
the leakage oracle to answer that query.

Extraction. For an adversarially generated valid proof Π, S must extract a witness w. S parses c
as c1, c1,0, c1,1, . . . , cℓ, cℓ,0, cℓ,1. Since S knows the decryption key dk, it can then decrypt all ci,b. This
gives S plaintexts ρi,b. It checks for each i whether ci = commitck(b, tag; ρi,b) and in that case b is a
possible candidate for the i-th bit of w.

If successful in all of this, S lets w be these bits. However, if any of the bits are ambiguous, i.e.,
wi could be both 0 and 1, or if any of them are inextractable, then S outputs fail.

We will later argue that the probability of the NIZK argument Π being valid, yet S not being able
to extract a witness is negligible.

Hybrids. We wish to argue that no PPT adversarial verifier A can distinguish between its interaction
with a real prover and its interaction with the simulator S. In order to do so we define several hybrid
experiments and show that A cannot distinguish between any of them. Then we argue that our
simulator 12 S can in fact also extract the witness from a valid proof generated by A. We will now
give the full description of the hybrid experiments and the security proof.

H1: This is real interaction between adversary A and S. S obtains the witness for every theorem it
proves. It use the witness in an honest way and answers leakage queries honestly as well.

H2: We modify H1 in the way S creates tag-based simulation-sound trapdoor commitments c1, . . . , cℓ
to the bits of the witness. Let tag be the tag specified by the adversary. Instead of creating ci by
selecting ri at random and setting ci = commitck(wi, tag; ri), we create an equivocal commitment
(ci,eki) ← Tcomtk(tag) and subsequently produce randomness ρi,wi

← Topeneki
(ci, wi, tag).

We continue the proof using ρi,wi
instead of ri.

H1 and H2 are indistinguishable because it is hard to distinguish tag-based commitments and
their openings from tag-based equivocal commitments and their equivocations to the same mes-
sages (Equation (2)).

H3: In H3, we make another modification to the procedure followed by S. We are already creating ci as
an equivocal commitment and equivocating it with randomness ρi,wi

that would open it to contain
wi. We run the equivocation procedure once more to also create convincing randomness that
would explain ci as a commitment to 1−wi. This means, we compute ρi,1−wi

← Topeneki
(ci, 1−

wi, tag). Instead of selecting ci,1−wi
as a random string, we choose to encrypt ρi,1−wi

as ci,1−wi
=

Epk(ρi,1−wi
; ri,1−wi

) for a randomly chosen ri,1−wi
. We still pretend that ci,1−wi

is a randomly
chosen string when we carry out the NIZK proof π or when the leakage queries need to be
answered.

H2 and H3 are indistinguishable because of the pseudorandomness property of the cryptosystem,
see Equation (1). Suppose we could distinguish H2 and H3, then we could distinguish between
an encryption oracle and an oracle that supplies randomly chosen strings.

12Note that our S is playing the role of the extractor E as well.
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H4: Instead of making NIZK arguments using honest prover strategy we use the zero-knowledge
with honest prover state reconstruction simulators. We use π ← S2(σ, τ, ·; ρ) with ρ random to
simulate the honest provers’ NIZK arguments that c has been correctly generated. Finally, on
input the witness we can use r ← S3(σ, τ, x, π, ·, ρ) to create convincing randomness that would
make the prover output π on the witness for c being correctly generated. So any leakage query
on the randomness and the witness can be reduced to a leakage query of the witness alone.

The zero-knowledge with honest prover state reconstruction property of the NIZK proof implies
that H3 and H4 are indistinguishable.

Simulation. Note that the simulator S in hybrid H4 already simulates the view of the adversary A in
a way that is indistinguishable from its view while interacting with honest prover. This concludes the
proof that the simulator S correctly simulates the view of the adversary. Now we need to argue that
if the adversary A can in fact output a valid proof Π with a tag tag such that S never gave a proof
using the tag tag then we can use the proof to extract a witness. Consider the following subsequent
hybrids.

H5: Again, we look at the adversarially generated NIZK argument Π = (tag, c, π) for some C. Parse
c as c1, c1,0, c1,1, . . . , cℓ, cℓ,0, cℓ,1. Then we use the decryption key dk to attempt to decrypt
the ci,b’s to get ρi,b so ci,b = commitck(b, tag; ρi,b). We output failure if we encounter a
ci = commitck(0, tag, ρi,0) = commitck(1, tag, ρi,1).

Tag-based simulation-soundness, see Equation (3), of the commitment scheme implies that H4
and H5 are indistinguishable. To see this consider the tag tag. Outputting failure corresponds
to breaking the binding property of the commitment scheme, unless we have previously created
an equivocal commitment with tag tag. But we already ruled out that possibility.

H6: As in H5, we try to extract ρi,0, ρi,1’s. We output failure if there is an i such that we cannot
decrypt either ci,0 or ci,1 to give us ρi,b so ci = commitck(b, tag; ρi,b). We ruled out the possibility
of both ρi,0 and ρi,1 being an opening of ci in H5, so if everything is OK so far we have a
uniquely defined w such that for all i we have ci = commitck(wi, tag; ρi,wi

). We output failure
if C(w) 6= 1.

Call c well-formed if c1, c1,0, c1,1, . . . , cℓ, cℓ,0, cℓ,1 are such that for all i = 1 to ℓ at least one of
the ci,0, ci,1 will have a proper ρi,b so ci = commitck(b, tag; ρi,b), and if all of these openings are
unique then the bits constitute a witness w for C(w) = 1. Observe, from the soundness of NIZK
13 it follows that with overwhelming probability c is well-formed and we have negligible chance
of outputting failure. This means H5 and H6 are indistinguishable.

Extraction. Observe that S in H6 has already obtained a witness w corresponding to the the valid
proof Π generated by the adversary A. Our simulator can output this as its output and this concludes
the proof that the NIZK argument system (K,P,V) is indeed simulation extractable. �

Remark on common random string. We note that in our scheme the CRS consists of three
components. It consists of a public key of a pseudorandom encryption scheme, a public key of a
tag-based simulation sound trapdoor commitment scheme and a CRS for the underlying NIZK proof
(as explained in Section A.1). We stress that actually all these components can be chosen randomly,
i.e., the sampled without actually learning the associated secret parameters. As explained in [GOS06],
we can construct public-key encryption with pseudorandom ciphertexts under the decisional linear

13Groth et. al. [GOS06] argue that it is problematic if the language about which the theorem is being proved is chosen
depending on the CRS. We ignore this as this does not affect our application. However it can be noted that the same
argument holds for our NIZK as well.

41



assumption. A public key of such a scheme consists of three random generators of a prime order group
which can be sampled without the knowledge of the corresponding secret values. As noted in [MY04]
tag-based simulation-sound commitment scheme can be constructed using a signature scheme and we
know a number of signature schemes in which the public key can be sampled without the knowledge of
the secret key. Brent’s signature scheme serves as one such example in the setting of bilinear groups.
Finally, as noted in [GOS06], the CRS for the underlying NIZK proof system can be chosen to be a
common random string at the cost of having a proof system that is only statistically sound, which
suffices in our setting. In summary, we have argued that the CRS in our scheme can be common
random string.

B Impossibility of LR-ZK for λ < 1

Theorem 5 There exists a language L such that there exists no interactive proof system 〈P, V 〉 that
is λ-leakage-resilient zero knowledge where λ < 1.

Proof Sketch. Consider a very simple language L that consists of every string x ∈ {0, 1}∗. The
witness relation R associated with L consists of pairs (x,w) such that for a given instance x, every
string w ∈ {0, 1}|x| is a witness. In this setting we will construct an adversarial verifier V ∗ and a
distinguisher D such that D, that gets the prover’s witness as auxiliary input, can distinguish between

viewV ∗(x, z) and SL
k,λ
w (·)(x, z) with non-negligible probability.

Consider the scenario where for a given instance x, the prover’s witness w is sampled uniformly
at random among all possible witnesses. Consider a V ∗ that works as follows. It makes a leakage
query that leaks the whole witness.14 Finally V ∗ outputs the leaked witness as part of its view. The
construction of D is straight forward. D gets the prover’s witness w as auxiliary input. It outputs 1
if the view of V ∗ contains w and 0 otherwise.

It is easy to see that there’s no way that the simulator can output the correct witness every time
when at most λ · |w| bits of leakage are available to it. An easy way to argue this is as follows: fix
the random coins of the simulator, but keep the randomization over the witnesses. Then note that
the simulator will get the witness wrong at least 1/2 the time, for any fixed random tape. Therefore,
averaging over his random tapes, the simulator must still get it wrong at least 1/2 the time. Hence, the

distinguisher D will be able to distinguish between viewV ∗(x, z) and SL
k,λ
w (·)(x, z) with non-negligible

probability. �

Remark 1 In the proof sketch we gave the proof for a trivial language where every string was in the
language and every string was a witness. We stress that this was only done for simplicity. We can
construct an NP-complete language as well and argue in a similar way. Finally, the impossibility holds
even in case of bounded leakage as well by an analogous argument.

C Leakage-Resilient Zero Knowledge using Pre-Processing

In this subsection we argue that it would be difficult to construct a leakage resilient zero knowledge
proof system in a setting where there is a “leakage-free” pre-processing phase prior to the actual
protocol execution, but the simulator does not have any access to a leakage oracle (unlike our model).
In order to establish our argument, we will assume that it is not possible for a simulator to reverse-
engineer the leakage queries of an adversarial verifier (or in other words, it is possible for an adversarial

14Note that leakage of the entire witness is not necessary for the proof to work. In particular, it is easy to see that the
proof works even with partial leakage of the witness.
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verifier to obfuscate its leakage queries). Consider a language L and a prover P = (P1, P2) in the
protocol 〈P, V 〉 that wants to prove that x ∈ L. Let w denote the witness that is given to P as private
input. Before the start of the actual protocol, P1 runs a private “leakage-free” pre-processing phase
on w to generate a valid witness w′ for an instance x′ ∈ L′. The new witness w′ is given as input to
P2. P2 now interacts with the verifier and attempts to prove that x′ ∈ L′.

Note that in order to argue the correctness and soundness of 〈P, V 〉, we will need that x′ ∈ L′ if
and only if x ∈ L. Now, since the simulator will not have access to a valid witness w, it will not have
access to w′ as well. However, a cheating verifier may simply make a leakage query that checks if w′ is
indeed a valid witness for x′ and encrypts the output (under a secret key known only to the verifier).
Now assuming that the simulator can not reverse engineer the leakage query, simulator will not be
able to respond to the query correctly (since otherwise, we can contradict the soundness of the zero
knowledge proof system).

The argument presented above makes strong unproven assumptions and might not seem satisfac-
tory for that reason. Nonetheless, we stress that our goal here is not to obtain a strong impossibility
result in this direction but rather to highlight the fact that this direction is not promising and hence not
worth pursuing in the interactive setting when strong guarantees against leakage attacks are desired.
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