
Password-Authenticated Session-Key Generation

on the Internet in the Plain Model

Vipul Goyal∗ Abhishek Jain† Rafail Ostrovsky‡

Abstract

The problem of password-authenticated key exchange (PAKE) has been extensively studied for the
last two decades. Despite extensive studies, no construction was known for a PAKE protocol that is
secure in the plain model in the setting of concurrent self-composition, where polynomially many protocol
sessions with the same password may be executed on the distributed network (such as the Internet) in an
arbitrarily interleaved manner, and where the adversary may corrupt any number of participating parties.

In this paper, we resolve this long-standing open problem. In particular, we give the first construction
of a PAKE protocol that is secure (with respect to the standard definition of Goldreich and Lindell) in the
fully concurrent setting and without requiring any trusted setup assumptions. We stress that we allow
polynomially-many concurrent sessions, where polynomial is not fixed in advance and can be determined
by an adversary an an adaptive manner. Interestingly, our proof, among other things, requires important
ideas from Precise Zero Knowledge theory recently developed by Micali and Pass in their STOC’06 paper.
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1 Introduction

The problem of password authenticated key exchange (PAKE) has been studied since early 1990’s. PAKE
involves a pair of parties who wish to establish a high entropy session key in an authenticated manner when
their a priori shared secret information only consists of a (possibly low entropy) password. More formally, the
problem of PAKE can be modeled as a two-party functionality F involving a pair of parties P1 and P2; if the
inputs (passwords) of the parties match, then F outputs a uniformly distributed session key, else it outputs
⊥. Hence the goal of PAKE is to design a protocol that securely realizes the functionality F . Unfortunately,
positive results for secure multi-party computation (MPC) [Yao86, GMW87] do not immediately translate
to this setting; the reason being that known solutions for secure MPC require the existence of authenticated
channels – which is in fact the end goal of PAKE. Therefore, very informally speaking, secure multi-party
computation and PAKE can be viewed as complementary problems.

The problem of password authenticated key exchange was first studied by Bellovin and Meritt [BM92].
This was followed by several additional works proposing protocols with only heuristic security arguments
(see [KOY09] for a survey). Subsequently, PAKE was formally studied in various models, including the
random oracle/ideal cipher model, common reference string (CRS) model, and the plain model (which is
the focus of this work). We briefly survey the state of the art on this problem. The works of Bellare et
al [BPR00] and Boyko et al [BMP00] deal with defining and constructing PAKE protocols in the ideal cipher
model and random oracle model respectively. In the CRS model, Katz, Ostrovsky and Yung [KOY01] gave
the first construction for PAKE without random oracles based on the DDH assumption. Their result were
subsequently improved by Gennaro and Lindell [GL03], and Genarro [Gen08]. Again in the CRS model,
Canetti, Halevi, Katz, Lindell and MacKenzie [CHK+05] proposed new definitions and constructions for a
PAKE protocol in the framework of Universal Composability [Can01]. They further proved the impossibility
of a Universally Composable PAKE construction in the plain model.

Goldreich and Lindell [GL01] formulated a new simulation-based definition for PAKE and gave the first
construction for a PAKE protocol in the plain model. Their construction was further simplified (albeit at
the cost of a weaker security guarantee) by Nguyen and Vadhan [NV04]. Recently, Barak et al [BCL+05]
gave a very general construction for a PAKE protocol that is secure in the bounded-concurrent setting (see
below) in the plain model.

To date, [GL01, NV04] and [BCL+05] remain the only known solutions for PAKE in the plain model.
However, an important limitation of Goldreich and Lindell [GL01] (as well as Nguyen and Vadhan [NV04])
is that their solution is only relevant to the stand-alone setting where security holds only if a single protocol
session is executed on the network. A more natural and demanding setting is where several protocol sessions
may be executed concurrently (a typical example being protocols executed over the Internet). In such a
setting, an adversary who controls parties across different sessions may be able to mount a coordinated
attack; as such, stand-alone security does not immediately translate to concurrent security [FS90]. In the
context of PAKE, this problem was was fully resolved assuming CRS trusted setup (see below) and only
partially addressed in the plain model by Barak, Canetti, Lindell, Pass and Rabin [BCL+05] who gave
a construction that maintains security in the setting of bounded-concurrency. In this setting, an a priori
bound is known over the number of sessions that may be executed concurrently at any time; this bound
is crucially used in the design of the protocol. It is natural to consider the more general setting of full
concurrent self-composition, where any polynomially many protocol sessions (with no a priori bound) with
the same password may be executed in an arbitrary interleaved manner by an adversary who may corrupt
any number of parties. We stress that although the works of [KOY01, KOY02, GL03, CHK+05, KOY09]
solve this problem (where [KOY01, GL03] are secure under self-composition, and [KOY02] also enjoy forward
secrecy, while [CHK+05] is secure under general-composition), they all require a trusted setup in the form of
a common reference string. Indeed, to date, no constructions are known for a PAKE protocol that is secure
in the plain model in the setting of concurrent self-composition.

Our Contribution. In this paper, we resolve this open problem. In particular, we give the first construc-
tion of a PAKE protocol in the plain model that allows for concurrent executions of the protocol between
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parties with the same password. Our techniques rely on several previous works, most notably the works of
Barak, Prabhakaran and Sahai [BPS06] and Micali and Pass [MP06].

Our construction is proven secure as per the definition of Goldreich and Lindell [GL01] in the concurrent
setting. We stress that Lindell’s impossibility result [Lin04] for concurrent self-composition is not applicable
here since (a) Goldreich and Lindell used a specific definition that is different from the standard paradigm
for defining secure computation1, and (b) further, they only consider the scenario where the honest parties
hold fixed inputs (while Lindell’s impossibility result crucially requires adaptive inputs).

In fact, our security definition is somewhat stronger than the one by Goldreich and Lindell [GL01].
The definition in [GL01], for example, does not consider the case where the adversary may have some a
priori information on the password of the honest parties in a protocol execution. We consider an improved
simulation-based security model similar to that proposed by [BMP00]. More specifically, in our model, the
simulator in the ideal world is empowered to make a constant number of queries per (real world) session
to the ideal functionality (as opposed to just one)2. Our security definition then requires computational
indistinguishability of the output distributions of real and ideal world executions in keeping with the standard
paradigm for secure computation. As noted in [GL06], this improved definition implies the original definition
of Goldreich and Lindell (see appendix B for a proof sketch).

In our main construction, we consider the setting where the honest parties across the (polynomially-
many) concurrent executions hold the same password or independently chosen passwords3. An example of
the same password case is when a server expects a specific password for authentication and several parties
are trying to authenticate simultaneously.

We note that our techniques and constructions are quite general. Our construction can be instantiated
with a basic semi-honest secure computation protocol for any PPT computable functionality. This would
lead to a concurrently secure protocol for that functionality as per the security definition where we allow the
simulator to make an expected constant number of calls to the ideal function per (real world) session. The
meaningfulness of such a definition is shown in the case of password based key exchange which is the focus
of this work (more precisely, by comparing it with the definition of [GL06]). However we anticipate that
the above general construction with such security guarantees might be acceptable in many other settings as
well.

A related model is that of resettably secure computation proposed by Goyal and Sahai [GS09]. In
resettably secure computation, the ideal simulator is given the power to reset and query the trusted party
any (polynomial) number of times. However there are important differences. Goyal and Sahai [GS09] consider
only the “fixed role” setting and only one of the parties can be thought of as accepting concurrent sessions.
This means that the key technical problems we face in the current work (arising out of the possibility of
mauling attacks in the concurrent setting) do not arise in [GS09]. Secondly, [GS09] do not try to optimize
(or even bound) the number of queries the ideal simulator makes to the trusted party per session.

Overview of Main Ideas. Note that in the setting of concurrent self-composition, an adversary may
corrupt different parties across the various sessions. Consider for instance two different sessions where one of
the parties is corrupted in each session. We can view one of these sessions as a “left” session and the other

1Note that in the standard simulation paradigm, the output distributions of the “real” and “ideal” worlds must be computa-
tionally indistinguishable; in contrast, the definition of Goldreich and Lindell [GL01] allows these distributions to be O(1/|D|)
apart (where D is the password dictionary).

2Note that as opposed to a universal constant, we have a constant for every (PPT) adversary
3A more general question is to consider the setting where the passwords of honest parties in different sessions might be

correlated in any arbitrary way. Towards this end, we note that our construction can be easily extended to this setting.
However, in this case we require the ideal simulator to be able to query the ideal functionality an expected constant number of
times per session. Jumping ahead, in case the honest parties were using the same password or fully independent passwords,
the simulator is able to “trade” ideal functionality calls in one session for another. Hence, the simulator is able to even out
the number of calls to a fixed constant in each session. This in turn means that for the setting of correlated passwords, our
construction will satisfy a security definition which is slightly weaker (in that the number of ideal functionality calls are constant
only in expectation). Obtaining a construction for correlated (in an arbitrary way) passwords where the number of calls are not
just constant in expectation but always bounded by a constant is left as an interesting open question.
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as a “right session”, while the corrupted parties can be jointly viewed as an adversarial man-in-the-middle.
An immediate side-effect of this setting is that it allows an adversary to possibly “maul” a “left” session in
order to successfully establish a session key with an honest party (say) P in a “right” session without the
knowledge of P ’s secret password. Clearly, in order to provide any security guarantee in such a setting, it is
imperative to achieve independence between various protocol sessions executing on the network. Note that
this is akin to guaranteeing non-malleability across various sessions in the concurrent setting. Then, as a first
step towards solving this problem, we borrow techniques from the construction of concurrent non-malleable
zero knowledge argument due to Barak, Prabhakaran and Sahai [BPS06] (BPS-CNMZK). In fact, at a
first glance, it might seem that compiling a semi-honest two-party computation protocol (that emulates the
PAKE functionality in the stand-alone setting) with the BPS-CNMZK argument or some similar approach
might fully resolve this problem. However, such an approach fails on account of several reasons. We highlight
some important problems in such an approach.

We first note that the simulation of BPS-CNMZK is based on a rewinding strategy. In a concurrent
setting, the adversary is allowed to control the scheduling of the messages of different sessions. Then for a
given adversarial scheduling, it is possible that the simulator of BPS-CNMZK may rewind past the beginning
of a session (say) s when “simulating” another session. Now, every time session s is re-executed, an adversary
may be able to change his input (i.e., make a new password guess possibly based on the auxiliary information
it has). In such a case, the simulator would have to query the ideal functionality for that session more than
once; therefore, we need to allow the simulator to make extra (i.e., more than one) queries per session to ideal
functionality. In order to satisfy our definition, we would need to limit the number of queries to a constant
per session. However, the simulator for BPS-CNMZK, if used naively, may require large polynomially many
queries per session to the ideal functionality, and therefore, fail to satisfy our definition.

In order to overcome this problem, we build on the techniques of precise simulation, introduced by
Micali and Pass [MP06] in the context of (stand-alone) zero knowledge and later extended to the setting of
concurrent zero knowledge by Pandey, Pass, Sahai, Tseng, and Venkitasubramaniam [PPS+08]. Specifically,
Pandey et. al. [PPS+08] use a time-oblivious rewinding schedule that (with a careful choice of system
parameters) ensures that the the time spent by the simulator in the “look-ahead” threads4 is only within a
constant factor of the time spent by the simulator in the “main” thread. We remark that we do not require
this precision in simulation time; instead we require that the number of queries made by the simulator in the
look-ahead threads is only within a constant factor of the number of queries made in the main thread. For
this purpose, we employ the precise Zero-Knowedlge paradigm of Micali and Pass and consider an imaginary
experiment in which our adversary takes a disproportionately large amount of time in generating the message
after which the simulator has to query the trusted party. Our rewinding strategy is determined by running
the PPSTV [PPS+08] simulator using the next message generation timings of such an (imaginary) adversary
(even though our simulator is fully black-box and does not even measure the timings for the real adversary)
in order to bound the number of queries.

We further note that in the security proof of the above approach, the simulator must be able to extract
the inputs of the adversary in all the sessions in order to simulate its view. However, the extractor of [BPS06]
is unsuitable for this task since it can extract adversary’s inputs (in the setting of BPS-CNMZK) only on
a session-by-session basis. To further elaborate, let us first recall the setting of BPS-CNMZK, where an
adversary is interacting with some honest provers as well as some honest verifiers. Now, in order to extract
the input of an adversarial prover in a particular session s, the extractor in [BPS06] honestly runs all the
uncorrupted verifiers except the verifier in session s. We stress that the extractor is able to run the honest
verifiers by itself since they do not possess any secret inputs; clearly, such an extraction technique would fail
in our setting since the simulator does not know the inputs of the honest parties.

To address this problem, we require each party in our protocol to commit to its input and randomness
inside a separate preamble [PPS+08, PRS02] that allows extraction of the committed values in a concurrent
setting. However, we note that such a preamble requires a complicated rewinding strategy for extraction

4Very roughly speaking, a “thread of execution” between the simulator and the adversary is a simulation of a prefix of an
actual execution. The simulator may run multiple threads of execution, and finally output a single thread, called the main
thread. Any other thread is referred to as a look-ahead thread. See appendix A.1 for more details.
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of committed value, and so is the case for simulating the BPS-CNMZK argument. Indeed, it seems that
we might need to compose the (possibly conflicting) individual rewinding strategies of BPS-CNMZK and
the additional preamble into a new uniform rewinding strategy. Fortunately, by ensuring that we use the
same kind of preamble (for committing to the input of a party) as the one used inside BPS-CNMZK, we
are able to avoid such a scenario, and crucially, we are able to use the BPS-CNMZK strategy as a single
coherent rewinding strategy. The above idea also gives us a new construction of a concurrent non-malleable
zero-knowledge protocol where the extraction can be automatically done in-line along with the simulation.
We believe this implication to be of independent interest.

Finally, the construction in [BPS06] is only analyzed for the setting where the theorems to be proven by
the honest parties are fixed in advance before any session starts (in keeping with the impossibility results
of Lindell [Lin04]). Towards that end, our protocol only makes use of BPS-CNMZK in the very beginning
of the protocol to prove a statement which could be generated by the honest parties before the start of any
session.

2 Definitions and Preliminaries

2.1 Background

Goldreich and Lindell [GL01] proposed a definition for password authenticated key exchange based on
the “simulation paradigm” [Can00]. In particular, they model the problem of PAKE as a three-party
functionality F involving honest parties P1 and P2 and an adversary A. They define appropriate “ideal”
and “real” models of computation, and require that any adversary in the real model can be emulated (in
the specific sense described below) by an adversary in the ideal model. We give more details below.
Ideal Model. In the ideal model, the parties send their input passwords to a trusted party that evaluates F ;
if the passwords match, then the trusted party sends a uniformly distributed session key to the parties, else
it sends ⊥. On the other hand, the adversary A receives no output, and in particular, no information on the
password or the session key. However, A is allowed to control whether or not both the honest parties receive
the output (since A possesses the ability to abort the real execution, see below). The ideal distribution is
defined as the output of the honest parties along with the output of the adversary A resulting from the ideal
process.
Real Model. In the real model, parties engage in an execution of a real password-authenticated key
exchange protocol. In this model, the adversary A controls the communication link between the honest
parties; as such it is allowed to modify the protocol messages of the honest parties. The real distribution is
defined as the output of the honest parties along with the output of the adversary A.

Note that in the real model, A can attempt to impersonate an honest party by guessing its secret
password p and participating in the protocol. Assuming that the passwords are chosen uniformly from a
dictionary D, each guess of A will be correct with probability 1/|D|. Each guess allows A to learn some
information (whether or not a guess is correct) and since |D| may be small, it is not possible to obtain a
protocol that emulates an ideal world execution of F up to computational indistinguishability.

Goldreich and Lindell [GL01] formalize the above limitation in the following manner. They propose a
definition where, very informally, the ideal and the real distributions must be distinguishable for any PPT
machine at most with probability O(1/|D|). We refer the reader to [GL01] for more details.

We note that the above definition does not consider the case where the adversary may have some a priori
information on the password of the honest parties participating in a session. To this end, we instead consider
an improved simulation-based definition that implies the above definition, yet seems more natural and closer
to the standard paradigm for defining secure computation. Looking ahead, we note that our security model
is similar to the one used by Boyko et al. [BMP00]. Further, as noted in [GL06], the improved definition
implies the original definition of [GL01] (see appendix B for a proof sketch). More details are given in the
next subsection.
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2.2 Our Model

We first summarize the main differences in our model with respect to [GL01]. We first note that even in the
stand-alone setting, if an adversary A controls the communication link between two honest parties, then A
can execute separate “left” and “right” executions with the honest parties. Therefore, these executions can
be viewed as two concurrent executions where A is the common party. In keeping with this observation,
in our model, the adversary A is cast as a party participating in the protocol instead of being a separate
entity who controls the communication link (as in [GL01]). We stress that this modeling allows us to assume
that the communication between protocol participants takes place over authenticated channels. More details
follow.
Description of F . We model the problem of password-authenticated key exchange as a two-party func-
tionality F involving parties P1 and P2 (where either party may be adversarial). If the inputs (password
from a dictionary D) of P1 and P2 match, then F sends them a uniformly distributed session key (whose
length is determined by the security parameter), else it sends ⊥.

Further, in contrast to the stand-alone setting of [GL01] (where security holds only if a single protocol
session is executed on the network), we consider the more general setting of concurrent self-composition,
where polynomially many (in the security parameter) protocols with the same password may be executed
on the network in an arbitrarily interleaved manner. In this setting, an adversary A may corrupt several
parties across all the different sessions.

To formalize the above requirements and define security, we extend the standard paradigm for defining
secure computation. We define an ideal model of computation and a real model of computation, and require
that any adversary in the real model can be emulated (in the specific sense described below) by an adversary
in the ideal model. In particular, we allow the adversary in the ideal world to make a constant number of
(output) queries to the trusted party for each protocol session. In the definition below, we focus only on the
case where the honest parties hold the same password p. However it can be extended to the case of arbitrarily
correlated passwords (or, in fact, general secure computation) in a natural way where the simulator in the
ideal world might make an expected constant number of calls to the ideal functionality for every session in
the real world.

We consider a static adversary that chooses whom to corrupt before execution of the protocol. Finally,
we consider computational security only and therefore restrict our attention to adversaries running in prob-

abilistic polynomial time. We denote computational indistinguishability by
c≡, and the security parameter

by κ. Let D be the dictionary of passwords.

Ideal model. In the ideal model, there is a trusted party that computes the password functionality F
(described above) based on the inputs handed to it by the players. Let there be n parties P1, . . . , Pn where
different pairs of parties are involved in one or more sessions, such that the total number of sessions is
polynomial in the security parameter κ. Let M ⊂ [n] denote the subset of corrupted parties controlled by
an adversary. An execution in the ideal model with an adversary who controls the parties M proceeds as
follows:

I. Inputs: The honest parties hold a fixed input which is a password p chosen from a dictionary D. The
input of a corrupted party is not fixed in advance.

II. Session initiation: If a party Pi wishes to initiate a session with another party Pj , it sends a (start-session, i, j)
message to the trusted party. On receiving a message of the form (start-session, i, j), the trusted party
sends (new-session, i, j, k) to both Pi and Pj , where k is the index of the new session.

III. Honest parties send inputs to trusted party: Upon receiving (new-session, i, j, k) from the trusted
party, an honest party Pi sends its real input along with the session identifier. More specifically, Pi
sets its session k input xi,k to be the password p and sends (k, xi,k) to the trusted party.

IV. Corrupted parties send inputs to trusted party: A corrupted party Pi sends a message (k, xi,k)
to the trusted party, for any xi,k ∈ D of its choice.
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V. Trusted party sends results to adversary: For a session k involving parties Pi and Pj , when the
trusted party has received messages (k, xi,k) and (k, xj,k), it computes the output F(xi,k, xj,k). If at
least one of the parties is corrupted, then the trusted party sends (k,F(xi,k, xj,k)) to the adversary5.
On the other hand, if both Pi and Pj are honest, then the trusted party sends the output message
(k,F(xi,k, xj,k)) to them.

VI. Adversary instructs the trusted party to answer honest players: For a session k involving par-
ties Pi and Pj where exactly one party is honest, the adversary, depending on its view up to this point,
may send the (output, k) message in which case the trusted party sends the most recently computed
session k output (k,F(xi,k, xj,k)) to the honest party. (Intuitively, for each session k where exactly one
party is honest, we allow the adversary to choose which one of the λ output values would be received
by the honest party.)

VII. Adversary makes more queries for a session: The corrupted party Pi, depending upon its view
up to this point, can send the message (new-query, k) to the trusted party. In this case, execution of
session k in the ideal world comes back to stage IV. Pi can then choose its next input adaptively (i.e.,
based on previous outputs).

VIII. Outputs: An honest party always outputs the value that it received from the trusted party. The
adversary outputs an arbitrary (PPT computable) function of its entire view (including the view of all
corrupted parties) throughout the execution of the protocol.

Let S be a probabilistic polynomial-time ideal-model adversary that controls the subset of corrupted
parties M ⊂ [n]. Then the ideal execution of F (or the ideal distribution) with security parameter κ,
password p ∈ D and auxiliary input z to S is defined as the output of the honest parties along with the
output of the adversary S resulting from the ideal process described above. It is denoted by idealFM,S(κ, p, z).

Real model. We now consider the real model in which a real two-party password-based key exchange
protocol is executed.

Let F , P1, . . . , Pn,M be as above. Let Σ be the password-based key exchange protocol in question. Let
A be probabilistic polynomial-time (ppt) machine such that for every i ∈M , the adversary A controls the
party Pi.

In the real model, a polynomial number (in the security parameter κ) of sessions of Σ may be executed
concurrently, where the scheduling of all messages throughout the executions is controlled by the adversary.
We do not assume that all the sessions have a unique session index. We assume that the communication
between the parties takes place over authenticated channels6. An honest party follows all instructions of the
prescribed protocol, while an adversarial party may behave arbitrarily. At the conclusion of the protocol,
an honest party computes its output as prescribed by the protocol. Without loss of generality, we assume
the adversary outputs exactly its entire view of the execution of the protocol.

The real concurrent execution of Σ (or the real distribution) with security parameter κ, password p ∈ D
and auxiliary input z to A is defined as the output of all the honest parties along with the output of the
adversary resulting from the above process. It is denoted as realΣ

M,A(κ, p, z).
Having defined these models, we now define what is meant by a concurrently-secure password-authenticated

key exchange protocol.

Definition 1 Let F and Σ be as above. Let D be the dictionary of passwords. Then protocol Σ for computing
F is a concurrently secure password authenticated key exchange protocol if for every probabilistic polynomial-
time adversary A in the real model, there exists a probabilistic expected polynomial-time adversary S such
that S makes a constant number of queries to the ideal functionality per session, and, for every z ∈ {0, 1}∗,
p ∈ D, M ⊂ [n],

5Note that here, the ideal functionality does not restrict the adversary to a fixed constant number of queries per session.
However, in our security definition, we will require that the ideal adversary only makes a constant number of queries per session.

6As mentioned earlier, this is a reasonable assumption since in our model, the adversary is a protocol participant instead of
being a separate entity that controls the communication links (as in [GL01]).

7



{
idealFM,S(κ, p, z)

}
κ∈N

c≡
{
realΣ

M,A(κ, p, z)
}
κ∈N

Remark 1. We remark that even if the total number of sessions is such that there are sufficient number of
corrupted participants to do brute-force attack and guess the password, the two aforementioned distributions
should remain indistinguishable to satisfy our definition above.

Remark 2. Note that in the setting of concurrent self composition, an adversary may be able to maul the
conversation (with an honest party) of a particular session in order to successfully establish a session key
with an honest party in another session without the knowledge of the secret password. Clearly, in order to
provide any security guarantee in such a setting, it is imperative to achieve independence between various
protocol sessions executing on the network. We note that this property is implicit in our security definition.

We note that our security definition implies the original definition of Goldreich and Lindell [GL01]
(adapted to the concurrent setting), as stated below.

Lemma 1 (Informally stated) Security of a protocol Σ as per Definition 1 implies its security as per the
definition of Goldreich and Lindell [GL01].

We refer the reader to appendix B for a proof of lemma 1. We now state our main result.

Theorem 1 (Main Result) Assume the existence of non-interactive statistically binding commitments and
1-out-of-2 oblivious transfer protocol secure against honest but curious adversaries. Let F be the two-party
PAKE functionality as described above. Then, there exists a protocol Σ that securely realizes F as per
Definition 1.

We prove the above theorem by constructing such a protocol Σ in section 3. If the underlying primitives
are uniform (resp., non-uniform), then the protocol Σ is uniform (resp., non-uniform) as well. A polynomial
time adversary against Σ translates to a polynomial time adversary against one of the underlying primitives.
Note that non-interactive statistically binding commitments can be constructed out of common type of one
way permutations (see the next subsection). Even though we use non-interactive commitments for clarity,
our constructions work even if we use a two round statistically binding commitment scheme based on any
one way function (and hence the PAKE functionality can be realized assuming only 1-out-of-2 oblivious
transfer protocols). Finally we remark that, 1-out-of-2 oblivious transfer (OT) secure against honest but
curious adversaries implies 1-out-of-2 OT secure against malicious adversaries [Hai08].

2.3 Building Blocks

We now briefly mention some of the main cryptographic primitives that we use in our construction.

Statistically Binding Commitments. In our protocol, we shall use a non-interactive statistically bind-
ing commitment scheme. An example of such a scheme is the following. Let f be a one-way permutation,
and H be the hard-core predicate associated with f . Then the commitment to a bit b is computed as
f(x)||H(x) ⊕ b, where x is a random string in the domain of f . The decommitment simply consists of the
string x. We denote such a commitment scheme by COM.

Preamble from PPSTV [PPS+08]. A PPSTV preamble is a protocol between a committer and a
receiver that consists of two main phases, namely, (a) the commitment phase, and (b) the challenge-response
phase. Let k be a parameter that determines the round-complexity of the protocol. Then, in the commit
phase, very roughly speaking, the committer commits to a secret string σ and k2 pairs of its 2-out-of-2 secret
shares. The challenge-response phase consists of k iterations, where in each iteration, very roughly speaking,
the committer “opens” k shares, one each from k different pairs of secret shares as chosen by the receiver.

The goal of this protocol is to enable the simulator to be able to rewind and extract the “preamble
secret” σ with high probability. In the concurrent setting, rewinding can be difficult since one may rewind
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past the start of some other protocol [DNS98]. However, as it has been demonstrated in [PPS+08] (see also
[PRS02, KP01]) there is a fixed “time-oblivious” rewinding strategy that the simulator can use to extract
the preamble secrets from every concurrent cheating committer, with high probability. For our purpose, we
will use PPSTV preambles with linear (in the security parameter κ) number of rounds. Then, the simulation
strategy in [PPS+08] guarantees a linear precision in the running time of the simulator. Specifically, the
running time of the simulator is only a constant multiple of the running time of the adversarial committer
in the real execution. We refer the reader to appendix A.1 for more details.

Concurrent Non-Malleable Zero Knowledge Argument. We shall use a concurrent non-malleable
zero knowledge (CNMZK) argument for every language in NP with perfect completeness and negligible
soundness error. In particular, we will use a slightly modified version of the CNMZK protocol of Barak,
Prabhakaran and Sahai [BPS06], henceforth referred to as mBPS-CNMZK. In the modified version, we
replace the PRS [PRS02] preamble used in the original construction with a PPSTV preamble with linear (in
the security parameter) number of rounds. We will also require that the non-malleable commitment scheme
used in the protocol is public-coin [DDN00]. See appendix A.2 for more details.

Statistically Witness Indistinguishable Arguments. In our construction, we shall use a statistically
witness indistinguishable argument (sWI) for proving membership in any NP language with perfect com-
pleteness and negligible soundness error. Such a scheme can be constructed by using ω(log n) copies of
Blum’s Hamiltonicity protocol [Blu87] in parallel, with the modification that the prover’s commitments in
the Hamiltonicity protocol are made using a statistically hiding commitment scheme. Statistically hiding
commitments were constructed by Naor, Ostrovsky, Venkatesan and Yung [NOVY92] in O(k/log(k)) rounds
using a one way permutation ([NOVY92] in turn builds on the interactive hashing technique introduced in
[OVY91]). Constructions based on one way functions were given in [HNO+09, HRVW09].

Semi-Honest Two Party Computation. We will also use a semi-honest two party computation protocol
Πsh-pake that emulates the PAKE functionality F (as described in section 2.2) in the stand-alone setting.
The existence of such a protocol Πsh-pake follows from [Yao86, GMW87, Kil88].

3 Our Construction

In this section, we describe our two-party protocol Σ that securely realizes the password functionality F in
the setting of concurrent self composition as per Definition 1. Let P1 and P2 be two parties with private
inputs (password from dictionary D) x1 and x2 respectively. Let COM denote a non-interactive statistically
binding commitment scheme. By mBPS-CNMZK, we will refer to the modified version of the concurrent
non-malleable zero knowledge argument of [BPS06] described in section 2.3. Let Πmbps,Pi→Pj denote an
instance of the mBPS-CNMZK protocol where Pi plays the role of the prover. By sWI, we will refer to a
statistically witness indistinguishable argument. Let Πsh-pake be any semi-honest two party computation
protocol that emulates the functionality F in the stand-alone setting (as per the standard definition of secure
computation). Let Uη denote the uniform distribution over {0, 1}η, where η is a function of the security
parameter.

The protocol Σ proceeds as follows.

I. Trapdoor Creation Phase.

1. P1 → P2 : P1 creates a commitment com1 to bit 0 using the commitment scheme COM, and sends it
to P2. P1 and P2 now engage in the execution of a mBPS-CNMZK argument Πmbps,P1→P2 where P1

proves that com1 is a commitment to 0.
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2. P2 → P1 : P2 now acts symmetrically. Specifically, it creates a commitment com2 to bit 0 using
the commitment scheme COM, and sends it to P1. P2 and P1 now engage in the execution of a
mBPS-CNMZK argument Πmbps,P2→P1 where P2 proves that com2 is a commitment to 0

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor” to be
used during the simulation of the protocol in the concurrent setting.

II. mPPSTV Preamble Phase

In this phase, each party Pi engages in the execution of a modified PPSTV preamble (henceforth referred
to as mPPSTV) with Pj where it commits to its input and randomness. In our modified version of the PP-
STV preamble, for a given receiver challenge, the committer does not “open” the commitments, but instead
simply reveals the committed value (without the randomness) and proves its correctness by using a sWI.
Let Πmppstv,Pi→Pj denote an instance of the mPPSTV protocol where Pi plays the role of the committer.

We now describe the steps in this phase.

1. P1 ↔ P2 : Generate a string r1
$← Uη and let β1 = {x1, r1}. Here r1 is the randomness to be used (after

coin-flipping with P2) by P1 in the execution of the protocol Πsh-pake in Phase III. We assume that
|r1| = η is sufficiently long for that purpose. Now P1 and P2 engage in the execution of a mPPSTV
preamble Πmppstv,P1→P2 in the following manner.

Let k be a polynomial in the security parameter κ. P1 first prepares 2k2 secret shares {α0
i,j}ki,j=1,

{α1
i,j}ki,j=1 such that α0

i,j ⊕ α1
i,j = β1 (= {x1, r1}) for all i, j. Using the commitment scheme COM, P1

commits to β1 and all its secret shares. Denote these commitments by B1, {A0
i,j}ki,j=1, {A1

i,j}ki,j=1. P1

now engages in the execution of a sWI with A in order to prove the following statement: either

(a) the above commit phase is “valid”, i.e., there exist values β̂1, {α̂0
i,j , α̂

1
i,j}ki,j=1 such that (a) α̂0

i,j ⊕
α̂1
i,j = β̂1 for all i, j, and, (b) commitments B1, {A0

i,j}ki,j=1, {A1
i,j}ki,j=1 can be decommitted to β̂1,

{α̂0
i,j , α̂

1
i,j}ki,j=1, or,

(b) com1 in phase I is a commitment to bit 1.

It uses the witness corresponding to the first part of the statement. P1 and P2 now execute a challenge-
response phase. For j = 1, . . . , k:

(a) P2 → P1 : Send challenge bits z1,j , . . . , zk,j
$← {0, 1}k.

(b) P1 → P2 : Send α
z1,j
1,j , . . . , α

zk,j
k,j . Now, P1 and P2 engage in the execution of a sWI, where P1

proves the following statement: either (a) commitments A
z1,j
1,j , . . . , A

zk,j
k,j can be decommitted to

α
z1,j
1,j , . . . , α

zk,j
k,j respectively, or (b) com1 in Phase I is a commitment to bit 1. It uses the witness

corresponding to the first part of the statement.

2. P2 ↔ P1 : P2 now acts symmetrically.

At the end of this phase, party Pi is committed to its input and randomness. Informally speaking,
the purpose of this phase is aid the simulator in extracting the adversary’s input and randomness in the
concurrent setting.

III. Secure Computation Phase.

In this phase, we will run an execution of the semi-honest two party protocol Πsh-pake. Since Πsh-pake

is secure only against semi-honest adversaries, we will first run a coin-flipping protocol to force the coins of
each party to be unbiased and then “compile” Πsh-pake with sWI to enforce honest behavior on the parties.
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We now give more details.

Coin Flipping. P1 and P2 first engage in a coin-flipping protocol. More specifically,

1. P1 → P2 : P1 generates r′2
$← Uη and sends it to P2. Define r′′2 = r2 ⊕ r′2.

2. P2 → P1 : Similarly, P2 generates r′1
$← Uη and sends it to P1. Define r′′1 = r1 ⊕ r′1.

Now r′′1 and r′′2 are the random coins that P1 and P2 will use in the execution of protocol Πsh-pake.

Protocol Πsh-pake. Let the protocol Πsh-pake have t rounds where one round is defined to have a message
from P1 to P2 followed by a reply from P2 to P1. Let transcript T1,j (resp., T2,j) be defined to contain all the
messages exchanged between P1 and P2 before the point party P1 (resp., P2) is supposed to send a message
in round j. Now, each message sent by either party in protocol Πsh-pake is compiled into a message block in
Σ. For j = 1, . . . , t:

1. P1 → P2 : P1 sends the next message ∆1,j(= Πsh-pake(T1,j , x1, r
′′
1)) as per protocol Πsh-pake. Now, P1

and P2 engage in the execution of a sWI where P1 proves the following statement: either

(a) there exists a value β̂1 = {x̂1, r̂1} such that (a) the commitment B1 in phase II.1 can be decom-
mitted to β̂1 = {x̂1, r̂1}, and (b) the sent message ∆1,j is consistent with input x̂1 and randomness
r̂1 ⊕ r′1 (i.e., ∆1,j(= Πsh-pake(T1,j , x̂1, r̂1 ⊕ r′1)), or

(b) com1 in Phase I is a commitment to bit 1.

It uses the witness corresponding to the first part of the statement.

2. P2 → P1 : P2 now acts symmetrically.

This completes the description of the protocol Σ. Note that Σ consists of several instances of sWI, such
that the proof statement for each sWI instance consists of two parts. Specifically, the second part of the
statement states that prover committed to bit 1 in the trapdoor creation phase. In the sequel, we will
refer to the second part of the proof statement as the trapdoor condition. Further, we will call the witness
corresponding to the first part of the statement as real witness and that corresponding to the second part
of the statement as the trapdoor witness.

4 Proof of Security

Theorem 2 The proposed protocol Σ is a concurrently secure PAKE protocol as per Definition 1.

Let there be n parties in the system where different pairs of parties are involved in one or more sessions
of Σ, such that the total number of sessions m is polynomial in the security parameter κ. Let A be an
adversary who controls an arbitrary number of parties. In order to prove theorem 2, we will first construct
a simulator S that will simulate the view of A in the ideal world. We will then show that S makes only a
constant number of queries per session while simulating the view of A. Finally, we will argue that the output
distributions of the real and ideal world executions are computationally indistinguishable. For simplicity
of exposition, we will assume that exactly one party is corrupted in each session. We note that if the real
and ideal distributions are indistinguishable for this case, then by using standard techniques we can easily
remove this assumption.

We describe the construction of our simulator in section 4.1 and argue the correctness of the simulation
in section 4.2 and section 4.3. We first give some notation.

Notation. In the sequel, for any session ` ∈ [m], we will use the notation H to denote the honest party and
A to denote the corrupted party. Let Πmbps,H→A (resp., Πmbps,A→H) denote an instance of mBPS-CNMZK
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where H (resp., A) plays the role of the prover and A (resp., H) plays the verifier. Similarly, let Πmppstv,H→A
(resp., Πmppstv,A→H) denote an instance of mPPSTV where H (resp., A) plays the role of the committer
and A (resp., H) plays the receiver. Wherever necessary, we shall augment our notations with a super-script
that denotes the session number.

Consider any session between H and A. Consider the last message from A before H sends a message
to A during the coin-flipping sub-phase in the secure computation phase. Note that this message could
either be the first message of the coin-flipping phase or the last message of the mPPSTV phase, depending
upon whether A or H sends the first message in the coin-flipping phase. In the sequel, we will refer to this
message from A as the special message. Intuitively, this message is important because our simulator will
need to query the ideal functionality every time it receives such a message from A. Looking ahead, in order
to bound the number of queries made by our simulator, we will be counting the number of special messages
sent by A during the simulation.

4.1 Description of Simulator S

The simulator S consists of two parts, Scec and Score. Informally speaking, Scec is essentially the simulator
CEC-Sim (see appendix A.1) whose goal is to extract the preamble secret in each instance of the PPSTV
preamble where A acts as the committer. These extracted values are passed on to Score, who uses them
crucially to simulate the view of A. We now give more details.

Description of Scec. Scec is essentially the main simulator in that it handles all communication with A.
However, for each session ` ∈ [m], Scec by itself only answers A’s messages in those instances of the PPSTV
preamble where A plays the role of the committer; Scec in turn communicates with the core simulator Score
to answer all other messages from A.

Specifically, recall that our protocol consists of two instances of the PPSTV preamble where A plays the
role of the committer. Consider any session ` ∈ [m]. The first instance is inside the mBPS-CNMZK instance
Π`
mbps,H→A in the trapdoor creation phase, while the second instance is in fact the mPPSTV preamble

Π`
mppstv,A→H in the second phase. Then, Scec is essentially the simulator CEC-Sim that interacts with A in

order to extract the preamble secret in each of the above instances of the PPSTV preamble. Specifically, in
order to perform these extractions, Scec employs the time-oblivious rewinding strategy of CEC-Sim for an
imaginary adversary (see next paragraph). During the simulation, whenever Scec receives a message from
A in any of the above instance of the PPSTV preamble, then it answers it on its own in the same manner
as CEC-Sim does (i.e., by sending a random challenge string). However, on receiving any other message, it
simply passes it to the core simulator Score (described below), and transfers its response to A. Whenever
Scec extracts a preamble secret from A at any point during the simulation, it immediately passes it to Score.
If Scec fails to extract any of the preamble secrets from A, then it outputs the abort symbol ⊥.

Message generation timings of A. We note that in order to employ the time-oblivious rewinding
strategy of CEC-Sim, Scec needs to know the amount of time that A takes to send each message in the
protocol (see [PPS+08]). We remark that we do not seek precision in simulation time (guaranteed by the
rewinding strategy of CEC-Sim); instead we only require that the number of queries made by the simulator
in the look-ahead threads is only within a constant factor of the number of the number of sessions. To
this end, we consider an imaginary experiment in which A takes a disproportionately large amount of time
in generating the message after which our simulator has to query the trusted party. Then the rewinding
strategy of Scec is determined by running CEC-Sim using the next message generation timings of such an
(imaginary) adversary, explained as follows.

Consider all the messages sent by A during a protocol execution. We will assign q time units to the
special message, where q is the round complexity (linear in the security parameter) of our protocol; any
other message from A is simply assigned one time unit. Intuitively, by assigning more weight to the special
message, we ensure that if the running time of our simulator is only within a constant factor of the running
time of A in the real execution, then the number of special messages sent by A during the simulation must
be a constant as well. Looking ahead, this in turn will allow us to prove that the number of queries made
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by the simulator are only a constant.

Description of Score. We describe the strategy of Score in each phase of the protocol, for each session
` ∈ [m]. We stress that Score uses the same strategy in the main-thread as well as all look-ahead threads
(unless mentioned otherwise).

Trapdoor Creation Phase. Score first sends a commitment to bit 1, instead of committing to bit 0.
Now, recall that Scec interacts with A during the preamble phase in Π`

mbps,H→A and extracts the preamble

secret σ`mbps,H→A from A at the conclusion of the preamble. Then, on receiving σ`mbps,H→A from Scec, Score
simulates the post-preamble phase of Π`

mbps,H→A (see section A.2 for a description of the mBPS-CNMZK

protocol) in the following manner7.
Let y` be the proof statement in Π`

mbps,H→A. Then, in phase II of Π`
mbps,H→A, Score creates a statistically

hiding commitment (sCOM) to σ`mbps,H→A (instead of a string of all zeros) and follows it up with an
honest execution of statistical zero knowledge argument of knowledge (sZKAOK) to prove knowledge of the
decommitment. In phase IV of Π`

mbps,H→A, Score creates a non-malleable commitment (NMCOM) to an

all zeros string (instead of a valid witness to y`). Finally, in phase V, Score proves the following statement
using sZKAOK: (a) the value committed to in phase IV is a valid witness to y`, or (b) the value committed
to in phase II is σ`mbps,H→A. Here it uses the witness corresponding to the second part of the statement.

Now, consider the mBPS-CNMZK instance Π`
mbps,A→H , where H plays the role of the verifier. Here,

Score simply uses the honest verifier strategy to interact with A.

mPPSTV Preamble Phase. Consider the execution of the mPPSTV instance Π`
mppstv,H→A. Here, Score

commits to a random string and answers A’s challenges with random strings. Note that the trapdoor
condition is true for each instance of sWI in Π`

mppstv,H→A since Score committed to bit 1 (instead of 0) in
the trapdoor creation phase. Therefore, Score uses the trapdoor witness in order to successfully simulate
each instance of sWI in Π`

mppstv,H→A.

Now consider the mPPSTV instance Π`
mppstv,A→H . Note that in this preamble, Scec interacts with A

without the help of Score. As explained earlier, Scec extracts the preamble secret (that contains the input
and randomness of A in session `) and passes it to Score.

Secure Computation Phase. Let SΠsh-pake denote the simulator for the semi-honest two-party protocol
Πsh-pake used in our construction. Score internally runs the simulator SΠsh-pake on adversary’s input in session
`. SΠsh-pake starts executing, and, at some point, it makes a call to the trusted party in the ideal world with
some input (say) x. Score uses the following strategy to manage queries to the trusted party.

Score maintains a counter c to count the total number of queries (including all sessions) made to the
trusted party on the look-ahead threads so far in the simulation (note that there will be exactly m queries on
the main thread). Now, when SΠsh-pake makes a call to the trusted party, Score computes a session index s in
the following manner. If the query corresponds to the main thread, then Score sets s = `, else it computes
s = c mod m. Now, if Score has already queried the trusted party at least once for session s, then it first
sends the (new-query, s) message to the trusted party. Otherwise, it simply sends the message (s, x) to the
trusted party.89 The response from the trusted party is passed on to SΠsh-pake . If the query corresponds to
the main thread, Score sends the message (output, s) to the trusted party, indicating it to send the output
to the honest party in session s.10

7Note that given the preamble secret, the post-preamble phase of mBPS-CNMZK can be simulated in a straight-line manner.
See section A.2 for more details.

8We stress that the simulator is able to “trade” the ideal functionality calls in one session for another since the inputs of the
honest parties are the same across all the sessions.

9Note that by choosing the session index for the output query in the above fashion, Score is able to equally distribute the
queries across all the sessions. Looking ahead, in the next subsection, we will argue that the total number of queries across
all the sessions are only within a constant factor of the number of sessions. Then, this strategy of distributing the queries will
ensure that the queries per session are also a constant.

10Note that s = ` in this case. We stress that by setting s = ` for a query on the main thread, Score ensures that the honest
party in session ` receives the correct output. (Note that an honest party does not receive any output for an output query on a
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Having received the trusted party’s response from Score, SΠsh-pake runs further, and finally halts and
outputs a transcript ∆`

1,1,∆
`
2,1, . . . ,∆

`
1,t,∆

`
2,t of the execution of Πsh-pake, and an associated randomness r`A.

Let r̂`A be the randomness that S extracted from A in phase II. Now, Score computes a random string r̃`A
such that r`A = r̃`A ⊕ r̂`A.

Now, in order to force A to use randomness r`A during the execution of Πsh-pake, Score sends r̃`A to
A during the coin-flipping phase prior to the execution of Πsh-pake. Finally, Score forces the transcript
∆`

1,1,∆
`
2,1, . . . ,∆

`
1,t,∆

`
2,t onto A during the execution of Πsh-pake. This is done as follows. Without loss of

generality, let us assume that the honest party sends the first message in this instance of Πsh-pake. Then, in
round j, 1 ≤ j ≤ t, Score sends ∆`

1,j to A (instead of sending a message as per the input and randomness
committed to in the preamble in Phase II). Score uses the trapdoor witness to complete the associated
sWI. As we establish later in the proof of Lemma 3, the trapdoor condition is false (except with negligible
probability) in each sWI where A acts as the prover. Therefore, the reply of A must be the message ∆`

2,j

except with negligible probability.
This completes the description of our simulator S = {Scec, Score}. In the next subsection, we bound

the total number of queries made by S.

4.2 Total Queries by S

Lemma 2 Let m be the total number of sessions of Σ being executed concurrently. Then, the total number
of queries made by S to the trusted party is within a constant factor of m.

Proof. Let T be the total running time of the adversary in the real execution, as per the time assignment
strategy described in section 4.1. Now, since S employs the time-oblivious rewinding strategy of CEC-Sim,
it follows from lemma 5 (see section A.1) that the total running time of S is within a constant factor of T .
Let us now assume that our claim is false, i.e., the total number of queries made by S is a super-constant
multiple of m. We will show that in this case, the running time of S must be super-constant multiple of T ,
which is a contradiction. We now give more details.

Let q be the round complexity of Σ. Then, as per the time assignment strategy given in section 4.1,
T = (q − 1 + q) ·m (recall that the special message is assigned a weight of q time units, while each of the
remaining q − 1 messages is assigned one time unit). Now, let λ be a value that is super-constant in the
security parameter such that S makes λ ·m total queries during the simulation. Note that each output query
corresponds to a unique special message. Let T ′ be the total running time of S. We calculate T ′ as follows:

T ′ ≥ q · (λ ·m) + (q − 1) ·m
> q · (λ ·m)

>
λ · q

(q − 1 + q)
· (q − 1 + q) ·m

>
λ · q

(q − 1 + q)
· T

Since λ·q
(q−1+q) is a super-constant in the security parameter, we have that T ′ is a super-constant multiple of

T , which is a contradiction. Hence the claim follows.

The corollary below immediately follows from lemma 2 and the description of S in section 4.1.

Corollary 1 S makes a constant number of queries per session to the trusted party.

4.3 Indistinguishability of the Outputs

We consider two experiments H0 and H1, where H0 corresponds to the real execution of Σ while H1 corre-
sponds to the ideal computation of F , as described below.

look-ahead thread.)
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Experiment H0: The simulator S is given the inputs of all the honest parties. By running honest programs
for the honest parties, it generates their outputs along with A’s view. The simulation is perfect.

Experiment H1: S simulates all the sessions without the inputs of the honest parties (in the same manner
as explained in the description of S) and outputs the view of A. Each honest party outputs the response it
receives from the trusted party.

Let v i be a random variable that represents the output (including the view of the adversary and the
outputs of the honest parties) of Hi. We now claim that the output distributions of H0 and H1 are indistin-
guishable, as stated below:

Lemma 3 v0 c≡ v1

This is the main technical lemma in our paper. The proof of this lemma requires a careful hybrid
argument. A detailed and self contained proof is given in the next subsection.

5 Proof of Lemma 3

We will prove this lemma using a carefully designed series of intermediate hybrid experiments. We first
describe some notation.

We will use the notation H and A to denote the honest party and the corrupted party respectively in
each session. Now consider any session between H and A. Let Πmppstv,H→A (resp., Πmppstv,A→H) denote
the instance of mPPSTV where H (resp., A) plays the role of the committer and A (resp., H) plays the
receiver. Similarly, let Πmbps,H→A (resp., Πmbps,A→H) denote the instance of mBPS-CNMZK where H
(resp., A) plays the role of the prover and A (resp., H) plays the verifier. In the sequel, whenever necessary,
we will augment our notation with a super-script that denotes the session number.

Now, for any session, consider the first message that H sends to A during the post-preamble phase inside
Πmbps,H→A. We will refer to this message as an FM of type I. Further, in that session, consider the first
message that H sends to A during the execution of Πsh-pake in phase III. We will refer to this message as an
FM of type II. Consider an ordered numbering of all the occurrences of FM (irrespective of its type) across
the m sessions. Note that there may be up to 2m FM’s in total on any execution thread. In particular,
there will be exactly 2m FM’s on the main thread. For any execution thread, let FMi denote the ith FM.
Let s(i) be the index of the protocol session that contains FMi. In the sequel, our discussion will mainly
pertain to the FM’s on the main thread. Therefore, we omit the reference to the main thread and unless
otherwise stated, it will be implicit that the FM’s in our discussion correspond to the main thread.

We will now describe a series of hybrid experimentsHi:j , where i ∈ [1, 2m], and j ∈ [1, 6]. We additionally
define a dummy hybrid H0:6 that represents the real execution (i.e., H0, as defined in section 4.3). Hybrid
H2m:6 will be the ideal execution (i.e., H1, as defined in section 4.3). For each intermediate hybrid Hi:j ,
we define a random variable v i:j that represents the output (including the view of the adversary and the
outputs of the honest parties) of Hi:j .

Looking ahead, while proving the indistinguishability of the outputs of our hybrid experiments, we will
need to argue that in each session ` ∈ [m], the trapdoor condition is false for each instance of sWI where
A plays the role of the prover. In the sequel, we will refer to this as the soundness condition. Note that
the soundness condition trivially holds if we can argue that (except with negligible probability) A commits
to bit 0 in phase I of each session. For technical reasons, however, we will in fact maintain a stronger
invariant throughout the hybrids. Specifically, consider the mBPS-CNMZK instance Π`

mbps,A→H in session

`. Let y` denote the proof statement for this mBPS-CNMZK instance11. We will prove that in each session
` ∈ [m], A commits to a valid witness to the statement y` in the non-malleable commitment (NMCOM)

inside Π`
mbps,A→H . To this end, we define m random variables, {αi:j,`A }m`=1, where αi:j,`A is the value contained

in NMCOM inside Π`
mbps,A→H in Phase I of session ` as per v i:j .

11Recall that, informally speaking, y` states that A committed to bit 0 in phase I
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Soundness lemma. Before we proceed to the description of our hybrids, we first claim a “soundness”
lemma pertinent to the real execution. Informally speaking, we argue that in each session ` ∈ [m] in the
real execution, A commits to a valid witness (to the proof statement y`) in the non-malleable commitment
inside Π`

mbps,A→H .

Lemma 4 Let y` be the proof statement for the mBPS-CNMZK instance Π`
mbps,A→H in session `. Then,

for each session ` ∈ [m], if the honest party does not abort the session in the view v0:6, then α0:6,`
A is a valid

witness to the statement y`, except with negligible probability.

Intuitively, the above lemma follows due the knowledge soundness of the statistical zero knowledge
argument of knowledge used in mBPS-CNMZK. We refer the reader to [Claim 2.5, [BPS06]] for a detailed
proof.

Public-coin property of NMCOM. We now describe a strategy that we will repeatedly use in our proofs
in order to argue that for every session ` ∈ [m], the value contained in NMCOM inside Π`

mbps,A→H remains
indistinguishable as we change our simulation strategy from one hybrid experiment to another. Intuitively,
we will reduce our indistinguishability argument to a specific cryptographic property (that will be clear
from context) that holds in a stand-alone setting. Specifically, we will consider a stand-alone machine M`

that runs S and A internally. Here we explain how for any session `, M` can “expose” the NMCOM inside
Π`
mbps,A→H to an external party R (i.e., M` will send the commitment messages from A to R and vice-versa,

instead of handling them internally). Note that S may be rewinding A during the simulation. However,
since R is a stand-alone receiver; M` can use its responses only on a single thread of execution.

In order to deal with this problem, we will use the following strategy. When A creates the NMCOM
inside Π`

mbps,A→H , any message in this NMCOM from A on the main-thread is forwarded externally to R;
the responses from R are forwarded internally to A on the main-thread. On the other hand, any message
in this NMCOM from A on a look-ahead thread is handled internally; M` creates a response on its own
and sends it internally to A on that look-ahead thread. We stress that this possible because NMCOM is a
public-coin protocol.

In the sequel, whenever we use the above strategy, we will omit the details of the interaction between
M` and R.

5.1 Description of the Hybrids

For i ∈ [1, 2m], the hybrid experiments are described as follows.

Experiment Hi:1: Same as Hi−1:6, except that S performs rewindings upto FMi using the PPSTV simula-
tor CEC-Sim (see appendix A.1). Specifically, the rewindings are performed with the following restrictions:

• No new-look ahead threads are created beyond FMi on the main thread (i.e., the execution is straight-
line beyond FMi).

• Consider any look-ahead thread that is created before the execution reaches FMi on the main-thread.
Then, any such look-ahead thread is terminated as soon as the execution reaches the ith FM on that
thread12.

Additionally, S extracts and records the preamble secret for each preamble (where A play the role of the
committer) that concludes before FMi. S outputs an abort message ⊥ if CEC-Sim gets stuck. Otherwise,
it outputs the view of the adversary in the main thread of this simulation as v i:1.

12Note that the FMi’s on different executions threads may not be identical, and in particular, may correspond to different
sessions
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We now claim that,

v i−1:6 c≡ v i:1 (1)

∀` αi−1:6,`
A

c≡ αi:1,`A (2)

Hybrid Hi−1:6:1. In order to prove our claim, we will first consider an intermediate hybrid experimentHi−1:6:1

where S employs the same strategy as described above, except that whenever it fails to extract the preamble
secrets, it does not abort, but instead continues the simulation and outputs the main thread. Now, since
the main thread in this experiment remains unchanged from Hi−1:6, it follows that:

v i−1:6 s≡ v i−1:6:1 (3)

where
s≡ denotes statistical indistinguishability. We further claim that:

∀` αi−1:6,`
A

c≡ αi−1:6:1,`
A (4)

Let us assume that equation 4 is false. That is, ∃` ∈ [m] such that αi−1:6,`
A and αi−1:6:1,`

A are distinguishable
by a probabilistic polynomial time (PPT) distinguisher. In this case, we can create an unbounded adversary
that extracts the value contained in the non-malleable commitment inside Π`

mbps,A→H and is then able to
distinguish between the main threads in Hi−1:6 and Hi−1:6:1, which is a contradiction.

We now argue that in hybrid Hi−1:6:1, S is able to extract (except with negligible probability) the
preamble secret for each preamble that concludes before FMi. Recall that we are interested in the following
two extraction processes:

1. For each session ` ∈ [m], consider the PPSTV preamble inside the mBPS-CNMZK argument Π`
mbps,H→A.

We wish to argue that if the execution of this preamble concludes before FMi, then S extracts (except
with negligible probability) the corresponding preamble secret σ`mbps,H→A from A.

2. For each session ` ∈ [m], consider the mPPSTV preamble Π`
mppstv,A→H . We wish to argue that if the

execution of this preamble concludes before FMi, then S extracts (except with negligible probability)
the corresponding preamble secret σ`mppstv,A→H from A. Note that this preamble secret is in fact the
input and randomness of A.

We first note that by construction, simulator’s strategy in this experiment is identical for each thread,
irrespective of whether it is the main-thread or a look-ahead thread. Now consider an imaginary adversary
who aborts once the execution reaches FMi on any thread. Note that lemma 6 holds for such an adversary
(i.e. the probability that the simulator fails to extract the preamble secret of a “concluded” preamble is
negligible). Then, if the adversary does not abort (as is the case with A), the probability that the simula-
tion successfully extracts the preamble secrets must be only higher. Hence our claim follows for case 1. For
case 2, we note that lemma 6 is applicable if we can argue that the soundness condition holds (specifically,
we require that the trapdoor condition is false for each instance of sWI in Π`

mppstv,A→H if Π`
mppstv,A→H

concludes before FMi). Note that this is already implied by equation 4. Hence, our claim follows for case 2
as well.

Proving Equations 1 and 2. Note that the only difference between Hi−1:6:1 and Hi:1 is that S outputs the
abort symbol ⊥ if CEC-Sim “gets stuck”. We have shown that this event happens only with negligible
probability. Hence our claim follows.

Experiment Hi:2: Same as Hi:1, except that if FMi is of type I, then S simulates the post-preamble phase

of Π
s(i)
mbps,H→A in a straight-line fashion, explained as follows. Recall that no look-ahead threads are started

once the execution reaches FMi on the main thread. All the changes in the main thread, as explained below,
are performed after FMi.

Let σ
s(i)
mbps,H→A be the preamble secret in Π

s(i)
mbps,H→A that S has already extracted. Let ys(i) be the proof

statement in Π
s(i)
mbps,H→A. Then, S performs the following steps:
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1. In phase II of Π
s(i)
mbps,H→A, S creates a statistically hiding commitment (sCOM) to σ

s(i)
mbps,H→A (instead

of a string of all zeros) and follows it up with an honest execution of sZKAOK to prove knowledge of
the decommitment.

2. In phase IV of Π
s(i)
mbps,H→A, S creates a non-malleable commitment (NMCOM) to an all zeros string

(instead of a valid witness to ys(i)).

3. In phase V of Π
s(i)
mbps,H→A, S proves the following statement using sZKAOK: (a) the value committed

to in phase IV is a valid witness to ys(i), or (b) the value committed to in phase II is σ
s(i)
mbps,H→A.

Here it uses the witness corresponding to the second part of the statement. Note that this witness
is available to S since it already performed step 1 earlier. Below, we will refer to this witness as the
trapdoor witness, while the witness corresponding to the first part of the statement will be referred to
as the real witness.

Now we prove that,

v i:1
c≡ v i:2 (5)

∀` αi:1,`A
c≡ αi:2,`A (6)

In order to prove the above equations, we will create three intermediate hybrids Hi:1:1, Hi:1:2, and Hi:1:3.
Hybrid Hi:1:1 is identical to Hi:1, except that it changes its strategy to perform step 1 (as described above).
Hybrid Hi:1:2 is identical to Hi:1:1, except that it changes its strategy to perform step 3. Finally, hybrid
Hi:1:3 is identical to Hi:1:2, except that it changes its strategy to perform step 2. Note that Hi:1:3 is identical
to Hi:2.

We now claim the following:

v i:1
c≡ v i:1:1 (7)

∀` αi:1,`A
c≡ αi:1:1,`

A (8)

v i:1:1 c≡ v i:1:2 (9)

∀` αi:1:1,`
A

c≡ αi:1:2,`
A (10)

v i:1:2 c≡ v i:1:3 (11)

∀` αi:1:2,`
A

c≡ αi:1:3,`
A (12)

Note that equation 5 follows by combining the results of equations 7, 9, and 11. Similarly, equation 6 follows
by combining the results of equations 8, 10, and 12. We now prove the above set of equations.

Proving Equations 7 and 8. We first note that sCOM and sZKAOK can together be viewed as a statistically
hiding commitment scheme. Let sCOM denote this new commitment scheme. Then, equation 7 simply
follows from the hiding property of sCOM.

In order to prove equation 8, we will use the fact that sCOM is statistically hiding. Let us first assume
that the claim is false, i.e., ∃` ∈ [m] such that αi:1,`A and αi:1:1,`

A are distinguishable by a PPT distinguisher
D. We will create a standalone machine M` that is identical to Hi:1, except that instead of simply com-

mitting to a string of all zeros using sCOM in Π
s(i)
mbps,H→A, M` takes this commitment from an external

sender C and “forwards” it internally to A. Additionally, M` “exposes” the NMCOM in Π`
mbps,A→H to an

external receiver R by relying on the public-coin property of NMCOM, as described earlier. Let us describe

the interaction between M` and C in more detail. M` first sends the preamble secret σ
s(i)
mbps,H→A to C.

Now, when C starts the execution of sCOM in Π
s(i)
mbps,H→A, M` forwards the messages from C to A; the

responses from A are forwarded externally to C. Note that if C commits to a string of all zeros in the
sCOM execution, then the (C,M`, R) system is identical to Hi:1:1. On the other hand, if C commits to the
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preamble secret σ
s(i)
mbps,H→A, then the (C,M`, R) system is equivalent to Hi:1:2. We will now construct a

computationally unbounded distinguisher D′ that distinguishes between these two executions, thus contra-
dicting the statistically hiding property of sCOM. D′ simply extracts the value inside the NMCOM received
by R and runs D on this input. D′ outputs whatever D outputs. By our assumption, D’s output must
be different in these two experiments; this implies that D′ output is different as well, which is a contradiction.

Proving Equations 9 and 10. Equation 9 simply follows due to the witness indistinguishability property of
sZKAOK. Equation 10 follows from the fact that sZKAOK is statistically witness indistinguishable. The
proof details are almost identical to the proof of equation 8 and therefore omitted.
Proving Equations 11 and 12. Equation 11 simply follows from the hiding property of NMCOM. To see this,
we can construct a standalone machine M that internally runs S and A and outputs the view generated

by S. M is identical to Hi:1:2 except that in phase IV of Π
s(i)
mbps,H→A, instead of simply committing (using

NMCOM) to a valid witness (to the proof statement ys(i)), it takes this commitment from an external sender
C and “forwards” it internally to A.

In order to prove equation 12, we will use the non-malleability property of NMCOM. Let us assume
that equation 12 is false, i.e., ∃` ∈ [m] such that αi:1:2,`

A and αi:1:3,`
A are distinguishable by a PPT machine.

We will construct a standalone machine M` that is identical to the machine M described above, except that
it will “expose” the non-malleable commitment inside Π`

mbps,A→H to an external receiver R by relying on

the public-coin property of NMCOM, as described earlier. Now, if E commits to the witness to y`, then
the (C,M`, R) system is identical to Hi:1:2, whereas if E commits to a random string, then the (C,M`, R)
system is identical to Hi:1:3. From the non-malleability property of NMCOM, we establish that the value
committed by M` to R must be computationally indistinguishable in both cases.

Experiment Hi:3: Same as Hi:2, except that if FMi is of type I, then the simulator commits to bit 1

instead of 0 in phase I of session s(i). Let Π
s(i)
COM,H→A denote this commitment.

We now claim that,

v i:2
c≡ v i:3 (13)

∀` αi:2,`A
c≡ αi:3,`A (14)

Proving Equations 13 and 14. Equation 13 simply follows from the (computationally) hiding property of
the commitment scheme COM. In order to prove equation 14, we will leverage the hiding property of COM
and the extractability property of the non-malleable commitment scheme in mBPS-CNMZK. Let us first
assume that equation 14 is false, i.e., ∃` ∈ [m] such that αi:2,`A and αi:3,`A are distinguishable by a PPT
distinguisher. Note that it cannot be the case that the NMCOM inside Π`

mbps,A→H concludes before S sends

the non-interactive commitment Π
s(i)
COM,H→A in session s(i), since in this case, the execution of NMCOM is

independent of Π
s(i)
COM,H→A. Now consider the case when the NMCOM inside Π`

mbps,A→H concludes after S
sends Π

s(i)
COM,H→A.

We will create a standalone machine M` that is identical to Hi:2, except that instead of committing

to bit 0 in Π
s(i)
COM,H→A, it takes this commitment from an external sender C and forwards it internally to

A. Additionally, it “exposes” the NMCOM inside Π`
mbps,A→H to an external receiver R by relying on the

public-coin property of NMCOM, as described earlier. Note that if C commits to bit 0 then the (C,M`, R)
system is identical to Hi:2, otherwise it is identical to Hi:3. Now, recall that NMCOM is an extractable
commitment scheme. Therefore, we now run the extractor (say) E of NMCOM on (C,M`) system. Note
that E will rewind M`, which in turn may rewind the interaction between C and M`. However, since COM
is a non-interactive commitment scheme, M` simply re-sends the commitment string received from C to
A internally. Now, if the extracted values are different when C commits to bit 0 as compared to when it
commits to bit 1, then we can break the (computationally) hiding property of COM, which is a contradiction.

19



Experiment Hi:4: Same as Hi:3, except that if FMi is of type I, then S uses the following modified
strategy. In session s(i), S uses the trapdoor witness (instead of the real witness) in each instance of sWI
where the honest party plays the role of the prover. Note that the false witness for each of these sWI must
be available to the simulator at this point since it earlier committed to bit 1 in phase I of session s(i).

We now claim that,

v i:3
c≡ v i:4 (15)

∀` αi:3,`A
c≡ αi:4,`A (16)

Proving Equations 15 and 16. Equation 15 simply follows from the witness indistinguishability of sWI by a
standard hybrid argument.

In order to prove equation 16, let us first consider the simpler case where S uses the trapdoor witness
only in the first instance (in the order of execution) of sWI in session s(i) where the honest party plays the
role of the prover. In this case, we can leverage the “statistical” nature of the witness indistinguishability
property of sWI in a similar manner as in the proof of equation 10. Then, by a standard hybrid argument,
we can extend this proof for multiple sWI.

Experiment Hi:5: Same as Hi:4, except that if FMi is of type I, then S uses the following strategy in the

execution of Π
s(i)
mppstv,H→A in session s(i):

1. During the commit phase, instead of committing to the input (and its secret shares) of the honest
party, S commits to random strings.

2. During the challenge-response phase, instead of honestly revealing the values committed to in the
commit phase (as selected by A), S sends random strings to A.

We now claim that,

v i:4
c≡ v i:5 (17)

∀` αi:4,`A
c≡ αi:5,`A (18)

In order to prove these equations, we will define two intermediate hybrids Hi:4:1 and Hi:4:2. Experiment
Hi:4:1 is the same as Hi:4, except that S also performs steps 1 as described above. Experiment Hi:4:2 is the
same as Hi:4:1, except that S also performs step 2 as described above. Therefore, by definition, Hi:4:2 is
identical to Hi:5.

We now claim the following:

v i:4
c≡ v i:4:1 (19)

∀` αi:4,`A
c≡ αi:4:1,`

A (20)

v i:4:1 c≡ v i:4:2 (21)

∀` αi:4:1,`
A

c≡ αi:4:2,`
A (22)

Note that equation 17 follows by combining the results of equations 19 and 21. Similarly, equation eq:b45
follows by combining the results of equations 20 and 22. We now prove the above set of equations.

Proving Equations 19 and 20. Equation 19 simply follows from the (computational) hiding property of the
commitment scheme COM.

In order to prove equation 20, let us first consider the simpler case where S only modifies the first com-

mitment in the commit phase in Π
s(i)
mppstv,H→A. In this case, we can leverage the hiding property of COM

and the extractability property of the non-malleable commitment scheme in mBPS-CNMZK in a similar
manner as in the proof of equation 14. Then, by a standard hybrid argument, we can extend this proof to
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the case where S modifies all the commitments in the commit phase in Π
s(i)
mppstv,H→A.

Proving Equations 21 and 22. Note that the main-thread is identical in hybrids Hi:4:1 and Hi:4:2 since we
are only changing some random strings to other random strings; furthermore, the strings being changed are
not used elsewhere in the protocol. Equations 21 and 22 follow as a consequence.

Experiment Hi:6: Same as Hi:5, except that if FMi is of type II, S “simulates” the execution of Πsh-pake

in session s(i), in the following manner. Let SΠsh-pake be the simulator for the semi-honest two party protocol
Πsh-pake used in our construction. S internally runs the simulator SΠsh-pake for the semi-honest two party
protocol Πsh-pake on A’s input in session s(i) that was extracted earlier. When SΠsh-pake makes a query to
the trusted party with some input, S selects a session index s′ and forwards the query to the trusted party
in the same manner as explained earlier in section 4.1. The response from the trusted party is passed on
to SΠsh-pake . Further, S decides whether the output must be sent to the honest party in the same manner
as explained earlier. SΠsh-pake finally halts and outputs a transcript of the execution of Πsh-pake, and an
associated random string for the adversary.

Now, S forces this transcript and randomness on A in the same manner as described in section 4.1.
We claim that during the execution of Πsh-pake, each reply of A must be consistent with this transcript,
except with negligible probability. Note that we have already established from the previous hybrids that the
soundness condition holds (except with negligible probability) at this point. This means that the trapdoor
condition is false for each instance of sWI in session s(i) where A plays the role of the prover. Then our
claim follows from the soundness property of sWI used in our construction.

We now claim that:

v i:5
c≡ v i:6 (23)

∀` αi:5,`A
c≡ αi:6,`A (24)

Proving Equation 23. Informally speaking, equation 23 follows from the semi-honest security of the two-party
computation protocol Πsh-pake used in our construction. We now give more details.

We will construct a standalone machine M that is identical to Hi:5, except that instead of engaging in an
honest execution of Πsh-pake with A in session s(i), it obtains a protocol transcript from an external sender
C and forces it on A in the following manner. M first queries the ideal world trusted party on the extracted

input of A for session s(i) in the same manner as explained above for S. Let x
s(i)
A denote the extracted input

of A. Let x
s(i)
H denote the input of the honest party in session s(i). Let K be the output that M receives

from the trusted party. Now M sends x
s(i)
H along with x

s(i)
A and K to C and receives from C a transcript

for Πsh-pake and an associated random string. M forces this transcript and randomness on A in the same
manner as S does. Now, the following two cases are possible:

1. C computed the transcript and randomness by using both the inputs - x
s(i)
H and x

s(i)
A - along with

the output K. In this case, the transcript output by C is a real transcript of an honest execution of
Πsh-pake.

2. C computed the transcript and randomness by using only adversary’s input x
s(i)
A , and the output K.

In this case C simply ran the simulator SΠsh-pake on input x
s(i)
A and answered its query with K. The

transcript output by C in this case is a simulated transcript for Πsh-pake.

In the first case, the (C,M) system is identical to Hi:5, while in the second case, the (C,M) system is
identical to Hi:6. By the (semi-honest) security of Πsh-pake, we establish that the output of M must be
indistinguishable in both the cases, except with negligible probability. This proves equation 23.

Proving Equation 24. We will leverage the semi-honest security of the two-party computation protocol
Πsh-pake and the extractability property of the non-malleable commitment scheme in mBPS-CNMZK to
prove equation 24.
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Specifically, we will construct a standalone machine M` that is identical to M as described above,
except that it “exposes” the NMCOM in Π`

mbps,A→H to an external receiver R by relying on the public-coin
property of NMCOM, as described earlier. Note that if C produces a transcript Πsh-pake according to case
1 (as described above), then the (C,M`, R) system is identical to Hi:5. On the other hand, if C produces a
transcript for Πsh-pake according to case 2, then the (C,M`, R) system is identical to Hi:6. We can now run
the extractor E of NMCOM on (C,M`) system. Note that E will rewind M`, which in turn may rewind
the interaction between C and M`. However, since this interaction consists of a single message from C, M`

simply re-uses (if necessary) the transcript received from C in order to interact with A internally. Now,
if the extracted values are different in case 1 and case 2, then we can break the semi-honest security of
Πsh-pake, which is a contradiction.
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A Building Blocks

In this section, we explain some of the cryptographic primitives that we use in our construction.

A.1 Preamble from PPSTV [PPS+08]

In this subsection, we describe the preamble from [PPS+08] some of its main properties useful for our context.
Let k be a parameter that determines the round-complexity of the protocol. Let COM be a statistically
binding commitment scheme. The PPSTV preamble consists of two main phases described below.

Commitment Phase Let β be the bit string the committer wishes to commit. In the commit phase, the
committer prepares k2 pairs of secret shares {α0

i,`, α
1
i,`}ki,`=1 such that α0

i,` ⊕ α1
i,` = β for all i, `. The

committer will commit to all these bit strings using COM, with fresh randomness each time13. The
committer then sends these k2 commitments to the receiver.

Challenge-Response Phase This phase consists of k iterations where in the `th iteration, the receiver

sends a random k-bit string b` = b1,`, . . . , bk,`, and the committer decommits to COM(α
b1,`
1,` ), . . . ,COM(α

bk,`
k,` ).

On reaching this point, the receiver considers the preamble to have “concluded”.

There is an optional preamble opening phase where the committer opens all the commitments made in
the commitment phase, and the receiver verifies the consistency of the revealed values. On reaching this
point, the receiver is supposed to have “accepted” the preamble.

Now consider the scenario where multiple sessions of the PPSTV preamble are being executed concur-
rently honest receivers and a cheating committer. The simulator for the PPSTV preamble is a program that
uses a rewinding schedule to “simulate” the concurrent sessions (i.e., produce a transcript indistinguishable
from the real execution) and simultaneously extract the committed value β (referred to as the preamble
secret) in each session with high probability. In the concurrent setting, such an extraction can be difficult
since while rewinding for a specific session, a simulator may rewind past the start of another session [DNS98].
However, as it has been demonstrated in [PPS+08]), there is a fixed time-oblivious rewinding strategy that
the simulator can use to extract the preamble secret for every concurrent cheating committer with high
probability. We now give more details.

Simulator CEC-Sim. We call the simulator for the PPSTV preamble CEC-Sim, where CEC stands for
concurrently-extractable commitment (intuitively, the PPSTV preamble can be viewed as a concurrently-
extractable commitment). It was shown in [PPS+08] that there exists a simulator CEC-Sim that uses a
time-oblivious rewinding strategy such that when the preamble contains a linear (in the security parameter)
number of rounds, CEC-Sim is able to simulate the concurrent sessions (and extract the preamble secret in

13Note that statistically binding commitments are used in this preamble. Therefore, if the receiver accepts the preamble,
then except with negligible probability, there is a well-defined value α in the PPSTV commitment, and it is this value that the
receiver accepted as the committer’s secret in the preamble.
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each session) in time that is only within a constant factor of the running time of the concurrent committer.
In this paper, we do not focus on precision in running time of the simulator. However, we shall crucially use
the precision in running time of the simulator CEC-Sim in order to argue that the total number of output
queries made by our simulator (that internally uses CEC-Sim) are only a constant per session. Below we
introduce some terminology and summarize two main properties of CEC-Sim for our context.

Consider polynomially many concurrent sessions of the PPSTV preamble that we wish to simulate.
The simulator CEC-Sim produces an ordered list of “threads of execution”, where a thread of execution
(consisting of the views of all the parties) is a perfect simulation of a prefix of an actual execution. In
particular, the main thread, is a perfect simulation of a complete execution, and this is the execution thread
that is output by the simulator. Any other thread is referred to as a look-ahead thread. Here, each thread
shares a possibly empty prefix with the previous thread.

The goal of CEC-Sim is, for each preamble commitment that it comes across in any session in any
thread, to extract the preamble secret before that preamble is concluded in that thread. Furthermore, due
to the time-oblivious rewinding strategy, the running time of CEC-Sim is only within a constant factor of
the running time of the adversarial committer. We recall the following two properties of CEC-Sim that are
useful to our context.

Lemma 5 (Informal statement [PPS+08]) For any concurrent adversarial committer, there exists a simu-
lator algorithm CEC-Sim such that the running time of CEC-Sim is within a constant factor of T , where T
is the running time of the adversarial committer.

CEC-Sim is said to “get stuck” if it fails in extracting the preamble secret in a session on a thread such
that the preamble commit phase of that session in that thread is concluded. The probability of CEC-Sim
getting “stuck” is negligible, as stated below.

Lemma 6 (implicit in [PPS+08]) Consider a concurrent adversarial committer and a receiver running
polynomially many (in the security parameter) sessions of a protocol with the PPSTV preamble. Then
except with negligible probability, in every thread of execution output by CEC-Sim; if the receiver accepts a
PPSTV preamble commit phase as valid, then at the point when that preamble is concluded, CEC-Sim would
have already recorded the secret of that preamble.

Modified PPSTV preamble. In our construction, we shall additionally make use of a modified version
of the PPSTV preamble (referred to as mPPSTV) where, for a given receiver challenge, the committer
does not “open” the commitments, but instead simply reveals the committed value (without revealing the
randomness used to create the commitment) and proves its correctness by using a sWI. Additionally, the
committer gives a proof of consistency of the committed values using a sWI.

We note that lemma 6 is applicable to the mPPSTV preamble as well as long as the sWI are sound.
In our construction, the statements for sWI will have a “trapdoor condition” that will allow our simulator
to cheat; however, in our security proof, we will ensure that that the trapdoor condition is false for each
instance of sWI where the adversary plays the role of the prover. Therefore, we will still be able to use
lemma 6.

A.2 Concurrent Non-Malleable Zero Knowledge Argument

Concurrent non-malleable zero knowledge (CNMZK) considers the setting where a man-in-the-middle ad-
versary is interacting with several honest provers and honest verifiers in a concurrent fashion: in the ”left”
interactions, the adversary acts as verifier while interacting with honest provers; in the ”right” interactions,
the adversary tries to prove some statements to honest verifiers. The goal is to ensure that such an adversary
cannot take ”help” from the left interactions in order to succeed in the right interactions. Recently, using
only one-way functions, Barak, Prabhakaran and Sahai [BPS06] gave the first construction of a concurrent
non-malleable zero knowledge (CNMZK) argument for every language in NP with perfect completeness and
negligible soundness error. They gave a simulation-extractability [PR05] based definition for CNMZK, that,
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informally speaking, requires the construction of a machine called the simulator-extractor that generates
the view of the man-in-the-middle adversary and additionally also outputs a witness from the adversary for
each “valid” proof given to the verifiers in the right sessions. We will use the BPS-CNMZK protocol to
guarantee non-malleability in our construction. However, we would require some minor changes to the orig-
inal construction, as described below. We stress that the original security guarantees of BPS-CNMZK still
follow despite our modifications, as should be evident from our description. We now describe the (modified)
BPS-CNMZK construction (henceforth referred to as mBPS-CNMZK).

At a high level, the mBPS-CNMZK protocol consists of two main phases - (a) a preamble phase, where
the verifier commits to a random secret (say) σ using a PPSTV [PPS+08] preamble, and (b) a post-preamble
phase, where the prover proves an NP statement. The construction allows straight-line simulation of the
post-preamble phase if the preamble secret σ is provided to the simulator. We now give more details.

Let P and V denote the prover and the verifier respectively. Let L be an NP language with a witness
relation R. The common input to P and V is a statement y. P additionally has a private input w (witness
to y). The mBPS-CNMZK protocol proceeds as follows.

Phase I. P and V engage in an execution of the PPSTV preamble14 with linear (in the security parameter)
number of rounds, where V commits to a random secret.

Phase II. P commits to 0 using a statistically-hiding commitment scheme. Let c be the commitment
string. Additionally, P proves the knowledge of a valid decommitment to c using a statistical zero-knowledge
argument of knowledge (sZKAOK).

Phase III. P and V now engage in the execution of the opening phase of the phase I preamble. Let σ be
the preamble secret (revealed by V ).

Phase IV. P commits to the witness w using a public-coin extractable non-malleable commitment scheme15

[DDN00].

Phase V. P now proves the following statement to V using sZKAOK:

• the value committed to in phase IV is a valid witness to y. That is, R(y, w) = 1, where w is committed
value.

• the value committed to in phase II is the preamble secret σ.

P uses the witness corresponding to the first part of the statement.

B Our Definition Implies the Definition of [GL01]

Goldreich and Lindell [GL01] model the problem of PAKE as a three-party functionality F involving honest
parties P1 and P2 and an adversary A. They define appropriate “ideal” and “real” models of computation,
and require that any adversary in the real model can be emulated (in a specific sense described below) by
an adversary in the ideal model. We refer the reader to section 2.1 for a brief description of the ideal and
real models.

Goldreich and Lindell define the stand-alone security of a PAKE protocol by requiring the ideal and
real distributions to be at most O(1/|D|) + µ(κ) apart, where D is the dictionary of passwords and µ is

14In contrast, the original BPS-CNMZK construction used the PRS preamble [PRS02].
15The original BPS-CNMZK construction only required a public-coin extraction phase inside the non-malleable commitment

scheme. We, however, require that the entire commitment protocol be public-coin. We note that the non-malleable commitment
protocol of [DDN00] only consists of standard perfectly binding commitments and zero knowledge proof of knowledge. Therefore,
we can easily instantiate the DDN construction with public-coin versions of these primitives such that the resultant protocol is
public-coin.
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a negligible function in the security parameter κ. Further, it was noted in [GL01] that in the case of m
sequential sessions (referring to the same password), the former definition can be suitably modified to allow
a distinguishing gap of O(m/|D|) + µ(κ) rather than O(1/|D|) + µ(κ). We note that this new definition
works even for the case of m concurrent sessions (referring to the same password). We restate this definition
below (assuming suitable definitions of the ideal and real models for the case when m sessions are being
executed concurrently).

Definition 2 (adapted from [GL01]) Let F be as above. Let D be the dictionary of passwords. A protocol
Σ for password-authenticated key exchange is concurrently secure if for every probabilistic polynomial-time
real model adversary A, there exists a probabilistic polynomial time ideal model adversary S such that for
every password p ∈ D, and every auxiliary input z,

idealFS (p, z)
O( m
|D| )

≡ realΣ
A(p, z),

where idealFS (p, z) and realΣ
A(p, z) are the output distributions in the ideal and real worlds respectively.

We stress that definition 2 is meaningful only if the adversary has no a priori information on the password.
That is, the auxiliary input z in the above definition must not contain any information on the password.
We now claim that definition 1 (given in section 2.2) implies definition 2, as stated below.

Lemma 7 If a PAKE protocol is concurrently secure as per definition 1, then it is also secure as per
definition 2.

Before we give a proof of lemma 7, we first make the following observations. The definition of Goldreich
and Lindell cannot be satisfied if an adversary has a priori information on the password; in particular, the
real and ideal distributions may be distinguishable with probability 1 in this case. In contrast, our definition
(see definition 1) can still be realized for such an adversary (and provides meaningful guarantees even for such
a case), as evident in theorem 2. Therefore, in order to prove lemma 7, we will consider weaker adversaries
for our definition; in particular, we will only consider adversaries that have no a-priori information on the
password16. We now give a proof sketch.

Proof of Lemma 7. Let Σ be a PAKE protocol that is concurrently secure as per definition 1. Let
m = poly(κ) be the total number of sessions. Then, given a real world adversary A for Σ, there exists
an ideal world adversary S such that S makes a constant number of queries per session, and produces an
ideal distribution that is computationally indistinguishable from the real distribution. We will use S to
construct another ideal world adversary S ′ that makes no queries and produces an ideal distribution that
is O(m/|D|) + µ(κ) apart from the real distribution. We note that this is sufficient to prove lemma 7. We
stress that here we are only considering adversaries that have no a-priori information on the password.

Description of S ′. The ideal world adversary S ′ works by running S. Whenever S makes any query in
the ideal world, S ′ returns ⊥ (i.e., S ′ replies that the password is incorrect). Finally, when S stops and
outputs a value (its view), S ′ outputs the same value.

Let λ be a constant such that S makes a total of m · λ queries. Let Ei denote the event that the answer
to the ith query of S is wrong. In other words, Ei is the event that the password guessed by S in the ith
query is correct. Then, since S has no prior information on the password, Pr[Ei] = 1

|D| (where probability

is over the random coins of S). We can use the union bound to compute an upper bound on the probability
that at least one of the total m · λ answers is wrong. Specifically, we have,

Pr[E1 + . . . ,+Em·λ] ≤ m · λ
|D|

.

16Note that these are the only valid adversaries as per definition of [GL01].
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Therefore, all the answers of S ′ must be correct with probability at least 1− m·λ
|D| .

Now, from definition 1, the ideal distribution produced by S must be computationally indistinguishable
from the real distribution conditioned on the event that all the answers of S ′ are correct. Then, it follows
that the distinguishing gap between these distributions is at most O(m/|D|) + µ(κ), where µ is a negligible
function in the security parameter κ.
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