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Abstract

We study the problem of constructing concurrently secure computation protocols in the
plain model, where no trust is required in any party or setup. While the well established UC
framework for concurrent security is impossible to achieve in this setting, meaningful relaxed
notions of concurrent security have been achieved.

The main contribution of our work is a new technique useful for designing protocols in the
concurrent setting (in the plain model). The core of our technique is a new rewinding-based
extraction procedure which only requires the protocol to have a constant number of rounds. We
show two main applications of our technique.

We obtain the first concurrently secure computation protocol in the plain model with super-
polynomial simulation (SPS) security that uses only a constant number of rounds and requires
only standard assumptions. In contrast, the only previously known result (Canetti et al.,
FOCS’10) achieving SPS security based on standard assumptions requires polynomial number
of rounds. Our second contribution is a new definition of input indistinguishable computation
(IIC) and a constant round protocols satisfying that definition. Our definition of input indis-
tinguishable computation is a simplification and strengthening of the definition of Micali et
al. (FOCS’06) in various directions. Most notably, our definition provides meaningful security
guarantees even for randomized functionalities.

Interestingly, we show that in fact the same protocol satisfies both the SPS and the IIC
security notions.
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1 Introduction

The notion of secure computation is central to cryptography. Introduced in the seminal works of
[Yao86, GMW87], secure multi-party computation allows a group of (mutually) distrustful parties
P1, . . . , Pn, with private inputs x1, . . . , xn, to jointly compute any functionality f in such a manner
that the honest parties obtain correct outputs and no group of malicious parties learn anything
beyond their inputs and prescribed outputs. The original definition of secure computation, although
very useful and fundamental to cryptography, is only relevant to the stand-alone setting where
security holds only if a single protocol session is executed in isolation. As it has become increasingly
evident over the last two decades, stand-alone security does not suffice in real-world scenarios where
several protocol sessions may be executed concurrently – a typical example being protocols executed
over modern networked environments such as the Internet.

Concurrent Security. Towards that end, the last decade has seen a push towards obtaining
protocols that have strong concurrent composability properties. For example, we could require
concurrent self-composability: the protocol should remain secure even when there are multiple
copies executing concurrently. The framework of universal composability (UC) was introduced
by Canetti [Can01] to capture the more general security requirements when a protocol may be
executed concurrently with not only several copies of itself but also with other protocols in an
arbitrary manner.

Unfortunately, strong impossibility results have been shown ruling out the existence of secure
protocols in the concurrent setting. UC secure protocols for most functionalities of interest have
been ruled out in [CF01, CKL06]. These results were further generalized [Lin04] to rule out the ex-
istence of protocols providing even concurrent self-composability. Protocols in even less demanding
settings (where all honest party inputs are fixed in advance) were ruled out in [BPS06]. All these
impossibility results refer to the “plain model,” where parties do not trust any external entity or
setup. We stress that, in fact, some of these impossibility results provide an explicit attack in the
concurrent setting using which the adversary may even fully recover the input of an honest party
(see, e.g., the chosen protocols attack in [BPS06]). Hence, designing secure protocols in the con-
current setting is a question of great theoretical as well practical interest. Unfortunately, the only
known positive results for concurrent composition in the plain model are for the zero-knowledge
functionality [RK99, KP01, PRS02].

To overcome these impossibility results, UC secure protocols were proposed based on various
“trusted setup assumptions” such as a common random string that is published by a trusted party
[CF01, CLOS02, BCNP04, CPS07, Kat07, CGS08]. Nevertheless, a driving goal in cryptographic
research is to eliminate the need to trust other parties. In the context of UC secure protocols based
on setup assumptions, while there has been some recent effort [GO07, GK08, GGJS11] towards re-
ducing the extent of trust in any single party (or entity), obviously this approach cannot completely
eliminate trust in other parties (since that is the very premise of a trusted setup assumption). Ide-
ally, we would like to obtain concurrently-secure protocols in the plain model (which is the main
focus of this paper).

Relaxing the Security Notion. To address the problem of concurrent security for secure com-
putation in the plain model, a few candidate definitions have been proposed, including input-
indistinguishable security [MPR06] and super-polynomial simulation. The notion of security with
super-polynomial simulators (SPS) is one where the adversary in the ideal world is allowed to run in
(fixed) super-polynomial time. Very informally, SPS security guarantees that any polynomial-time
attack in the real execution can also be mounted in the ideal world execution, albeit in super-
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polynomial time. This is directly applicable and meaningful in settings where ideal world security
is guaranteed statistically or information-theoretically (which would be the case in most “end-user”
functionalities that have been considered, from privacy-preserving data mining to electronic vot-
ing). SPS security for concurrently composable zero knowledge proofs was first studied by [Pas03],
and SPS security for concurrently composable secure computation protocols was first studied by
[PS04, BS05]. The SPS definition guarantees security with respect to concurrent self-composition
of the secure computation protocol being studied, and guarantees security with respect to general
concurrent composition with arbitrary other protocols in the context of super-polynomial adver-
saries.

In recent years, the design of secure computation protocols in the plain model with SPS security
has been the subject of several works [PS04, BS05, LPV09, CLP10]. Very recently, Canetti, Lin,
and Pass [CLP10] obtained the first secure computation protocol that achieves SPS security based
on standard assumptions1.

Unfortunately, however, the improvement in terms of assumptions comes at the cost of the
round complexity of the protocol. Specifically, the protocol of [CLP10] incurs polynomial-round
complexity. The latency of sending messages back and forth has been shown to often be the domi-
nating factor in the running time of cryptographic protocols [MNPS04, BDNP08].2 Indeed, round
complexity has been the subject of a great deal of research in cryptography. For example, in
the context of concurrent zero knowledge (ZK) proofs, round complexity was improved in a se-
quence of works [RK99, KP01, PRS02] from polynomial to slightly super-logarithmic (that nearly
matches the lower bound w.r.t. black-box simulation [CKPR01]). The round complexity of non-
malleable commitments in the stand-alone and concurrent settings has also been studied in several
works [DDN00, Bar02, PR05b, PR05a, LP09, Wee10, Goy11, LP11], improving the round complex-
ity from logarithmic rounds to constant rounds under minimal assumptions. We observe that for
the setting of concurrently secure computation protocols with SPS security, the situation is much
worse since the only known protocol that achieves SPS security based on standard assumptions
incurs polynomial-round complexity [CLP10].

The notion of input indistinguishable computation (introduced in [MPR06]) is a relaxation of
the standard notion of secure computation akin to how witness indistinguishability is a relaxation
of the notion of zero-knowledge. In input indistinguishable computation (IIC), very roughly, given
the output vector (consisting of outputs in all concurrent sessions), consider any two honest party
input vectors ~x1 and ~x2 “consistent” with the output vector. The security guarantee requires
the adversary to have only a negligible advantage in distinguishing which of these is the actual
input vector. While SPS security definition is based on the ideal/real world paradigm, the security
definition of IIC is a game based one where various required properties (such as input independence)
are formalized separately. In IIC, no guarantees are provided for any two input vectors which don’t
lead to the identical output (e.g., the functionality may be randomized; furthermore, the outputs
may only be computationally indistinguishable as opposed to coming from identical or statistically
close distributions).

1In fact, the work of [CLP10], together with [PS04, BS05], considers the stronger “angel-based security model”
of [PS04]. In this work, we focus only on SPS security.

2Round complexity is a fundamental measure of efficiency since the latency caused by higher round complexity is
tied to the speed of light, which is constant, and therefore beyond the assistance of future technological advances in
computing. This is in contrast to computational complexity where so no absolute bounds exist.
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1.1 Our Contributions

The main contribution of our work can be seen as a new technique useful for designing protocols
in the concurrent setting (in the plain model). The core of our technique is a new rewinding-
based extraction procedure which only requires the protocol to have a constant number of rounds.
Overall, our technique allows us to improve upon the previous works in terms of round complexity,
the security notion being achieved as well the assumptions. We show two main applications of our
technique in this work.

Super Polynomial Simulation. We construct the first constant-round concurrently composable
secure computation protocol that achieves SPS security based on only standard assumptions. In
addition, our construction only uses black-box simulation techniques.

In contrast to prior works where several powerful tools were employed to obtain positive results,
e.g., CCA-secure commitments [CLP10], our new proof technique allows us to only use relatively
less powerful primitives, such as standard non-malleable commitments. Our positive result relies on
the nearly minimal assumptions that constant-round (semi-honest) oblivious transfer (OT) exists
and collision-resistant hash functions (CRHFs) exist.3

Input Indistinguishable Computation. We introduce a new definition of input indistinguish-
able computation and prove that, in fact, the same protocol (as for constant round super-polynomial
simulation) satisfies this notion as well. Our definition of input indistinguishable computation is a
simplification and strengthening of the definition in [MPR06] in various directions. In particular,
our definition provides meaningful security guarantees even for randomized functionalities. Fur-
thermore, the security guarantees hold even when the output distributions resulting from the two
honest party inputs (among which the adversary is trying to distinguish) are computationally indis-
tinguishable (as opposed to coming from identical distributions) 4. We follow the real/ideal world
paradigm for formalizing the security guarantees which leads to an arguably simpler definition.
Additionally, we show that our definition implies the definition of [MPR06].

The essence of our new definition can be understood as follows. Consider a real world adversary.
For any two input vectors ~x1 and ~x2, we require the existence of a (PPT) ideal world simulator such
that the output distribution in the ideal and the real world are indistinguishable. Hence, the only
relaxation compared to the standard ideal/real world definition is now the ideal world simulator
could be different for different pairs ( ~x1, ~x2). The key intuition behind such a guarantee is that for
any two honest party input vectors ( ~x1, ~x2) leading to the same output vector (on the input vector
chosen by the adversary), the simulator in the ideal world has no advantage in distinguishing which
of the two was used. This implies that even to the real world adversary should only have a negligible
distinguishing advantage. We stress that in our definition, this holds even if the functionality is
randomized and the outputs are computationally indistinguishable (as opposed to being identical).
In addition, as opposed to [MPR06], our ideal world simulator is required to extract the input
being used by the adversary (in PPT) and send it to the trusted party. This provides a form of
“input-awareness” guarantee.

While the above simple definition already provides meaningful security guarantees, the guar-
antees are unsatisfactory if there exists a “splitting input” which the ideal world simulator uses
even when the real world adversary is such that it does not use a splitting input. A more detailed
discussion of such issues can be found in [MPR06]. Towards that end, we propose an extension

3We believe that our assumption of CRHFs can be removed by employing techniques from the recent work of
[LPTV10], leaving only the minimal assumption that constant-round OT exists. We leave this for the full version of
this paper.

4This is comparable to the relationship between witness indistinguishability and strong witness indistinguishability.
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of our definition and finally show that it implies the definition in [MPR06]. To see an example of
a functionality for which our definition provides meaningful security guarantees which neither the
definition in [MPR06] nor the SPS definition provide, please refer to appendix F.

1.2 The Main Technique

A ubiquitous technique for simulation-based proofs in cryptography is that of rewinding the adver-
sary. In the concurrent setting (which is the setting we consider in this paper), where an adversary
can interleave messages from different protocols in any arbitrary manner, rewinding an adversary
(to correctly simulate each session) is often problematic. The rewinding becomes recursive be-
cause of which the protocols typically requires a large number of rounds (in a single protocol). For
example, in the context of concurrent zero knowledge, the best known result [PRS02] requires super-
logarithmic round complexity, which nearly matches the lower bound w.r.t. black-box simulation
[CKPR01].

To deal with the problem of concurrent rewinding, we develop a novel proof technique using
which we can limit the depth of such recursion to at most 2. Such a significant relaxation of the
properties we need from our rewinding technique allows us to obtain our result. In the following
discussion, we give a more detailed intuition behind our techniques, where we assume somewhat
greater familiarity with recent work in this area. The discussion is primarily for obtaining constant
round providing with SPS security although similar intuition applies for IIC as well.

We first note that all prior works on obtaining secure computation protocols with SPS security
crucially use the super-polynomial time simulator to “break” some cryptographic scheme and ex-
tract some “secret information”. Then, to avoid any complexity-leveraging type technique (which
would lead to non-standard assumptions), and yet argue security, the technique used in [CLP10]
was to replace the super-polynomial time simulator with a polynomial-time rewinding “hybrid ex-
periment” via a hybrid argument in the security proof. Indeed, this is why their protocol incurs
large round complexity (so as to facilitate concurrent-rewinding). We also make use of rewinding,
but crucially, in a weaker way. The main insights behind our rewinding technique are explained as
follows:

• We first note that (like other works) we will restrict our usage of rewinding only to the creation
of “look-ahead threads”. Very roughly, this means that a rewinding simulator never changes
its actions on the “main thread” of execution; and as such, the rewinding is employed only to
extract some information from the adversary. Here, we again stress that our final simulator
does not perform any rewinding, and that we only perform rewindings in hybrid experiments
to bridge the gap between the real and ideal world executions.

• Now that we use rewindings only to extract some information from the adversary, and only
in hybrid experiments, we make the critical observation that, in fact, we can make use of
the secret inputs of the honest parties in the look-ahead threads. Indeed, in all our in-
termediate hybrid experiments, we perform rewindings to create look-ahead threads where
we make “judicious” use of the honest party’s inputs. In this manner, we eventually end
up with a rewinding (hybrid) simulator that simulates the main thread without the honest
party’s inputs, but still uses them in the look-ahead threads (in a manner that guarantees
extraction). This is our main conceptual deviation from prior work, where, to the best of
our knowledge, honest party’s inputs were only used in some intermediary hybrids, with the
main goal being to eventually remove their usage even from the look-ahead threads. We show
that this is in fact unnecessary, since our final simulator does not perform any rewindings,
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but instead runs in super-polynomial time to extract the same information that was being
earlier extracted via rewinding in the hybrid experiments. We only need to argue that the
main thread output by the rewinding (hybrid) experiment and the main thread output by the
final simulator be indistinguishable. Indeed, we are able to argue that there is only a small
statistical distance between our final simulator (that corresponds to the ideal execution) and
the previous rewinding-based hybrid experiment. This statistical distance corresponds to the
probability that the rewinding-based extraction is unsuccessful, since the SPS extraction is
always successful.

• We further note that since we use the honest party’s inputs in the look-ahead threads, we can
bypass complex recursive rewinding schedules used in previous works and simply use “local
rewindings” that only require constant rounds (in fact, only “one slot”).

• Finally, we observe that since we perform rewindings only in hybrid experiments, we do
not need the rewinding to succeed with probability negligibly close to 1, as is needed for
concurrent ZK. Instead, we only require rewinding to succeed with probability 1− ǫ, where ǫ
is related to the success probability of the distinguisher that is assumed to exist for the sake
of contradiction. This observation, yet again, allows us to use a simpler rewinding strategy.

• Our overall proof strategy only makes use of relatively well understood primitives like stan-
dard non-malleable commitments. This is a departure from [CLP10] which introduces a new
primitive called CCA-secure commitment schemes.

At this point, an informed reader may question the feasibility of a “sound implementation” of
the above approach. Indeed, a-priori it is not immediately clear whether it is even possible for the
simulator to “cheat” on the main thread, yet behave honestly in look-ahead threads at the same
time. In a bit more detail, recall that any given look-ahead thread shares a prefix with the main
thread of execution. Now consider any session i on a look-ahead thread. Note that since some
part of session i may already be executed on the shared prefix, it is not clear how the simulator
can continue simulating session i on the look-ahead thread without ever performing any recursive
rewindings if it was already cheating in session i on the shared prefix.

We address the above issues by a careful protocol design that guarantees that a rewinding
simulator can always extract some “trapdoor” information before it “commits” to cheating in any
session. As a result, during the simulation, whenever a look-ahead thread is forked at any point
from the main thread, the simulator can either always continue cheating, or simply behave honestly
(without any conflict with the main thread) in any session.

In our overall proof, SPS is used only at the very last step to stop the look-ahead threads (which
required knowledge of honest party inputs to execute). A modification of just step is required to
prove that the protocols satisfies our new notion of IIC as well. Instead of stopping the look-ahead
threads (which used honest party inputs), we will now run “two-sets” of look-ahead threads one
for each input vector given to the ideal world simulator. Since of these two is the real honest party
input vector, at least one of the sets of look-ahead threads is guaranteed to be successful.

Proof Overview. For a more technical overview of the main ideas involved in our proof technique,
we refer the reader to Section 4. This technical overview refers to the technical description of the
protocol, given in Section 3.
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Other Related Work. Here we discuss some additional prior work related to the work in this pa-
per. We note that while the focus of this work is on SPS security as a means to obtain concurrently-
secure protocols in the plain model, some recent works have investigated alternative security models
for the same. Very recently, [GS09, GJO10] considered a model where the ideal world adversary is
allowed to make additional queries (as compared to a single query, as per the standard definition)
to the ideal functionality per session. The techniques we use in our work are related to, but quite
different from, their work.

Independent of our work, a constant round protocol providing SPS security was recently ob-
tained by Lin, Pass and Venkitasubramaniam [Pas11]. Their technique are quite different from ours
and make use of a non-uniform argument. An advantage of our work over that of Lin et. al. is that
we provide a uniform reduction to the underlying hardness assumptions. Hence, our construction
guarantees security against uniform adversaries assuming that the underlying primitives are only
secure against uniform adversaries. Lin et. al. crucially require the underlying primitives to be
secure against non-uniform adversaries to provide any meaningful security guarantees.

We note that their techniques seem not to apply to get a construction satisfying our IIC security
notion. Since the IIC simulator has to extract the adversarial inputs in PPT, a rewinding technique
in the concurrent setting is crucially required.

2 Our Definitions

2.1 UC Security and SPS

In this section we briefly review UC security. For full details see [Can00]. For the sake of complete-
ness we include a short introduction that has been taken verbatim from [CLP10] in Appendix E.
Following [GMR89, Gol01], a protocol is represented as an interactive Turing machine (ITM), which
represents the program to be run within each participant.

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to
an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed
to capture the desired functionality of the task at hand. A protocol is said to securely realize an
ideal functionality if the process of running the protocol amounts to “emulating” the ideal process
for that ideal functionality.

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π, or
it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition 1 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A there
exists an adversary S such that for any environment Z that obeys the rules of interaction for UC
security we have EXECφ,S,Z ≈ EXECπ,A,Z.
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Definition 2 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes

F if Π UC-emulates the ideal process Π(F).

UC Security with Super-polynomial Simulation We next provide a relaxed notion of UC
security by giving the simulator access to super-poly computational resources. The universal com-
position theorem generalizes naturally to the case of UC-SPS, the details of which we skip.

Definition 3 Let Π and φ be protocols. We say that Π UC-SPS-emulates φ if for any adversary A
there exists a super-polynomial time adversary S such that for any environment Z that obeys the
rules of interaction for UC security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 4 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-SPS-realizes

F if Π UC-SPS-emulates the ideal process Π(F).

For simplicity of exposition, in the rest of this paper we assume authenticated communication;
that is, the adversary may deliver only messages that were actually sent. (This is however not
essential as shown previously [BCL+05].)

2.2 Input Indistinguishable Computation

Under our notion, very roughly, an adversaries’ goal is to guess the input, among two pre-specified
inputs, used by the honest party. We say that a protocol is input indistinguishable if an adversary
can not guess the honest parties input in the protocol execution any better than what it could have
done in the ideal scenario. We formalize this by saying that the adversary learns nothing more
than the two pre-specified inputs (which it already knows) and the output it learns in the ideal
world. This naturally implies that if the adversary can not guess the honest parties input in the
ideal scenario then it can not do so in the protocol execution as well.

Concurrent execution in the Ideal model. In the ideal model, there is a trusted party F
that computes the functionality f (described above) based on the inputs handed to it by the two
parties – P1, P2 which are involved in m = m(n) sessions (polynomial in the security parameter,
n). An execution in the ideal model with an adversary that controls P1 or P2 proceeds as follows:

Inputs: The honest party and adversary each obtain a vector of m inputs each of length n; denote
this vector by ~w (i.e., ~w = ~x or ~w = ~y).

Honest parties send inputs to trusted party: The honest party sends its entire input vector
~w to the trusted party F .

Adversary interacts with trusted party: For every i = 1, . . . ,m, the adversary can send (i, w′
i)

to the trusted party, for any w′
i ∈ {0, 1}

∗ of its choice. Upon sending this pair, it receives back
its output based on w′

i and the input sent by the honest party. (That is, if P1 is corrupted,
then the adversary receives f1(w

′
i, yi) and if P2 is corrupted then it receives f2(xi, w

′
i).) The

adversary can send the (i, w′
i) pairs in any order it wishes and can also send them adaptively

(i.e., choosing inputs based on previous outputs). The only limitation is that for any i, at
most one pair indexed by i can be sent to the trusted party.

Adversary answers honest party: Having received all of its own outputs, the adversary speci-
fies which outputs the honest party receives. That is, the adversary sends the trusted party
a set I ⊆ {1, . . . ,m}. Then, the trusted party supplies the honest party with a vector ~v of
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length m such that for every i 6∈ I, vi = ⊥ and for every i ∈ I, vi is the party’s output from
the ith execution. (That is, if P1 is honest, then for every i ∈ I, vi = f1(xi, w

′
i) and if P2 is

honest, then vi = f2(w
′
i, yi) .)

Outputs: The honest party always outputs the vector ~v that it obtained from the trusted party.
The adversary may output an arbitrary (probabilistic polynomial-time computable) function
of its initial-input and the messages obtained from the trusted party.

Let S be a non-uniform probabilistic polynomial-time ideal-model machine (representing the
ideal-model adversary). Then, the ideal execution of f (on input vectors (~x, ~y) of length m and
auxiliary input z to S) denoted by idealF ,S(~x, ~y, z), is defined as the output pair of the honest
party and S from the above ideal execution.

Execution in the Real model. We next consider the real model in which a real two-party
protocol is executed (and there exists no trusted third party). Let m = m(n) be a polynomial,
let f be as above and let Π be a two-party protocol for computing f . Furthermore, let A be a
non-uniform probabilistic polynomial-time machine that controls either P1 or P2. Then, the real
concurrent execution of Π (on input vectors (~x, ~y) of length m(n) and auxiliary input z to A),
denoted realΠ,A(~x, ~y, z), is defined as the output pair of the honest party and A, resulting from
m(n) executions of the protocol interaction, where the honest party always inputs its ith input
into the ith execution. The scheduling of all messages throughout the executions is controlled by
the adversary. That is, the execution proceeds as follows. The adversary sends a message of the
form (i, α) to the honest party. The honest party then adds α to the view of its ith execution of Π
and replies according to the instructions of Π and this view. The adversary continues by sending
another message (j, β), and so on. Adversary can schedule these the messages in any way it likes.
(Formally, view the schedule as the ordered series of messages of the form (index,message) that
are sent by the adversary.)

Definition 5 (Input Indistinguishable Computation (IIC).) Let F and Π be the ideal trusted
parted and the protocol realizing functionality f , as defined above. Protocol Π is said to input in-
distinguishably compute (or, IIC) f for P1 under concurrent composition if for every polynomial
m = m(n), for every inputs ~x0, ~x1 ∈ ({0, 1}n)m of the honest party P1, for every real-model non-
uniform probabilistic polynomial-time adversary A controlling party P2, there exists an ideal-model
non-uniform probabilistic polynomial-time adversary S controlling P2 such that ∀~x ∈ {~x0, ~x1}

{idealF ,S(~x, ~y, z)}n∈N;z∈{0,1}∗
c
≡ {realΠ,A(~x, ~y, z)}n∈N;z∈{0,1}∗

Protocol Π is said to input indistinguishably compute (or, IIC) f if it input indistinguishably
computes f both for P1 and P2.

The above definition has various shortcomings and can be seen as only a stepping stone to our
final definition (which implies the one in [MPR06]). We refer the reader to Appendix D for our
extended definition and for the relationship between various notions.

Building Blocks We use the following main cryptographic primitives as building blocks in our
construction: a statistically binding commitment scheme, an extractable commitment scheme, a
constant round non-malleable zero knowledge argument and semi-honest two party computation.
Some background on each of these can be found in Appendix A.
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3 Our Construction

Let F be any well-formed functionality5 that admits a constant round two-party computation
protocol in the semi-honest setting. In particular, F can be a universal functionality. In this
section we will give a protocol Π that UC-SPS-realizes F . Note that in the UC framework any two
parties (say Pi and Pj) might interact as per the protocol Π on initiation by the environment for
some session corresponding to a SID sid. For simplicity of notation, we will describe the protocol in
terms of two parties P1 and P2, where these roles could be taken by any two parties in the system.
Further we will skip mentioning the SID to keep the protocol specification simple.

In order to describe our construction, we first recall the notation associated with the primitives
that we use in our protocol. Let com(·) denote the commitment function of a non-interactive
perfectly binding commitment scheme, and let 〈C,R〉 denote the one-slot extractable commitment
scheme, and 〈C ′, R′〉 be its modified version (see Section A.2). Further, we will use our constant-
round NMZK protocol 〈P, V 〉 (see Section A.3), a constant-round SWI argument 〈Pswi, Vswi〉, and a
constant-round semi-honest two party computation protocol 〈P sh

1 , P sh
2 〉 that securely computes F

as per the standard simulation-based definition of secure computation.
Let P1 and P2 be two parties with inputs x1 and x2 provided to them by the environment Z.

Let n be the security parameter. Protocol Π = 〈P1, P2〉 proceeds as follows.

I. Trapdoor Creation Phase.

1. P1 ⇒ P2 : P1 samples a random string σ1 (of appropriate length; see below) and engages in
an execution of 〈C,R〉 with P2, where P1 commits to σ1. We will denote this commitment
protocol by 〈C,R〉1→2.

2. P2 ⇒ P1 : P2 now acts symmetrically. That is, P2 samples a random string σ2 and commits
it via an execution of 〈C,R〉 (denoted as 〈C,R〉2→1) with P1.

3. P1 ⇒ P2 : P1 creates a commitment com1 = com(0) to bit 0 and sends com1 to P2. P1 and
P2 now engage in an execution of (the post-preamble phase of) 〈P, V 〉, where P1 proves that
com1 is a commitment to bit 0. The commitment protocol 〈C,R〉2→1 (executed earlier in
step 2) is fixed as the preamble phase for this instance of 〈P, V 〉 (see Section A.3).

4. P2 ⇒ P1 : P2 now acts symmetrically.

Informally speaking, the purpose of this phase is to aid the simulator in obtaining a “trapdoor” to
be used during the simulation of the protocol. As discussed earlier in Section 1.2, in order to bypass
the need of recursive rewindings (even though we consider concurrent security), we want to ensure
that a “hybrid” simulator (that performs rewindings) can always extract a “trapdoor” before it
begins cheating in any protocol session. Here, we achieve this effect by de-coupling the preamble
phase of 〈P, V 〉 from the post-preamble phase (see Section A.3) and executing the preamble phase
at the very beginning of our protocol.

II. Input Commitment Phase. In this phase, the parties commit to their inputs and random
coins (to be used in the next phase) via the commitment protocol 〈C ′, R′〉.

1. P1 ⇒ P2 : P1 first samples a random string r1 (of appropriate length, to be used as P1’s
randomness in the execution of 〈P sh

1 , P sh
2 〉 in phase III) and engages in an execution of 〈C ′, R′〉

5See [CLOS02] for a definition of well-formed functionalities.
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(denoted as 〈C ′, R′〉1→2) with P2, where P1 commits to x1‖r1. Next, P1 and P2 engage in
an execution of 〈Pswi, Vswi〉 where P1 proves the following statement to P2: (a) either there
exist values x̂1, r̂1 such that the commitment protocol 〈C ′, R′〉1→2 is valid with respect to the
value x̂1‖r̂1 (see Section A.2), or (b) com1 is a commitment to bit 1.

2. P2 ⇒ P1 : P2 now acts symmetrically. Let r2 (analogous to r1 chosen by P1) be the random
string chosen by P2 (to be used in the next phase).

Informally speaking, the purpose of this phase is aid the simulator in extracting the adversary’s
input and randomness.

III. Secure Computation Phase. In this phase, P1 and P2 engage in an execution of 〈P sh
1 , P sh

2 〉
where P1 plays the role of P

sh
1 , while P2 plays the role of P

sh
2 . Since 〈P sh

1 , P sh
2 〉 is secure only against

semi-honest adversaries, we first enforce that the coins of each party are truly random, and then
execute 〈P sh

1 , P sh
2 〉, where with every protocol message, a party gives a proof using 〈Pswi, Vswi〉 of its

honest behavior “so far” in the protocol. We now describe the steps in this phase.

1. P1 ↔ P2 : P1 samples a random string r′2 (of appropriate length) and sends it to P2. Similarly,
P2 samples a random string r′1 and sends it to P1. Let r′′1 = r1 ⊕ r′1 and r′′2 = r2 ⊕ r′2. Now,
r′′1 and r′′2 are the random coins that P1 and P2 will use during the execution of 〈P sh

1 , P sh
2 〉.

2. Let t be the number of rounds in 〈P sh
1 , P sh

2 〉, where one round consists of a message from P sh
1

followed by a reply from P sh
2 . Let transcript T1,j (resp., T2,j) be defined to contain all the

messages exchanged between P sh
1 and P sh

2 before the point P sh
1 (resp., P sh

2 ) is supposed to
send a message in round j. For j = 1, . . . , t:

(a) P1 ⇒ P2 : Compute β1,j = P sh
1 (T1,j, x1, r

′′
1 ) and send it to P2. P1 and P2 now engage in

an execution of 〈Pswi, Vswi〉, where P1 proves the following statement:

i. either there exist values x̂1, r̂1 such that (a) the commitment protocol 〈C ′, R′〉1→2 is
valid with respect to the value x̂1‖r̂1 (see Section A.2), and (b) β1,j = P sh

1 (T1,j , x̂1, r̂1⊕
r′1)

ii. or, com1 is a commitment to bit 1.

(b) P2 ⇒ P1 : P2 now acts symmetrically.

This completes the description of protocol Π. Note that Π consists of several instances of SWI,
such that the proof statement for each SWI instance consists of two parts. Specifically, the second
part of the statement states that the prover committed to bit 1 in the trapdoor creation phase.
In the sequel, we will refer to the second part of the proof statement as the trapdoor condition.
Further, we will call the witness corresponding to the first part of the statement as real witness
and that corresponding to the second part of the statement as the trapdoor witness. We now claim
the following.

Theorem 1 Assume the existence of constant round semi-honest OT and collision resistant hash
functions.Then for every well-formed functionality F , there exists a constant-round protocol that
UC-SPS-realizes F .

We prove the above claim by arguing that the protocol Π = 〈P1, P2〉 described earlier UC-SPS-
realizes F . Note that our simulator will run in sub-exponential time, where the desired parameters
can be obtained by using a “scaled-down” security parameter of the commitment scheme com. We
prove this in the next section.

10



4 Proof of Security

In order to prove Theorem 1, we will first construct a super-polynomial time simulator S that
simulates the view of A in the UC setting. We will then argue that the output distributions of
environment in the real and the ideal world executions are computationally indistinguishable, thus
satisfying Definition 4. We describe the construction of S in Section 4.1 and give a proof outline
in Section 4.2. Finally, we argue the correctness of simulation in Section B. We first give some
notation.

Notation. In the UC framework, any two parties (say Pi and Pj) might interact as per the
protocol Π on initiation by the environment Z. Simulator has to simulate6 the view of the corrupted
party if exactly one of the two parties is corrupted. In the other case the simulator does not have
to do anything. In the sequel, we will use the notation H to denote the honest party and A to
denote the corrupted party in any session. Let 〈P, V 〉H→A denote the instance of 〈P, V 〉 where
H and A play the roles of prover P and verifier V respectively. Similarly, let 〈Pswi, Vswi〉H→A

denote each instance of 〈Pswi, Vswi〉 where H and A plays the roles of prover P and verifier V
respectively. Now, recall that H plays the role of committer C in one instance of 〈C,R〉, where it
commits to its preamble secret σH , and in one instance of 〈C ′, R′〉, where it commits to its input
xH and randomness rH (to be used in the secure computation phase). We will reserve the notation
〈C,R〉H→A for the former case, and we will refer to the latter case by 〈C ′, R′〉H→A. Further, we
define 〈P, V 〉A→H , 〈Pswi, Vswi〉A→H , 〈C,R〉A→H , 〈C ′, R′〉A→H in the same manner as above, except
that the roles of H and A are interchanged. Also, let xA and rA denote the input and random
coins, respectively, of A (to be used in the secure computation phase). For the sake of simplicity,
we will skip mentioning the session identifier unless necessary.

4.1 Description of Simulator S

The simulator S consists of two parts, Smain and Sext. Informally speaking, Smain is essentially the
main simulator in that it interacts with the adversary A. At various points during the simulation,
Smain invokes Sext in order to extract the following two values in each session: (a) the preamble
secret σA committed by A in 〈C,R〉A→H , and (b) the input xA and randomness rA committed by
A in 〈C ′, R′〉A→H . Sext takes as input the transcript of an instance of the commitment protocol
〈C,R〉A→H (resp. 〈C ′, R′〉A→H) and extracts the committed value xA‖rA (resp., σA) by running in
super-polynomial time and breaking the hiding property of the commitment scheme com (which
is used in the construction of 〈C,R〉; see Section A.2). We now give more details.

Description of Smain. We first describe the strategy of Smain in each phase of the protocol. For
the sake of simplicity, below we describe the case in which the honest party sends the first message
in the protocol. The other case, in which the adversary sends the first message, can be handled in
an analogous manner and is omitted.

Trapdoor Creation Phase. In Steps 1 and 2 of the Trapdoor Creation Phase, the simulator
follows the protocol specification and behaves exactly like an honest party. However, on the comple-
tion of the preamble 〈C,R〉A→H executed in Step 2, Smain extracts the preamble secret (committed
by A) by invoking Sext. If Sext returns a valid preamble secret σA, then in Step 3, instead of com-
mitting to bit 0, Smain sends com1 as a commitment to bit 1 and simulates the post-preamble phase

6We only deal with static corruption.
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of 〈P, V 〉H→A in a straight-line manner (by using the preamble secret σA; in the same manner as
explained in Section A.3). On the other hand, if Sext returns ⊥, then Smain executes Step 3 by
following the honest party strategy. Finally, in Step 4, simulator again behaves just like an honest
party.

As explained later in the description of Sext, Sext always succeeds in extracting the preamble
secret σA in super-polynomial time as long as the commitment protocol 〈C,R〉A→H is valid (see
Section A.2) since 〈C,R〉 is a perfectly binding commitment scheme. In other words, Sext only
outputs ⊥ if the commitment protocol 〈C,R〉A→H is not valid. Note that in this case, when Smain

executes Step 3 in an honest fashion, A would fail with probability 1 in successfully decommit-
ting to the preamble secret (since 〈C,R〉 is perfectly binding) during the post-preamble phase of
〈P, V 〉H→A. As a consequence, Smain (who is following the honest party strategy) will abort that
session.

Input Commitment Phase.

1. In this phase, Smain first commits to a (sufficiently large) string of all zeros (unlike the honest
party that commits to its input xH and randomness rH) in the execution of the commitment
protocol 〈C,R〉H→A. Smain then engages in an execution of 〈Pswi, Vswi〉H→A with A, where
(unlike the honest party that uses the real witness) Smain uses the trapdoor witness. Note
that the trapdoor witness is available to Smain since it committed to bit 1 in the trapdoor
commitment phase.

2. Next, Smain behaves honestly in Step 2 of the Input Commitment Phase. However at the
end of the phase, Smain extracts the input and randomness committed by A in 〈C ′, R′〉A→H ,
by invoking Sext with the transcript of 〈C ′, R′〉A→H . If Sext outputs ⊥, then Smain stops its
interaction with A and outputs a special abort message called I-Abort1. (Later, we show
that Smain outputs I-Abort1 with only negligible probability.)

Secure Computation Phase. Let Ssh denote the simulator for the semi-honest two-party pro-
tocol 〈P sh

1 , P sh
2 〉 used in our construction. Smain internally runs the simulator Ssh on adversary’s

input xA. Ssh starts executing, and, at some point, it makes a call to ideal functionality F in the
ideal world with an input string (say) xA. At this point, Smain makes a query (sid, xA)

7 to F . The
output value received from F is forwarded to Ssh. Ssh runs further, and finally halts and outputs a
transcript βH,1, βA,1, . . . , βH,t, βA,t of the execution of 〈P sh

1 , P sh
2 〉, and an associated random string

r̂A. Smain now performs the following steps.

1. Smain first computes a random string r̃A such that r̃A = rA ⊕ r̂A and sends it to A.

2. Now, in each round j ∈ [t], Smain sends βH,j . It then engages in an execution of 〈Pswi, Vswi〉H→A

with A where it uses the trapdoor witness (deviating from honest party strategy that used
the real witness). Next, on receiving A’s next message βA,j in the protocol 〈P sh

1 , P sh
2 〉, Smain

engages in an execution of 〈Pswi, Vswi〉A→H with A where it uses the honest verifier strat-
egy. Finally at any stage, if the jth message of the adversary is not βA,j and the proof
〈Pswi, Vswi〉A→H given immediately after this messages is accepted, then the simulator aborts
all communication and outputs a special abort message called I-Abort2. (Later, we show
that Smain outputs I-Abort2 with only negligible probability.)

Finally, simulator forwards all messages from the environment and the adversary sent to each other
as such. And This completes the description of Smain. We now proceed to describe Sext.

7Note that the session identifier sid corresponds to the specific session in which the parties are interacting. We
have skipped mentioning it everywhere because all messages correspond the same session sid.
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Description of Sext. Sext receives as input the transcript of an instance of either the commitment
protocol 〈C,R〉σA→H or the commitment protocol 〈C ′, R′〉A→H . On receiving such an input, Sext

runs in super-polynomial time and breaks the hiding property of the commitment scheme com to
extract the value committed in the transcript of the commitment protocol. On successful extraction,
Sext returns the extracted value (which is either the preamble secret σA, or the input and randomness
xA, rA, depending upon the transcript received from Smain) to Smain.

In more detail, on receiving an input transcript from Smain, Sext breaks (by running in super-
polynomial time) each commitment in the transcript, including the commitment to the main value
(which is either σA or xA‖rA) and the commitments to its secret shares. Note that each commitment
represents a unique value since com is perfectly binding. Then, if the secret shares thus extracted
are not consistent with the main value (i.e., if the input transcript does not represent a valid
commitment protocol; see Section A.2), Sext outputs ⊥; otherwise, Sext outputs the extracted
value.

4.2 Proof Outline

We presented the description of the simulator in the previous section. For UC-SPS security we
need to argue that for any adversary A there exists an adversary S (running in super-poly time)
such that no environment Z, on any input, can tell with non-negligible probability whether it is
interacting with A and parties running Π (referred to as real world), or it is interacting with S
interacting with the trusted ideal functionality (referred to as ideal world). In order to argue this
starting with the real world we will consider a sequence of hybrid experiments that lead to the ideal
world. We will then argue indistinguishability of consecutive hybrids. Note that in the final hybrid
the simulator runs in super-poly time. Since we are relying on computational assumptions that
are secure only against polynomial time adversaries, the simulator cannot use its super-polynomial
power across hybrids that are only computationally indistinguishable. We deal with this issue by
having our simulator run in polynomial time in all the hybrids except the last one. Further the
final switch to the last hybrid from the penultimate hybrid is based on a statistical argument and
therefore the running time of the simulator in the last hybrid is irrelevant.

We will try to convey the main ideas of our proof by describing the penultimate hybrid (i.e.,
the last hybrid that runs in polynomial time) and explaining how it works. Consider the following
sequence of hybrids:

- H0: The real world interaction.

- H1/2
8: This is the final poly-time hybrid. All hybrids before this hybrid will run in poly-time.

The key point in this hybrid is that the simulator does not use the inputs of honest parties in
the main thread. However, it uses the honest parties inputs in the look-ahead threads. The
look-ahead threads are executed to help with extraction of preamble secrets and the inputs
used by the adversary. We describe this hybrid next.

- H1: The simulated interaction, as described in Section 4.1. This hybrid runs in super-poly
time.

The penultimate hybrid – H1/2. Before we describe our simulation strategy in this hybrid let
us describe some notation: we will maintain two databases – Databaseσ and Databasex, and our

8Same as hybrid H4m:6 in Section B.
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hybrid will crucially refer to the notions of special messages, honest execution, partial simulation
and full simulation.

Databases. In database Databaseσ we will store tuples of the form (j, σj
A), where σ

j
A is the preamble

secret committed by the adversary in session j. Similarly, in database Databasex we will store
tuples of the form (j, xjA), where xjA is the input and the randomness committed by the adversary
in session j.

Special message notation. In our protocol we will demarcate four messages as special messages –

- The second message of the execution of 〈C,R〉A→H .

- The last message of the execution of 〈C,R〉A→H .

- The second message of the execution of 〈C ′, R′〉A→H .

- The last message of the execution of 〈Pswi, Vswi〉A→H given in the Input Commitment Phase.

Observe that for any session these messages happen in the order they are listed above. We will
refer to the special messages of the jth session by the names – first special message of session j,
second special message of session j, third special message of session j and fourth special message
of session j. A more elaborate description of the special messages and their properties in provided
in Section B.1.

Level of simulation. In order to abstract out some of the details relation to simulation, we start by
describing the levels of simulation (or, the extent of simulation) we will use.

- Honest Execution: Honest execution in a particular session corresponds to the simulator
following the honest party strategy in that session. Note that for this the simulator will need
access to honest party input for that session.

- Partial Simulation: Partial simulation in a particular session corresponds to the simulator
cheating only partially in the execution of that session. In this setting the simulator cheats
everywhere except in the semi-honest 2-PC execution which is a part of the Secure Compu-
tation Phase. More specifically, in this setting our simulator provides a commitment to 1
instead of a commitment to 0 in the Trapdoor Creation Phase, cheats in the NMZK proof,
cheats in all the SWI proofs and provides a commitment to “junk” (instead of honest party
input and randomness) in the Input Commitment Phase. Note that for this kind of simulation
the simulator will still need access to the honest party input, in addition to knowledge of the
preamble secret committed by the adversary in Trapdoor Creation phase for the session it
is partially simulating. We stress that the preamble secret is only needed after the second
special message for the session has been received. Note that the simulator, however, does not
need access to the input and the randomness committed to by the adversary in the Input
Commitment Phase.

- Full Simulation: Full simulation in a particular session corresponds to the simulator cheating
completely in the execution of that session. In this setting the simulator cheats everywhere,
i.e., everywhere it was cheating in the partial simulation and also in the semi-honest 2-
PC execution which is a part of the Secure Computation Phase. Note that for this kind
of simulation the simulator will not need access to honest party input but will need the
preamble secret committed by the adversary in Trapdoor Creation phase and the input and
the randomness of the adversary committed in the Input Commitment Phase for the session
being simulated. Also note that the preamble secret for a session is only needed after the
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second special message for the session has been received. Similarly the adversary’s input and
randomness are only needed after the fourth special message for the session has been received.

Lookup(Databaseσ, Databasex, τ, i) Function: During the simulator’s interaction with the adver-
sary, which we will refer to as the main thread, it will make multiple calls to the Lookup function.
We will also refer to these function calls as a look-ahead thread. We start by giving a succinct
description of this function. Our lookup function takes as input the two databases (Databaseσ and
Databasex), the state of the adversary/environment τ so far, and a session name i as input. Note
that this function does not itself update the databases in any way; it only uses their contents. The
function simulates the execution (in the manner as explained below) until it receives a well-formed
second special message or fourth special message for session i. If this takes place, it returns the
relevant information necessary for the extraction of either the preamble trapdoor (in the case of a
second special message) or the adversary’s input and randomness (in the case of a fourth special
message). The lookup function performs the simulation as follows: For each session j ∈ [m], where
m is the number of sessions, it behaves as follows:

- Case 1: (j, ·) 6∈ Databaseσ
∧
(j, ·) 6∈ Databasex: For session j our simulator uses the honest

execution strategy. (In other words, it executes the look ahead thread honestly using the
honest party inputs).

- Case 2: (j, ·) ∈ Databaseσ
∧
(j, ·) 6∈ Databasex: For session j our simulator uses the partial

simulation strategy. Note that partial simulation in the jth session requires access to the
adversary’s preamble secret for the jth session and our simulator can obtain it from the
database Databaseσ.9

- Case 3: (j, ·) ∈ Databaseσ
∧
(j, ·) ∈ Databasex: For session j our simulator uses the full sim-

ulation strategy. Note that full simulation in the jth session requires access to the adversary’s
preamble secret and the adversary’s input for the jth session and our simulator can obtain it
from the databases Databaseσ and Databasex, respectively. If (j,⊥) ∈ Databasex then we
abort with I-Abort1.

10

We stress that the working of the look-ahead thread depends on the contents of the databases.
Furthermore, different look-ahead threads will differ from each other depending on what databases
they are initiated with. Also, note that the Lookup function never calls itself recursively.
The main-thread simulation in hybrid H1/2. Our simulator will perform full simulation in all sessions
on the main thread of execution. However, in order to do this, it will perform some extra steps
when it receives one of the special messages for any session. These steps are performed with the
goal of populating the database Databaseσ (resp., Databasex) with the preamble secret (resp.,
adversary’s input) for every session whose second (resp., fourth) special message has been received.
As pointed out earlier, for the full simulation of the main thread, it suffices to obtain the preamble
secret (resp., adversary’s input) for those sessions whose second (resp., fourth) special message
has already been received. For each session i encountered, the simulation will do the following in
addition to the full simulation described above:

- First or third special message of session i: It starts Lookup(Databaseσ, Databasex, τ, i) func-
tion k times.11 We stress that all these look-ahead threads are executed before returning to

9We argue in Lemma 7 that if (j,⊥) ∈ Database
σ then we will not need the preamble secret.

10In Lemma 8 we will argue that this happens only with a negligible probability.
11k is a parameter that decides the number of look-ahead threads that we will execute. This number depends

specifically on the proof details and is described in Section B.
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the execution in the main thread. The state of the databases at the time of these function
calls is used as input for the Lookup function. The simulator stores the output of these lookup
functions calls for later use.

- Second or fourth special message of session i: When the simulator receives the second (resp.,
fourth) special message of session i, then our simulator scans the output of the look ahead
threads it had started when it had received the first (resp., third) special message of session i.
In these look-ahead threads it checks to see if it had received a second (resp., fourth) special
message of the ith session in any of the executions of the Lookup function calls. Our simulator
aborts with a Rewind Abort12 if this is not the case. On the other hand if it did receive the
second (resp., fourth) special message of the ith session in at least one of the look-ahead
threads then it extracts the preamble secret (resp., adversary’s input) of the ith session and
adds an entry for it in the database Databaseσ (resp., Databasex). If the extraction fails
even though it did receive the second (resp., fourth) special message of the ith session in at
least one of the look-ahead threads (this could happen if, e.g., no consistent preamble secret
was committed to by the adversary but still it managed to complete the SWI argument) then
it just adds the entry (i,⊥) to the database Databaseσ (resp., Databasex) and continues13.

We stress that from the above description it is clear that for any session i for which the second
(resp., fourth) special message is received in the main thread (and given that Rewind Abort has not
occurred) an entry of the form (i, ·) is always made in the database Databaseσ (resp., Databasex).
Hence, whenever the simulator will need the preamble secret (resp., adversary’s input) in the main
thread then it will indeed be available in the database Databaseσ (resp., Databasex). Furthermore,
for each call to the Lookup(Databaseσ, Databasex, τ, i) function, for all sessions whose second (resp.,
fourth) special message is already received in the main thread before reaching the state τ , we will
use partial (resp., full) simulation. On the other hand for the rest of the sessions, the second special
message has not been obtained and we will use the honest execution strategy.

From H0 to H1/2: We move from the experiment H0 to experiment H1/2 through a carefully
designed series of hybrid experiments. Very roughly, there are four high level changes that we
do for each session in going from H0 to H1/2: first is the creation of various look ahead threads
to help extraction of preamble secret in the concurrent setting, second is moving from honest
execution to partially simulated execution, third is the creation of various look ahead threads to
help extraction of adversary’s input and randomness in the concurrent setting, and fourth is in
moving from partially simulated execution to fully simulated execution – ultimately avoiding the
need of honest party input for the session. For each session we will do these changes one by one,
in this order itself. However, the changes across different sessions will be interleaved based on
the interleaving of special messages among different sessions. We sequentially consider the special
messages across all sessions that occur on the main thread. Depending on the special message
being considered we make the following changes:

- First (resp., third) special messages of some session. We create k look-ahead threads at the
point where this message has been received. Observe that at this point the execution of the
main thread is identical to the execution of the look-ahead threads just started.

12Our simulator will output Rewind Abort with a small, yet noticeable probability. This probability will depend
on the parameter k that we will adjust to ensure that the abort probability is low enough.

13We will argue later in Lemma 7 that if an entry (i,⊥) is made to the database Databaseσ then the adversary
will not be able to continue the ith session to a point where the preamble secret is actually needed. In Lemma 8 we
will argue that an entry (i,⊥) is made to the database Database

x with only negligible probability.
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- Second special messages of session j. Switch from honest execution to partially simulated
execution for session j in the main thread.

- Fourth special messages of session j. Switch from partially simulated execution to fully
simulated execution for session j in the main thread.

Observe that if these changes are made for each special message then we will finally end up fully
simulating each session in the main thread. We provide more details in Section B.

Last Step from H1/2 to H1. Note that our simulation never makes use of the inputs of the
honest parties in the main thread. However, these inputs are used in the look-ahead threads. As
pointed earlier, we are using rewindings only to populate the databases Databaseσ and Databasex.
Therefore, we can take the last step from the hybrid H1/2 to hybrid H1 by switching from poly-time
extraction (using rewindings) to super-poly time extraction. This avoids the need for all look-ahead
threads and the inputs of the honest parties in “one shot.” The distribution of the view of the
adversary/environment in the main thread still remains statistically close enough to the one in the
previous hybrid, since the only difference is that Rewind Aborts do not occur in the final hybrid.

A detailed exposition of the proof of security appears in Appendix B.
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A Building Blocks

We now discuss the main cryptographic primitives that we use in our construction.

A.1 Statistically Binding String Commitments

In our protocol, we will use a (2-round) statistically binding string commitment scheme, e.g.,
a parallel version of Naor’s bit commitment scheme [Nao91] based on one-way functions. For
simplicity of exposition, in the presentation of our results in this manuscript, we will actually use
a non-interactive perfectly binding string commitment.14 Such a scheme can be easily constructed
based on a 1-to-1 one way function. Let com(·) denote the commitment function of the string
commitment scheme. For simplicity of exposition, in the sequel, we will assume that random coins
are an implicit input to the commitment function.

A.2 Extractable Commitment Scheme

We will also use a simple challenge-response based extractable statistically-binding string commit-
ment scheme 〈C,R〉 that has been used in several prior works, most notably [PRS02, Ros04]. We
note that in contrast to [PRS02] where a multi-slot protocol was used, here (similar to [Ros04]),
we only need a one-slot protocol.

14It is easy to see that the construction given in Section 3 does not necessarily require the commitment scheme
to be non-interactive, and that a standard 2-round scheme works as well. As noted above, we choose to work with
non-interactive schemes only for simplicity of exposition.
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Protocol 〈C,R〉. Let com(·) denote the commitment function of a non-interactive perfectly bind-
ing string commitment scheme (as described in Section 2.2). Let n denote the security parameter.
The commitment scheme 〈C,R〉 is described as follows.

Commit Phase:

1. To commit to a string str, C chooses k = ω(log(n)) independent random pairs {α0
i , α

1
i }

k
i=1

of strings such that ∀i ∈ [k], α0
i ⊕α1

i = str; and commits to all of them to R using com. Let
B ← com(str), and A0

i ← com(α0
i ), A

1
i ← com(α1

i ) for every i ∈ [k].

2. R sends k uniformly random bits v1, . . . , vn.

3. For every i ∈ [k], if vi = 0, C opens A0
i , otherwise it opens A

1
i to R by sending the appropriate

decommitment information.

Open Phase: C opens all the commitments by sending the decommitment information for each
one of them.

This completes the description of 〈C,R〉.

Modified Commitment Scheme. Due to technical reasons, we will also use a minor variant,
denoted 〈C ′, R′〉, of the above commitment scheme. Protocol 〈C ′, R′〉 is the same as 〈C,R〉, except
that for a given receiver challenge string, the committer does not “open” the commitments, but
instead simply reveals the appropriate committed values (without revealing the randomness used
to create the corresponding commitments). More specifically, in protocol 〈C ′, R′〉, on receiving a
challenge string v1, . . . , vn from the receiver, the committer uses the following strategy: for every
i ∈ [k], if vi = 0, C ′ sends α0

i , otherwise it sends α1
i to R′. Note that C ′ does not reveal the

decommitment values associated with the revealed shares.
When we use 〈C ′, R′〉 in our main construction, we will require the committer C ′ to prove the

“correctness” of the values (i.e., the secret shares) it reveals in the last step of the commitment
protocol. In fact, due to technical reasons, we will also require the the committer to prove that
the commitments that it sent in the first step are “well-formed”. Below we formalize both these
properties in the form of a validity condition for the commit phase.

Proving Validity of the Commit Phase. We say that commit phase between C ′ and R′ is
valid with respect to a value ˆstr if there exist values {α̂0

i , α̂
1
i }

k
i=1 such that:

1. For all i ∈ [k], α̂0
i ⊕ α̂1

i = ˆstr, and

2. Commitments B, {A0
i , A

1
i }

k
i=1 can be decommitted to ˆstr, {α̂0

i , α̂
1
i }

k
i=1 respectively.

3. Let ᾱv1
1 , . . . , ᾱvk

k denote the secret shares revealed by C in the commit phase. Then, for all
i ∈ [k], ᾱvi

i = α̂vi
i .

We can define validity condition for the commitment protocol 〈C,R〉 in a similar manner.

A.3 Constant-Round Non-Malleable Zero Knowledge Argument

In our main construction, we will use a constant-round non-malleable zero knowledge (NMZK)
argument for every language in NP with perfect completeness and negligible soundness error.
In particular, we will use a specific (stand-alone) NMZK protocol, denoted 〈P, V 〉, based on the
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concurrent-NMZK protocol of Barak et al [BPS06]. Specifically, we make the following two changes
to Barak et al’s protocol: (a) Instead of using an ω(log n)-round PRS preamble [PRS02], we simply
use the one-slot commitment scheme 〈C,R〉 (described above). (b) Further, we require that the
non-malleable commitment scheme being used in the protocol be constant-round and public-coin
w.r.t. receiver. We note that such commitment schemes are known due to Pass, Rosen [PR05b].
Further, in Section A.4, we show how to adapt the scheme of Goyal [Goy11] to incorporate the
public-coin property.15 We now describe the protocol 〈P, V 〉.

Protocol 〈P, V 〉. Let P and V denote the prover and the verifier respectively. Let L be an NP
language with a witness relation R. The common input to P and V is a statement π ∈ L. P
additionally has a private input w (witness for π). Protocol 〈P, V 〉 consists of two main phases:
(a) the preamble phase, where the verifier commits to a random secret (say) σ via an execution of
〈C,R〉 with the prover, and (b) the post-preamble phase, where the prover proves an NP statement.
In more detail, protocol 〈P, V 〉 proceeds as follows.

Preamble Phase.

1. P and V engage in the execution of 〈C,R〉 where V commits to a random string σ.

Post-preamble Phase.

2. P commits to 0 using a statistically-hiding commitment scheme. Let c be the commitment
string. Additionally, P proves the knowledge of a valid decommitment to c using a statistical
zero-knowledge argument of knowledge (SZKAOK).

3. V now reveals σ and sends the decommitment information relevant to 〈C,R〉 that was exe-
cuted in step 1.

4. P commits to the witness w using a constant-round public-coin extractable non-malleable
commitment scheme.

5. P now proves the following statement to V using SZKAOK:

(a) either the value committed to in step 4 is a valid witness to π (i.e., R(π,w) = 1, where
w is the committed value), or

(b) the value committed to in step 2 is the trapdoor secret σ.

P uses the witness corresponding to the first part of the statement.

Decoupling the Preamble Phase from the Protocol. Note that the preamble phase in 〈P, V 〉
is independent of the proof statement and can therefore be executed by P and V before the proof
statement is fixed. Indeed, this is the case when we use 〈P, V 〉 in our main construction in Section
3. Specifically, in our main construction, the parties first engage in multiple executions of 〈C,R〉
at the beginning of the protocol. Later, when a party (say) Pi wishes to prove the validity of a
statement π to (say) Pj , then Pi and Pj engage in an execution of the post-preamble phase of
〈P, V 〉 for statement π. The protocol specification fixes a particular instance of 〈C,R〉 that was
executed earlier as the preamble phase of this instance of 〈P, V 〉. In the description of our main
construction, we will abuse notation and sometimes refer to the post-preamble phase as 〈P, V 〉.

15We note that while the commitment scheme of [PR05b] admits a non black-box security proof, the security proof
of Goyal’s scheme is black-box. As such, the resultant NMZK protocol has a black-box security proof as well.
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Straight-line Simulation of 〈P, V 〉. A nice property of protocol 〈P, V 〉 is that it allows straight-
line simulation of the prover if the trapdoor secret σ is available to the simulator S. (Note that S
can rewind V during the execution of 〈C,R〉 in order to extract σ.) Below we describe the straight-
line simulation strategy for the post-preamble phase (assuming that the simulator S already knows
the trapdoor secret σ).

1. S creates a statistically hiding commitment to σ (instead of a string of all zeros) and follows
it with an honest execution of SZKAOK to prove knowledge of the decommitment value.

2. On receiving the decommitment information corresponding to the preamble phase, S first
verifies its correctness (in the same manner as an honest prover). If the verification fails, S
stops the simulation.

3. S commits to an all zeros string (instead of a valid witness to π) using the non-malleable
commitment scheme.

4. S engages in the execution of SZKAOK with the adversarial verifier, where it uses the (trap-
door) witness corresponding to the second part of the statement. (Note that the trapdoor
witness is available to S since it committed to σ in step 2 of the protocol.)

A.4 Constant Round Public-Coin Non-Malleable Commitments

In this section, we sketch a modification to Goyal’s commitment scheme to make it public coin.
The main idea is to use a (public-coin) witness-indistinguishable argument (as opposed to a ZK
argument) to prove consistency. More specifically, the idea is to commit to two strings in parallel
and then prove that at least one of them was a valid commit phase. In the opening phase, if both of
them were valid, the receiver simply takes the larger among the two as the committed value. This
ensures that the commitment scheme is still hiding without affecting the proof of non-malleability.

In this section, we describe our basic protocol for “small” tags with one sided non-malleability.
They can be extended to the general case by relying on techniques from [PR05b] (while maintaining
the public-coin property). We assume that each execution has a tag tag ∈ [2n]. Denote by ℓ the
value k · tag . Let com(m) denote a commitment to the message m with the first message σ under
the statistically binding commitment scheme of Naor. Whenever we need to be explicit about
the randomness used to generate the commitment, we denote it as com(m; r) where r is the said
randomness. The commitment scheme 〈C,R〉 between a committer C trying to commit to ν and a
receiver R proceeds as follows.

Commitment Phase.

0. Initialization Message. The receiver R generates the first message σ of the Naor commit-
ment scheme and sends it to C .

The committer now runs the primary slot phase and the verification message phase (together
called the commit phase) for two strings ν[0] and ν[1] in parallel. It sets ν[0] to be the actual
value ν it wants to commit to and sets ν[1] = 0. For b ∈ {0, 1}, do the following (with fresh
randomness each time):

Primary Slot
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1. The committer C generates ℓ pairs of random strings {α0
i , α

1
i }i∈[ℓ] (with length of each string

determined by the security parameter). C further generates commitments of these strings
{A0

i = com(α0
i ), A

1
i = com(α1

i )}i∈[ℓ] and sends them to R (C uses fresh randomness to
generate each commitment).

2. The receiver R generates and sends to C a random ℓ-bit challenge string ch = (ch1, . . . , chℓ).

3. The committer C sends to R the values αch1

1 , . . . , αchℓ

ℓ . Note that C does not send the open-
ings associated with the corresponding commitments. R responds with an acknowledgement
message on receiving these values 16.

4. Verification Message. Define ℓ strings {αi}i∈[ℓ] such that αi = α0
i ⊕ α1

i for all i ∈ [ℓ]. C
generates ℓ commitments Bi = com(ν[b];αi) for i ∈ [ℓ] and sends them to R . (That is,
randomness αi is used to generate the i-th commitment to ν).

5. Consistency Proof. The committer C and the receiver R now engage in a witness indis-
tinguishable argument protocol where C proves to R that at least one of the above commit
phases is “valid”. That is, for at least one commit phase (say indexed by b), there exist values
ν̂[b], {α̂i, α̂

0
i , α̂

1
i }i∈[ℓ] such that for all i:

• α̂0
i ⊕ α̂1

i = α̂i, and,

• commitments A0
i and A1

i are valid commitments to the strings α̂0
i and α̂1

i respectively
under some random tape, and,

• commitment Bi is a valid commitment to ν̂[b] under the random tape α̂i.

Decommitment Phase. The committer C simply reveals the committed value ν and the ran-
domness used in running steps 1 to 4. The receiver R checks if the messages in the primary slot
and the verification message were computed honestly using the revealed randomness for at least
one commit phase. If so, R takes the value committed ν to be the larger among the (either one or
two) valid committed values. If none of the commit phases is valid, R takes the value committed
to as ⊥.

Lemma 1 The commitment scheme 〈C,R〉 is computationally hiding (in the stand alone setting).

The proof is this lemma is relies on a standard hybrid argument. To go from one committed
value ν1 to the other ν2, we use the follow strategy. In the first hybrid, use the witness corresponding
to the second commit phase (in which we commit 0) to complete the WI argument. Next, we replace
the value ν1 by ν2 in the first commit phase. Finally, use the witness corresponding to the first
commit phase to complete the WI argument.

Lemma 2 The commitment scheme 〈C,R〉 is statistically binding (in the stand alone setting).

The proof of this lemma is similar to that in the original scheme of Goyal [Goy11].

Theorem 2 The commitment scheme 〈C,R〉 is a one sided non-malleable commitment scheme
against a synchronizing adversary.

16This is done for technical reasons to ensure that this and the next message by C are in different rounds of the
protocol
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The proof of this theorem is similar to that in the original scheme of Goyal [Goy11]. Note that
the proof of non-malleability in [Goy11] only relies on the standalone (computational) hiding prop-
erty of the left session as well as the soundness of the consistency phase (and does not additionally
rely on the proof of consistency being a zero-knowledge). Both of these properties are preserved
as we replace the ZK protocol by a WI one. In addition, the second parallel commit phase on the
left (which is a commitment to 0) is essentially independent of the rest of the left session and could
have been generated by the man-in-the-middle on its own. Hence these modifications do not affect
the non-malleability of the commitment scheme. More details will be provided in the final version.

A.5 Constant-Round Statistically Witness Indistinguishable Arguments

In our construction, we shall use a constant-round statistically witness indistinguishable (SWI)
argument 〈Pswi, Vswi〉 for proving membership in any NP language with perfect completeness and
negligible soundness error. Such a protocol can be constructed by using ω(log n) copies of Blum’s
Hamiltonicity protocol [Blu87] in parallel, with the modification that the prover’s commitments
in the Hamiltonicity protocol are made using a constant-round statistically hiding commitment
scheme [NY89, HM96, DPP97].

A.6 Semi-Honest Two Party Computation

We will also use a constant-round semi-honest two party computation protocol 〈P sh
1 , P sh

2 〉 for any
functionality F in the stand-alone setting. The existence of such a protocol follows from the
existence of constant-round semi-honest 1-out-of-2 oblivious transfer [Yao86, GMW87, Kil88].

B Indistinguishability of the Views

We consider two experiments H0 and H1, where H0 corresponds to the real world execution of
〈P1, P2〉 while H1 corresponds to the ideal world execution, as described below.

Experiment H0: The simulator S simulates the honest parties H and in doing so it obtains their
inputs and the specification on what sessions to take part in from the environment Z. S does so by
following the honest party algorithm, it generates the outputs of the honest party along with A’s
view. This corresponds to the real execution of the protocol. The output of the hybrid corresponds
to the output of the environment, the outputs of the honest parties and the view of the adversary
A.

Experiment H1: S simulates the honest parties (in the same manner as explained in the descrip-
tion of S in Section 4.1). The honest parties, for each session receive input from the environment,
query the ideal functionality on their input and output the response they receive from the ideal
functionality as their output. Again the output of the hybrid corresponds to the output of the
environment, the outputs of the honest parties and the view of the adversary A.

Let νi be a random variable that represents the output of Hi. We now claim that the output
distributions of H0 and H1 are indistinguishable, as stated below:

Lemma 3 ν0
c
≡ ν1
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The proof of this lemma requires a careful hybrid argument that departs from previous work
such as [BPS06, GJO10] in several crucial respects, most notably in our handling of look-ahead
threads and our sequence of hybrids. More details are given below.

B.1 Getting started

We will prove Lemma 3 by contradiction. Suppose that the hybrids H0 and H1 are distinguishable
in polynomial time, i.e., there exists a ppt distinguisher D that can distinguish between the two
hybrids with a non-negligible probability (say) ǫ. More formally,

∣∣Pr[D(ν0) = 1] − Pr[D(ν1) =
1]
∣∣ > ǫ. Let k = 6·m

ǫ , where m is an upper bound on the number of sessions (such an upper bound is
the running time of the adversarial environment). k is a parameter that corresponds to the number
of rewindings (explained later) that we will perform.

We will now consider a series of hybrid experiments Hi:j, where i ∈ [1, 4m], and j ∈ [1, 6]. We
define two additional hybrids – first, a dummy hybrid H0:6 that represents the real world execution
(i.e., H0, as defined above), and second, an additional hybrid H4m+1:1 that corresponds to the
simulated execution in the ideal world (i.e., H1, as defined above). For each intermediate hybrid
Hi:j, we define a random variable νi:j that represents the output (output of the environment, the
outputs of the honest parties and the view of the adversary A) of Hi:j.

Below, we will establish (via the intermediate hybrid arguments) that no polynomial time
distinguisher can distinguish between ν0:6 and ν4m+1:1 with a probability greater than ǫ, which is
a contradiction. Before we jump into description of our hybrids, we first establish some notation
and terminology.

In the sequel, we will make use of the notation described in Section 4. We now describe some
additional notation that will be used in the proof. Again recall that we are in the UC setting
and there could be multiple parties in the system and the simulator only needs to simulate the
interactions between parties such that exactly one of them is corrupted. Without loss of generality,
in the proof, for simplicity of notation we will assume that there is only one honest party (referred
to as H) and only one malicious party (referred to as A). Now our simulator must simulate the
view of the malicious party in all the sessions it is a part of. Rather than referring to these sessions
by session identification sid numbers we will use just a session number ℓ. Let m be a total bound
on the total number of sessions. Then, for any session, we will have that ℓ ∈ [m]. It should be easy
to see that a simulator constructed in this simple setting with proper “book-keeping” will be able
to achieve correct simulation in the general setting.

Special Messages Notation. Among all them sessions, consider them executions of 〈C,R〉A→H ,
the m executions of 〈C ′, R′〉A→H and the m executions of 〈Pswi, Vswi〉A→H given in the Input Com-
mitment Phase. In these executions consider the following four messages, which we will refer to as
special messages (denoted by SM):

1. The second message of 〈C,R〉A→H in the Trapdoor Creation Phase: Recall that at this point,
the adversary will have committed to a value σ (in the first message), and the second message
is the challenge sent by the honest party.

2. The last message of 〈C,R〉A→H in the Trapdoor Creation Phase: Recall that this is the
response sent by the adversary to the challenge above. If two valid responses to different
challenges can be obtained by the simulator, this allows the simulator to learn the value σ
that the adversary committed to. Note that this message is only considered a special message
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if it is well-formed (that is, the receiver considers the openings of the commitments to be
valid openings).

3. The second message of 〈C ′, R′〉A→H in the Input Commitment Phase: Recall that at this
point, the adversary will have committed to its input and randomness x (in the first message),
and the second message is the challenge sent by the honest party.

4. The last message of 〈Pswi, Vswi〉A→H in the Input Commitment Phase: Recall that this is
where the adversary proves that the response it sent to the challenge above was correct. If
two valid responses to different challenges can be obtained by the simulator, this allows the
simulator to learn the input and randomness value x that the adversary committed to. Note
that this message is only considered a special message if it is well-formed (that is, the verifier
accepts the proof).

Note that there are exactly 4 SM’s for each one of them sessions. Consider a numbered ordering
of all the 4m occurrences of special messages across the m sessions (excluding any look-up threads,
created in some hybrids). Let SMi denote the ith special message that appears in the interaction
between the simulator and the adversary. Also, let s(i) be the index of the protocol session that
contains SMi; that is, the message SMi occurs during session number s(i). Note that s(i) will
correspond to the same session for 4 distinct values of i ∈ [4m], unless a session aborts and not
all messages are scheduled, in which case fewer than 4 repetitions may occur. We will refer to the
SMi’s by one of these 4 names – first special message of session s(i), second special message of
session s(i), third special message of session s(i) and fourth special message of session s(i). These
messages correspond to second message of 〈C,R〉A→H of session s(i), last message of 〈C,R〉A→H

of session s(i), the second messages of 〈C ′, R′〉A→H of session s(i) and the last messages of the
〈Pswi, Vswi〉A→H given in the Input Commitment Phase of session s(i), respectively. Note that these
four messages appear in this order17 (but not necessarily consecutively) in the ordering of the 4m
special messages.

Below when we use the terms A
c
≡ B, what we mean is that no PPT distinguisher can dis-

tinguish (except with negligible probability) between A and B. Similarly, when we use the terms

A
s
≡ B, what we mean is that no unbounded distinguisher can distinguish (except with negligible

probability) between A and B.

Soundness Condition. Looking ahead, while proving the indistinguishability of the outputs of
our hybrid experiments, we will need to argue that in each session ℓ ∈ [m], the soundness property
holds for 〈P, V 〉A→H and that the trapdoor condition is false for each instance of 〈Pswi, Vswi〉A→H .
In the sequel, we will refer to this as the soundness condition. Now consider the NMZK instance
〈P, V 〉ℓA→H in session ℓ. Let πℓ

A denote the proof statement for 〈P, V 〉ℓA→H , where, informally
speaking, πℓ

A states that A committed to bit 0 (earlier in the trapdoor creation phase). Note
that the soundness condition “holds” if we prove that in each session ℓ ∈ [m], A commits to a
valid witness to the statement yℓ in the non-malleable commitment (NMCOM) inside 〈P, V 〉ℓA→H .
To this end, we define m random variables, {ρℓi:j}

m
ℓ=1, where ρℓi:j is the value committed in the

NMCOM inside 〈P, V 〉ℓA→H as per νi:j. Now, before we proceed to the description of our hybrids,
we first claim that the soundness condition holds in the real execution. We will later argue that
the soundness condition still holds as we move from one hybrid to another.

17I.e., first messages comes before the second and so on.
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Lemma 4 Let 〈P, V 〉ℓA→H and πℓ
A be as described above corresponding to the real execution. Then,

for each session ℓ ∈ [m], if the honest party does not abort the session (before the first message of
the Secure Computation Phase is sent) in the view ν0:6, then ρℓ0:6 is a valid witness to the statement
πℓ
A, except with negligible probability.

Intuitively, the above lemma follows due the knowledge soundness of the statistical zero knowl-
edge argument of knowledge used in NMZK. We refer the reader to [Claim 2.5, [BPS06]] for a
detailed proof.

Lemma 5 Let 〈P, V 〉ℓA→H and πℓ
A be as described above corresponding to the execution in any

hybrid Hi:j. Then ∀i ∈ [m], j ∈ [6] , for each session ℓ ∈ [m], if the honest party does not abort the
session (before the first message of the Secure Computation Phase is sent) in the view νi:j, then
ρℓi:j is a valid witness to the statement πℓ

A, except with negligible probability.

We defer the proof of this lemma until later (see Section B.2.1), as it will make use of other
claims that we will prove about our hybrids.

Public-coin property of NMCOM. We now describe a strategy that we will repeatedly use
in our proofs in order to argue that for every session ℓ ∈ [m], the random variable ρℓ (i.e., the
value committed by A in the NMCOM inside 〈P, V 〉ℓA→H) remains indistinguishable as we change
our simulation strategy from one hybrid experiment to another. Intuitively, we will reduce our
indistinguishability argument to a specific cryptographic property (that will be clear from context)
that holds in a stand-alone setting. Specifically, we will consider a stand-alone machine M∗ that
runs S and A internally. Here we explain how for any session ℓ ∈ [m], M∗ can “expose” the
NMCOM inside 〈P, V 〉ℓA→H to an external party R (i.e., M∗ will send the commitment messages
from A to R and vice-versa, instead of handling them internally). Note that S will be rewinding
A during the simulation. However, since R is a stand-alone receiver; M∗ can use its responses only
on a single thread of execution.

In order to deal with this problem, we will use the following strategy. When A creates the
NMCOM inside 〈P, V 〉ℓA→H , any message in this NMCOM from A on the main-thread is forwarded
externally to R; the responses from R are forwarded internally to A on the main-thread. On the
other hand, any message in this NMCOM from A on a look-ahead thread is handled internally; M∗

creates a response on its own and sends it internally to A on that look-ahead thread. We stress
that this is possible because NMCOM is a public-coin protocol.

In the sequel, whenever we use the above strategy, we will omit the details of the interaction
between M∗ and R.

B.2 Description of the Hybrids

For i ∈ [1, 4m], the hybrid experiments are described as follows. Very roughly, for each i we will
consider the corresponding ith special message SMi that appears and depending on this message we
will decide what hybrids to proceed with. We stress that unlike many previous works, our hybrids
will not proceed “session by session”, but rather we will revisit the same session several times
over the course of the sequence of hybrid experiments. We also stress that in the following hybrid
experiments, we will initiate several look-ahead threads, however once a look-ahead thread is started
in a particular hybrid, the operation of that look-ahead thread is never modified in future hybrids18.
Future hybrids only modify how the simulator deals with the main thread of the simulation.

18This is true except for the last hybrid, in which all look-ahead threads are eliminated with super-polynomial
simulation.
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Further we will maintain two databases: Databaseσ and Databasex. In database Databaseσ we
will store tuples of the form (j, σj

A), where σj
A is the preamble secret committed by the adversary

in session j. Similarly, in database Databasex we will store tuples of the form (j, xjA), where xjA is
the input and the randomness committed by the adversary in session j.

Experiment Hi:1: Same as hybrid Hi−1,6, unless if SMi is the first (or resp., third) special
message of session s(i), in which case it differs in the following manner: Hybrid Hi:1 is same as
hybrid Hi−1:6, except that the simulator S starts k look-ahead threads at the point SMi with freshly
chosen challenge messages19 in each of the look-ahead threads.20 Note that the simulator strategy
in each of the look-ahead threads is the same as the simulator strategy in the main thread21 from
hybrid Hi−1:6, using the current contents of databases Databaseσ and Databasex. As pointed
earlier, in future hybrids we will make changes to the main thread but look-ahead thread will never
be modified. Further observe that in hybrid Hi−1:6, no look-ahead threads are initiated after SMi

has been sent in the main thread and hence the simulation of the look-ahead threads will not involve
any extra rewindings. If A does not send the second (resp., fourth) special message of session s(i)
in any of the look-ahead threads but it does so in the main thread then our simulator aborts. We
specifically refer to this abort as Rewind Abort.

Note that simulator can use the second (resp, fourth) special messages sent in the main-thread
and in one of the look-ahead threads to extract the preamble secret (resp., input) committed in the

execution 〈C,R〉
s(i)
A→H (resp., 〈C ′, R′〉

s(i)
A→H). When this happens then our simulator extracts σ

s(i)
A

(resp., x
s(i)
A ) and adds the entry (s(i), σ

s(i)
A ) (resp., (s(i), x

s(i)
A )) to the database Databaseσ (resp.,

Databasex). However, it might not be possible to extract the corresponding committed value (even
though the simulator does not output Rewind Abort). In this case the simulator proceeds without
the extraction adding a special entry (s(i),⊥) to the Databaseσ (resp., Databasex).
We have the following claims:

∀ PPT D
∣∣∣Pr[D(νi−1:6) = 1] − Pr[D(νi:1) = 1]

∣∣∣ ≤ 1

k
+ negl(n) (1)

∀ PPT D
∣∣∣Pr[D(ρ1i−1:6, . . . , ρ

m
i−1:6) = 1] − Pr[D(ρ1i:1, . . . , ρ

m
i:1)) = 1]

∣∣∣ ≤ 1

k
+ negl(n) (2)

Proving Equations 1 and 2. Note that the only difference between Hi−1:6 and Hi:1 is that S outputs
a Rewind Abort in case the adversary sends second (resp., fourth) special message of session s(i) in
the main thread but does not do so in any one of the k look-ahead threads. Since the main-thread
and the look-ahead threads are identical, by simple swapping [PRS02] argument, the probability
that the simulator outputs a Rewind Abort is bounded by 1/k. Further assuming that the simulator
does not output Rewind Abort the hybrids Hi−1:6 and Hi:1 are close. Note that in this hybrid, the
values extracted using the new look-ahead threads started in this hybrid are not utilized in any
way. Hence our claim follows.
Looking ahead: Intuition for how look-ahead threads are handled without any recursive rewinding.
As argued in Lemma 6 below, for every j < i, if SMj is a second (resp., fourth) special message
of session s(j) then there exists an entry (s(j), ·) in Databaseσ (resp., Databasex). Hence, for all

19There is an negligibly small probability that the freshly chosen challenge message in a look-ahead thread is chosen
to be the same as in the main thread. Because this probability is negligible, we will proceed in the proof under the
assumption that this does not occur.

20The simulator completes all the look-ahead before it returns to continue the main thread.
21It is instructive to note that this strategy is same as the one described in the Lookup(Databaseσ, Databasex, τ, i)

function described in Section 4.2. In this hybrid the main thread and all the look ahead threads follow this strategy.
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these sessions for which an entry exists in the databases we can in fact use the extracted value and
cheat (and we will do so in future hybrids). However, this entry could actually be (s(j),⊥). In
Lemma 7 below we argue that if the tuple (s(j),⊥) is present in Databaseσ, then the adversary
will not be able to continue the jth session, and so there will be no need to simulate it. On the
other hand we note that if (s(j),⊥) is present in Databasex and if our simulator needs to use this
value at some point then it aborts with the special abort message I-Abort1. This event happens
with a negligible probability (argued in Lemma 8 below), and hence will not affect our analysis.

On the other hand, in sessions for which the second (resp., fourth) special message has not
been received before SMi, in the look-ahead threads we will not have an entry in Databaseσ (resp.,
Databasex) and we will behave “honestly,” for such sessions.

Now we state and give the proof for Lemma 6.

Lemma 6 For every j < i if SMj is the second (resp., fourth) special message of session s(j) and
Rewind Abort did not happen, then there exists an entry (s(j), ·) in Database

σ (resp., Databasex)
at the time that SMi occurs in the main thread.

Proof. This follows immediately from our simulation strategy. Note that for every j < i, if SMj

is a first (resp., third) special message of session s(j) then we have already started its look ahead
threads, and that means that we will be able to extract the preamble secret (resp., adversary’s
input) as soon as the second (resp., fourth) special message of session s(j) is received in the main
thread, and then we always make an entry (s(j), ·) in Databaseσ (resp., Databasex) unless Rewind
Abort happens.

Invariant Lemmas. Now we establish two lemmas pertaining to the setting in which extraction
fails even though Rewind Abort did not happen. We note these lemmas hold across all hybrids.

Lemma 7 If (j,⊥) ∈ Database
σ, then the adversary will not be able to continue the jth session

past the step where it opens all the commitments made in 〈C,R〉jA→H (within Step 3 of Trapdoor
Creation Phase).

Proof. Since the entry (j,⊥) was made to Databaseσ, this means that the extraction of σj
A had

failed even though the second special message of session j was reached in the main thread as well as
one of the look ahead threads (as Rewind Abort did not happen). Also note that the commitments
used in 〈C,R〉jA→H are perfectly binding. From these two facts it follows that the commitment

〈C,R〉jA→H is in fact invalid. Since the adversary has to open the commitment within Step 3 of
Trapdoor Creation Phase, the adversary can not do so legitimately. This completes the proof.

Lemma 8 Let Ej be the event that the simulator receives the fourth special message of session j

in the main thread and in at least one of the look ahead threads, but the commitment 〈C ′, R′〉jA→H

completed in either the main thread or in considered the look-ahead thread is invalid. More formally,
Ej is the event22

(
(j, ·) ∈ Database

x
)∧ (

〈C ′, R′〉jA→H is invalid in main thread ∨ 〈C ′, R′〉jA→H is
invalid in look-ahead thread

)
, where we consider the specific look-ahead thread that lead to the

creation of the entry (j, ·). Then Ej happens with negligible probability.

Proof. We prove this by contradiction. Lets say that actually for some session j, event Ej happens
with non-negligible probability. We will then contradict the soundness of the SWI proof system.

22Note that our simulator outputs I-Abort1 if (j,⊥) ∈ Database
x. Note that if entry (j,⊥) ∈ Database

x is made,
then Ej must have happened. And this implies that our simulator outputs I-Abort1 with negligible probability.
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We first note that by soundness condition (Lemma 5) we have that the adversary always sends
a commitment to the bit 1 in the Trapdoor Creation phase for the jth session. From this it follows
that there is only one witness for the SWI protocol in the Input Commitment Phase. Therefore in
order for an adversary to make an invalid commitment or for extraction to fail (in 〈C ′, R′〉jA→H)
it has to cheat in at least one of the SWI proofs among the ones provided in the main thread
and the look-ahead thread (in which fourth special message of s(i) is reached). Further note that
existence of (j, ·) ∈ Databasex implies that the fourth special message of the jth session was indeed
reached in the main thread and at least one of the look-ahead threads. Finally, it follows from the
soundness of the SWI protocol that the event Ej happens with a negligible probability.

Change from hybrid Hi:1 to hybrid Hi:6. Hybrid Hi:6 is same as hybrid Hi:1 unless SMi is
the second (resp., fourth) special message of session s(i). If this is the case then we change how we
simulate session s(i) in the main thread. More specifically, we start partially simulating (resp., fully
simulating)23 session s(i) in the main thread in hybrid Hi:6. Further note that since second (resp.,
fourth) special message of session s(i) has already been received in the main thread and Rewind

Abort did not happen, therefore there exists an entry (s(i), ·) in Databaseσ (resp., Databasex).
However this entry could actually be (s(i),⊥). We consider this specific case now. If SMi is the
second special message of session s(i) then (as argued in Lemma 7) we will not need this value.
On the other hand, if SMi is the fourth special message of session s(i) then we will abort with the
abort message I-Abort1. By Lemma 8 this happens only with a negligible probability.

Experiment Hi:2: Same as Hi:1, except if SMi is the second special message of session s(i),

then S simulates the post-preamble phase of 〈P, V 〉
s(i)
H→A in a straight-line manner, as explained in

Section A.3, by making use of the entry in Databaseσ for the session s(i). Recall that no look-ahead
threads are started once the execution reaches SMi on the main thread. All the changes in the
main thread, as explained below, are performed after SMi is reached.

We now claim that,

νi:1
c
≡ νi:2 (3)

∀ℓ ∈ [m] ρℓi:1
c
≡ ρℓi:2 (4)

The proof of the claim is in Section C.

Experiment Hi:3: Same as Hi:2, except if SMi is the second special message of session s(i), then

the simulator commits to bit 1 instead of 0 in phase I of session s(i). Let Π
s(i)
com,H→A denote this

commitment.
We now claim that,

νi:2
c
≡ νi:3 (5)

∀ℓ ρℓi:2
c
≡ ρℓi:3 (6)

The proof of the claim is in Section C.

23Recall that by partially simulating (resp., fully simulating) a session s(i) we mean “cheating in the commitments,
NMZK and SWI” (resp., “cheating in cheating in the commitments, NMZK, SWI as well as the semi-honest simula-
tion”) for session s(i). Recall that this intuitive terminology was introduced in Section 4.2 so as to abstract out the
details of the hybrids from Hi:1 to Hi:6.
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Experiment Hi:4: Same as Hi:3, except if SMi is the second special message of session s(i),
then S uses the trapdoor witness (instead of the real witness) in each instance of 〈Pswi, Vswi〉H→A

in session s(i). Note that the trapdoor witness for each of these SWI must be available to the
simulator at this point since it earlier committed to bit 1 in phase I of session s(i).

We now claim that,

νi:3
s
≡ νi:4 (7)

∀ℓ ρℓi:3
c
≡ ρℓi:4 (8)

The proof of the claim is in Section C.

Experiment Hi:5: Then, Hi:5 is the same as Hi:4, except if SMi is the second special message
of session s(i), then S uses the following strategy in the execution of 〈C ′, R′〉H→Ax. Recall that
〈C ′, R′〉H→Ax denotes the instance of 〈C ′, R′〉 in session s(i) where the honest party commits to its
input xH and randomness rH (to be used in the secure computation phase).

1. Instead of sending honest commitments to xH‖rH and its secret shares, S sends commitments
to random strings as the first message.

2. On receiving a challenge string from A, instead of honestly revealing the committed shares
(as per the challenge string), S sends random strings to A.

We now claim that,

νi:4
c
≡ νi:5 (9)

∀ℓ ∈ [m] ρℓi:4
c
≡ ρℓi:5 (10)

The proof of the claim is in Section C.

Experiment Hi:6: Same as Hi:5, except if SMi is the fourth special message of session s(i), then
S “simulates” the execution of 〈P sh

1 , P sh
2 〉 in session s(i), in the following manner. Let Ssh be the

simulator for the semi-honest two party protocol 〈P sh
1 , P sh

2 〉 used in our construction. S internally
runs the simulator Ssh for the semi-honest two party protocol 〈P sh

1 , P sh
2 〉 on A’s input in session s(i)

that was extracted earlier and is found in Databasex. When Ssh makes a query to the trusted party
with some input, S responds to this query by using its input for session s(i). The response from
the trusted party is passed on to Ssh. Ssh finally halts and outputs a transcript of the execution of
〈P sh

1 , P sh
2 〉, and an associated random string for the adversary.

Now, S forces this transcript and randomness on A and if at any point A responds differently
(than the expected response) but succeeds in making the simulator accept in the SWI proof pro-
vided immediately after the message is sent, the simulator aborts all communication and outputs
I-Abort2. We claim that during the execution of 〈P sh

1 , P sh
2 〉, each reply of A must be consistent

with this transcript, except with negligible probability. Note that we have already established from
the previous hybrids that the soundness condition holds (except with negligible probability) at this

point24. This means that the trapdoor condition is false for each instance of 〈Pswi, Vswi〉
s(i)
A→H .

24This is argued in the proof of Lemma 5. Note that there is no circularity here, since the proof of Lemma 5 is
given by showing that for each successive hybrid, the probability of a soundness condition violation can only increase
by a negligible amount.
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We now claim that,

νi:5
c
≡ νi:6 (11)

∀ℓ ∈ [m] ρℓi:5
c
≡ ρℓi:6 (12)

The proof of the claim is in Section C.

B.2.1 Proof of Lemma 5

Proof of Lemma 5. This lemma can be argued by considering the increment in the probability
with which the adversary can violate the soundness condition as we go across hybrids. Lemma 4
shows that the probability is negligible in the first hybrid. We will show this increment to be
negligible for each pair of consecutive hybrids we consider. Note that the switch from hybrid
Hi−1:6 to hybrid Hi:1 is a statistical change and the the entire statistical distance between the
two is because in hybrid Hi:1 the simulator outputs a Rewind Abort for either the first or third
special message in session s(i) with a probability equal (up to negligible additive terms) to the
statistical difference between the two hybrids, whereas the probability of this specific type of Rewind
Abort was zero in hybrid Hi−1:6. Because there is clearly no soundness condition violation when a
hybrid outputs Rewind Abort, and the entire statistical distance between hybrids (up to additive
negligible terms) is due to this increased probability of a Rewind Abort, we immediately have
that the probability of a soundness condition violation can only increase by a negligible amount
from hybrids Hi−1:6 to hybrid Hi:1. The argument for the rest of the hybrids follows based on
the indistinguishability of the random variables ρ1i:j, . . . , ρ

m
i:j and ρ1i:j+1, . . . , ρ

m
i:j+1 for every j ∈

{1, . . . , 5} based on Equations 4, 6, 8, 10 and 12.

B.2.2 Finishing the proof of security

So, far: Based on the hybrids, combining the distinguishing advantage of a distinguisher in the
hybrids so far we have that:

∀ PPT D |Pr[D(ν4m:6) = 1] − Pr[D(ν0:6) = 1]| ≤
2m

k
+ negl(n) (13)

∀ PPT D |Pr[D(ρ14m:6, . . . , ρ
m
4m:6) = 1] − Pr[D(ρ10:6, . . . , ρ

m
0:6) = 1]| ≤

2m

k
+ negl(n) (14)

Further note that in hybrid ν0:6 simulator never outputs an Rewind Abort. Therefore the
probability of the simulator outputting Rewind Abort in hybrid ν4m:6 is bounded by 2m

k + negl(n).

Experiment H4m+1:1: In this hybrid we get rid of all the re-windings and instead uses super
polynomial simulation (as described in description of the simulator) to obtain all the adversarial
preamble secrets and adversarial inputs. Further, instead of generating the output provided to Ssh

on its own, our simulator obtains the output by querying the trusted party. Note that this hybrid
is same as the simulated execution in the ideal world.

Note that in hybrid H4m:6 the simulator outputs Rewind Abort (bounded by 2m
k + negl(n))

but our simulator (in hybrid H4m+1:1) never outputs Rewind Abort in this hybrid. Further, we
consider the event E as E1 ∨ E2 ∨ · · ·Em. Recall that event Ej is the event that the commitment

provided by adversary in 〈C ′, R′〉jA→H for session j ∈ [m] is not valid or that (j,⊥) entry was
made to Databaseσ given that an entry was made (i.e., Rewind Abort did not happen). Further,
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using Lemma 8 for every j ∈ [m] Pr[Ej] is negligible. By union bound we have that Pr[E] is also
negligible.

We start our argument by conditioning on the fact that the simulator does not outputs Rewind
Abort and that E does not happen. Next we observe that the commitments that the simulator
“breaks” by running in super-poly time are valid (and simulator was also able to extract it) and
therefore the value extracted via “breaking” must be same as the value simulator obtained by
“rewinding.” Therefore conditioned on the fact that simulator does not output Rewind Abort and
E does not happen the two hybrids – H4m:6 and H4m+1:1 are identical.

On the other hand note that the probability that the simulator outputs Rewind Abort or E
happens in hybrid ν4m:6 is bounded by 2m

k + negl(n). Therefore, we have that:

∀ PPT D |Pr[D(ν4m:6) = 1] − Pr[D(ν4m+1:1) = 1]| ≤
2m

k
+ negl(n) (15)

∀ PPT D |Pr[D(ρ14m:6, . . . , ρ
m
4m:6) = 1] − Pr[D(ρ14m+1:1, . . . , ρ

m
4m+1:1) = 1]| ≤

2m

k
+ negl(n)(16)

Finally, since k = 6m
ǫ , using Equations 13, 14, 15 and 16, we have that:

∀ PPT D |Pr[D(ν0:6) = 1] − Pr[D(ν4m+1:1) = 1]| ≤
2ǫ

3
+ negl(n) (17)

∀ PPT D |Pr[D(ρ10:6, . . . , ρ
m
0:6) = 1] − Pr[D(ρ14m+1:1, . . . , ρ

m
4m+1:1) = 1]| ≤

2ǫ

3
+ negl(n) (18)

Which contradicts our original assumption that there exists a distinguisher D that distinguishes
between H0:6 and H4m+1:1 (same as H0 and H1) with a probability greater than, a non-negligible
probability, ǫ.

C Hybrid Indistinguishability Details

The following text is adapted from the proofs in [GJO10], which in turn was based in part
on [BPS06].

C.1 Proof of Equation 3 and 4

Let π
s(i)
H denote the proof statement in 〈P, V 〉

s(i)
H→A. Let σ

s(i)
A denote the trapdoor value committed

by the A in the preamble phase of 〈P, V 〉
s(i)
H→A that S has already extracted. Then, recall that S

performs the following steps to simulate the post-preamble phase of 〈P, V 〉
s(i)
H→A in Hi:2:

1. In the post-preamble phase of 〈P, V 〉
s(i)
H→A, S first commits to σ

s(i)
A (instead of a string of all

zeros) using the statistically hiding commitment scheme SCOM and follows it up with an
honest execution of SZKAOK to prove knowledge of the decommitment.

2. Next, after receiving the decommitment to the preamble phase of 〈P, V 〉
s(i)
H→A, S commits to

an all zeros string (instead of a valid witness to π
s(i)
H ) using the the non-malleable commitment

scheme NMCOM.

3. Finally, S proves the following statement using SZKAOK: (a) either the value committed to

in SCOM earlier is a valid witness to π
s(i)
H , or (b) the value committed to in SCOM earlier is
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σ
s(i)
A . Here it uses the witness corresponding to the second part of the statement. Note that

this witness is available to S since it already performed step 1 above. Below, we will refer to
this witness as the trapdoor witness, while the witness corresponding to the first part of the
statement will be referred to as the real witness.

Now, to prove equations 3 and 4, we will create three intermediate hybrids Hi:1:1, Hi:1:2, and
Hi:1:3. Hybrid Hi:1:1 is identical to Hi:1, except that it changes its strategy to perform step 1 (as
described above). Hybrid Hi:1:2 is identical to Hi:1:1, except that it changes its strategy to perform
step 3. Finally, hybrid Hi:1:3 is identical to Hi:1:2, except that it changes its strategy to perform
step 2. Note that Hi:1:3 is identical to Hi:2.

We now claim the following:

νi:1
s
≡ νi:1:1 (19)

∀ℓ ∈ [m] ρℓi:1
c
≡ ρℓi:1:1 (20)

νi:1:1
s
≡ νi:1:2 (21)

∀ℓ ∈ [m] ρℓi:1:1
c
≡ ρℓi:1:2 (22)

νi:1:2
c
≡ νi:1:3 (23)

∀ℓ ∈ [m] ρℓi:1:2
c
≡ ρℓi:1:3 (24)

Note that equation 3 follows by combining the results of equations 19, 21, and 23. Similarly, equa-
tion 4 follows by combining the results of equations 20, 22, and 24. We now prove the above set of
equations.

Proving Equations 19 and 20. We first note that SCOM and SZKAOK can together be viewed as a
statistically hiding commitment scheme. Let SCOM denote this new commitment scheme. Then,
equation 19 simply follows from the (statistical) hiding property of SCOM.

In order to prove equation 20, let us first assume that the claim is false, i.e., ∃ℓ ∈ [m] such that
ρℓi:1 and ρℓi:1:1 are distinguishable by a PPT distinguisher D. We will create a standalone machine
M∗ that is identical to Hi:1, except that instead of simply committing to a string of all zeros using
SCOM, M∗ takes this commitment from an external sender C and “forwards” it internally to A.
Additionally, M∗ “exposes” the NMCOM in 〈P, V 〉ℓA→H to an external receiver R by relying on
the public-coin property of NMCOM, as described earlier. Let us describe the interaction between

M∗ and C in more detail. M∗ first sends the trapdoor secret σ
s(i)
A to C. Now, when C starts the

execution of SCOM in 〈P, V 〉
s(i)
H→A, M

∗ forwards the messages from C to A; the responses from
A are forwarded externally to C. Note that if C commits to a string of all zeros in the SCOM
execution, then the (C,M∗, R) system is identical to Hi:1. On the other hand, if C commits to the

preamble secret σ
s(i)
A , then the (C,M∗, R) system is equivalent to Hi:1:1. We will now construct

a computationally unbounded distinguisher D′ that distinguishes between these two executions,
thus contradicting the statistically hiding property of SCOM. D′ simply extracts the value inside
the NMCOM received by R and runs D on this input. D′ outputs whatever D outputs. By our
assumption, D’s output must be different in these two experiments; this implies that D′ output is
different as well, which is a contradiction.

Proving Equations 21 and 22. Equation 21 simply follows due to the statistical witness indistin-
guishability property of SZKAOK. Equation 22 also follows from the same fact; the proof details
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are almost identical to the proof of equation 20 and therefore omitted.

Proving Equations 23 and 24. Equation 23 simply follows from the hiding property of NMCOM.
To see this, we can construct a standalone machine M that internally runs S and A and outputs the

view generated by S. M is identical to Hi:1:2 except that in the post-preamble phase of 〈P, V 〉
s(i)
H→A,

instead of simply committing (using NMCOM) to a valid witness (to the proof statement π
s(i)
H ), it

takes this commitment from an external sender C (who is given the valid witness) and “forwards”
it internally to A. If the external sender C honestly commits to the witness, then the (C,M)
system is identical to Hi:1:2; otherwise if C commits to an all zeros string, then the above system
is identical to Hi:1:3. Equation 23 therefore follows from the hiding property of NMCOM.

In order to prove equation 24, we will use the non-malleability property of NMCOM. Let us
assume that equation 24 is false, i.e., ∃ℓ ∈ [m] such that ρℓi:1:2 and ρℓi:1:3 are distinguishable by a
PPT machine. We will construct a standalone machine M∗ that is identical to the machine M
described above, except that it will “expose” the non-malleable commitment inside 〈P, V 〉ℓA→H to
an external receiver R by relying on the public-coin property of NMCOM, as described earlier.

Now, if C commits to the witness to π
s(i)
H , then the (C,M∗, R) system is identical to Hi:1:2, whereas

if C commits to a random string, then the (C,M∗, R) system is identical to Hi:1:3. From the
non-malleability property of NMCOM, we establish that the value committed by M∗ to R must be
computationally indistinguishable in both cases.

C.2 Proof of Equation 5 and 6

Equation 5 simply follows from the (computationally) hiding property of the commitment scheme
com.

In order to prove equation 6, we will leverage the hiding property of com and the extractability
property of the non-malleable commitment scheme in NMZK. Let us first assume that equation
6 is false, i.e., ∃ℓ ∈ [m] such that ρℓi:2 and ρℓi:3 are distinguishable by a PPT distinguisher. Note
that it cannot be the case that the NMCOM inside 〈P, V 〉ℓA→H concludes before S sends the non-

interactive commitment Π
s(i)
com,H→A in session s(i), since in this case, the execution of NMCOM is

independent of Π
s(i)
com,H→A. Now consider the case when the NMCOM inside 〈P, V 〉ℓA→H concludes

after S sends Π
s(i)
com,H→A.

We will create a standalone machine M∗ that is identical to Hi:2, except that instead of com-

mitting to bit 0 in Π
s(i)
com,H→A, it takes this commitment from an external sender C and forwards it

internally to A. Additionally, it “exposes” the NMCOM inside 〈P, V 〉ℓA→H to an external receiver
R by relying on the public-coin property of NMCOM, as described earlier. Note that if C commits
to bit 0 then the (C,M∗, R) system is identical to Hi:2, otherwise it is identical to Hi:3. Now,
recall that NMCOM is an extractable commitment scheme. Therefore, we now run the extractor
(say) E of NMCOM on (C,Mℓ) system. Note that E will rewind Mℓ, which in turn may rewind
the interaction between C and Mℓ. However, since com is a non-interactive commitment scheme,
Mℓ simply re-sends the commitment string received from C to A internally. Now, if the extracted
values are different when C commits to bit 0 as compared to when it commits to bit 1, then we
can break the (computationally) hiding property of com, which is a contradiction.
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C.3 Proof of Equation 7 and 8

Equation 7 simply follows from the statistical witness indistinguishability of SWI by a standard
hybrid argument.

In order to prove equation 8, let us first consider the simpler case where S uses the trapdoor
witness only in the first instance (in the order of execution) of SWI in session s(i) where the honest
party plays the role of the prover. In this case, we can leverage the “statistical” nature of the
witness indistinguishability property of SWI in a similar manner as in the proof of equation 20.
Then, by a standard hybrid argument, we can extend this proof for multiple SWI.

C.4 Proof of Equation 9 and 10

Proving Equations 9 and 10. In order to prove these equations, we will define two intermediate
hybrids Hi:4:1 and Hi:4:2. Experiment Hi:4:1 is the same as Hi:4, except that S also performs steps
1 as described above. Experiment Hi:4:2 is the same as Hi:4:1, except that S also performs step 2
as described above. Therefore, by definition, Hi:4:2 is identical to Hi:5.

We now claim the following:

νi:4
c
≡ νi:4:1 (25)

∀ℓ ∈ [m] ρℓi:4
c
≡ ρℓi:4:1 (26)

νi:4:1
c
≡ νi:4:2 (27)

∀ℓ ∈ [m] ρℓi:4:1
c
≡ ρℓi:4:2 (28)

Note that equation 9 follows by combining the results of equations 25 and 27. Similarly, equation
10 follows by combining the results of equations 26 and 28. We now prove the above set of equations.

Proving Equations 25 and 26. Equation 25 simply follows from the (computational) hiding property
of the commitment scheme com.

In order to prove equation 26, let us first consider the simpler case where S only modifies the
first commitment in in 〈C ′, R′〉H→A. In this case, we can leverage the hiding property of com and
the extractability property of the non-malleable commitment scheme in NMZK. The proof details
are the same as the proof of equation 6 (described below) and are therefore omitted. Then, by a
standard hybrid argument, we can extend this proof to the case where S modifies all the commit-
ments in 〈C ′, R′〉H→A.

Proving Equations 27 and 28. Note that the main-thread is identical in hybrids Hi:4:1 and Hi:4:2

since we are only changing some random strings to other random strings; furthermore, the strings
being changed are not used elsewhere in the protocol. Equations 27 and 28 follow as a consequence.

C.5 Proof of Equation 11 and 12

Informally speaking, equation 11 follows from the semi-honest security of the two-party computation
protocol 〈P sh

1 , P sh
2 〉 used in our construction. We now give more details.

We will construct a standalone machine M that is identical to Hi:5, except that instead of
engaging in an honest execution of 〈P sh

1 , P sh
2 〉 with A in session s(i), it obtains a protocol transcript

from an external sender C and forces it on A in the following manner. M first queries the ideal
world trusted party on the extracted input of A for session s(i) in the same manner as explained

above for S. Let x
s(i)
A denote the extracted input of A. Let x

s(i)
H denote the input of the honest
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party in session s(i). Let O be the output that M receives from the trusted party. Now M sends

x
s(i)
H along with x

s(i)
A and O to C and receives from C a transcript for 〈P sh

1 , P sh
2 〉 and an associated

random string. M forces this transcript and randomness on A in the same manner as S does. Now,
the following two cases are possible:

1. C computed the transcript and randomness by using both the inputs - x
s(i)
H and x

s(i)
A - along

with the output O. In this case, the transcript output by C is a real transcript of an honest
execution of 〈P sh

1 , P sh
2 〉.

2. C computed the transcript and randomness by using only adversary’s input x
s(i)
A , and the

output O. In this case C simply ran the simulator Ssh on input x
s(i)
A and answered its query

with O. The transcript output by C in this case is a simulated transcript for 〈P sh
1 , P sh

2 〉.

In the first case, the (C,M) system is identical to Hi:5, while in the second case, the (C,M) system
is identical to Hi:6. By the (semi-honest) security of 〈P sh

1 , P sh
2 〉, we establish that the output of

M must be indistinguishable in both the cases, except with negligible probability. This proves
equation 11.

Proving Equation 12. We will leverage the semi-honest security of the two-party computation
protocol 〈P sh

1 , P sh
2 〉 and the extractability property of the non-malleable commitment scheme in

NMZK to prove equation 12.
Specifically, we will construct a standalone machine M∗ that is identical to M as described

above, except that it “exposes” the NMCOM in 〈P, V 〉ℓA→H to an external receiver R by relying
on the public-coin property of NMCOM, as described earlier. Note that if C produces a transcript
〈P sh

1 , P sh
2 〉 according to case 1 (as described above), then the (C,M∗, R) system is identical to Hi:5.

On the other hand, if C produces a transcript for 〈P sh
1 , P sh

2 〉 according to case 2, then the (C,M∗, R)
system is identical to Hi:6. We can now run the extractor E of NMCOM on (C,M∗) system. Note
that E will rewind M∗, which in turn may rewind the interaction between C and M∗. However,
since this interaction consists of a single message from C, M∗ simply re-uses (if necessary) the
transcript received from C in order to interact with A internally. Now, if the extracted values are
different in case 1 and case 2, then we can break the semi-honest security of 〈P sh

1 , P sh
2 〉, which is a

contradiction.

D ExdIIC =⇒ MPR IIC

The first definition on input indistinguishable computation was proposed by Micali, Pass and
Rosen [MPR06]. In their paper they presented a protocol 〈P1, P2〉, that securely computes deter-
ministic f with respect to their definition. We provide a new definition that securely computes (even
randomized) f and provides input indistinguishability properties. A very natural question to ask
here is- “Does our definition (Definition 5) restricted to the setting of deterministic functionalities
imply their definition (Definition 9)?” As it turns out that under two technical conditions this is
indeed the case. In order to show that this we first extend our definition of IIC to Extended Input
Indistinguishable Computation (ExdIIC, for short). Finally we recall the MPR IIC definition and
argue the implication.
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D.1 Extended Input Indistinguishable Computation.

We start by extending our definition of IIC to include two technical conditions. First we need
an implicit input function (possibly inefficient) that allows us to “pin down” the input of the
adversary in the interaction. Loosely speaking implicit input function can be thought of as a
statistically binding commitment that, with overwhelming probability over the coin tosses of the
honest party, implicitly determines the inputs used by the adversary. More generally, the inputs
could be statistically bound by some other primitive as well. We now provide a more formal
treatment for this intuition by extending the notion of implicit input in the real and ideal worlds.

Implicit input in the ideal world. Consider the sequence ~w′ = (w′
1, w

′
2, . . . w

′
m) of inputs used

by the adversary in its interaction with the trusted party F . For each i ∈ {1, . . . ,m} for which
the adversary did not query the trusted party we denote w′

i by ⊥. We define the random variable

ideal-extF ,S(~x, ~y, z) as the pair of ~w′ and idealF ,S(~x, ~y, z), that is the view of the adversary
along with the inputs it used in interaction with the trusted party F .

Implicit input in the real world. In order to extend the random variable realF ,S(~x0,~x1)(~x0, ~y, z)
we first recall the notion of implicit input [MPR06] adapting it to our setting.

Definition 6 (Implicit input) Let in be a function that maps the view of the adversary, denoted
realF ,A(~x, ~y, z), into a sequence ~w′ = (w′

1, w
′
2, . . . w

′
m) ∈ ({0, 1}n ∪ ⊥)m. The function in is said

to be an implicit input function for the adversarial party.

We define the random variable real-extF ,S(~x, ~y, z) as the pair of in(realF ,A(~x, ~y, z)) and
realF ,A(~x, ~y, z), that is the view of the adversary along with the inputs used by the adversary in
the protocol execution.

One shot output. We consider the protocols that have a designated output delivery message
(before which no information on the output of the protocol is supposed to be revealed). Informally,
this rules out partial release of the output and implies that if the output delivery message was not
sent then the adversaries view would always be indistinguishable. More formally, we require that
the output of the implicit input function, in, for a session i ∈ [m] in which the output delivery
message was not sent, be ⊥.

Definition 7 (Extended Input Indistinguishability Computation (ExdIIC).) Let F and
Π be the ideal trusted parted and the protocol realizing functionality f , as defined above. Protocol Π
is said to input indistinguishably compute with input independence f for P1 under concurrent com-
position if for every polynomial m = m(n), for every inputs ~x0, ~x1 ∈ ({0, 1}n)m of the honest party
P1, for every real-model non-uniform probabilistic polynomial-time adversary A controlling party
P2, there exists an ideal-model non-uniform probabilistic polynomial-time adversary S controlling
P2 such that ∀~x ∈ {~x0, ~x1}

{ideal-extF ,S(~x, ~y, z)}n∈N;z∈{0,1}∗
c
≡ {real-extΠ,A(~x, ~y, z)}n∈N;z∈{0,1}∗

Protocol Π is said to input indistinguishably compute with input independence f if it input
indistinguishably computes f both for P1 and P2.

In the above definition if the simulator is allowed to run in super-poly time then we call this
notion as the Extended Input Indistinguishability Computation with super-poly simulation (or,
ExdIIC with SPS).
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D.2 Input Indistinguishable Computation by MPR

Next we recall the IIC definition of Micali, Pass and Rosen [MPR06]. The definition below is taken
almost verbatim from [MPR06] but the notation has been slightly modified to fit the notation we
have used.

We start by recalling the notation used in [MPR06]. We consider m-concurrent execution of a
protocol (P1, P2). Each distinct execution of the protocol is called a session. We ndex the various
sessions according to the order in which they terminated.

Inputs and random tapes. For every m, we will let (~x, ~y ∈ Dm
1 ×Dm

2 denote the corresponding
vectors of inputs. That is, ~x = (x1, . . . , xm), where xi ∈ D1 is P1’s input in session i, and
~y = (y1, . . . , ym), where yi ∈ D2 is P2’s input in session i. Random tapes are of the form
~ρ1 = (ρ11, . . . , ρ

m
1 ) and ~ρ2 = (ρ12, . . . , ρ

m
2 ), where ρi1 serves as the random tape of P1 in session

i, and ρi2 serves as random tape for P2 is the same session.

Random executions. For an integer n, we let execP1,P̂2(~x, ~y; 1n) denote the random variable
obtained by (a) randomly and independently selecting random tapes ~ρ1 = (ρ11, . . . , ρ

m
1 ) for P1

and ~ρ2 = (ρ12, . . . , ρ
m
2 ) for P2; (b) for all i ∈ [m] executing the ith session of (P1, P2) with 1n

as common input, xi, and ρi1 as private inputs and random tapes for P1, and yi, ρ
i
2 as private

inputs and random tapes for P2; and (c) returning the execution so generated.

Views. Let ~e be an execution that consists of m concurrent sessions of (P1, P2). For a positive
integer i ∈ [m], let M i

1 be the sequence of messages received by the first party in session i. The
first-party view of session i in ~e, denoted viewi

1(~e), is defined to be (xi1, ρ
i
1,M

i
1). Symmetrically

defined is the second-party view of session i, viewi
2(~e).

Concurrent adversaries. An m-concurrent adversary runs m = poly(n) many executions of the
protocol, and has full control of the scheduling of messages sent and received in the various
executions. For simplicity, we assume that the adversary can only corrupt either a subset (or
all) of the P1s or a subset (or all) of the P2s (but not both). At the cost of more cumbersome
notation, our definitions can be extended to handle arbitrary corruptions, assuming each
possible participant in the protocols is assigned a unique identity. Our protocols can be
shown to be secure even in the latter (more complex) scenario.

Inputs, executions, views and outputs. Anm-concurrent adversary P̂1 may ignore the inputs,
~x, of individual sessions, and replace them with inputs chosen adaptively as a function of
the messages it receives. We assume that P̂1 has a single random tape, ~̂ρ1, which is used

throughout the m concurrent executions of (P̂1, P2). A random variable execP1,P̂2(~x0, ~y; 1
n)

is defined accordingly. For a positive integer i ∈ [m], let M1 be the sequence of messages

received by P̂1 in all m sessions of ~e. The full view of P̂1 in ~e, denoted v̂iew1(~e), is defined
to be (~x, ρ̂1,M1). The output of P̂1, is determined as a function of its full view, namely

P̂1(v̂iew1(~e)). All of the above applies symmetrically to an m-concurrent adversary P̂2.

Aborts. The adversary might “abort” a specific execution of the protocol at any point during the
interaction. This could be done by sending an ill-formed message (i.e., not according to the
protocol’s specification), or by simply refusing to continue. In such a case, the adversary is
said to have sent an ABORT message. We assume that once an ABORT message has been sent
in a session, both parties continue exchanging ABORT messages (within the corresponding
session) until the session terminates. All other concurrent sessions proceed independently of
these aborts.
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Output delivery message. The protocols that we consider in our definition will be required to
have a designated output delivery message (before which no information on the output of the
protocol should be revealed). For simplicity assume that output delivery occurs at the kth

message. Define a Boolean variable outputi1(~e) to be true if and only if the output delivery
message has been sent to party P1 in session i in ~e. outputi2(~e) is symmetrically defined.

Extended functions. To capture the unavoidable possibility of an adversary aborting the exe-
cution in the beginning/middle of an interaction, we extend the domains and ranges of f so
that they include a special ⊥ symbol. This enables any one of the parties to choose ⊥ as its
local input, thus forcing the output of the protocol to be ⊥.

Armed with the above notation we next recall the definition of implicit input as defined by
MPR. Note that our definition of implicit input (Definition 6) was slightly different from the MPR
definition.

Definition 8 (Implicit input) Let 〈P1, P2〉 be a k-round protocol, and let P̂1 be an m-concurrent

adversary. Let in1 be a function that maps the view of P̂1, denoted v̂iew1(~e), in an execution ~e of
〈P1, P̂2〉, into a sequence ~̂x = (x̂1, . . . , x̂m) ∈ (D1∪{⊥})

m. The function in1 is said to be an implicit

input function for the first party in 〈P1, P2〉 if for any i ∈ [m] such that session i is aborted output
delivery message, x̂i = ⊥. The implicit input function in2 for the second party is symmetrically
defined.

Definition 9 (Input-indistinguishable Computation (MPR IIC)) Let f : D1×D2 → R1×
R2 be a deterministic function, and let 〈P1, P2〉 be a fixed-round two party protocol. We say that
〈P1, P2〉 securely computes f with respect to the first party and implicit input function in2, if for
every polynomial m = m(n), the following conditions hold:

1. Completeness: For every (~x, ~y) ∈ (D1)
m × (D2)

m, every n ∈ N , and every i ∈ [m]:

Pr
[
P1(view

i
1(~e)) = f1(x

i, yi)
]
= 1

where ~e
$
← execP1,P2(~x, ~y; 1n).

2. Implicit Computation: For every efficient m-concurrent adversary P̂2, there exists a negligible
function negl(·), such that for every (~x, ~y) ∈ (D1)

m × (D2)
m, and every i ∈ [m]:

Pr

[
P1

(
viewi

1(~e)
)
=

{
f1(x

i, ŷi) outputi
1(~e)

⊥ ¬outputi1(~e)

]
> 1− negl(n)

where ~e
$
← execP1,P2(~x, ~y; 1n), ~̂y ← in2(v̂iew2(~e)).

3. Input Independence and Input-Indistinguishability: For every efficient m-concurrent adver-
sary P̂2, every ~x1, ~x2) ∈ (D1)

m and every ~y ∈ (D2)
m, the following ensembles are computa-

tionally indistinguishable:
{
expt

P1,P̂2(~x0, ~x1, ~y; 1
n)
}
n∈N{

expt
P1,P̂2(~x1, ~x0, ~y; 1

n)
}
n∈N

where the random variable exptP1,P̂2(~x0, ~x1, ~y; 1
n) is defined as follows:
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exptP1,P̂2(~x0, ~x1, ~y; 1
n)

(a) ~e
$
← execP1,P̂2(~x0, ~y; 1

n)

(b) ~̂y ← in2

(
v̂iew2(~e)

)

(c) If ∃i ∈ [m], for which outputi
2(~e) is true, and

f2(x
i
0, ŷ

i) 6= f2(x
i
1, ŷ

i)

then output ⊥.

(d) Otherwise, output
(
~̂y, v̂iew2(~e)

)

Secure computation with respect to the second party is symmetrically defined. We finally say
that 〈P1, P2〉 securely computes f , if there exist implicit inputs functions in1, in2 such that
〈P1, P2〉 securely computes with respect to both the first and the second party, and in1, in2.

D.3 Our ExdIIC Definition implies MPR IIC Definition

In this section we argue that our definition of ExdIIC implies the MPR IIC definition.

Theorem 3 If a protocol Π = 〈P1, P2〉, ExdIIC computes a deterministic function f (Definition 5)
then it MPR IIC computes f (Definition 9).

Proof.We want to argue that if a protocol Π = 〈P1, P2〉 ExdIIC computes f as per Definition 5
then it MPR IIC computes f as per Definition 925 as well. Here we only argue that if Π IIC
computes f with respect to the first party then it MPR IIC computes f with respect to the first
party. The argument of security with respect to the second party follows in an analogous manner.

Consider a protocol Π = 〈P1, P2〉 that is ExdIIC secure (Definition 5). Now in order to ar-
gue that the protocol Π is MPR IIC secure (Definition 9) we need to show existence of an im-
plicit input function in2, that satisfies implicit computation, and argue that the random variables

exptP1,P̂2(~x0, ~x1, ~y; 1
n) and exptP1,P̂2(~x1, ~x0, ~y; 1

n) are computationally indistinguishable.
We start by claiming that the implicit input function in specified in the definition of implicit

input in the real world in the ExdIIC definition is a valid implicit input function in2 for MPR
IIC. Observe that since the output of the in is indistinguishable from the inputs provided by the
simulator to the ideal functionality in the ideal world. From this it immediately follows that P1

obtains the correct output. Further, the condition of “one shot output” requires that for any session
in which the output delivery message has not been sent the implicit input function must be ⊥ and
therefore so must be case in the ideal world and hence P1 does not get any input in that case. This
concludes that in is indeed a valid implicit input function.

Next we argue that random variables exptP1,P̂2(~x0, ~x1, ~y; 1
n) and exptP1,P̂2(~x1, ~x0, ~y; 1

n) are

computationally indistinguishable. Lets start with exptP1,P̂2(~x0, ~x1, ~y; 1
n) and consider the follow-

ing hybrids.

H0: This hybrid corresponds exactly to the random variable exptP1,P̂2(~x0, ~x1, ~y; 1
n).

25We have modified their definition slightly to fit our notation.
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H1: Observe that the random variable execP1,P̂2(~x0, ~y; 1
n) corresponds to a protocol execution

between P1 and P̂2. A valid execution and the corresponding implicit input of P̂2 can be
equivalently obtained by sampling a value from random variable real-extΠ,P̂2

(~x0, ~y, z). Note
that hybrids H0 and H1 are identical.

H2: In this hybrid we substitute sampling from the random variable real-extΠ,P̂2
(~x0, ~y, z) to

sampling from ideal-extF ,S(~x0, ~y, z), where S is an ideal world adversary as defined in
Definition 5. Computationally indistinguishability of hybrids H1 and H2 follows from the
computational indistinguishability of real-extΠ,P̂2

(~x0, ~y, z) and ideal-extF ,S(~x0, ~y, z).

H3: In this hybrid we substitute sampling from the random variable ideal-extF ,S(~x0, ~y, z) to
sampling from ideal-extF ,S(~x1, ~y, z). Observe that S queries the ideal functionality F only

on inputs ~̂y and if ∃i ∈ [m], for which the output delivery message is indeed sent to P̂2. If
f2(x

i
0, ŷ

i) = f2(x
i
1, ŷ

i) then there is no difference in the executions. On the other hand if the
executions are different then random variable just outputs ⊥. Therefore the H3 and H2 are
identically distributed.

By a sequence of hybrids similar toH0,H1, H2 andH3, we can argue that exptP1,P̂2(~x1, ~x0, ~y; 1
n)

is computationally indistinguishable fromH4. Finally, from this it follows that exptP1,P̂2(~x0, ~x1, ~y; 1
n)

and exptP1,P̂2(~x1, ~x0, ~y; 1
n) are computationally indistinguishable.

Further observe that the above hybrid argument continues to hold even when the simulator is
allowed to run in super-poly time. This immediately allows us to conclude that ExdIIC with SPS
also implies MPR IIC security.

D.4 Relation of our IIC Definition with Super-poly simulation.

Super-poly simulation security (SPS, for short) is defined in a way very similar (though weaker) to
the standard notion of secure multi-party computation (MPC). MPC is defined by comparing what
an adversary can do in the protocol to what it can do in an ideal scenario. Loosely speaking, the
definition asserts that a secure two-party protocol (in the real model) emulates the ideal model (in
which a trusted party exists). This is formulated by saying that for every real-model adversary there
exists an ideal model adversary that can simulate an execution of the secure real-model protocol.
Note that this simulator is required to run in probabilistic polynomial time. On the other hand,
super-poly simulation (SPS) security allows this simulator to be run in super-poly time. We provide
formal definitions in Appendix E. SPS is a very natural notion of security and it is natural to ask
as to how it compares with the IIC notion that we define.

We start by arguing that these two notions even in the standalone (no composition) setting
are actually very different. We argue this by demonstrating functionalities for which IIC provides
meaningful security while SPS does not provide any security whatsoever, and vice versa.

• We start by considering the first case, i.e. a functionality for which IIC provides meaningful
security while SPS does not provide any security. Consider the very simple two party func-
tionality f , parameterized by two public keys (of a public key encryption scheme that is secure
against polynomial time adversaries but insecure against adversaries running in super-poly
time) pk0 and pk1 and two messages m0 and m1, that takes as input a public key pki where
i ∈ {0, 1}, from the first party P1 and a message mj where j ∈ {0, 1} form party P2. Finally,
on receiving these inputs it encrypts mj under the public key pki and gives it to P2. Note that
in this setting IIC provides the best security what one could hope for, i.e. an adversarial P2
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in interaction with an honest P1 can not guess i. Similarly an adversarial P1 in interaction an
honest P2 can not guess j. On the other hand, since the encryption scheme does not provide
any security against adversaries running in super-polynomial time, SPS would not provide
any security. More specifically, even a very simple protocol where P1 just sends its public key
pki directly to P2 is also secure. Off course this provides SPS security for P2 as P1 can not
guess j. Actually this protocol is also SPS secure for P1. In other words we can construct a
super polynomial time simulator that can simulate the view of an adversarial P2. Our SPS
simulator does so by obtaining the secret keys for both pk1 and pk2. It then sends m0 to the
ideal functionality which would reply with an encryption of m0 under pki. Since our simulator
has already evaluated the secret keys corresponding to pk0 and pk1 it can obtain i and send
pki to the adversarial P2.

• Next we demonstrate a functionality for which SPS provides meaningful security while IIC
does not provide any security. Consider the very simple functionality f to which on P1

provides the input x and P2 gets as output the value g(x), where g is an exponentially hard
one way permutation. SPS provides meaningful security in this context. However, since for
every output received by P2 the corresponding input is unique, IIC does not provide any
security.

We just demonstrated that IIC and SPS in themselves are different security notions each pro-
viding something that the other fails to achieve. However we do stress that the MPR notion of IIC
does not capture this difference.

E UC Security

In this section we briefly review UC security. For full details see [Can00]. A large part of this
introduction has been taken verbatim from [CLP10]. We first review the model of computation,
ideal protocols, and the general definition of securely realizing an ideal functionality. Next we
present hybrid protocols and the composition theorem.

The basic model of execution. Following [GMR89, Gol01], a protocol is represented as an
interactive Turing machine (ITM), which represents the program to be run within each participant.
Specifically, an ITM has three tapes that can be written to by other ITMs: the input and subroutine

output tapes model the inputs from and the outputs to other programs running within the same
“entity” (say, the same physical computer), and the incoming communication tapes and outgoing

communication tapes model messages received from and to be sent to the network. It also has an
identity tape that cannot be written to by the ITM itself. The identity tape contains the program
of the ITM (in some standard encoding) plus additional identifying information specified below.
Adversarial entities are also modeled as ITMs.

We distinguish between ITMs (which represent static objects, or programs) and instances of
ITMs, or ITIs, that represent interacting processes in a running system. Specifically, an ITI is an
ITM along with an identifer that distinguishes it from other ITIs in the same system. The identifier
consists of two parts: A session-identifier (SID) which identifies which protocol instance the ITM
belongs to, and a party identifier (PID) that distinguishes among the parties in a protocol instance.
Typically the PID is also used to associate ITIs with “parties”, or clusters, that represent some
administrative domains or physical computers.
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The model of computation consists of a number of ITIs that can write on each other’s tapes in
certain ways (specified in the model). The pair (SID,PID) is a unique identifier of the ITI in the
system.

With one exception (discussed within) we assume that all ITMs are probabilistic polynomial
time (PPT). An ITM is PPT if there exists a constant c > 0 such that, at any point during its
run, the overall number of steps taken by M is at most nc, where n is the overall number of bits
written on the input tape of M in this run. (In fact, in order to guarantee that the overall protocol
execution process is bounded by a polynomial, we define n as the total number of bits written to
the input tape of M , minus the overall number of bits written by M to input tapes of other ITMs.;
see [Can01].)

Security of protocols. Protocols that securely carry out a given task (or, protocol problem)
are defined in three steps, as follows. First, the process of executing a protocol in an adversarial
environment is formalized. Next, an “ideal process” for carrying out the task at hand is formalized.
In the ideal process the parties do not communicate with each other. Instead they have access to
an “ideal functionality,” which is essentially an incorruptible “trusted party” that is programmed
to capture the desired functionality of the task at hand. A protocol is said to securely realize an
ideal functionality if the process of running the protocol amounts to “emulating” the ideal process
for that ideal functionality. Below we overview the model of protocol execution (called the real-life
model), the ideal process, and the notion of protocol emulation.

The model for protocol execution. The model of computation consists of the parties running an
instance of a protocol Π, an adversary A that controls the communication among the parties, and an
environment Z that controls the inputs to the parties and sees their outputs. We assume that all
parties have a security parameter n ∈ N. (We remark that this is done merely for convenience and
is not essential for the model to make sense). The execution consists of a sequence of activations,
where in each activation a single participant (either Z, A, or some other ITM) is activated, and may
write on a tape of at most one other participant, subject to the rules below. Once the activation
of a participant is complete (i.e., once it enters a special waiting state), the participant whose tape
was written on is activated next. (If no such party exists then the environment is activated next.)

The environment is given an external input z and is the first to be activated. In its first
activation, the environment invokes the adversary A, providing it with some arbitrary input. In
the context of UC security, the environment can from now on invoke (namely, provide input to)
only ITMs that consist of a single instance of protocol Π. That is, all the ITMs invoked by the
environment must have the same SID and the code of Π.

Once the adversary is activated, it may read its own tapes and the outgoing communication
tapes of all parties. It may either deliver a message to some party by writing this message on the
party’s incoming communication tape or report information to Z by writing this information on
the subroutine output tape of Z. For simplicity of exposition, in the rest of this paper we assume
authenticated communication; that is, the adversary may deliver only messages that were actually
sent. (This is however not essential as shown in [Can04, BCL+05].)

Once a protocol party (i.e., an ITI running Π) is activated, either due to an input given by the
environment or due to a message delivered by the adversary, it follows its code and possibly writes
a local output on the subroutine output tape of the environment, or an outgoing message on the
adversary’s incoming communication tape.

The protocol execution ends when the environment halts. The output of the protocol execution
is the output of the environment. Without loss of generality we assume that this output consists
of only a single bit.
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Let EXECπ,A,Z(n, z, r) denote the output of the environment Z when interacting with parties
running protocol Π on security parameter n, input z and random input r = rZ , rA, r1, r2, . . . as
described above (z and rZ for Z; rA for A, ri for party Pi). Let EXECπ,A,Z(n, z) random variable
describing EXECπ,A,Z(n, z, r) where r is uniformly chosen. Let EXECπ,A,Z denote the ensemble
{EXECπ,A,Z(n, z)}n∈N,z∈{0,1}∗ .

Ideal functionalities and ideal protocols. Security of protocols is defined via comparing the
protocol execution to an ideal protocol for carrying out the task at hand. A key ingredient in the
ideal protocol is the ideal functionality that captures the desired functionality, or the specification,
of that task. The ideal functionality is modeled as another ITM (representing a “trusted party”)
that interacts with the parties and the adversary. More specifically, in the ideal protocol for
functionality F all parties simply hand their inputs to an ITI running F . (We will simply call this
ITI F . The SID of F is the same as the SID of the ITIs running the ideal protocol. (the PID of F is
null.)) In addition, F can interact with the adversary according to its code. Whenever F outputs
a value to a party, the party immediately copies this value to its own output tape. We call the
parties in the ideal protocol dummy parties. Let Π(F) denote the ideal protocol for functionality
F .

Securely realizing an ideal functionality. We say that a protocol Π emulates protocol φ
if for any adversary A there exists an adversary S such that no environment Z, on any input,
can tell with non-negligible probability whether it is interacting with A and parties running Π,
or it is interacting with S and parties running φ. This means that, from the point of view of the
environment, running protocol Π is ‘just as good’ as interacting with φ. We say that Π securely
realizes an ideal functionality F if it emulates the ideal protocol Π(F). More precise definitions
follow. A distribution ensemble is called binary if it consists of distributions over {0, 1}.

Definition 10 Let Π and φ be protocols. We say that Π UC-emulates φ if for any adversary A
there exists an adversary S such that for any environment Z that obeys the rules of interaction for
UC security we have EXECφ,S,Z ≈ EXECπ,A,Z.

Definition 11 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-realizes

F if Π UC-emulates the ideal process Π(F).

Hybrid protocols. Hybrid protocols are protocols where, in addition to communicating as usual
as in the standard model of execution, the parties also have access to (multiple copies of ) an ideal
functionality. Hybrid protocols represent protocols that use idealizations of underlying primitives,
or alternatively make trust assumptions on the underlying network. They are also instrumental in
stating the universal composition theorem. Specifically, in an F-hybrid protocol (i.e., in a hybrid
protocol with access to an ideal functionality F), the parties may give inputs to and receive outputs
from an unbounded number of copies of F .

The communication between the parties and each one of the copies of F mimics the ideal
process. That is, giving input to a copy of F is done by writing the input value on the input tape
of that copy. Similarly, each copy of F writes the output values to the subroutine output tape of
the corresponding party. It is stressed that the adversary does not see the interaction between the
copies of F and the honest parties.

The copies of F are differentiated using their SIDs. All inputs to each copy and all outputs from
each copy carry the corresponding SID. The model does not specify how the SIDs are generated,
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nor does it specify how parties “agree” on the SID of a certain protocol copy that is to be run by
them. These tasks are left to the protocol. This convention seems to simplify formulating ideal
functionalities, and designing protocols that securely realize them, by freeing the functionality from
the need to choose the SIDs and guarantee their uniqueness. In addition, it seems to reflect common
practice of protocol design in existing networks.

The definition of a protocol securely realizing an ideal functionality is extended to hybrid pro-
tocols in the natural way.

The universal composition operation. We define the universal composition operation and
state the universal composition theorem. Let ρ be an F-hybrid protocol, and let Π be a protocol
that securely realizes F . The composed protocol ρΠ is constructed by modifying the code of each
ITM in ρ so that the first message sent to each copy of F is replaced with an invocation of a new copy
of Π with fresh random input, with the same SID, and with the contents of that message as input.
Each subsequent message to that copy of F is replaced with an activation of the corresponding
copy of Π, with the contents of that message given to Π as new input. Each output value generated
by a copy of Π is treated as a message received from the corresponding copy of F . The copy of
Π will start sending and receiving messages as specified in its code. Notice that if Π is a G-hybrid
protocol (i.e., ρ uses ideal evaluation calls to some functionality G) then so is ρΠ.

The universal composition theorem. Let F be an ideal functionality. In its general form,
the composition theorem basically says that if Π is a protocol that UC-realizes F then, for any F-
hybrid protocol ρ, we have that an execution of the composed protocol ρΠ “emulates” an execution
of protocol ρ. That is, for any adversary A there exists a simulator S such that no environment
machine Z can tell with non-negligible probability whether it is interacting with A and protocol ρΠ

or with S and protocol ρ, in a UC interaction. As a corollary, we get that if protocol ρ UC-realizes
F , then so does protocol ρΠ. 26

Theorem 4 (Universal Composition [Can01].) Let F be an ideal functionality. Let ρ be a
F-hybrid protocol, and let Π be a protocol that UC-realizes F . Then protocol ρΠ UC-emulates ρ.

An immediate corollary of this theorem is that if the protocol ρ UC-realizes some functionality
G, then so does ρΠ.

UC Security with Super-polynomial Simulation We next provide a relaxed notion of UC
security by giving the simulator access to super-poly computational resources. The universal com-
position theorem generalizes naturally to the case of UC-SPS, the details of which we skip.

Definition 12 Let Π and φ be protocols. We say that Π UC-SPS-emulates φ if for any adversary
A there exists a super-polynomial time adversary S such that for any environment Z that obeys
the rules of interaction for UC security we have EXECφ,S,Z ≈ EXECπ,A,Z .

Definition 13 Let F be an ideal functionality and let Π be a protocol. We say that Π UC-SPS-

realizes F if Π UC-SPS-emulates the ideal process Π(F).

26The universal composition theorem in [Can01] applies only to “subroutine respecting protocols”, namely protocols
that do not share subroutines with any other protocol in the system.
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Figure 1: Relationship among different definitions in the concurrent setting.
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F An Example Functionality.

To demonstrate the generality of our definition, we provide an example of a functionality for which
our definition provides meaningful security guarantees which neither the definition in [MPR06] nor
the SPS definition provide.

The first party holds a message m and two public keys (pk0, pk1) as input. The second party
simply holds a bit b as the input. The functionality outputs Epkb(m) to the second party, where,
Epkb(m) denotes the encryption of m under the public key pkb. The first party gets ⊥ as the output.

A protocols satisfying our IIC notion would guarantee that the message m remains semantically
secure. This is because to the (PPT) simulator in the ideal world, Epkb(m) and Epkb(m

′) are
indistinguishable. However the notion of Micali et. al. [MPR06] does not provide any meaningful
guarantees since the functionality is randomized. Further, a simulator running in super-polynomial
time in the ideal world might break the security of the encryption scheme E and recover the message
m. Hence, the SPS notion doesn’t provide any meaningful guarantees as well.

G Extending the proof for IIC

In this section we argue that the protocol described in Section 3 also achieves input indistinguisha-
bility. Next we formally state our theorem and then give an outline of the proof.

Theorem 5 Assume the existence of constant round semi-honest OT and collision resistant hash
functions.Then for every well-formed functionality27 F , there exists a constant-round protocol that
input indistinguishably compute F under concurrent composition.

Note that for arguing that our protocol achieves input indistinguishability we need to argue
that for every input vectors ~x0, ~x1 ∈ ({0, 1}n)m (where m is the number of concurrent sessions)
of the honest party P1 and for every real-model adversary A controlling party P2, there exists an
ideal-model adversary S (referred to as the simulator) controlling P2 such that, the view of the
adversary and the simulator are computationally indistinguishable. Note that in this definition the
simulator additionally gets ~x0 and ~x1 as inputs. Furthermore, the honest party uses only one of
them.

Simulator. In Section 4.2 we argued that the protocol described in Section 3 achieves UC-SPS
security. Furthermore, we describe the simulation strategy in hybrid H1/2 in full detail. Lets refer
to this simulation strategy by SSPS. Note that this is a poly-time hybrid. Furthermore, all hybrids
before this hybrid also run in poly-time. Recall that, in this hybrid the simulator’s interaction with
the adversary, is referred to as the main thread. Furthermore, the simulator in the main thread
execution makes multiple calls to the Lookup function. These function calls are referred to as look-
ahead threads. The simulator does not use the inputs of honest party in the main thread. However,
it uses honest party inputs in the look-ahead threads. The look-ahead threads are executed to help
the simulator in extraction of preamble secrets and the inputs used by the adversary. We now
describe our IIC simulator SIIC . Our simulator SIIC , for every Lookup function call made by SSPS

makes two Lookup calls in parallel. One with the honest party input as ~x0 and the other with the
honest party input as ~x1. Observe that since the honest part input is either ~x0 or ~x1 the simulation
would succeed in extraction in at least one set of the look ahead threads.

27See [CLOS02] for a definition of well-formed functionalities.
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Another very crucial difference is that that our simulation strategy SSPS was required to extract
with only a specified probability (that was noticeably less than 1). However, we need our simulator
to succeed in extraction with an overwhelming probability. Recall than whenever SSPS makes
a Lookup function call it is in fact making k function calls, where k is an appropriately defined
parameter. To deal with this, we modify SSPS and our simulator SIIC keeps on making lookup
calls (instead of a fixed number k) till the point that the database Databaseσ (resp., Databasex)
has not been populated with the preamble secret (resp., adversary’s input). Roughly speaking, the
simulator SIIC makes potentially unbounded number of Lookup function calls, and in doing so it
avoids outputting Rewind Abort, except with negligible probability.

Now we need to argue that SIIC simulates the view of the adversary indistinguishably. The
proof of indistinguishability for SIIC is very similar to the proof of indistinguishability for SSPS

but it deviates significantly in three respects.
Firstly, our simulator can potentially make unbounded number of Lookup function calls and

therefore we need to explicitly argue that the running time of our simulator is bounded. Towards
this end we will argue that every time a new set of Lookup functions is started the simulator
continues to run in expected polynomial time. Let p be the probability that the adversary sends a
special message (that is being considered) in the main thread. Since whenever a Lookup function
call is made, the look-ahead thread is identical to the main thread, therefore the adversary will
send a special message in the look ahead thread with probability p as well. Therefore, the expected
number of look ahead threads is going to be p2(

∑
1 + 2(1 − p) + 3(1 − p)2 . . .) = 1. Hence the

overall expected running time is also going to be bounded.
Secondly, our simulator SIIC needs to succeed with overwhelming probability even though SSPS

was required to extract with only a specified probability (that was noticeably less than 1). Recall
that SSPS failed in simulation only when it had to output Rewind Abort. It is argued intuitively,
in Section 4.2 and in full detail in Section B that the output of the simulator SSPS and adversary
are indistinguishable except when the simulator outputs Rewind Abort. However, our simulator
SIIC outputs Rewind Abort only with a negligible probability, therefore we can argue that SIIC
succeeds with overwhelming probability.

Finally, even though our simulator runs in expected polynomial time, when reducing indistin-
guishability of the hybrids to cryptographic assumption we will need to construct adversaries that
actually run in strict polynomial amount of time. This however can be easily achieved using an
argument very similar to [GK96]. Consider a distinguisher that distinguishes two hybrids with a
probability p(k) running in time t(k). Then we can truncate the executions of the distinguisher
after time 2t(k) · p(k). By an averaging argument it follows that the truncated distinguisher still
distinguishes with probability 1/2p(k). We can therefore use this truncated adversary in the argu-
ments.

With the above key differences the originally presented proof for SPS also works for arguing
IIC. Therefore our simulator indistinguishably simulates the view of the adversary.
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