
On Tractable Parameterizations of Graph
Isomorphism

Adam Bouland1 and Anuj Dawar2 and Eryk Kopczyński3

1 Massachusetts Institute of Technology, Cambridge, MA, USA
2 University of Cambridge, UK
3 University of Warsaw, Poland

Abstract. The fixed-parameter tractability of graph isomorphism is an
open problem with respect to a number of natural parameters, such
as tree-width, genus and maximum degree. We show that graph isomor-
phism is fixed-parameter tractable when parameterized by the tree-depth
of the graph. We also extend this result to a parameter generalizing both
tree-depth and max-leaf-number by deploying new variants of cops-and-
robbers games.

1 Introduction

The fixed-parameter complexity of the graph isomorphism problem (GI) remains
open with respect to a number of interesting graph parameters. Several param-
eterizations of graph isomorphism are known to yield tractable algorithms. For
instance, graph isomorphism is known to be fixed-parameter tractable in the
following parameters: size of the smallest feedback vertex set [17], tree-distance
width [28], largest multiplicity of an eigenvalue of the adjacency matrix [8], size
of the largest color class (in the case of colored graph isomorphism) [2][10][1],
and maximum size of a simplicial component (in the case of chordal graph iso-
morphism) [27].

On the other hand, many natural parameterizations of the problem are known
to produce algorithms which run in time O(nf(k)), which places them in XP,
but for which fixed-parameter tractability remains open. For instance, graph
isomorphism is in XP when parameterized by the size of the smallest excluded
minor [25][14] or topological minor [13] of a graph . This generalizes a long line of
previous results that GI is in XP with respect to a number of other parameters,
including genus [22], maximum degree [20], and tree-width [4]. It should be
pointed out that in none of these cases do we know of any hardness result that
indicates the problem is not fixed-parameter tractable.

One particular open question is whether or not GI is fixed-parameter tractable
when parameterized by tree-width or path-width. In the present paper, we show
that the problem is fixed-parameter tractable when parameterized by the tree-
depth of a graph. The tree-depth of a graph measures how close a graph is to
a star, in much the same way that tree-width measures how close a graph is to
a tree. This parameter is natural in the context of sparse matrix factorization

[15][21] and descriptive complexity [7]. Our proof yields a natural generalization
to a parameter we introduce and call generalized tree-depth, which generalizes
the parameter max-leaf-number as well.

The key idea in our proof is to use a characterization of tree-depth in terms
of cops and robbers games in order to show that in any graph G of tree-depth
at most d, the number of vertices that can serve as “roots” of a minimum height
tree-depth decomposition is bounded by a function of d. This allows us to create
an automorphism-invariant tree-depth decomposition algorithm based on Lin-
dell’s algorithm for logspace tree canonization [18].

2 Preliminaries

A language Q over an alphabet Σ is said to be fixed-parameter tractable with
respect to parameterization κ : Σ∗ → N, if it can be decided on input x in time
O(f(k)nc) where n = |x|, c is a fixed constant, k = κ(x) is the value of the
parameter and f is an arbitrary function.

The max-leaf-number of a graph G is the maximum number of leaves in a
spanning tree of G.

The tree-depth of a graph is defined recursively as follows:

Definition 1. Let G be a graph with connected components G1, ..., Gp. Then
the tree-depth of G, denoted td(G), is given by

td(G) =

1 if |V (G)| = 1
1 + min

v∈V (G)
td(G− v) if p = 1 and |V (G)| > 1

max
i=1...p

td(Gi) otherwise

For example, the tree-depth of a star is 2, and the tree-depth of the complete

graph Kn is n. In some sense tree-depth measures how close a graph is to a star.
Tree-depth occurs naturally in descriptive complexity, in which it was recently
shown that monadic second order logic and first order logic coincide on a class
of graphs C iff C has bounded tree-depth [7].

An alternative definition of tree-depth is also helpful for our results. The
height of a rooted tree T is the length of the longest path from the root to a
leaf. The closure of a rooted tree T , denoted clos(T), is the graph obtained by
adding edges from each vertex v to all vertices w which lie on a path from the
root to v. Then the tree-depth of a connected graph G is the minimum height
of a tree such that G is a subgraph of clos(T) [24].

Consider a connected graph G and a tree T over V (G) such that G is a
subgraph of clos(T). We will call such a tree T a tree-depth decomposition of G
if it obeys the following property: for every rooted subtree of T , the subgraph
of G induced by the subtree is connected. Here by a rooted subtree, we mean a
subtree induced by a single node v and all of its children in T . It can be easily
shown that a graph has tree-depth ≤ d iff it has a tree-depth decomposition
of depth d. The root of the decomposition is the root of the tree T . Note that

2

if G is disconnected, we define the tree-depth decomposition as a rooted forest
consisting of the tree-depth decompositions of its connected components.

Tree-depth is well-behaved with respect to the operation of taking minors.
Also, we can test if a graph has tree-depth d efficiently:

Claim 2. If H is a minor of G, then td(H) ≤ td(G) [24].

Claim 3. Given a graph G, we can find the tree-depth of G in time O(f(d)n2)
for some computable function f , where d = td(G) [23].

We note that the tree-depth of a graph gives a lower bound on the vertex cover
number of G. To see this, note that any graph of vertex cover number k has a
depth k+1 decomposition tree T taken as follows: Order the vertices of a minimal
vertex cover arbitrarily and place them in a path. At the bottom of the path,
attach all remaining nodes of the graph as leaves. This obeys E(G) ⊆ clos(T)
by the definition of vertex cover, so for any graph G, td(G) ≤ vcn(G) + 1.

Likewise, it can be easily shown that the path-width of a graph is a lower-
bound on its tree-depth [3]. So if GI were FPT when parameterized by path-width,
then it would trivially also be FPT parameterized by tree-depth. However GI is
not known to be fixed-parameter tractable when parameterized by path-width.

3 Games

Suppose that G is a connected graph of tree-depth d. We will show that the
number of vertices in G which can serve as a root of a minimal tree-depth
decomposition is bounded as a function of d. In order to prove this result, we
will descibe yet another equivalent definition of tree-depth in terms of cops and
robbers games. Such games are frequently used in the context of logic and graph
isomorphism, e.g. [5]. The bound we obtain on the number of roots will play a
crucial role in our isomorphism algorithm.

3.1 A Characterization of Tree-Depth in Terms of
Cops-and-Robbers

We define a cops-and-robbers game in which the cops do not move once they
land on the graph. Thus, the number of moves in the game is limited by the
number of cops. We make this precise below.

Consider the following game played on a connected graph G = (V,E). The
game is played by two players, called Cop and Robber. The Cop player controls
d cops, and the Robber player controls one robber.

First, Robber places the robber on any vertex in G, and announces his po-
sition. Cop announces a position where he will place his next cop. In response,
the robber can move along a path in the graph to another position, including
the one announced by Cop, but he cannot move through positions previously
occupied by cops.

3

The Cop player wins if, at the end of the move, the robber is on the vertex
just occupied by a cop, and the Robber player wins if all d cops are on the graph
and the robber is still not caught. This game is known to capture tree-depth
[11][12] in the following way:

Claim 4. For a connected graph G, td(G) is equal to the least d for which the
Cop player has a winning strategy.

Proof. If td(G) = d, consider the following strategy for the Cop player: place the
first cop on the root r of the decomposition. Place the next cop on the root of
the depth d− 1 decomposition of the connected component of G− r containing
the robber. Repeat. Clearly this is a winning strategy for the Cop player with
d cops. On the other hand, given a winning strategy γ with d cops, construct a
decomposition by taking the root of each (sub)decomposition to be the position
played by γ if the robber is in that connected component. Since γ uses d cops,
the depth of the resulting tree T is at most d, and we will have E ⊆ clos(T)
because γ is a winning strategy. ut

Hence a vertex v is a root of a tree-depth decomposition of minimal depth iff
the Cop player has a winning strategy using td(G) cops which places the first
cop at v. Let root(G) be the set of all roots. In the rest of this section we
will provide a self-contained proof that |root(G)| is bounded by a function of
d = td(G). As pointed out by an anonymous referee, this fact also follows easily
from a recent paper by Dvor̆ák, Giannopoulou and Thilikos [6]. These authors
showed that the class Cd = {G : td(G) ≤ d} is characterized by a finite set of

forbidden subgraphs, each with at most 22
d−1

vertices. Now consider a graph
G of tree-depth d. Since G /∈ Cd−1, there exists a subgraph H of G containing

at most 22
d−2

vertices with td(H) = d. If γ is a winning strategy for Cop on
G using at most d cops, then γ must make its first move in H. Indeed, if γ
makes its first move outside of H, then the robber player can move into H,
and subsequently play an optimal Robber strategy for H, forcing γ to use d+ 1

cops to win. Therefore root(G) ⊆ H, so |root(G)| ≤ 22
d−2

. We conjecture that
|root(G)| = 2O(d), but for our purposes it is enough to show that it is bounded.

3.2 Components and Isomorphisms

Consider the state of the game after k rounds of play. Let B be the set of k
vertices occupied by cops so far.

We say that C ⊆ V is a component of V −B if there are no edges between C
and V −C−B, i.e., the Cops have blocked all exit routes from C. We say that two
components C1 and C2 are isomorphic iff there is a bijection φ : C1∪B → C2∪B
such that φ(b) = b for b ∈ B, and E(v1, v2) iff E(φ(v1), φ(v2)).

3.3 Counting Components

We will show that for a connected graph G, td(G) and root(G) are unaffected by
removing “extra” copies of isomorphic components which arise in the course of

4

the game. This will be the key fact which allows us to bound the size of root(G)
as a function of the tree-depth.

Lemma 5. Let G be a connected graph with td(G) = d. Let B ⊆ V be a set
of k vertices, and let C1, C2, . . . , Cu be isomorphic components of V −B, where
u ≥ d+ 1. Let G′ be the graph obtained from G by removing all the components
Ci for i > d+ 1. Then td(G) = td(G′) and root(G) = root(G′).

Proof. Without loss of generality we can assume that for each b ∈ B there is an
edge between b and Ci.

Let ρ be a Robber strategy which forces Cop to use d cops. We will construct
a Robber strategy ρ′ based on ρ which forces the Cop player to use at least d
cops on G′. This will show td(G′) ≥ d. Since G′ is a subgraph of G, td(G′) ≤ d,
so this will show the tree-depth is unaffected by removing the extra copies of
isomorphic components.

Let γ′′ be a Cop strategy on G′. We will play γ′′ against ρ′, and construct ρ′

to force γ′′ to use d cops.
We start by having ρ′ place the robber on an arbitrary vertex of the graph

(it does not matter since the graph is connected). Then we construct ρ′ in two
stages. The basic idea is to mirror the strategy ρ as closely as possible. We will
only have to change the strategy if γ′′ plays in a Ci for i ≥ d + 1 (because we
deleted these vertices), or once B has been filled with cops.

The first stage begins, and ends iff cops have been placed on all vertices of
B, and the robber has moved to a Ci. This ensures that throughout this stage,
the robber can move between all copies of Ci in G′ which do not contain cops.
We now have ρ′ play the same move that ρ would play in G, unless ρ plays in a
Ci for i ≥ d+ 1. If this occurs, we mimic the response of ρ via the isomorphism
in one of the copies of Ci in G′ which currently does not contain any cops. Since
any Cop player on G can place cops in at most d copies of Ci, and we have kept
d copies of the Ci in G′, we will never run out of copies to mirror this strategy.

If γ′′ never exits the first stage, it must use at least d cops to win. Indeed if
the robber is connected to the Ci’s which contain no cops, the robber can always
move between these Ci’s via B, so γ′′ loses. If the robber is confined outside the
Ci’s, γ

′′ must use at least d cops because ρ′ is identical to ρ once it is confined
outside the Ci’s.

If γ′′ does place cops on all of B, with the robber confined to a Ci, we proceed
to the second stage. In this stage we simply directly copy the behavior of ρ on an
isomorphic copy of Ci as before. We can easily see that ρ′ forces the Cop player
to use d cops, and hence td(G) = td(G′).

Now to show root(G) = root(G′), consider any winning Cop strategy γ′

induced by a winning strategy γ on G. If γ makes its first move on a Ci, then
we could remove this Ci in constructing G′ to create a winning strategy for the
Cop player on G′ using d−1 cops, which is a contradiction. Hence root(G) must
be disjoint with Ci for all i. Therefore γ must place its first cop outside all Ci,
and so does γ′. Therefore root(G) ⊆ root(G′). We can likewise reverse this entire
argument by considering adding copies of isomorphic components to G′ to obtain

5

a larger graph G, assuming G′ has at least d copies of the component already.
By constructing the Cop and Robber strategies for G based on the strategies for
G′, we can see that root(G′) ⊆ root(G). Thus root(G) = root(G′). ut

3.4 Measuring components

Let G be an arbitrary graph. As long as we can find a set B ⊆ V (G) such that
the graph G − B contains more than d + 1 isomorphic components, we remove
the extra components by Lemma 5. Ultimately we obtain a minimal graph G′

where each component appears at most d + 1 times. From Lemma 5 we know
that root(G′) = root(G). Thus, we have only to show that |root(G)| is bounded
for minimal graphs.

Let γ be winning a strategy for the Cop player which uses at most d cops,
and let ρ be any robber strategy. Then the following holds.

Lemma 6. Let G be a connected graph which is minimal as described in Lemma
5. Let B be the set of vertices blocked by cops after i rounds of play between any
such γ and ρ. Then there exists a function f such that the component of G−B
containting the robber consists of at most f(d, i) vertices.

Proof. The proof follows by reverse induction on i. For i = d we know that
Robber has been caught, so f(d, d) = 0.

For i < d, let v be the vertex where γ puts its next cop. Let B′ = B ∪ {v}.
From the inductive assumption we know that each component of V − B′ has

size at most s = f(d, i+ 1). Up to isomorphism there are at most S = 2(s
2)(i+1)

possible components of size s. Since the graphG is minimal, each of them appears
at most d+ 1 times. Thus, f(d, i) ≤ 1 + (d+ 1)S. ut

Thus, a minimal graph of tree-depth d has at most f(d, 0) vertices, and we
have proven the following lemma:

Lemma 7. If a connected graph G has tree-depth d, then the number of roots
of tree-depth decompositions of G of minimal depth is at most f(d) for some
function of d.

4 Isomorphism Algorithm

We will now create an algorithm which shows that graph isomorphism param-
eterized by tree-depth is in FPT. The basic idea is to extend the logspace al-
gorithm for tree isomorphism developed by Lindell [18] to test for isomorphism
over tree-depth decompositions.

Lindell’s algorithm works by establishing an ordering < on the set of con-
nected trees [18]. In his algorithm, two trees S and T obey S < T if

1. |S| < |T |, where |S| denotes the number of nodes in S.
2. |S| = |T | and #s < #t, where #s is the number of children of the root of S

6

3. |S| = |T |, #s = #t = k and (S1, S2, ..., Sk) < (T1, T2, ..., Tk) lexicographi-
cally, where we inductively assume that S1 ≤ S2 ≤ ... ≤ Sk and T1 ≤ T2 ≤
... ≤ Tk are the ordered subtrees of S and T obtained by removing the roots
of S and T

Clearly S ∼= T iff neither S < T nor T < S [18].
We will extend this ordering on trees to an ordering of the tree-depth decom-

positions. To test for isomorphism, we will find a minimal, canonical decompo-
sition of each graph and compare the decompositions.

Recall that a tree-depth decomposition of a connected graph G consists of
a rooted tree T over V (G) such that E(G) ⊆ E(clos(T)). A tree-depth decom-
position also has the property that any induced subgraph of G obtained by the
vertices of a rooted subtree of T is connected.

We say that two decompositions T1 ofG1 and T2 ofG2 are equivalent, denoted
T1 ' T2, if there is an isomorphism φ between T1 and T2 which preserves the
edges of the underlying graphs as well, i.e. both (u, v) ∈ E(T1)⇔ (φ(u), φ(v)) ∈
E(T2) and (u, v) ∈ E(G1) ⇔ (φ(u), φ(v)) ∈ E(G2). In particular, T1 ' T2
implies G1

∼= G2.
Suppose that we are given a connected graph G with td(G) = d. Given a

tree-depth decomposition T of G, define a sub tree-depth decomposition of a
graph G′ induced by a subtree of T ′ of T to consist of the following: the tree T ′

over V (G′) with root t′, as well as the path P from the parent of t′ to the root
of T . If td(G′) = d′, then P consists of vertices r = r1, r2, ...rd−d′ , where r is the
root of T and rd−d′ is the parent of t′ in T . See Figure 1 for clarification.

We inductively define an ordering of sub tree-depth decompositions of G
as follows. Let S and T be two depth d′ subdecompositions of GS and GT ,
respectively, with roots s and t, respectively, and which share the same path P
defined above. Note S and T must share the same path P to be comparable.
Also note that when considering the entire graph, P is empty so this defines an
ordering on all tree-depth decompositions.

We say that the subdecomposition S of GS is less than the subdecomposition
T of GT , denoted S < T , if one of the following conditions is satisfied:

1. |GS | < |GT |
2. |GS | = |GT | and #s < #t, where #x is the number of connected components

in GX − x.
3. |GS | = |GT |, #s = #t, and (E(r1, s), E(r2, s), ..., E(rd−d′ , s)) <

(E(r1, t), E(r2, t), ..., E(rd−d′ , t)) lexicographically, where E(x, y) = 1 if there
is an edge from x to y and 0 otherwise. If d′ = d this condition is trivially
satisfied.

4. |GS | = |GT |, #s = #t, E(ri, s) = E(ri, t) ∀i = 1...(d− d′) and

(S1, S2, ..., Sk) < (T1, T2, ..., Tk)

lexicographically, where we inductively assume S1 ≤ S2 ≤ ... ≤ Sk and
T1 ≤ T2 ≤ ... ≤ Tk are the connected components of GS − s and GT − t,
ordered by their subdecompositions induced by S and T . (Here S ≤ T means
S < T or S ' T).

7

Fig. 1. A sub-decomposition of G′ with root s and components S1...Sk of G′ − s.

This ordering has several nice properties. The following can be shown by
simple induction on the tree-depth:

Claim 8. Suppose G and H are connected graphs, both of tree-depth d and the
same size. Let S be a minimal tree-depth decomposition of G and T a minimal
tree-depth decomposition of H according to the above ordering. Then if neither
S < T nor T < S, then S ' T and G ∼= H.

By condition (4) of the ordering, we know that to find the minimal decom-
position of G rooted at s, we simply need to find the minimal decompositions
of each of the connected components of G − s. This forms the basis of a recur-
sive algorithm to compute the minimum depth-d decomposition of a graph G,
Algorithm 1. With this in hand, we can show that Algorithm 2 correctly tests
for isomorphism.

Algorithm 1: Recursive construction of a minimal tree-decomposition

Input: A connected graph G′ of tree-depth d′ along with a specified path
P = r1...rl.

Output: A sub tree-depth decomposition S of G′ of depth d′ which is minimal
with respect to < for P .

if td(G) = 1 then
Output the trivial decomposition of the graph.

else
Find R = {v ∈ V (G′) : td(G′ − v) = d− 1}.
Remove those elements r ∈ R which do not have minimal values of
(E(r1, r), E(r2, r), ..., E(rl, r)) or #r.
foreach r ∈ R do

Compute minimal decompositions of S1...Sk, the connected components
of G′ − r, using this algorithm and appending r path P .
Order S1...Sk by < using k log k comparisons.

end
Find which r ∈ R produces the decompositions (S1, ...Sk) which are minimal
in lexicographic order, and output the decomposition obtained by making
this the root of the decomposition.

end

8

Algorithm 2: An isomorphism algorithm parameterized by tree-depth

Input: Two graphs G and H.
Output: Whether or not G ∼= H.
Check that td(G) = td(H) = d, if not output that G and H are not isomorphic.
Compute S, a minimal decomposition of G , and T , a minimal decomposition of
H using Algorithm 1 with an empty P .
If neither S < T nor T < S, output G ∼= H.
Else output that G and H are not isomorphic.

Claim 9. If G ∼= H are connected graphs, then the decompositions produced by
Algorithm 1 on G and H are isomorphic.

Proof. Follows because all steps in Algorithm 1 are isomorphism invariant. ut

Corollary 10. Algorithm 2 correctly tests for isomorphism over connected graphs.

Theorem 11. Graph isomorphism is fixed-parameter tractable in tree-depth.

Proof. We will upper bound T (n, d), the runtime of Algorithm 1 on a connected
graph G with n vertices and tree-depth d.

By Claim 3 we can check if td(G) = d − 1 in time f(d − 1)n2, so finding
R = {v ∈ V (G′) : td(G′ − v) = d− 1} can be done in time f(d)n3.

Next we reduce the size of R to only those vertices with minimal #r. For
each r, computing #r can be done in time Σi=1...#rO(|Si|2) ≤ O(n2). Hence
this step takes time O(g(d)n2), since by Lemma 7 |R| ≤ g(d).

Now the algorithm recurses. By Lemma 7 it will recurse on at most g(d)
different roots. For each of these roots r, if k = #r then it will compute a
decomposition of each of the connected components S1...Sk of G− r, which will
take time ≤ Σk

i=1T (|Si|, d− 1). To order these decompositions by <, it will then
make k log k comparisons of the decompositions using <, each of which takes
time O(n2), and subsequently make g(d)k comparisons in time g(d)kn2 between
these sorted decompositions to find which of the g(d) roots is minimal.

This yields a recursion relation for the run time given by

T (n, d) ≤ f(d)n3 + g(d)n2 + g(d)

{(
k∑

i=1

T (|Si|, d− 1)

)
+O(k log kn2)

}
(1)

One can easily check that a run time of T (n, d) = h(d)n3 log(n) suffices. Plugging
this ansatz into the recursion relation, and simplifying using the convexity of
n3 log(n) and the fact that k ≤ n, one can see that

T (n, d) ≤ (f(d) + g(d))n3 log(n) + g(d)
{
h(d− 1)n3 log(n) +O(n3 log(n))

}
(2)

Taking h(d) = f(d) + g(d) (h(d− 1) +O(1)), we have T (n, d) ≤ h(d)n3 log(n).
By setting h(0) = 1, this provides an inductive definition of h as a function.

9

Therefore Algorithm 1 runs in time O(h(d)n3 log(n)). Since checking if two
decompositions are equivalent takes O(n2) time (assuming the orderings of the
sub-decompositions of each level are recorded), Algorithm 2 correctly decides
isomorphism over connected graphs in time O(h(d)n3 log(n)). This algorithm
extends easily to disconnected graphs by the convexity of n3. ut

5 Generalized Tree-Depth

We will now define a new parameter which generalizes both tree-depth and max-
leaf-number. Recall that the max-leaf-number of a graph G, denoted mln(G), is
the maximum number of leaves in a spanning tree of G. A crucial fact is that
if mln(G) = k, then the number of vertices of degree 6= 2 in G is bounded by a
function of k. This can be easily used to show that graph isomorphism is fixed-
parameter tractable in max-leaf-number, by simply trying all bijections between
vertices of degree 6= 2 and noting that all other vertices lie on simple paths.

Claim 12 (From Kleitman and West [16] via [9]). If G is a graph with
mln(G) ≤ k, then G is a subdivision of a graph H with at most 4k− 2 vertices.

Low max-leaf-number means that the graph becomes a collection of paths
after removing a small number of vertices. Low tree-depth, on the other hand,
means that the graph quickly degenerates to an empty set after alternately
removing vertices and considering disjoint components separately. Following the
example of max-leaf number, we can generalize tree-depth by allowing a broader
class of graphs as leftovers at the end of k-cops and robbers game. Previously, we
said that the Cop player wins the game if a cop lands on the robber. Consider a
modified version of the game, in which Cop wins if the robber is confined to either
a simple path with cops at both endpoints or a simple cycle. The endpoints of
this path (which must be occupied by cops) may be connected to other vertices
of the graph, but the other points of the path may not have any edges to the
rest of the graph. To win by confining the robber to a cycle, the cycle must be
disconnected from the rest of the graph.

Definition 13. A graph G has generalized tree-depth d, denoted gtd(G) = d,
iff d is the least k such the Cop player has a winning strategy in the modified
k-cops and robber game described above.

It is clear that the generalized tree-depth of a graph is a lower bound on its
tree-depth, since a single vertex is a simple path of length zero. Furthermore, this
parameter bounds from below the max-leaf-number, because the Cop player has
a winning strategy using 4mln(G)−2 cops by placing places cops on all vertices of
degree 6= 2. Therefore for any graph G, gtd(G) ≤ 4mln(G) and gtd(G) ≤ td(G),
so this parameter generalizes both tree-depth and max-leaf-number.

We can now extend our arguments from the previous sections to show that
graph isomorphism is fixed-parameter tractable in the generalized tree-depth.
First, note that having generalized tree-depth d is equivalent to having a tree-
depth decomposition of depth d as before, except that the leaves of the tree

10

can now consist of simple paths. The simple cycles, being disconnected from the
graph, are omitted from the decomposition and are handled separately later.
The endpoints of the path in each leaf are specified in the decomposition. By
the same arguments as in [24], Cd = {G : gtd(G) ≤ d} is closed under taking
minors for d ≥ 2, while C0 and C1 have trivial poly-time membership tests,
yielding a (non-constructive) FPT algorithm to compute generalized tree-depth
in time O(f(d)n3) by the Robertson-Seymour Theorem [26][19].

Next, note that our arguments bounding the number of roots of a decompo-
sition also carry through. When counting the number of vertices in each com-
ponent, we count only the endpoints of the paths in the leaves, since only these
vertices can connect to the rest of the graph. These specified endpoints are con-
sidered the roots of the leaf’s decomposition. This ensures that the base case of
Lemma 6 is still bounded above by two. We again obtain that the number of
roots of a graph of generalized tree-depth d is bounded by a function g(d). The
fact that we handle simple cycles separately is crucial to keeping this bound.

We can likewise extend Lindell’s tree isomorphism algorithm to an FPT al-
gorithm for generalized tree-depth exactly as before. To do so, we simply modify
our ordering on decompositions to take in to account the number of nodes in
the path of each leaf, and handle the simple cycles separately. This yields an
algorithm to test for isomorphism in O(h(d)n4) time, where d is the generalized
tree-depth and h(d) is a function which is not necessarily computable, as we
have used the Robertson-Seymour theorem. We have thus shown:

Theorem 14. GI is fixed-parameter tractable in generalized tree-depth.

6 Conclusion

We have shown that graph isomorphism is fixed-parameter tractable when pa-
rameterized by generalized tree-depth. An open question is whether or not GI is
FPT in the path-width of the graph. Unlike in the case of tree-depth, the number
of valid path-width decompositions of a graph is exponential in the number of
vertices, so our approach does not immediately generalize.

Acknowledgments. Research by Adam Bouland was partially supported by
the NSF Graduate Research Fellowship under grant no. 1122374 and by a Mar-
shall Scholarship. Research by Anuj Dawar was partially supported by EPSRC
grant EP/H026835. Research by Eryk Kopczyński was partially supported by
ESF Research Networking Programme GAMES and by the Polish National Sci-
ence Centre (grant N N206 567140).

References

1. Arvind, V., Das, B., Johannes, K., Toda, S.: Colored Hypergraph Isomorphism is
Fixed Parameter Tractable. ECCC 93 (2009)

11

2. Babai, L.: Monte-Carlo algorithms in graph isomorphism testing. Tech. Rep. DMS
79-10, Université de Montréal pp. 1–33 (1979)

3. Bodlaender, H., Hafsteinsson, H., Gilbert, J.R., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18,
238–255 (1995)

4. Bodlaender, H.L.: Polynomial Algorithms for Graph lsomorphism and Chromatic
Index on Partial k-Trees. Journal of Algorithms 11(4), 631–643 (1990)

5. Cai, J.Y., Fürer, M., Immerman, N.: An Optimal Lower Bound on the Number of
Variables for Graph Identification. Combinatorica 12(4), 389–410 (1992)

6. Dvor̆ák, Z., Giannopoulou, A., Thilikos, D.M.: Forbidden graphs for tree-depth.
European Journal of Combinatorics 33(5), 969–979 (2012)

7. Elberfeld, M., Grohe, M.: Where First-Order and Monadic Second-Order Logic
Coincide. Arxiv preprint arXiv:1204.6291 pp. 1–15 (2012)

8. Evdokimov, S., Ponomarenko, I.: Isomorphism of Coloured Graphs with Slowly
Increasing Multiplicity of Jordan Blocks. Combinatorica 19(3), 321–333 (1999)

9. Fellows, M., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F., Saurabh, S.:
The Complexity Ecology of Parameters: An Illustration Using Bounded Max Leaf
Number. Theory of Computing Systems 45(4), 822–848 (2009)

10. Furst, M., Hopcroft, J., Luks: Polynomial-time algorithms for permutation groups.
In: Proc. FOCS 1980 pp. 36–41 (1980)

11. Ganian, R., Hlinĕný, P., Kneis, J., Langer, A., Obdrzalek, J., Rossmanith, P.: On
digraph width measures in parameterized algorithmics. In: Chen, J., Fomin, F.V.
(eds.) IWPEC 2009. LNCS, vol. 5917 pp. 185-197. Springer, Heidelberg (2009)

12. Giannopoulou, A., Hunter, P., Thilikos, D.: LIFO-search: A min-max theorem and
a searching game for cycle-rank and tree-depth. Submitted to J. Discrete Math.
(2011)

13. Grohe, M., Marx, D.: Structure Theorem and Isomorphism Test for Graphs with
Excluded Topological Subgraphs. In: Proc. STOC 2012 pp. 173–192 (2012)

14. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded
minors. In: Proc. LICS 2010 pp. 179–188 (2010)

15. Heath, M., Ng, E., Peyton, B.: Parallel algorithms for sparse linear systems. SIAM
review 33(3), 420–460 (1991)

16. Kleitman, D., West, D.: Spanning Trees with Many Leaves. SIAM J. Discrete Math.
4, 99–106 (1991)

17. Kratsch, S., Schweitzer, P.: Isomorphism for graphs of bounded feedback vertex set
number. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 81-92. Springer,
Heidelberg (2010)

18. Lindell, S.: A logspace algorithm for tree canonization. In: Proc. STOC 1992 pp.
400–404 (1992)

19. Lovász, L.: Graph minor theory. Bulletin of the AMS 43(1), 75–86 (2006)
20. Luks, E.: Isomorphism of graphs of bounded valence can be tested in polynomial

time. Journal of Computer and System Sciences (1982)
21. Manne, F.: An Algorithm for Computing an Elimination Tree of Minimum Height

for a Tree. Tech. Rep. CS-91-59, University of Bergen, Norway (1992)
22. Miller, G.: Isomorphism testing for graphs of bounded genus. In: Proc. STOC 1980

pp. 225–235 (1980)
23. Nešetřil, J., Ossona de Mendez, P.: Sparsity: Graphs, Structures and Algorithms,

Algorithms and Combinatorics, vol. 28. Springer (2012)
24. Nešetřil, J., Ossona de Mendez, P.: Tree-depth, subgraph coloring and homomor-

phism bounds. European Journal of Combinatorics 27(6), 1022–1041 (2006)

12

25. Ponomarenko, I.: The isomorphism problem for classes of graphs that are invariant
with respect to contraction (Russian). Zap. Nauchn. Sem. Leningrad. Otdel. Mat.
Inst. Steklov. (LOMI) 174, 147–177 (1988)

26. Robertson, N., Seymour, P.: Graph minors XX. Wagners conjecture. Journal of
Combinatorial Theory, Series B 92, 325–357 (2004)

27. Toda, S.: Computing automorphism groups of chordal graphs whose simplicial
components are of small size. IEICE Transactions on Information and Systems
E89-D(8), 2388–2401 (2006)

28. Yamazaki, K., Bodlaender, H.L., de Fluiter, B., Thilikos, D.M.: Isomorphism for
Graphs of Bounded Distance Width. Algorithmica 24(2), 105–127 (1999)

13

