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Abstract
The Bidirectional Reflectance Distribution Function (BRDF) describes the appearance of a material by its in-
teraction with light at a surface point. A variety of analytical models have been proposed to represent BRDFs.
However, analysis of these models has been scarce due to the lack of high-resolution measured data. In this work
we evaluate several well-known analytical models in terms of their ability to fit measured BRDFs. We use an
existing high-resolution data set of a hundred isotropic materials and compute the best approximation for each
analytical model. Furthermore, we have built a new setup for efficient acquisition of anisotropic BRDFs, which
allows us to acquire anisotropic materials at high resolution. We have measured four samples of anisotropic ma-
terials (brushed aluminum, velvet, and two satins). Based on the numerical errors, function plots, and rendered
images we provide insights into the performance of the various models. We conclude that for most isotropic ma-
terials physically-based analytic reflectance models can represent their appearance quite well. We illustrate the
important difference between the two common ways of defining the specular lobe: around the mirror direction and
with respect to the half-vector. Our evaluation shows that the latter gives a more accurate shape for the reflec-
tion lobe. Our analysis of anisotropic materials indicates current parametric reflectance models cannot represent
their appearances faithfully in many cases. We show that using a sampled microfacet distribution computed from
measurements improves the fit and qualitatively reproduces the measurements.

1. Introduction

Realistic graphics can be seen as a variant of physics that
addresses light interaction. Physical sciences involve both
a modeling phase where real phenomena are modeled with
quantitative law, and an experimental validation phase. In
realistic graphics, validation is challenging because the phe-
nomena are complex and measuring all the scene parameters
is difficult [MRC∗86, RWP∗95]. In this paper, we tackle an
important part of the equation by focusing on material re-
flectance and the associated models. With the presence of a
large number of BRDF models, we feel that an experimental
analysis and comparison is sorely needed. In this paper, we
evaluate the performance of various BRDF models by com-
paring their abilities to represent real measured BRDFs. We
believe our analysis can serve as a guide for practitioners in
their choice on BRDF models, and our extended data fitting
results should also serve as starting points for using the more
sophisticated models.

† email: addy, fredo@csail.mit.edu
‡ email: matusik@merl.com

1.1. Related Work

BRDF research has combined skilled engineering and firm
scientific principles. Empirical models respond to engineer-
ing tradeoffs between realism and efficiency, two criteria that
are highlighted by the advent of programmable real-time
shading. Physical models are derived from first principles
and they have been compared against real data when avail-
able [CT81, HTSG91, War92].

Unfortunately, real BRDF data have long been hard to ac-
quire and measurements were often limited in angular res-
olution. Recent research efforts have resulted in a wider
availability of BRDF data [Cor, Nis, War92, DvGNK99,
MWL∗99,MPBM03,HP03,SSK03]. This provides us with a
unique opportunity to experimentally analyze BRDF models
and gain a practical experience on their ability to represent
real BRDFs.

Understanding the tradeoffs and fitting performances of
BRDFs is becoming increasingly important [SHSL97]. In-
verse rendering, e.g. [FGR93,Mar98,YDMH99] and new ac-
quisition techniques, e.g. [SWI97, LKG∗01, KBMK01] typ-
ically estimate reflectance properties using a very sparse
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set of observations. Even data acquired using gonioreflec-
tometers often do not contain many samples and can exhibit
noise, e.g. [Bor03]. These limitations prevent the direct use
of the measured data and make the fit to an analytical model
a requirement. The low sampling rate and noise level make
the BRDF fitting very underconstrained, and the final vi-
sual result is heavily dependent on the choice of the model.
Dana et al. [DNGK97] fit a wide range of materials to BRDF
models. However, their data set is limited in resolution (205
viewing/illumination combinations), and they only fit to the
Oren-Nayar model [ON94] and the Koenderink representa-
tion [KvDS96] based on Zernike polynomials.

1.2. Overview

In this paper, we provide experimental analysis and insights
that should guide practitioners in the field. While previous
work in BRDF modeling has validated the proposed models
using physical measurements, the number of materials used
in the validation is typically small and often confined to the
category on which the model is primarily focused. In our
study we quantify and compare the performance of seven an-
alytical BRDF models on a data set of 100 isotropic BRDFs
acquired at high resolution and covering a wide range of ma-
terials. We also conduct a study on a data set of 4 common
anisotropic materials measured at high resolution. The read-
ers should refer to our website† for complete fitting results
and instructions for raw data access.

We observe that most isotropic materials under natu-
ral illumination can be represented reasonably well using
physically-based reflectance models. One of our observa-
tions is that constructions based on the mirror-angle poorly
model real reflectance. In particular, we emphasize that the
basis functions of the Lafortune et al. [LFTG97] model are
not a good match to the shape of the primary reflection lobe
of many materials (Section 4.5).

Our study indicates that some anisotropic materials can
exhibit a complexity that exceeds the expressive power
of current parametric BRDF models. We show that the
microfacet-based BRDF generator proposed by Ashikhmin
et al. [APS00] provides many more degrees of freedom and
is able to reproduce these measurements qualitatively. We
describe an iterative method to estimate the microfacet dis-
tribution directly from the measured BRDF (Section 5).

2. Data set and acquisition

2.1. Isotropic BRDFs

We use a data set of 100 BRDFs measured with high pre-
cision acquired by Matusik et al. [MPBM03]. The data set
includes metals, plastics, painted surfaces, and fabrics. We
acknowledge that our data set does not cover the full range

† http://groups.csail.mit.edu/graphics/brdf/

of materials, and effects such as retroreflection might be
underrepresented. In fact, our BRDFs have no valid sam-
ples within 3 degrees from the retroreflection direction since
the light source occludes the detector. The BRDFs were ac-
quired by capturing images of a sphere sample lit by a point
source from a dense set of directions, similar to Marschner
et al. [MWL∗99]. This image-based method allows for high
angular resolution measurement since many radiance sam-
ples can be recorded in one single image. However, this mea-
surement setup is limited to isotropic BRDFs and requires
spherical samples.

2.2. Anisotropic BRDF acquisition setup

In this work, we extend the image-based BRDF acquisi-
tion setup to handle anisotropic materials (Figure 1), simi-
lar to Lu et al. [LKK00]. Spherical samples provide a two-
dimensional set of normals in each image, but it is diffi-
cult to manufacture spherical samples for some materials.
Marschner et al. [MWL∗99] also use a cylindrical target
shape for some measurements but only acquire BRDFs in the
incidence plane. Using a cylindrical target any planar sam-
ple that is flexible can be wrapped on the surface without
distortion. In our setup we compensate for the lost degree
of freedom in the normal variations by mounting the cylin-
der on a precision motor and performing measurements at
different tilt angles. In order to account for anisotropy the
rectangular strips on the cylinder are obtained from a pla-
nar sample of the material at different orientations. Together
with the degree of freedom for the light position, we are able
to acquire the full 4D BRDF using a large set of two dimen-
sional images. Figure 2 shows an example input image of a
acquired velvet sample.

Cylinder (1D normal variation)

with stripes of the material 

at different orientations (1D)

Light source
Light source path (1

D)

Rotation of 

cylinder (1D)

Precision 

motor

Camera
Precision 

motor

Figure 1: Acquisition setup for anisotropic materials. The
cylinder tilt, surface normal variation, light position and
strip orientation each contributes to one degree of freedom
for acquiring the 4D BRDF.

The sampling density of the light position and cylinder
positions can be adjusted easily as they are controlled by
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precision motors. The resolution of the acquired BRDF is
mainly limited by the number of material strips mounted on
the cylinder. It is difficult to use strips narrower than 1cm
due to the manual procedure of attaching the strips to the
cylinder.

Figure 2: Target cylinder covered with velvet.

2.3. Anisotropic data

Our anisotropic data set currently includes 4 materials: vel-
vet, two satins, and brushed aluminum. The light position
is rotated at 2 degrees interval and covers most of the full
circle. Positions where the light occludes the camera or is
occluded by the cylinder are discarded. The motor driving
the cylinder is incremented at an interval of 5 degrees, from
0 to 180. The strips on the cylinder are cut from a planar
sample of the material using a laser cutter to obtain precise
orientation. The strip orientation ranges from 0 to 180 de-
grees spaced at 9 degrees intervals. Combining this with the
cylinder rotation provides a full 360 coverage. For each ob-
ject/light position combination, we take 8 images with expo-
sure time from 40 microseconds to 1 second, and combine
them to form a high dynamic range image. The acquisition
time is about 16 hours for each material and the raw uncom-
pressed data size is 30GB.

2.4. Data processing

Each pixel in the input images with non-zero irradiance is
considered a BRDF sample. We group all the samples into
bins uniformly spaced in the 4D angular space defined by
θin,θout ,φin,φout . We set the BRDF values to the median
value in each bin.

The isotropic data from Matusik et al. was originally rep-
resented using the Rusinkiewicz parameterization based on
the half-vector and tabulated non-uniformly to optimize for
rendering quality. To avoid bias due to the choice of param-
eterizations and binning intervals, we reprocess the isotropic
data directly from the raw acquired images according to the
same procedure described above.

We sample the isotropic and anisotropic data with inter-
vals of 1 and 2 degrees respectively, and approximately 85%
and 25% of the bins are non-empty. The processed data can
be used directly for fitting by ignoring the empty bins.

3. Methodology

3.1. BRDF models

We choose seven analytical isotropic models for our anal-
ysis: Ward [War92], Blinn-Phong [Bli77], Cook-Torrance
[CT81], Lafortune et al. [LFTG97], Ashikhmin-Shirley
[AS00], He et al. [HTSG91], and a variant of the Ward
model proposed by Duer [Due04], which fixes the normal-
ization of the specular lobe. The formulas for the models
are listed in the supplemental document on our website, and
the reader is referred to the original papers for further de-
tails. These models differ in their degrees of freedom and
goals, ranging from physically-based to ad-hoc models de-
signed for computation speed. Comparing them is in a sense
“unfair,” and we only focus on the numerical ability to fit
measured data.

To evaluate the performance of the analytical models, we
first restrict them to have only one specular lobe and the dif-
fuse contribution to be Lambertian. The shape of the specu-
lar lobe is enforced to be identical across the color channels,
and hence all the BRDF models can be expressed with six
parameters for the diffuse and specular color, and a variable
number of parameters for the specular lobe:

M = (dr,dg,db)di f f use+(sr,sg,sb)specular(p0, p1, ..., pn)

3.2. Fitting BRDFs

A core part of our analysis is to fit measured BRDFs to an-
alytical models. We apply constrained nonlinear optimiza-
tion techniques based on Sequential Quadratic Program-
ming(SQP) over the specular lobe parameters p0, p1, ..., pn
to minimize the error metric described in the next paragraph.
The diffuse and specular color (6 parameters) are computed
analytically as a sub-procedure based on linear least square.
Like any nonlinear optimization, the quality of the fit is de-
pendent on a good initial guess. To make sure the optimiza-
tion converges to the global minimum, we visually inspect
the fitting quality of the result and if necessary restart the
optimization from a different set of initial guesses.

Our fitting procedure does not take into account knowl-
edge about the meaning of physically-based parameters for
models such as Cook-Torrance or He et al. While this might
result in physically-inconsistent values, it provides the best
approximation of the data. Using a constrained optimization
is an interesting avenue of future work.

3.3. Error Metric

The objective function of the optimization is defined as the
mean squared error between the measured BRDF R, and the
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target model M given parameter vector p:

E(p) =

√

∑w[R(ωi,ωo)cosθi −M(ωi,ωo;p)cosθi]2

∑w
(1)

The sum is over the non-empty bins of R, ωi and ωo are
the incident and outgoing directions respectively, and θi is
the elevation angle of the incident direction. The weight w is
the solid angle correction term. We ignore data with incident
or outgoing angle larger than 80 degrees as measurements
close to extreme grazing angles are in general unreliable.
The metric is essentially a L2 metric over the hemispheres,
with part of the domain removed where there is a lack of
reliable measurements. The form of this metric allows us to
separate the linear parameters (diffuse/specular color) from
the main optimization, which greatly improves the efficiency
and stability of the fitting routine.

The cosθi term in the metric weighs the BRDF under
the assumption of uniform incoming radiance, and in prac-
tice we observe that the optimal fit with the cosine factor
produces renderings which are visually superior to the fit
without it. Lafortune et al. [LFTG97] define the objective
function for fitting as the BRDF difference multiplied by the
cosines of both the incident and outgoing elevation angles.
We find that the additional cosine factor gives results which
are visually similar to ours.

We have experimented with other fitting metrics based on
the logarithm or cubic root of the BRDF. As the logarithm
behaves badly near zero, it imposes an arbitrary choice of
scaling the BRDF, and in practice it is difficult to make a
single choice that consistently performs well for all materi-
als. For the metric based on the cubic-root, the best-fit BRDF
often result in renderings with highlights that are too blurry
compared to the measured data.

It is clear that choosing an appropriate metric for fitting
BRDF is difficult, and our choice of the direct L2 metric is
based on two reasons: i) it provides plausible fits in the ren-
dered images for most materials in our data set, ii) the linear
nature of the metric makes the minimization lower dimen-
sional and more stable. We should emphasize that the best fit
according to our metric might not always correspond to the
best visual match, which is highly dependent on scene ge-
ometry/illumination. Developing a perceptually-based met-
ric which is simple and stable for optimization would be in-
teresting direction for future work.

4. Isotropic material analysis

4.1. Fitting quality of the models

We fit the isotropic data set of 100 materials to the seven
models listed in the previous section. The fitting errors of 5
of the models are plotted in Figure 14. The errors are nor-
malized by the maximum albedo of each BRDF and plotted
in logarithmic scale. The albedo is computed by integrating

the BRDF over the outgoing hemisphere, given an incident
direction. We compute the albedos of the BRDF over the
range of 0 to 80 degrees incidence, and we use the maxi-
mum value to normalize the errors plotted in Figure 14. This
normalization allows us to compare the residue errors for
different materials while discounting the factor of relative
scale. In certain cases, the absolute error can be more mean-
ingful (e.g. darker materials are easier to approximate). The
absolute errors are reported in the supplementary document
available on our website.

We sort the materials according to the errors of the Lafor-
tune fits. The errors for the Ashikhmin-Shirley and Ward-
Duer models are not shown in the figure: the Ashikhmin-
Shirley errors are very close to Cook-Torrance in most cases,
and the Ward-Duer errors are very close to the original Ward,
though consistently lower.

Figure 14 shows that He, Cook-Torrance and Ashikhmin-
Shirley typically have the lowest errors. One factor of their
good performance is probably their explicit modeling of the
Fresnel effect. In the case of the He model, the number of
degrees of freedom is also bigger. In contrast Blinn-Phong
and Ward consistently yield higher errors. The errors for the
Lafortune model lie in between for a majority of the mate-
rials. To the left end of the plot are mostly diffuse or mildly
glossy materials like fabrics, rubber and paints, while ma-
terials close to the right end are mostly smooth metals and
highly specular plastics. The normalized errors span several
order of magnitudes as the shape of the BRDF is vastly dif-
ferent for the wide spectrum of materials.

Figure 3: Fitting the measured "green-metallic-paint"
BRDF with the seven models. Clockwise from upper left:
Measured, Ward, Ward-Duer, Blinn-Phong, He, Ashikhmin-
Shirley, Cook-Torrance, Lafortune.

One example fit, to the measurement "green-metallic-
paint" is shown in Figure 3 with spheres rendered under an
environment map. The polar plots in the incidence plane for
three models are also shown in Figure 4. The relative quality
of the fits from the different models for this material is typ-
ical of the data set. The Ward, Ward-Duer and Blinn-Phong
images are all noticeably different from the original data.
The highlights near the center of the sphere are significantly
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Ward

Cook-Torrance

Lafortune

Figure 4: Polar plots of the measured "green-metallic-paint"
in the incidence plane compared to the fits from the Ward,
Cook-Torrance and Lafortune models. Cubic root applied.

brighter than the original, and near grazing angle the high-
lights are much less pronounced. Of the three models, Ward-
Duer has the strongest highlight near grazing angle, but it is
still noticeably dimmer than the measured data. The images
from the Ashikhmin-Shirley, Cook-Torrance and He fits are
very similar to each other and are mostly faithful to the di-
rect rendering. The Lafortune fit shows an abrupt increase in
intensity near grazing angle, however values closer to nor-
mal incidence are too low. In addition, the highlight is ex-
cessively blurred along the circumference of the sphere, an
effect that we will look into in Section 4.5.

With a broader view over the entire data set, we find that
physically-based models like Cook-Torrance and He often
produce the best fits. The He model, which is known to be
the most comprehensive BRDF model, does not produce no-
ticeably superior visual results to the Cook-Torrance model.
However, it should be noted that our measurement and anal-
ysis ignore polarization and spectral dependence, two impor-
tant aspects modeled by He. The Lafortune model, without
an explicit Fresnel factor, yields reasonable fits for materials
that do not show significant intensity increase near grazing
angle. In addition, glossy materials are not good candidates
for the Lafortune model due to the anisotropic blurriness
near grazing angle. The Blinn-Phong and Ward model both
have near constant reflection power independent of incident
angle, and thus they are only suitable to a subclass of the
materials, including some metals and plastics. The Duer ver-
sion of the Ward model with increased strength near grazing
improves the fitting performance, however the improvement
is limited as the grazing angle increase is not controllable.

4.2. Multiple lobes

Cook and Torrance [CT81] suggest that two or more spec-
ular lobes are necessary to model surfaces where there are
multiple scales of roughness. Lafortune et al’s generalized
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Figure 5: The fitting errors (logarithmic scale) with one/two
lobes of the Cook-Torrance and the Lafortune models.

cosine lobes [LFTG97] serve as basis functions for repre-
senting BRDFs and thus multiple lobes are expected in gen-
eral. We fit the data set with the two lobes version of both
the Cook-Torrance and Lafortune models. In 26 cases for
Cook-Torrance and 31 cases for Lafortune, the extra lobe re-
duces the error by more than 25%. These typically include
materials that have multiple layers of finishing (e.g. metallic
paints) and also some brushed metals. The fitting errors with
the Cook-Torrance and the Lafortune models with one and
two lobes for the 30 most improved materials are shown in
Figure 5. Figure 6 shows the comparison of the one and two
lobes fit to the nickel sample.

Lafortune et al. [LFTG97] employed three lobes for the
example materials. However, we found that in practice, fit-
ting with three lobes is very unstable, and hence in the cur-
rent version we omit results from the three-lobe Lafortune
model. Qualitatively, we believe the addition of a third lobe
would only offer marginal improvements to the shape mis-
match of the main lobe.

4.3. Evaluation of different microfacet distributions

There are three common choices of the shape of the specular
lobe: Gaussian, cosine power, and the Beckmann distribu-
tion function. Our study shows that the fitting quality of the
Cook-Torrance model with the three different formulations
are nearly identical both numerically and visually.

4.4. Fresnel effect

To study the importance of the Fresnel effect, we compare
the fit quality of the Cook-Torrance model with and without
the standard Fresnel term, and also with the Schlick [Sch94]
approximation. While the errors without the Fresnel term are
significantly higher (20% on average), the Schlick approx-
imation does not introduce further errors compared to the
original formulation.
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Figure 6: Fitting the measured BRDF "nickel" with the multi-lobe Cook-Torrance and Lafortune models. Left to Right: Input,
Cook-Torrance 1 lobe, Cook-Torrance 2 lobes, Lafortune 1 lobe, Lafortune 2 lobes.

4.5. Shape of the specular lobe

Our fitting results highlight the profound difference between
two popular formulations of the specular lobe and their ef-
fects at near grazing angles. Most previous discussions of
the behavior of reflectance when the incident angle moves
toward grazing have focused on the increase in intensity of
the reflection. As such, BRDF models are often only com-
pared to measurements in the incidence plane. We find that
the shape of the lobe also has important implications. The
mirror angle construction employed by models like Phong
and Lafortune, results in excessively blurry reflections near
grazing angle. While the shape difference between these two
lobe constructions is known to BRDF specialists, we believe
it is important to restate it in the context of experimental
evaluation, so that practitioners understand the tradeoff in
models such as Lafortune that sacrifice lobe shape for com-
putation speed.

In the original Phong model [Pho75], the specular lobe is
defined around the mirror direction symmetrically (V ·R). In
the Blinn variation of the Phong model and most microfacet-
based models, the specular lobe is expressed with respect to
the half vector H and the normal N, where H is the average
vector between the incident and outgoing vector. The Lafor-
tune model, on the other hand, employs a generalized cosine
lobe‡ similar to the original Phong lobe. While the general-
ized dot product gives flexibility in specifying the principal
reflection direction, the lobe remains symmetric around the
main reflection direction. Hence, the Lafortune lobe is sim-
ilar to the V ·R lobe where R can be seen as a generalized
mirror direction.

Since all analytical models we have considered are func-
tions of either H ·N or V ·R, we focus the rest of our dis-
cussion on isocontours of these dot products in the space of
directions. We illustrate the difference between the two rep-
resentations in Figure 7. Consider a given incident direction

‡ The generalized cosine lobe:

fr(u,v) = ρsCs(u)[u′ ·v]n,u′ = normalize(Cxux,Cyuy,Czuz) (2)

where u and v are the incident and outgoing angle respectively, and
Cs(u) is a scalar factor independent of v.

L

R

H
N

VH

Figure 7: The V · R lobe compared with the H · N lobe
remapped to the outgoing directions.

L. The blue circle around the normal N denotes the cone of
directions where the dot product with N is constant. One of
the half-vectors H in this set is shown. We can map H to
its corresponding outgoing direction VH , following a great
circle on the sphere of directions. This can be done for the
entire set of half-vectors in the blue circle, and we show the
corresponding set of outgoing directions in green around the
mirror vector R. Comparing it to the red circle, representing
the cone of directions V with constant V ·R, the remapped
contour is asymmetric and is narrower in the direction per-
pendicular to the incident plane. By similar construction, we
can visualize that this contour is more circular when L is
near N, and becomes narrower when L moves towards graz-
ing angle. The V ·R lobe is, however, always circular around
the mirror direction R.

A plot of the measured BRDF of PVC plastic at 55◦ inci-
dent angle is shown in Figure 8. It displays a similar asym-
metry to the remapped contour associated with the H · N
lobe. This asymmetry is observed in the data set for most
materials with an apparent specular lobe. Such behavior can
be explained by the microfacet theory, e.g. [CT81]. The the-
ory models the surface as a collection of microfacets, with
normals oriented according to some distribution function.
Assuming that the microfacets are perfect mirrors, the re-
flectance from L to V is then proportional to the fraction
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N

L
R

LR
N

Figure 8: Side and top-down view of the measured "PVC"
BRDF, at 55◦ incidence. (Cubic root is applied to the BRDF
for visualization.) Its specular lobe exhibits a similar asym-
metry to the H ·N lobe.

of microfacets with normals aligned with the half-vector H,
with some adjustments for shadowing and masking. Thus,
the reflectance function for a microfacet model is naturally
defined with respect to H. For isotropic models, the distri-
bution of normals is radially symmetric; therefore, a cone
of half-vector H around N should have constant reflectance
value if the shadowing and masking terms are not consid-
ered. Hence, it is reasonable to define reflectance as a func-
tion of H · N under this theory. On the contrary, the V · R
contour is not consistent with any distribution of normals, as
a circular cone of vectors around different Rs with the same
spread would map to a different set of half-vectors around
N.

The difference between the two formulations explains the
anisotropic blurring for the Lafortune fits in Figure 6 and
Figure 3. Compared to a half-vector based lobe, the sym-
metric mirror lobe does not get narrow at grazing angles,
resulting in blurring in the direction orthogonal to the inci-
dent plane, which is along the circumference for the case of
a sphere.

We have shown that the H · N representation is a more
accurate way to model specular reflections. This is in strong
opposition to some beliefs that the half-vector representation
is just a more convenient way of interpreting the specular
lobe. We believe this has been overlooked in the past mainly
due to the fact that the two representations are trivially re-
lated in the incidence plane.

Note that this observation is different from the popular
re-parameterization proposed by Rusinkiewicz [Rus98] that
also emphasizes the importance of the half vector. In his
work, he shows that the parameterization based on half-
angle is a more compact representation in the context of
compression, compared to the standard BRDF parameteri-
zation based on the incident and outgoing directions. In our
work, we compare the shape of the reflection lobe defined
by the half vector to the one defined by the mirror direction.

Stark et al. [SAS05] show that Ward and Lafortune can
both be mathematically reduced to bivariate functions, and
thus they are inherently unable to represent general isotropic

BRDF of three variables. They went on to introduce a new
set of 2D coordinates which can be considered as a hy-
brid of the two families of parameterization. They showed
that their parameterization produces superior approximation
to two measured materials when the BRDFs are projected
onto the 2D domain. Further investigating the performance
of Stark et al.’s proposed model and variants based on the
hybrid parameterization would be an interesting avenue for
future work.

5. Anisotropic material analysis

In this section we describe our first step in analyzing
anisotropic reflectance models and how they are able to rep-
resent measured anisotropic materials. As described in Sec-
tion 2.2, we have acquired high resolution samples for four
different highly anisotropic materials.

Figure 9: Brushed Aluminum: One measurement photo-
graph (upper left), reconstruction using Ward model (αx =
0.04,αy = 0.135) (upper right), reconstruction using Poulin-
Fournier model (n = 3000,d = 0.18,h = 0.5)(lower left),
reconstruction using Ashikhmin model with sampled micro-
facet distribution (lower right).

In our data set two materials (brushed aluminum and yel-
low satin) are suitable for analytic modeling. We fit two dif-
ferent anisotropic analytic models to these measurements
– anisotropic Ward and Poulin-Fournier models, using the
same fitting procedure as for the isotropic materials. We
present the visual comparison of the fit for the brushed alu-
minum to the original measurements in Figure 9. As can be
seen, these models can qualitatively represent brushed alu-
minum relatively faithfully. The yellow satin (not shown) has
blurrier highlights, but the anisotropy is qualitatively similar
to the brushed aluminum. As a result it can also be modeled
reasonably well with the analytical models.
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5.1. More Complex Anisotropy

Some fabrics that exhibit anisotropic reflectance properties
can have much more complicated micro-geometry since the
way threads are woven together can be potentially much
more complex than the simple structure of a brushed metal.
We observe that the BRDFs of the purple satin and red velvet
far exceed the expressive power of simple analytical models
(e.g., the purple satin sample in Figure 10 shows two off-
specular peaks). This is why we turn to the microfacet-based
BRDF generator presented by Ashikhmin et al. [APS00]
since it offers many more degrees of freedom by replac-
ing the analytical expression for the microfacet distribution
by an arbitrary tabulated representation. In their paper, it is
shown how to compute a BRDF given a microfacet distri-
bution. In order to use their model to approximate our mea-
sured data, we need to solve the inverse problem and esti-
mate the microfacet distribution from the BRDF.

Computing a microfacet distribution from a BRDF We
first recall the expression for the Ashikhmin et al. model:

ρ(k1,k2) =
p(h)〈h ·n〉F(k ·h)

4g(k1)g(k2)
(3)

where p(h) is the microfacet distribution; g(k1) and g(k2)
are shadowing and masking terms; F(kh) is the Fresnel
term; and 〈〉 denotes the average over the distribution p.

We can rewrite Equation 3 in the following way:

p(h) = ρ(k1,k2)
4g(k1)g(k2)

〈h ·n〉F(k ·h)
(4)

If we ignore shadowing and masking, the BRDF is pro-
portional to the microfacet distribution. We can then obtain
a least-squares fit by averaging the estimate of p(h) for all
the pairs k1,k2 corresponding to the same h. In practice,
we guess the Fresnel term through trial and error; however,
the Fresnel term can be also computed through optimization
in the outermost loop.

The main difficulty, however, is the shadowing/masking
function g which depends on the distribution p(h) itself.
Fortunately, we observe that g is extremely smooth [APS00]
and we have found that an iterative approach works very
well. We start with a constant g, and we alternate the esti-
mation of p(h) using the current g and the computation of g
from p(h). In practice, about five or less iterations are suffi-
cient.

Observation on measured data We have used the above
method to compute a microfacet distribution for our four
measurements of anisotropic materials. Figure 9 and Fig-
ure 10 show comparisons between photographs of the mea-
surement cylinder and renderings using the estimated micro-
facet distribution and the Ashikhmin et al. microfacet-based
BRDF model. The renderings show good qualitative agree-
ment with the photographs and the shape of the highlights is

well-preserved, although their sharpness is not reproduced
exactly.

Figure 10: Left: Purple satin - one input photograph. Right:
- reconstruction using sampled microfacet distribution.

The computed microfacet distributions also match the mi-
crostructure of the materials. Compare the spherical plot of
the microfacet density in Figure 11 with a macro photo-
graph of the corresponding sample of brushed aluminum.
The density is high around a vertical great circle, which is the
type of normal distribution expected from cylindrical micro-
geometry.

Figure 11: Left: Brushed aluminium macro photograph.
Right: deduced microfacet distribution (log plot).

Figure 12: Left: Purple satin macro photograph with
sketched double cones. Right: deduced microfacet distribu-
tion (log plot).

The purple satin sample has an intriguing distribution: a
large density around two great circles that are symmetri-
cally slightly tilted from the vertical direction (Figure 12).
This type of distribution can be caused by symmetric cone
pairs. When we examine the macro photograph (Figure 12)
we note that the longest visible segments of thread are high
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in their middle and have a symmetrical slope that might be
similar to a cone, as sketched on the right part of the image.

Figure 13: Left: Red velvet macro photograph. Right: de-
duced microfacet distribution (log plot).

The red velvet sample exhibits a secondary lobe in ad-
dition to the main lobe around the normal. This is mainly
due to the dominant combing direction of the velvet sam-
ple. This shows an important type of anisotropy that cannot
be modeled by the standard analytical models. We should
also note that we are lacking measurements near extreme
grazing angles, and therefore we may have missed impor-
tant reflectance properties of the velvet in those directions.
In addition, it is difficult to enforce the exact combing direc-
tion uniformly on the entire piece of velvet. Small deviations
can be tolerated, however, as the average BRDF of velvet is
relatively low-frequency.

6. Discussion

In this work we have analyzed the performance of several
analytical BRDF models by their ability to fit real BRDFs.
Our experimental results suggest that using a single specu-
lar lobe, the Cook-Torrance, Ashikhmin-Shirley and the He
models perform well for most of the 100 isotropic BRDFs
in the data set. Moreover, our results show that for a num-
ber of materials, the fit quality is much improved when an
additional lobe is employed. This is mostly attributed to the
multiple layer finish on these materials.

Our study also illustrates that the difference between the
two ways of modeling the specular lobes is profound. The
H ·N formulation naturally corresponds to the microfacet-
based theory, and its viability is confirmed by the data set.
Meanwhile, models based on the V · R lobes are visually
inaccurate in a rendered scene. The fitting results of these
models are systematically inferior to their counterparts. The
Lafortune model, though highly expressive with its ba-
sis of generalized cosine lobes, cannot accurately model
real BRDFs with a single lobe. While the computation for
each generalized cosine lobe is cheaper relative to a Cook-
Torrance lobe, fitting more than a few of these lobes to mea-
sured data is unstable.

We have also built a new setup for high resolution mea-
surement of anisotropic BRDFs using material strips on a
rotating cylinder. We have used it to measure four typi-
cal anisotropic materials and have shown that only two of
them can be modeled by parametric models. Our fabric mea-
surements exhibit a complexity that cannot be accounted
for by the elliptical functions used to introduce anisotropy
in these models. Furthermore, we have shown how to es-
timate a tabulated microfacet distribution from these mea-
surements, which yields good results with Ashikhmin et al.’s
microfacet-based BRDF generator. This model draws its ex-
pressive power from a general representation of microfacet
distributions.

There are several directions for future work. First, we ex-
pect that a new set of basis functions, similar to the gen-
eralized cosine lobes, but expressed with the half-vector,
would yield improved fitting results with fewer number of
lobes. Stark et al. [SAS05]’s barycentric coordinates are
also possible candidates. These basis functions should be
reasonably inexpensive to compute and be flexible enough
to represent complex reflectance phenomena, e.g., retro-
reflection. Second, while our metric for BRDF fitting gives
reasonable results in most cases, it does not directly corre-
spond to perceptually important differences. A perceptually-
based metric would improve the visual quality of the fits
[PFG00, RWP∗95], especially when the fit is relatively poor
and different choices of approximation tradeoffs are present.

This paper has also highlighted that anisotropic materials
are difficult to model and acquire, and that much research
effort is needed to improve the state of the art. The tabulated
representation of microfacets is powerful but it requires high
resolution measurements. In addition, it is not easy for an
artist to edit these distributions. While the recovered distri-
butions are more complex than elliptical shapes, they exhibit
enough smoothness to leave hope for expressive and easy-
to-manipulate parametric models. Finally, it is our belief that
the most critical issue in reproducing real material is the ac-
quisition itself. Our setup has allowed us to measure high
quality BRDFs, but it occupies an entire room and it takes
several hours to acquire one BRDF. We believe that the de-
velopment of a portable and easy-to-use reflectance scanner
is a major challenge.
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Figure 14: The normalized fitting errors (logarithmic scale) of five analytic models to our isotropic data set of 100 BRDFs. The
BRDFs are sorted in the errors of the Lafortune model (Red) for visualization purpose.
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