
Eurographics Symposium on Rendering (2006)
Tomas Akenine-Möller and Wolfgang Heidrich (Editors)

Statistical Acquisition of Texture Appearance

Addy Ngan Frédo Durand†

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Abstract
We propose a simple method to acquire and reconstruct material appearance with sparsely sampled data. Our
technique renders elaborate view- and light-dependent effects and faithfully reproduces materials such as fabrics
and knitwears. Our approach uses sparse measurements to reconstruct a full six-dimensional Bidirectional Texture
Function (BTF). Our reconstruction only require input images from the top view to be registered, which is easy to
achieve with a fixed camera setup. Bidirectional properties are acquired from a sparse set of viewing directions
through image statistics and therefore precise registrations for these views are unnecessary. Our technique is based
on multi-scale histograms of image pyramids. The full BTF is generated by matching the corresponding pyramid
histograms to interpolated top-view images. We show that the use of multi-scale image statistics achieves a visually
plausible appearance. However, our technique does not fully capture sharp specularities or the geometric aspects
of parallax. Nonetheless, a large class of materials can be reproduced well with our technique, and our statistical
characterization enables acquisition of such materials efficiently using a simple setup.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

The creation of photorealistic images has been greatly facil-
itated by dramatic advances in 3D geometry scanning and
rendering algorithms. In contrast, the acquisition and repro-
duction of real material appearance remains a critical chal-
lenge. The most common solution is the use of photographic
textures, but plain texture mapping is only a crude approx-
imation for most real world materials as it is only suitable
for representing perfectly smooth surfaces with albedo vari-
ation and is unable to simulate the effect of any underly-
ing mesostructure of the material. The Bidirectional Texture
Function (BTF) [DvGNK99] is a 6D function that describes
the full light/view dependence of an image patch. Unfortu-
nately, the measurement of BTFs is a formidable task that
requires the imaging of a single sample for all pairs of view
and light directions. A robotic setup is typically used, and
precise calibration is necessary to align all these images, a
task made harder by the various moving parts.

In this work, we propose a method to capture complex
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materials such as wool knitwear in minutes, with a focus on
visual faithfulness rather than geometric and photometric ac-
curacy. Simplicity of implementation is our main goal, and
we therefore seek to minimize the reliance on precise reg-
istration and alleviate the need for robotic parts. While our
approach cannot handle highly specular materials such as
metals and does not fully measure parallax, for a large class
of materials it produces photorealistic BTFs using a setup
that is much simpler than comprehensive approaches. In ad-
dition, while disparity aspects of parallax are not captured,
its statistical effects such as the view-dependent changes of
color distribution and sharpness are reproduced, which re-
sults in compelling materials.

Key to our approach is a novel BTF reconstruction tech-
nique that takes sparse measurements and reconstructs the
full BTF. Our reconstruction is based on the interpolation of
statistical properties, thereby alleviating the need for precise
registration and avoiding cross-fading artifacts that could be
caused by simple data interpolation.
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Figure 1: Indoor scene rendered using 4 textures acquired
and reconstructed with our technique.

Contributions This paper introduces the following contri-
butions:

• We propose a new algorithm to reconstruct BTFs from
sparsely sampled and unaligned measurements.

• This enables a simple and low-cost acquisition setup that
allows for the simultaneous capture of multiple views and
does not require robotically-controlled moving parts.

1.1. Related Work

We give a brief overview of work on BTFs and material
measurement and refer the reader to the survey by Müller
et al. [MMS∗05] for a comprehensive study of recent works
on BTFs. We focus on BTF acquisition and reconstruction
and our work is orthogonal to issues such as BTF render-
ing [SSK03, SBLD03, MMK04].

Since Dana et al. [DNvGK97] introduced the notion of
the Bidirectional Texture Function (BTF) and published the
first BTF database [Cur], a small number of teams have per-
formed measurements using robotically-controlled setups
[SSK03, KMBK03]. These robotic setups involve a mov-
ing material sample, as a result, measurements at different
view/light directions are not always perfectly aligned, as also
observed by Filip and Haindl [FH05]. Despite these prob-
lems, these dense measurements are invaluable and provide
us with references to evaluate our reconstruction technique.

Recently, a number of setups have been described to cap-
ture material appearance more efficiently by simultaneously
capturing multiple views using multiple cameras [MBK05]
or mirrors [HP03, DW04]. Our goal is to enable simpler se-
tups and minimize the time and effort of measurements by
introducing a statistical reconstruction of BTFs.

In particular, we want to leverage the increased resolu-
tion of digital cameras and perform multiple measurements

within a single picture using spatial multiplexing as done
for BRDF by Marschner et al. [MWL∗99] and Ngan et
al. [NDM05]. However, this is more challenging for BTFs
because they are by definition not spatially uniform, and it
might not be possible to put different samples in perfect cor-
respondence. This motivates our use of statistics that are ro-
bust to registration.

A number of acquisition techniques have been devel-
oped to capture simplified versions of the BTF. Kautz et
al. [KSS∗04] only capture variation due to light elevation
and obtain convincing results when light azimuth and view
direction are not important. Malzbender et al. [MGW01]
capture the effect of light dependence and approximate them
with smooth polynomials. Our approach provides increased
accuracy for the light sampling and adds view-dependent ef-
fects such as low-frequency BRDFs and the intricate appear-
ance exhibited by fuzzy materials such as fabrics.

The BTF synthesis work by Liu et al. [LYS01] is closely
related to our work. They use a sparse set of images to es-
timate an approximate height field by shape-from-shading,
and synthesize new geometry that is statistically similar to
the acquired sample. Pixel samples from the input are then
copied to the synthesized image based on feature match-
ing to reconstruct the bidirectional appearance. Their tech-
nique is limited to stochastic textures that can be described
as height fields. Our work is different as we do not make
the height field assumption, and we do not rely on geometric
information for reconstruction.

Our work is related to efforts on BTF compression
[SSK03,KMBK03,VT04] since it reconstructs a BTF from a
sparse subset. However, most compression approaches seek
to optimize decompression at rendering time, a feature that
is not directly possible with our method. Nevertheless, the
compression technique by Filip and Haindl [FH05] is closely
related to our work. They fit per-texel Lafortune lobes to-
gether with per-view/light histogram remapping functions to
achieve compression and fast rendering. The context of BTF
compression is different because they are given the full BTF
to perform parameter estimation, while we need to fill in
missing data. In addition, our statistical characterization is
more elaborate and includes frequency content.

Our work is inspired by studies in vision that analyze bidi-
rectional texture from a statistical point of view. Leung and
Malik [LM01] have shown that view-dependent masking ef-
fects can significantly change the color distribution, which
explains why sunflower fields look more yellow at grazing
angles. Cula and Dana [CD01] use multi-scale features from
BTF for material recognition. Pont and Koenderink [PK05]
use a simple micro-facet Lambertian model to predict texture
contrast at different lighting and viewing configurations. We
build on experiments by Ginneken et al. [vGKD99] who in-
vestigate the pixel histograms of a wider class of materials in
the CUReT data set as a function of view and light direction.
In particular, in the case of surfaces with uniform albedo,
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Figure 2: Acquisition setup - both the camera and the mea-
sured target are fixed, and a handheld wireless flash is used
as the light source. During measurement, the user moves the
flash source around to roughly cover all possible directions,
and remotely triggers the camera shutter to take pictures.

they show that a single texture modulated with histogram
matching offers improved material appearance.

Dana and Nayar’s work [DN98, DN99b] is most closely
related to our reconstruction technique. They study BTF un-
der varying light/view configurations and propose analyt-
ical histogram and correlation models in the special case
of random isotropic surfaces with Lambertian reflectance .
They also propose BTF synthesis based on histogram trans-
fers [DN99a]. The top-view image with correct lighting is
first synthesized and then the image is transformed to an ar-
bitrary view through pixel histograms transfer. They showed
that the technique works well for a sample Lambertian ma-
terial with gaussian height distributions. Our reconstruction
technique extends this idea to a wider class of materials by
using multi-scale statistics. In particular, we show that the
idea of pyramid matching traditionally used to synthesize
textures from white noise [HB95] can be adapted to modify
a base texture and enforce the most salient visual variation
due to a material’s appearance. In addition, our reconstruc-
tion scheme is specifically designed for sparsely sampled
data and allows for meaningful histogram interpolations and
extrapolations.

1.2. Overview

Our method seeks to reconstruct a full BTF based on mea-
surements that are easy to obtain. We only require the im-
ages of the frontal view of the material sample to be aligned,
which is easy to achieve with a fixed camera and sample,
and a moving light source. The images with different view
directions do not need to be registered with the frontal view.
In particular, we can combine multiple views per images by
using multiple samples of the material placed at different an-
gles (see Fig. 2), which greatly accelerates acquisition.

Our reconstruction algorithm is the central contribution
that makes it possible to obtain BTFs from unregistered
views. It is based on the idea of characterizing textures by

their multi-scale statistics [HB95]. Our reconstruction uses
the naturally-aligned images from the top view as base tex-
tures. View-dependent effects are then transferred to these
base textures using the histograms of the pyramid subbands.
For a large class of materials, our reconstruction provides a
visually plausible approximation to the true BTF.

2. Acquisition

We first present our acquisition setup to make the input data
of our reconstruction technique concrete. However, different
acquisition setups could be used with our reconstruction as
long as they provide aligned images for at least one view
direction.

Our acquisition setup (Fig. 2) exploits the ability of our
reconstruction technique to work with view images that are
not aligned. It typically captures 13 views of a material at
a time using different samples at various orientations. The
camera is fixed and the light direction is sampled by moving
a light source.

In practice, we paste a number of planar patches of the
material onto square backing boards with known dimen-
sions, which are then positioned to form a pyramid-like tar-
get. The arrangement provides 4 views at about 30◦ inci-
dence angle, 8 views at about 60◦ and the top view. We use
an 8 megapixel digital SLR camera with a hand-held elec-
tronic flash. The camera is set up on a tripod at a fixed po-
sition about 1 meter above the measurement target, and the
size of the top-view patch in the image is roughly 500×500
pixels. We put specular spheres (billiard balls) around the
target for light position estimation. The user holds the flash
directed at the target from various directions, and a remote
control is used to trigger the camera. We take about 100 pic-
tures for each material in about 10−15 minutes.

The camera is calibrated automatically using several im-
ages of a checkerboard [Zha00]. For each sequence, the user
manually marks the position of the corners of each square
backing boards. With the known dimensions of the boards,
we compute the position and orientation of each patch us-
ing a least-square optimization. The flash source is small,
and we approximate it as a point source. For each image, the
mirror peak on each specular sphere is located automatically,
if available, and the light source position is estimated with a
least-square fit.

For each measured image, we resample each lit patch into
a texture image at a resolution of 512× 512. As the extent
of a single patch is relatively small, we assume the light and
view directions (ωi,ωo) are constant across each patch. The
resampled texture is then normalized by the estimated irradi-
ance to form a 2D spatial slice of the BTF. Even though the
flash power is manually set to constant power, in practice
the flash output can deviate from the specified power sig-
nificantly. We put diffuse gray cards next to the pyramid to
get a reliable estimate of the flash power. However, for some
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Figure 3: Reconstruction pipeline for producing a texture at light/view direction ωi,ωv. From the set of top-view textures, we
interpolate the neighbors of ωi to produce a base texture Ibase. From the full data set comprising all light/view combinations,
we locate the closest neighbors of (ωi,ωv). We interpolate (and potentially extrapolate) the subband histograms and pixel
histogram to form the desired histograms of our target texture. The base texture Ibase is decomposed into a multi-scale oriented
pyramid, and each subband is matched to the desired histogram. We then collapse the pyramid to reconstruct the image, which
is then matched to the desired pixel histogram. This produces our final texture.

measured images the gray cards are shadowed and in those
cases the mean flash power is assumed. To further compen-
sate for the flash power estimation error, we compute the
average BRDF of the measured data by averaging over each
normalized texture. We then smooth this BRDF and use it
to re-scale our measured data so that it is consistent with the
smoothed BRDF. In practice the BRDF blurring does not de-
grade the quality of measurement as our ability to measure
specular materials is limited by the sparse sampling of the
view.

3. Reconstruction

The central idea of our reconstruction is to use the actual
images only from the top view and to characterize the vi-
sual properties of other views using alignment-insensitive
statistics. We reconstruct a BTF one texture at a time, for
each pair of view-light directions. A texture is reconstructed
in two steps (Fig. 3). We first use our set of top-view im-
ages, which are assumed to be aligned, and interpolate them
linearly based on the light direction to obtain a base tex-
ture. This texture contains appropriate shadowing effects
but might exhibit cross-fading artifacts and does not include
view-dependent effects such as masking, BRDF, and asper-
ity scattering. Our second step improves interpolation qual-
ity and reproduces these effects by enforcing statistics cor-
responding to the appropriate view-light directions.

3.1. Histogram Statistics

Before presenting our full reconstruction pipeline, we dis-
cuss our choice of statistics to characterize material appear-
ance. We observe that the pixel histogram encodes variation

in the color distribution due to effects such as shadowing
and masking. Fig. 4(a) shows a BTF slice of the measured
knitwear at [ωv = (60,0),ωi = (60,180)].† Fig. 4(b) shows
the base texture from the top-view with approximately the
same light direction ωi. We observe prominent shadowing
due to the low elevation of the light in the base texture,
but the effect is significantly reduced when viewed from the
side in (a), both due to masking and the increased scatter-
ing path length. By matching the pixel histogram of the base
image to the target image, we can recover the overall distri-
bution of intensity, and as a result shadows are mostly elim-
inated (Fig. 4(c)). This pixel histogram matching technique
has been proposed by Dana and Nayar [DN99a]. However,
pixel histogram matching does little to the structure of the
image as it is insensitive to multi-scale effects such as blur-
ring.

To further improve the appearance transfer, we employ
the steerable pyramid in an approach similar to Heeger and
Bergen [HB95]. The base and target image are both decom-
posed into an image pyramid with multiple scaled and ori-
ented subbands, and the coefficient histogram of each sub-
band is matched independently. Both pixel histograms and
pyramid coefficient histograms can be computed without im-
age registration and are well suited for our goal. The subband
histogram matching captures effects such as the fuzziness
that some materials exhibit at grazing angle. In Fig. 4(d), we
first transfer the subband histograms from the target image
to the base image, followed by the pixel histogram matching.

Heeger and Bergen [HB95] generate new textures starting

† We represent direction vectors ω in spherical coordinates (θ,φ),
where θ and φ are the incidence and azimuth angles respectively.
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(a) Target texture (b) Top-view base texture (d) Full reconstruction(c) Pixel histogram matched (e) Texture synthesis from (a) 

Figure 4: Multi-scale statistics transfer. We seek to reproduce the statistics of a target texture (a) starting from a top-view base
texture (b). Note how our full technique (d) improves the reconstruction quality beyond pixel histogram matching (c). Without
the spatial structure provided by the base texture, texture synthesis technique by Heeger and Bergen [HB95] (e) is unable to
reproduce the target texture.

from noise and iteratively enforcing the histogram of pixel
color and pyramid coefficients. As a result, their method
is generally unable to reproduce extended spatial structure.
Fig. 4(e) shows the result when we directly apply their tex-
ture synthesis technique with five iterations using statistics
from (a). In contrast, we use the multi-scale statistics to mod-
ify the base texture obtained for a given light direction, which
already contains a very similar spatial structure to the target.

Our reconstruction makes use of both pixel and subband
histograms to statistically characterize the BTF. For each
BTF image slice in the measured data set, we decompose
the image into oriented subbands with 4 orientations and all
levels of scale. We compute and store the histogram for each
subband ready for the texture generation step.

3.2. Texture Generation

To reconstruct the full BTF we reconstruct 2D image slices
at discretely sampled view/light directions. The pipeline for
reconstruction is shown in Fig. 3. To generate the texture at
a particular light/view configuration (ωi,ωv), we first find
neighbors of ωi in the set of top-view textures. We first
gather all the textures from the top view, and we project the
light direction of each texture in the unit hemisphere onto
the unit disk. We perform a Delaunay triangulation of the
set, and find the three neighboring textures of ωi by search-
ing the containing triangle. If ωi is outside the convex hull,
we project ωi radially onto the convex hull. We blend the
corresponding textures using the barycentric weights to form
Ibase, which roughly corresponds to the texture lit from the
desired direction ωi but viewed from the top.

To obtain the desired histogram statistics, we need to find
the close neighbors and determine the appropriate interpo-
lation weights. As the set of view and light directions are
separable (2D × 2D), we can perform a two-level interpo-
lation: 1) first find the weights for view interpolation, 2)
for each neighboring view we find the interpolation weights
for the neighboring light directions. As the view direction
is assumed to be sparsely sampled and roughly structured,

φ
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θ ≈ 0

0

Interpolation
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Figure 5: View interpolation/extrapolation in spherical co-
ordinates. The view directions are grouped into classes with
similar incidence angle θ and form rings on the hemisphere.
With this semi-uniform structure, the view direction can be
interpolated or extrapolated in a bilinear fashion.

we use a different interpolation scheme to avoid skewed
triangles from triangulations, and to allow for meaningful
extrapolation. We represent the view directions in spheri-
cal coordinates (θ,φ) and group them into classes based on
the incidence angle θ (Fig. 5). For our setup we have three
classes θ ≈ 0,θ ≈ 30 and θ ≈ 60. We join the view direc-
tions within each class with a polyline, and we assume the
polylines do not cross each other. These polylines divide the
spherical domain into rings, with which a bilinear interpola-
tion/extrapolation can be well-defined. The second-level in-
terpolation of the light direction for each view is performed
using the same strategy as the base texture.

We interpolate the pixel and subband histograms accord-
ing to the computed blending weights. Histograms are inter-
polated by linear blending of the inverse CDFs (cumulative
density function), as proposed by Matusik et al. [MZD05].
In practice such interpolation gives much more natural tran-
sitions. Also, inverse CDFs can be readily extrapolated with
negative weights that sum to one, while directly extrapolat-
ing histograms can lead to invalid negative density.

We decompose Ibase with the same steerable pyramid, and
we match each subband to the corresponding blended his-
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togram. We then collapse the pyramid to recover an image
I′base. Finally, we match the pixel histogram of I′base to the in-
terpolated pixel histogram to produce our final reconstructed
texture.

4. Results

We evaluate our approach in two different ways. First, we
perform new measurements using the simple setup described
in Section 2, and show that we are able to capture important
visual characteristics of realistic textures. Second, we use
publicly-available BTF databases measured using robotic se-
tups as ground truth and perform our reconstruction using a
subset of the data.

Acquisition and reconstruction We have measured 16 ma-
terials including different kinds of carpets and fabrics and
reconstructed the full BTF from the measurements; rendered
images are shown in Fig. 13. The cloth geometry used in the
rendered images is generated through standard cloth simula-
tion without considering physical properties of the rendered
materials. As a result, the amount of folding and stretching
may not be consistent with the real materials. In addition, our
texture representation inherits the limitation of BTFs: silhou-
ettes are not captured, and effects due to surface curvature
are ignored. Nonetheless, in most cases our reconstruction
is able to reproduce the visual quality of real materials faith-
fully. Please refer to our supplemental video for animated
sequences of the acquired BTFs.

Acquisition time is dependent on the sampling density of
the light directions; in practice, we capture about 100 im-
ages for a material in about 10− 15 minutes. Next the im-
ages are processed and individual patches (512×512 pixels)
are resampled. This processing takes 20− 30 minutes on a
P4 3.0GHz PC and about 800 slices of the BTF is typically
captured.

We decompose each texture slice of the captured BTF into
a steerable pyramid as described in Section 3, and we com-
pute and store a histogram for each subband, in addition to
the pixel histogram of the image. This step takes about 2−3
hours on our PC. Texture reconstruction takes about 20 sec-
onds per image, and it takes 36 hours to reconstruct a full
BTF with 81 × 81 views and lights. Our reconstruction is
implemented using Matlab and could be greatly optimized.

Validation To further validate our reconstruction method,
we compare our results against a number of materials in
the Bonn BTF database [SSK03]. Each material in the Bonn
database is measured at 81 light directions ×81 view direc-
tions, for a total of 6561 texture images. To test the capability
of our reconstruction, we pick 13 views roughly correspond-
ing to our acquisition setup, including 8 views at 60◦ inci-
dence, 4 at 30◦ and the top view. We use all 81 light direc-
tions for each of the 13 views. The input to our reconstruc-
tion thus includes the 81 light-dependent textures from the

top view, and 13×81 sets of pixel and subband histograms.
This is roughly equal to the number of samples we collect
in our acquisition, despite the fact that our sample directions
are not as uniform.

We reconstruct the BTF at each of the original 6561 di-
rection pairs with our technique. The first two columns of
Fig. 12 shows the comparison between the reconstruction
and original BTF for the materials corduroy, wool and pro-
poste.

We also compare our reconstruction with other approxi-
mation techniques. The third column of Fig. 12 shows ren-
derings when only the top-view textures are used, without
any statistics transfer. Notice that this can be seen as an upper
bound for the approximation quality of view-independent
methods, e.g. [MGW01]. The fourth column uses a sin-
gle texture (light and view both from the top), modulated
by the average BRDF computed from the original Bonn
data (i.e. 6561 samples). We do the same comparison for
our measured materials knitwear-1 and green-knitwear in
Fig. 11. Note the complex visual features not reproduced in
the texture-mapped and top-view versions, notably the re-
duction of the shadowed texels due to masking, and how the
texture becomes more blurry at grazing angles, revealing the
fluffiness of the materials. Interestingly, we have observed
that, in the absence of context, casual observers often prefer
the top-view version because it exhibits more contrast and
sharpness. This is a well-known bias in image quality evalu-
ation, e.g. [JF00]. We however emphasize that this excessive
sharpness results in hyper-realistic images that look artificial
in complex scenes. Contrast/sharpness reduction is an im-
portant effect that many real materials exhibit and that it is
particularly critical to reproduce fuzzy materials like fabric.
In addition reduced contrast due to masking is also important
in more solid materials such as tree bark and plaster [PK05].

Statistical characterization In Figs. 4 and 6, we show re-
sults of our reconstruction for a few example slices viewed
from 60◦ incidence. Our reconstruction provides good visual
matches to the target images in terms of brightness, color,
contrast, blurriness and other subtle multi-scale effects. No-
tice that these side-view images are rectified to the normal
view for display: for ωv = (60,0), the width of the texture
would be halved when used for actual rendering. As a re-
sult, any discrepancy along the horizontal dimension would
be diminished.

Our method captures effects such as the Fresnel term to
a first-order approximation. As described in Section 3.2,
we extrapolate the histograms for slices beyond 60 degrees,
and in practice, it is able to provide plausible increase of
the brightness at grazing angle (Figure 7). It is in particu-
lar important that we extrapolate the inverse cumulative his-
tograms, which faithfully increases brightness when appro-
priate and avoids numerical problems such as invalid his-
tograms. However, because we perform linear extrapolation,
we can underestimate the increase of brightness when the
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(a) Target texture (b) Base image (c) Reconstruction

Figure 6: Texture reconstruction at ωv = (60,0). Row 1:
Carpet from Koudelka et al. [KMBK03], Row 2: Measured
material carpet-1.
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Figure 7: Comparing the interpolated pixel histograms to
the Bonn measurement of the material proposte. Fixing the
light direction at (75,0), we compare histograms for six
viewing directions. All views except (0,0) are not present in
the reconstruction data set. The (75,150) view is extrapo-
lated as our most inclined views are at 60 degrees.

function is concave (Figure 7). Unfortunately, we have found
it difficult to reliably quantify the extrapolation errors, since
available measurements are typically unreliable near grazing
angle (e.g. the 75 degree measurements of the Bonn dataset).

Sampling Density Experimenting with reducing the sam-
pling density in the light direction, we found that for some
materials, high fidelity can be achieved with a surprisingly
low number of lights. In Fig. 8(b) we show that our recon-
struction yields very good results even when only 13 lights
per view are used. In comparison, when the same number
of texture images are directly used for rendering via inter-
polation, the result exhibits strong cross-blending artifacts
(Fig. 8(a)).

(a) (b)

(c) (d)

Figure 8: Comparing different sampling density of light di-
rections: (a) Direct interpolation of 13× 13 (view × light)
textures from Bonn data, (b) Our reconstruction with 13×13
textures, (c) Our reconstruction with 13×81 textures and (d)
Original BTF with 81×81 = 6561 textures.

Limitations Our acquisition is limited to materials without
sharp specularities due to the sparse sampling of the view
directions. Strong parallax effect is also difficult to repro-
duce with histogram statistics as spatial structure is not di-
rectly encoded. For example, the Lego material measured
by Koudelka et al. [KMBK03] exhibits strong parallax due
to its relatively steep depth, while having an otherwise sim-
ple geometry that lacks significant scattering: it is the worst-
case scenario for our approach. In Fig. 9(a) we show a slice
of the BTF viewed at 60◦ incidence. Compared to the base
image from the top view, the bumps are offset due to dispar-
ity, while shadows are stretched due to perspective. Our re-
construction is unable to capture the disparity, but its multi-
scale nature allows it to partially reproduce the elongation of
shadows. In Fig. 10 we compare the original and the recon-
structed Lego BTF rendered on a sphere. Note that the light
fall-off near the texture boundary in both the Lego BTF and
the sponge BTF shown in the video are artifacts from the
original measurements. In summary, while we consider the
Lego material as a failure case for our approach, the recon-
struction still looks surprisingly good and exhibits more 3D
effects than a flat texture, in particular in the video.

5. Discussion

We have presented a simple method to acquire the appear-
ance of materials such as fabric and knitwear that present
rich spatial and angular variation. Our main contribution
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(a) Target texture (b) Base image (c) Reconstruction

Figure 9: Failure case for the Lego BTF [ωv = (60,0)]. Our
reconstruction is unable to reproduce the disparity, but the
shadow elongation is partially captured.

(a) Original (b) Reconstruction

Figure 10: Failure case for the Lego BTF: original vs our
reconstruction.

is a reconstruction algorithm that generates a full bidirec-
tional texture function (BTF) from a sparse set of measure-
ments. Different views of the material sample do not need to
be aligned because we characterize view-dependent effects
using alignment-insensitive statistics, namely marginal and
multi-scale histograms.

As we have limited resolution in the view dimension, it
is clear that our technique cannot capture high-frequency ef-
fects such as highly specular materials. Our statistical char-
acterization does not handle the geometric effect of paral-
lax but it reproduces some of its effects such as masking.
Our statistical reconstruction tends to work best on materials
with complex spatial structure (e.g. wool, proposte), as the
high-frequency content and the statistical variation dominate
the visual appearance. For such materials, it fits an important
gap since realistic fuzzy fabric and knitwear appearance has
been challenging to measure with simple means.

Our technique inherits from the limitations of the BTF
concept. While BTFs capture statistical effects of multiple
scattering, they do not model the spatial component that
causes blurred shadows and light bleeding. Moreover, BTFs
do not capture the appearance of material silhouettes, a crit-
ical visual factor for which appropriate acquisition tech-
niques are needed.

We believe that our statistical reconstruction has poten-
tial beyond our simple setup, notably to exploit partial views

such as the one obtained with the kaleidoscope acquisition
setup. We also believe that statistical material modeling can
be applied to the capture of appearance from a single photo-
graph. Domain-specific knowledge or priors on BTFs might
also enable a better use of the higher light sampling rate to
improve reconstruction along the view direction and to better
handle parallax. Finally, our statistical reconstruction from
sparse samples suggests that the 6D BTF can be avoided al-
together, and we want to develop a compact representation
based on statistics that will enable real-time rendering with
a small memory footprint.
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Figure 13: Rendered images of the measured materials. First row: pink-knitwear, fleece, denim, carpet-2, second row: carpet-3,
velcro, knitwear-1, green-knitwear and third row: carpet-1,pattern-3,pattern-2 and pattern-1.

c© The Eurographics Association 2006.


