
38

feature

X R D S • S P R I N G 2 0 1 6 • V O L . 2 2 • N O . 3

Building a
Toolkit for Fabricating
Interactive Objects
Despite the recent proliferation of easy-to-use personal fabrication
devices, designing custom objects that are useful remains
challenging. RFID technology can allow designers to easily embed
rich and robust interaction in custom creations at low cost.

By Andrew Spielberg, Alanson Sample, Scott E. Hudson,
Jennifer Mankoff, and James McCann
DOI: 10.1145/2889427

F or years, industry analysts have been predicting the breakout of in-home consumer
fabrication devices such as laser cutters, desktop mills, and most prominently, 3-D
printers. Despite falling costs and bold predictions of their increasing ubiquity,
consumer demand for these devices remains relatively low. Behind this low demand

is the fact that rapid fabrication devices alone are not replacements for mechanical design
expertise or electronics knowledge, making it difficult for laymen to design objects that are
interactive. This limits the typical design space to static objects or simple machines, in turn
limiting the usefulness of these fabrication devices.

Upcoming electronic 3-D printers,
such as the Voxel8, coupled with boom-
ing online maker file sharing commu-
nities (such as Thingiverse and 123D
Make) offer one possible solution to
this problem, potentially putting entire
suites of electromechanical capabilities
a mere download away. While down-
loading designs may be easy, modifying
them would still likely require the same
mechanical and electronics expertise
needed to design them in the first place.
To truly empower makers around the
world, a better solution is needed.

The solution must be affordable
for hobbyists; it cannot require exces-
sive expert knowledge to design with;
it must take up little extra space so it

doesn’t excessively constrain the design
process; and any end user should be
able to incorporate it into their designs
regardless of fabrication method. Most
importantly, the solution’s interaction
mode needs to be fast in order to guar-
antee users true interactivity.

That solution might just be a new
spin on an old classic; a sensor that
has long found limited use in the con-
sumer transaction and commercial
warehousing industries, but is still
a relatively young player in the space
of making and interaction: radio fre-
quency identification (RFID). By incor-
porating RFID tags in the design proc-
ess and managing interactions with
these tags intelligently in software, we

can easily make almost any object in-
teractive with little user expertise. As
an added bonus, RFID tags are pow-
ered wirelessly, meaning designers
have no messy circuitry to deal with
and no batteries are required.

AN EXAMPLE APPLICATION
In order to motivate the types of inter-
active objects we want designers to be
able to make, consider the following
scenario. A designer wants to fabricate
a physical Tic-Tac-Toe game board with
X and O game tokens that are interac-
tive (see Figure 1). When a player places
a token on the board, a computer run-
ning a companion application provides
auditory feedback. When a player picks

39X R D S • S P R I N G 2 0 1 6 • V O L . 2 2 • N O . 3

Im
ag

e
by

 A
nd

re
y

N
ik

ol
ae

v

up a token, the system detects whether
the token is an X or an O, and the appli-
cation scolds the corresponding player
to wait if it’s not his or her turn. The ap-
plication also keeps track of where X
and O tokens are at all times, displays
the current game with shiny graphics,
and announces when a player has won
or the game has ended in a tie.

There are two parts of this artifact
that must be designed: the method by
which a player interacts with the Tic-
Tac-Toe board, and the specific Tic-
Tac-Toe elements. The ideal solution
should automate everything needed to
implement the game’s interactions—
from geometric design of tokens
through code needed to recognize to-
ken placement and motion—freeing
up the designer to focus on the game
mechanics and aesthetics. As you’ll
see, RFID tags can be the secret sauce
for making this possible.

RFID
While you may not necessarily be
aware of how RFID technology works
from a technical perspective, you’ve
almost undoubtedly experienced it at

some point in your life. If you’ve ever
seen or used a “tap to pay” credit or
transit card, those interactions rely on
embedded RFID tags to process the
transaction. Large collections of physi-
cal media (such as libraries) use RFID
tags for tracking inventories. Behind
the scenes, RFID tags are used to track
important parcels through storage and
manufacturing processes.

Passive, ultra-high frequency RFID
tags consist of millimeter scale com-
puter chips attached to a (centimeter
scale) antenna, typically embedded in
an adhesive piece of paper. This chip
holds data—a unique identifier and po-
tentially kilobytes of storage. Radio sig-
nals transmitted by an antenna power
tags wirelessly with transmit distances
of up to 10 meters. When a tag receives
a request for information, it reflects a
signal to a reader with the appropriate
response. (See Figure 2 for the compo-
nents). This can be, for instance, its ID
or any of its stored data. A single reader
can be used to track populations of
hundreds of tags. Tags are cheap, cost-
ing less than a 25 cents apiece.

Unsurprisingly, RFID technology

has enjoyed plenty of breakthroughs
in application to ubiquitous sensing;
after all, one of the technology’s killer
apps, transaction processing, is es-
sentially high proximity tag detection.
But other prior work has demonstrated
RFID tags’ potential for tracking hu-
man interaction [1], measuring ges-
tures such as tag touches, swipes on
tag surfaces, tag motion, and even tag
localization. Adding RFID tag-based
interaction can potentially add great
breadth of interactivity to the artifacts
that users fabricate. Further, RFID tags
and their rich vocabulary of interaction
modes can be directly translated into
default widgets to be included into de-
signs, simplifying the design process.

While techniques for measuring
RFID-based interaction are becoming
capable of robustly identifying larger
vocabularies of interaction, increased
robustness has come with a price.
Reliably identifying interactions can
take seconds, which can be prohibi-
tively slow for many real-world interac-
tions. If you were trying to design, say,
a video game controller that uses RFID
tag-based interaction for input, the

40

feature

X R D S • S P R I N G 2 0 1 6 • V O L . 2 2 • N O . 3

terministic interactions, keeping the
programming of states intuitive, and
let the API automatically manage the
probabilities behind the scenes. Their
program state distribution is repre-
sented as a collection of potential state
samples, and those state samples (and
thus the distribution) are updated with
input samples drawn from input events
such as key presses. Those input events
are also represented probabilistically.
This sampling approach is also known
as Sequential Monte Carlo sampling
(SMC) or particle filtering.

SMC is not specific to any single type
of input; it can even manage inputs
from several input modalities at once.
So naturally, the SMC framework could
extend to our RFID-based scenario if we
considered RFID tag reads (or the lack
thereof) as individual inputs (similar
to key presses in the phone example).
Ideally, such a system could detect pro-
gram states it were unconfident about,
then it could defer making decisions
about them—perhaps only by milli-
seconds—and avoid misclassification.
SMC could help measure and manage
these confidences. However, applying
the SMC method would mean we would
need to model interactive input with
RFID tags probabilistically. What types
of inputs would we want to detect, and
where would their models come from?

TOUCH AND GO
We decided early on to focus on mod-

difference between a two millisecond
and two-second input lag could be the
difference between player success and
player failure (and frustration). On the
other hand, methods exist with faster
response times, but these methods
are historically less accurate. Misinter-
preting one input for another could be
similarly frustrating and damaging to
usability. Thus, an important design
trade-off arises for developers using
RFID tags: Do you want your applica-
tion to be fast or do you want it to be ac-
curate?

It turns out there’s a way to get the
best of both worlds.

A SOLUTION IN INTERFACE DESIGN
We suspected from previous literature
and experiments that if we wanted in-
teractions to be truly low latency to the
point where they felt natural (say, less
than 200 millisecond latency), intelli-
gently managing this speed-accuracy
trade-off would be at the heart of our
solution. Interaction researchers and
developers have developed a number
of probabilistic methods for managing
uncertainty for more traditional human-
computer interaction (HCI) domains,
including keyboard, mouse, and touch
screen interactions. Could we apply
these methods to our problem of de-
signing RFID powered objects providing
real-time interactions? Previous work
on managing uncertain interactions by
Schwarz et al. [2] represented all inter-

actions as probabilistic events, and the
applications built atop them were trans-
formed into probability distributions
over program states. For example, if, on
your phone’s touch screen keyboard, you
touched halfway between the “F” and
“G” keys, then their system might repre-
sent the word you were typing as starting
with “F” with a 50 percent probability,
and starting with “G” with a 50 percent
probability. Because of this uncertainty,
their system won’t lock in that first let-
ter just yet; instead it waits for more in-
formation. Subsequent letters then shift
the confidence of the word starting with
“F” or “G” appropriately. If the second in-
put letter is an “H” with 99 percent prob-
ability, then the first letter was probably
a “G.” (No words in the English language
start with “fh,” while many—includ-
ing “ghost,” ghastly,” and “ghoul”–start
with “gh.”) In other words, their system
automatically defers the occasional de-
cisions it’s not confident about, while
maintaining very low latencies for the
typical decisions for which it’s confident.

While a probabilistic representation
of interactions is powerful, exposing it
directly to an application developer is
dangerous. The average person is bad
at probability. Asking a user to calcu-
late explicit probabilities of higher-
level states (such as the probability
of certain sentences in our phone ex-
ample) would never gain traction in an
API. So, the clever idea Schwarz et al.
had was to have developers specify de-

Figure 2: An antenna (left) emits radio waves to a 5.3 cm2 RFID tag (right),
which reflects a response to the reader (center).

Figure 1: The target Tic-Tac-Toe game.

41X R D S • S P R I N G 2 0 1 6 • V O L . 2 2 • N O . 3

stop occurring, and so the presence
of a touch event is actually described
by the absence of data. When a tag is
covered, the reader goes from to read-
ing its presence every 50-200 millisec-
onds or so to every three seconds at
best. Thus, as more time passes be-
tween subsequent tag reads, the less
likely the tag is actually visible.

We performed a number of experi-
ments over various tag population siz-
es where we recorded times between
subsequent tag reads, including sce-
narios where the tags were covered
and some scenarios where they were
uncovered. From the data, we were
able to build probability distributions
of the times between tag reads in each
of the covered and uncovered states,
providing our measurement model.
Coupled with our Bayesian filter and
a prior, which rebiases the state es-
timate toward a 50–50 estimate of a
covered/uncovered tag state, we can

eling two modes of interaction for fab-
ricating interactive devices: 1) touch
events, that is, when a user physically
touches and covers a tag; and 2) mo-
tion, that is, the velocity with which
a tag is moving relative to a reader.
These inputs would allow us to build
a design API that would allow for
reasonably large variety in interac-
tive objects, including touch menus,
token-based games, spinners, slid-
ers, accelerometers, and so on. For
example, in our Tic-Tac-Toe game,
these tag interactions alone could be
used to implement both token place-
ment identification (using tag touch/
cover) and token motion measure-
ment (using tag motion). Further, in-
put and touch events lend themselves
well to salient features measured by
readers about tags. For touch, the
time between each tag’s consecutive
reads provides a strong indicator as
to whether or not the tag is occluded
by a conductive material such as foil
or a dielectric material such as skin.
For motion, the rate of change of the
phase of the received radio wave for
each tag gives strong clues as to how
fast any given tag is moving.

Consecutive inputs are correlated.
If a tag is moving with a certain veloc-
ity during one tag read, it will likely be
moving with a similar velocity at the
next read. Since tag touch events are
far less frequent than tag state reads, it
is likely a covered tag will remain cov-
ered between reads (and likewise for
an uncovered tag). Therefore, we de-
cided to keep running measurements
of tag states using Bayesian filters. A
Bayesian filter fuses previous state esti-
mates with new measurements to con-
stantly provide robust measurements of
noisy systems. It’s called a Bayesian filter
because it does this through recursive ap-
plications of Bayes’ rule. Given a sequence
of i – 1, state estimates x1:i–1 ={x1,x2…xi–1},
and sequence of i observations
z1:i={z1,z2,…zi} a Bayesian filter esti-
mates the ith state as

p(zi|xi)p(xi|xi-1)
p(z1:i)

p(xi|z1:i, xi-1) =

Here p(xi|xi-1) is a hand-tuned Bayes-
ian prior, which represents state evo-
lution in the absence of observation,
p(zi|xi) is known as the measurement

model, and p(z1:i) is a normalization
factor, constant over all hypotheses,
which can typically be ignored. In our
setting, the measurement model has
a far bigger influence over the state
estimate than the prior, and many
priors work fine in practice. However,
we found an intuitive solution is to
simply bias the state estimate toward
increasing uncertainty.

Now, you may be thinking that
all of this is overkill. After all, RFID-
based credit card transactions also
rely on whether or not a tag is visible
to detect interaction, and they trigger
almost instantaneously as soon as a
reader sees the tag. But that instan-
taneous transaction relies on a tag
transitioning from a default state of
invisible to a reader, to visible. Mean-
while, touch events begin when a tag
is suddenly occluded, transitioning
from a default state of visible to invis-
ible. When touched, reads for a tag

Figure 3. RapID’s data-to-application pipeline.

Figure 4: Our Sketchup design environment; creating Tic-Tac-Toe.

42

feature

X R D S • S P R I N G 2 0 1 6 • V O L . 2 2 • N O . 3

We designed a number of physical wid-
gets users can add in order to make
their designs interactive: tokens, spin-
ners, sliders, touchable surfaces, veloc-
ity sensors, and so on. After users final-
ize their design, they can export their
designs to digital files for fabrication
via 3-D printing or laser cutting, as per
usual. RapID also exports two other
important pieces of information.

First, in order to ease the program-
ming of the digital side user applica-
tions, RapID exports starter code,
which can be immediately run. This
starter code keeps running estimates
of widgets—which tokens are placed
in which slots, the position of sliders
and spinners, how fast an object is
moving, and so on—and registers call-
back functions to monitor changes in
these widgets’ states. All users need
to do is define these callbacks deter-
ministically to say how the program
state should be updated when the tag
states change. RapID then uses those
deterministic functions to update
the probabilistic program state us-
ing SMC. RapID widgets also provide
visualization methods for providing
on-screen visual feedback of the prob-
abilistic state deterministically. For
example, RapID can render objects us-
ing the mean state for velocity-based
widgets, or for tokens, render based
on the most probable placement con-
figuration. Our API is built with Unity,
making it easy to build beautiful in-
teractive media built on top of it. Sec-
ond, in order to ease fabrication and
assembly, RapID annotates design
files with the locations where users
should place RFID tags, along with

keep continuous estimates of tag state
in the absence of tag reads, as well as
update our distribution with more cer-
tainty when a tag read arrives. Using
this method, we are able to measure
up to 20 tags at once with latencies of at
worst 200 milliseconds (and typically,
our state estimation converges much
faster than that).

Measuring motion is a bit different.
Motion can only be measured when a
tag is visible, so in this domain a reader
is constantly receiving reads. There-
fore, accurately measuring motion
depends on processing information
about the tag read, not just if and when
a tag read happens.

In order to measure motion, we
used some results in physics that state
the velocity v of a tag is proportional to
the change in phase Δφ between reads
divided by time between reads Δt (nor-
malized by the frequency f of the car-
rier wave). In other words:

Δφ
f*Δt

v = ∝

This was a continuous domain
rather than the discrete binary visible
versus not visible domain of the touch
event, so we had to record tag motion
over many different velocity measure-
ments. From this, we were able to
build an empirical Gaussian of mea-
sured phase changes given known ve-
locities, which, coupled with the run-
ning Bayesian filter, provides robust
velocity measurements in practice
(with built in error bars). In this case,
we use a prior that maintains the pre-
vious velocity estimate and increases
its variance, indicating increasing un-
certainty in the estimate without in-

formation. Similar to the touch event
scenario, updates are fast, and we are
able to measure up to 20 tag velocities
at once with latencies of at worst 200
milliseconds.

AN API FOR FABRICATION
With the technical details of how we
could formulate RFID interactions as
probabilistic events out of the way, we
were able to carefully consider what
our API (which we are calling “Rap-
ID”) for fabricating interactive objects
should look like. Figure 3 shows the en-
tire pipeline of how data is translated
into interaction with an application.
But how should developers create expe-
riences in such a paradigm? We knew
we wanted developers to be able to cre-
ate interactive programs, using RFID
tags as inputs. We also knew the API
for developing these programs should
abstract the notion of probabilistic
program states away from the users.
Finally, in the same way we abstracted
away much of the electromechanical
design using RFID tags, we would need
to abstract away as much coding as
possible for novice programmers.

The powerful decision is to couple
functionality with pre-defined physi-
cal widgets, combining the fabrication
and interactive experience directly.
This leads to two levels of fidelity with
which developers could design physi-
cal user experiences.

At the high level, we developed a
physical design environment as an ex-
tension to SketchUp, which is a CAD
environment aimed at novice users.
Figure 4 shows a user designing Tic-
Tac-Toe with our design environment.

Figure 5. Our Pong demo application and sliders. Figure 6. Our spaceship demo application.

43X R D S • S P R I N G 2 0 1 6 • V O L . 2 2 • N O . 3

ACKNOWLEDGMENTS
This work was conducted as part of a re-
search project at Disney Research: Pitts-
burgh. This work is based on a paper to
appear in the CHI 2016 proceedings.

References

[1] Li, H., Ye, C., and Sample, A. P. IDSense: A human
object interaction detection system based on
passive UHF RFID. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems (CHI 2015) (April 18–23, Seoul). ACM, New
York, 2015, 2555–2564.

[2] Schwarz, J., Mankoff, J., and Hudson, S. E. Monte
Carlo Methods For managing interactive state,
action, and feedback under uncertainty. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology (Oct. 16-19,
Santa Barbara, CA). ACM, New York, 2011, 235–244.

[3] Greenberg, S. and Fitchett, C. Phidgets: Easy
development of physical interfaces through
physical widgets. In Proceedings of the 14th Annual
ACM Symposium on User Interface Software and
Technology (UIST 2001) (Nov. 1114, Orlando). ACM,
New York, 2001, 235–244.

[4] Laput, G., Brockmeyer, E., Hudson, S. E., and
Harrison, C. Acoustruments: Passive, acoustically-
driven, interactive controls for handheld devices.
In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI
2015) (April 18–23, Seoul). ACM, New York, 2015,
2161–2170.

Bigographies

Andrew Spielberg is a second-year Ph.D. student at the
Computer Science and Artificial Intelligence Laboratory
(CSAIL) at MIT, where he works in the intersection of
fabrication and robotics. His current research exploits
data-driven methods for optimizing the design and behavior
of 3-D printed robots. His prior research has focused on
automated assembly. Prior to joining MIT he received his B.S.
and master’s from Cornell University and spent time at The
Johns Hopkins’ Applied Physics Laboratory.

Alanson Sample is a research scientist at Disney Research,
Pittsburgh where he leads the Wireless Systems group.
His research focuses on enabling new guest experiences
and sensing and computing devices by applying novel
approaches to electromagnetics, RF and analog circuit
design, and embedded systems.

Scott Hudson is a professor of human-computer
interaction in the School of Computer Science at Carnegie
Mellon University, where he serves as the founding
director of the HCII Ph.D. program. He received his Ph.D. in
computer science from the University of Colorado in 1986,
and has previously held faculty positions at the University
of Arizona and the Georgia Institute of Technology. Elected
to the CHI Academy in 2006, he has published extensively
on technology-oriented HCI topics, and recently received
the Allen Newell Award for Research Excellence at CMU.

Jennifer Mankoff is an associate professor in the Human
Computer Interaction Institute at Carnegie Mellon
University. She earned her B.A. at Oberlin College and
her Ph.D. in computer science at the Georgia Institute of
Technology. Her research enhances the human experience
with technology. Her goal is to combine empirical methods
with technological innovation to construct middleware
(tools and processes) that can enable the creation of
impactful applications. Most recently, this work has
focused on 3-D printing and its potential for creating
custom assistive technologies for people with disabilities.

James McCann obtained his Ph.D. in 2010 from Carnegie
Mellon University. His research hours are spent at Disney
Research Pittsburgh developing systems and interfaces
that operate in real-time and build user intuition; lately,
he has been dabbling in the creation of physical objects.
He also makes video games as TCHOW llc, including recent
releases “Rktcr” and “Rainbow.”

© 2016 Copyright held by Owner(s)/Author(s).
Publication rights licensed to ACM.

 1528-4972/16/03 $15.00

the IDs with which those tags should
be programmed.

At the low-level, though, we recog-
nized our pre-defined widgets may not
be expressive enough for all applica-
tions. That’s why, for the experienced
users, we exposed the lower-level API
for interacting with the probabilistic
program state. In order to make it pos-
sible for experienced users to develop
their own physical widgets and their
associated code.

While this project is by far not the
first to allow users to build physical wid-
gets that digital programs can be built
on top of [3, 4], the fact that RFID tags,
which are small and thin, have very few
geometric constraints makes it very
easy to place them anywhere in designs.
This makes it easy to grow large, expres-
sive widget libraries. In the future, it
will be exciting to see how RFID tags
and other similar, versatile sensors, will
allow online communities to grow large
widget libraries much in the way maker
communities such as Thingiverse cur-
rently share pure .STL files.

PUTTING IT ALL TOGETHER
For now, we’ve created a few demo ap-
plications to show off the promise of a
toolkit, which is a synthesis of our ap-
plication pipeline (see Figure 3) and
Sketchup Front-End (see Figure 4).

Using RFID tags on tokens and to-
ken slots, we were able to build a wire-
less, low-latency, physical game of
Tic-Tac-Toe. Here, we used our token
widget, which places tokens opposite
conductive foil to measure whether
or not token/slot pairs are visible. Us-
ing the IDs of the tags, we can iden-
tify which token is placed, when it is
placed, and where it is placed. When
the widget is added to the design, our
Sketchup extension adds the appropri-
ate token and slot geometry to the digi-
tal design files, and automatically gen-
erates all of the code for tracking this
interaction. The only code the user has
to add is the traditional deterministic
game of Tic-Tac-Toe, and the visual
and auditory feedback for the players,
all of which can be written in fewer
than 100 lines of C# code.

In another example (see Figure 5),
we used our slider widget, which fea-
tures a conductive cover that slides
atop a line of RFID tags. Our automati-

cally generated interaction code esti-
mates the state of the slider based on
which tags are visible to the RFID read-
er and which are masked by the cover.
We 3-D printed one controller and laser
cut the other (just to show we could),
and painlessly coded up a flashy demo
of the classic arcade game Pong using
our sliders as wireless controllers.

As a final example (see Figure 6),
we demonstrated our RFID tags’ mo-
tion sensing capabilities with a simple
spaceship-based demo. We designed
a simple toy spaceship and placed a
raw tag widget on the design, which,
while not adding new geometry to the
design, generated code for touch and
motion callbacks. This demo is partic-
ularly friendly to novice programmers.
Using our API, it was easy to translate
our toy’s motion to the digital on-
screen motion of a virtual spaceship,
only writing new code for on-screen
animation. (Dong Nguyen, we eagerly
anticipate your Flappy Bird port for our
RFID-based system!)

CONCLUSIONS
As RFID tags become more robust and
tag readers become cheaper with each
passing year, RFID sensing is rapidly be-
coming a serious contender for making
physical fabrication projects interac-
tive. RFID sensing provides a platform
that is easy to design with and even
easier to interact with and use. A future
where anybody can quickly fabricate
wirelessly powered novel game control-
lers, smart-home devices, personal ro-
bots, and more is right around the cor-
ner. It will be exciting to see how other
sensors can be hacked through simi-
lar data-driven methods, to go beyond
their original intended purpose for use
in interactive fabrication projects.

Through a combination of inexpen-
sive, easy-to-use sensors, and more sys-
tems that marry physical design with
digital design, people will finally feel
empowered to make devices based on
how they are meant to be used, and
not just on how they are meant to look.
Novice makers will finally be able to
design and fabricate devices that fully
capture the interactive nature of their
imagination. And when interactive ob-
jects are as easy to make as static ones,
the personal fabrication movement
will truly be ready to take off.

